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Abstract—Scheduling techniques are used in high-level syn-
thesis of integrated circuits. Traditional scheduling techniques
assume fixed execution delays for the operations. For the syn-
thesis of ASIC designs that interface with external signals and
events, timing constraints and operations with unbounded de-
lays, i.e., delays unknown at compile time, must also be con-
sidered. We present a relative scheduling formulation that sup-
ports operations with fixed and unbounded delays. In this
formulation, the start time of an operation is specified in terms
of offsets from the set of unbounded delay operations called
anchors. We analyze first a novel property, called well-posed-
ness, of timing constraints, which is used to identify consistency
of constraints in the presence of unbounded delay operations.
We present an algorithm that will transform an ill-posed con-
straint graph into a minimally serialized well-posed constraint
graph, if one exists. The anchors are then checked for redun-
dancy, and we identify the minimum set of anchors that are
required in computing the start time. We present an algorithm
that schedules the operations relative to the anchors and yields
a minimum schedule that satisfies the timing constraints, or de-
tects if no schedule exists, in polynomial time. Finally, we de-
scribe the generation of control logic from the resulting relative
schedule. An analysis of the optimality and complexity of the
algorithm is presented.

I. INTRODUCTION

IGH-LEVEL synthesis of digital hardware from be-

havioral specifications has been shown to be a prac-
tical and efficient means of design. Many tasks need to be
performed in high-level synthesis to transform an abstract
hardware representation into an interconnection of mod-
ules and a corresponding control unit. Scheduling and
module binding are among the most important tasks in
synthesizing circuits that are efficient in terms of area and
performance. These two problems can be modeled as
scheduling under resource constraints, which unfortu-
nately is an intractable problem [1]. For this reason, most
high-level synthesis system either separate the two tasks
or use heuristic approaches. Some systems perform mod-
ule binding before scheduling, e.g., Caddy/DSL [2] and
BUD [3]; some systems perform scheduling before mod-
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ule binding, e.g., Facet [4], DAA [5] YSC [6], and HIS
[7]. Combined heuristic scheduling and binding are per-
formed in other synthesis systems, such as MAHA [8],
ELF [9], Slicer/Splicer [10], Chippe [11], Hal [12], and
Genie-S [13]. It is important to remark that most of these
approaches assume that each module is characterized a
priori in terms of area and execution time.

We consider in this paper the scheduling problem for
the high-level synthesis of digital application-specific in-
tegrated circuits (ASIC’s). This class of circuits has two
important characteristics. First, ASIC’s often interface
with, and synchronize on, external signals. Therefore,
ASIC modeling in terms of high-level specifications re-
quires synchronization primitives and data-dependent it-
erations. These operations have execution delays that are
not known at compile time, or equivalently, their delays
are unbounded. Second, real-time ASIC applications re-
quire the specification of detailed timing constraints in the
hardware model and their enforcement in the synthesis
process [14]-[16]. Timing constraints specify upper and
lower bounds on the time separation between two opera-
tions. They can be applied, for example, to control the
time gap between a read and a write of an external bus or
to synchronize two write operations.

We present in this paper a scheduling algorithm under
timing constraints that supports operations with un-
bounded delay. We assume that scheduling follows mod-
ule binding as in Caddy/DSL [2] and BUD [3]. We extend
the traditional formulation of scheduling to support un-
bounded delay operations by introducing the relative
scheduling problem. Relative scheduling defines the start
time of an operation in terms of offsets from anchors,
where the anchors correspond to the set of unbounded de-
lay operations. We analyze the properties of timing con-
straints in the presence on unbounded delays by introduc-
ing the notion of well-posedness of the constraints. We
present an algorithm, called makeWellposed, that trans-
forms an ill-posed constraint graph into a minimally se-
rialized well-posed constraint graph, if one exists. We de-
fine the concept of irredundant anchors and show that they
are the minimum set of anchors that are required in the
computation of the start time. We present an algorithm,
called iterative incremental scheduling, that finds a min-
imum schedule which satisfies a set of timing constraints,
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or detects if no schedule exists, both in polynomial time.
We describe the generation of control logic from the re-
sulting relative schedule. Finally, we comment on the im-
plementation of the algorithm in the framework of the
Hercules/Hebe high-level synthesis system [17].

II. HARDWARE MODEL

We model hardware behavior as a set of operations and
a partial order among the operations. Each operation is
synchronous; therefore it takes an integral number of
cycles to execute, called its execution delay. The execu-
tion delay may not be known in advance, as in the case
of external synchronization and data-dependent iteration.
In this case, we say that the execution delay is un-
bounded. The partial order represents the sequencing de-
pendencies among operations that arise as a consequence
of data-flow restrictions or module-sharing limitations. An
important assumption made in relative scheduling is that
module binding has been performed prior to scheduling.
Furthermore, any conflict caused by the assignment of
multiple operations to a single module has already been
resolved by introducing sequencing dependencies be-
tween these operations. This is in contrast to heuristic ap-
proaches that combine scheduling with module binding
[81, [10], [12], or perform module binding after sched-
uling [4], [5], [14].

Several high-level synthesis systems use variations of
this general model [2], [6], [8], [18]. In particular, the
Hercules/Hebe high-level synthesis system [17], [19] rep-
resents the hardware model by a polar hierarchical acyclic
graph, where the vertices represent operations to perform
and the edges represent the dependencies among the op-
erations. The hierarchy supports procedure call, condi-
tional branching, and iteration' constructs of the hard-
ware description language; i.e., the body of a loop is an-
other sequencing graph of lower hierarchy, and each
branch of a conditional is a sequencing graph. We use this
model as the basis for scheduling. In Hercules/Hebe,
scheduling is applied hierarchically in a bottom-up fash-
ion. For the sake of simplicity, we consider only a non-
hierarchical model in this paper. The extension to hier-
archical scheduling is straightforward.

III. PROBLEM FORMULATION AND ANALYSIS

We model the scheduling problem under timing con-
straints by means of a polar weighted directed constraint
graph, G(V, E). The vertices of the constraint graph rep-
resent the operations. There are |V| = n + 1 vertices in
the graph, where v and v, denote the source and sink
vertices, respectively. The edge set represent the depen-
dencies, where a weight w;; is associated with each edge
(v;, v;) that is equal to the execution delay of the opera-
tion v;, denoted by &(v;). Let us assume first that the

'It is important to note that hardware descriptions with structured itera-
tive constructs may still be modeled by acyclic graphs through the used of
hierarchy; i.e., the body of a loop is a separate graph.

weights are known; this assumption will be removed in
the next section. In the case where no timing constraints
are specified, the graph is acyclic, and the scheduling
problem may be defined as follows:

Definition 1: A schedule of a constraint graph G(V, E)
is an integer labeling o: ¥ — Z™ from the set of vertices
V to nonnegative integers Z* such that ¢(v;) = o(v;) +
w; if there is an edge from v; to v; with weight w;. A
minimum schedule is a schedule such that (o (v;) — o(vp))

is minimum for all v; € V.

The integer label o (v;) associated with a vertex v; rep-
resents the time (or equivalently the cycle) with respect
to the beginning of the schedule (¢(vy)) in which the op-
eration modeled by v; may begin execution; i.e., g (v;) is
the start time of v;. The start time of an operation is used
by the control to determine when the operation can begin
execution. The acyclic nature of the constraint graph
guarantees the existence of a minimum schedule.

We introduce now timing constraints to define upper
and lower bounds between the start times of two opera-
tions:

® A minimum timing constraint ; = 0 requires that
o(v) = o(v) + L.

e A maximum timing constraint u; = 0 requires that
U(Uj) = G(Ui) + Uij-

We incorporate timing constraints into the constraint
graph as follows. For every minimum timing constraint
l;, we add a forward edge (v;, v;) in the constraint graph
with weight equal to the minimum value w; = [; = 0.
For every maximum timing constraint u;, we add a back-
ward edge (v;, v;) in the constraint graph with weight
equal to the negative of the maximum value w; = —u;
< 0, because o(v;) < o(v;) + uy implies o(;) = a(v;)
— u;;. The categorization of edges is summarized in Table
I. An example of a constraint graph is shown in Fig. 1.
The number inside a vertex represents the corresponding
execution delay. A minimum and a maximum timing con-
straint are present in the example. The constraint graph
derivation is similar to the formulation in [20] and [21].

In the resulting constraint graph G(V, E), the edge set
E = E; U E, consists of forward (E;) and backward (E,)
edges. The forward edges have positive weights and rep-
resent minimum timing constraints and operation depen-
dencies; the backward edges have negative weights and
represent maximum timing constraint, as shown in Fig.
1. The subgraph G; = (V, Ey) containing only the forward
edges is called the forward constraint graph. Without loss
of generality we assume that G, = (V, Ey) is acyclic; i.e.,
we do not consider a minimum timing constraints [; to be
valid if there is already a path of dependencies from v; to
v;. In particular, if [; > 0, then the constraint violates the
dependencies among the operations; otherwise, if /; = 0,
then it can be modeled equivalently by a maximum timing
constraint u; = 0 from v; to v;. Cycles in the forward
constraint graph can be detected by using Dijkstra’s al-
gorithm [22]. Note that the values of the execution delays
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TABLE 1
TRANSLATION TO CONSTRAINT GRAPH

Constraint Graph

Item Type Edge Edge Weight
Sequencing edge (v;, v;) forward (v, v)) 8(v;)
Minimum constraint /; forward (v;, v)) I
Maximum constraint u;; backward (v;, v;) —u;

min — Forward
== Backward

Sequencing graph
and = Constraint graph
Timing constraints

Fig. 1. Example of a constraint graph, with a minimum and a maximum
timing constraint. The number inside a vertex represents its execution de-
lay.

are irrelevant for this check. With this assumption, we say
that a vertex v; is a predecessor of vertex v; (v; € pred (v;))
if there is a directed path in G; = (V, Ej) from v; to v;
and, conversely, that a vertex v; is a successor of vertex
v; (v; € succ(v;)) if there is a directed path from v; to v;.
We define also length (v, w) as the length of the longest
weighted path from v to w in the full graph G(V, E), where
all unbounded edge weights are set to 0.

This scheduling problem, where module binding is per-
formed prior to scheduling, bears similarity to the con-
strained layout compaction problem [20], [22]. Both
problems involve finding the spacing relationships for a
set of elements to meet a set of upper and lower bound
constraints. In the case of compaction, the elements are
objects to be placed on a layout, whereas for scheduling,
the elements are operations to be ordered in time. A com-
mon goal in both problems is to minimize the total spac-
ing among the elements.

A. Relative Scheduling

Scheduling problems are defined and solved on graphs
with fixed delay operations. We extend this notion to
graphs with unbounded delay vertices. For an unbounded
delay vertex v;, the execution delay 8(v;) is not known
statically, and can assume any integer value from O to oo.
For this reason, we define a subset of the vertices, called
anchors, that serve as reference points for specifying the
start times of operations.

Definition 2: The anchors of a constraint graph G(V,
E) consist of the source vertex vy and all vertices with
unbounded delay, and are denoted by A € V.

The source vertex vg is treated as an anchor since the
activation of a sequencing graph is analogous to the com-
pletion of an unbounded delay source vertex, which is not
known statically. Therefore, all outgoing edges from vy
have unbounded weight equal to 6(vy).

We extend the scheduling problem in the presence of
unbounded delay vertices by introducing the concept of
offsets with respect to the anchors of the graph. Let V, €
V be the subset of the vertices including a and all its suc-
cessors. Let G,(V,, E,) be the subgraph induced by V,,
where the execution delays of all unbounded delay ver-
tices assume the minimum value of 0.

Definition 3: The offset of a vertex v; € V,, with respect
to an anchor a is an integer value g,(v;) such that ¢,(v;)
= 0,(v;) + wy if there is an edge of weight wy; from v;
to v;in G,(V,, E,), and g, (a) is normalized to 0. If o,(v;)
is the minimum value, then it is the minimum offset of v;
w.r.t. a, and it is denoted by 07" (v;).

Finding the set of offsets is identical to scheduling
G,(V,, E,), where the constraint graph models both op-
eration dependencies and timing constraints. If no such
set exists, then the constraints are said to be inconsistent.
Since the execution delay of an unbounded delay vertex
can be any integer greater than or equal to 0, a minimum
offset o, (v;) is the minimum time after the completion of
the anchor a before v; can begin execution.

We relate now the offsets to the start time of a vertex.
Let us consider first the anchors that affect the activation
of a vertex v;.

Definition 4: The anchor set of a vertex v; is the subset
of anchors A(v;) S A, such that a € A(v;) if there exists
a path in Gy(V, E;) from a to v; containing at least one
unbounded weight edge with weight equal to 6(a).

In other words, an anchor a is in the anchor set of a
vertex if the vertex can begin execution only after the
completion of a. Note that since the graph is polar, the
source vertex is contained in the anchor set of every ver-
tex, and the anchor set of the source vertex is the empty
set. The anchor set represents the unknown factors that
affect the activation time of an operation. If we generalize
the definition of the start time of a vertex in terms of fixed
time offsets from the completion time of each anchor in
its anchor set, then it is possible to completely character-
ize the temporal relationships among the operations. In
particular, the offsets of a vertex can be related to its start
time when the execution delays {6(a), a € A} of the an-
chors are known. The start time of a vertex v;, denoted
by T(v;), is defined recursively as follows:

T(v;) = max {T(a) + &(a) + a,(v)}.
acA(vi)
Note that if there are no unbounded delay vertices in the
graph, then the start times of all operations will be spec-
ified in terms of time offsets from the source vertex, which
reduces to the traditional scheduling formulation. We de-
fine the relative scheduling problem as follows.
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Definition 5: A relative schedule Q of a constraint
graph G(V, E) is the set of offsets of each vertex v; € vV
with respect to each anchor in its anchor set A(yy); i.e.,
Q = {o,(v;)|a € A(v;), Vv; € V}. A minimum relative
schedule Q™" is the set of corresponding minimum off-
sets; i.e., Q™" = {¢™"(v;)|a € A(v;), Vv, € V}.

A minimum schedule can also be referred to as as soon
as possible scheduling. A minimum relative schedule for
a constraint graph G(V, E) guarantees that, for all profiles
of execution delays {3(a), Ya € A}, the delay from the
source vertex to the sink vertex is minimum. This can
easily be shown from the expression for T(v;) above by
noting that if o,(;) is minimum for all v;, then T'(v;) is
also minimum for all »;. Consider the constraint graph in
Fig. 2. The anchor sets and minimum offsets of the ver-
tices are given in Table II. For example, vertex v, has
two anchors v, and a with corresponding offsets o,, = 8
and o, = 5; the start time of v, is given as

T(v,) = max {T(vy) + 8(vp) + 8, T(a) + 8(a) + 5}.

In words, we say that v, begins execution at least eight
cycles after the completion of vy and at least five cycles
after the completion of a.

B. Well-Posedness of Timing Constraints

An important consideration during scheduling is
whether a schedule exists under the required timing con-
straints. An analysis of the consistency of timing con-
straints was presented by Camposano and Kunzman in
[23] for graphs with no unbounded delay operations. In
this case, a schedule exists if and only if no positive cycles
are present in the constraint graph, where a posizive cycle
is a cycle whose sum of the edge weights is a strictly pos-
itive integer [20]. This condition can be checked by the
Bellman-Ford algorithm or, more efficiently, by special-
ized algorithms [20], [22].

We extend the analysis in order to consider graphs with
unbounded delay vertices. We first define the notion of
feasible constraints as follows.

Definition 6: A timing constraint is feasible if it can be
satisfied when all unbounded delays are equal to 0, i.e.,
5(a) = 0, Va € A. Otherwise, it is unfeasible.

A constraint graph is feasible if every constraint in the
graph is feasible. For the special case of no unbounded
delay vertices, the concept of feasibility is sufficient to
ensure that a schedule for the constraint graph exists. We
state the necessary and sufficient condition for feasible
constraints in the following theorem.

Theorem 1: A constraint graph G(V, E) is feasible if
and only if no positive cycle exists in G, assuming un-
bounded delays in G are set to 0.

Proof: Let Gy(V, E) denote the constraint graph
G(V, E) where all the unbounded delays are set to 0. We
prove first the necessary condition. If the constraint graph
G is feasible, then all constraints in G, must be consistent.

o— ,

§(w) 6(v0)

O,

3 28
OO
2 5
§(v)=2
6(n)=2
6(n) =35

Fig. 2. Example of a constraint graph, with a maximum timing constraint
from v, to v, and a minimum timing constraint from v, to v;. Vertices v
and a are anchors in the graph.

TABLE 11
ANCHOR SETS AND MINIMUM OFFSETS FOR
CONSTRAINT GRAPH IN FIG. 1

Offsets
Vertex Anchor Set
v; A(y;) 00 Oa
Vo -] - -
a {vo} 0 -
L4 {vo} 0 -
vz {vo} 2 -
v, {vy, a} 3 0
A {vo, a} 8 5

Let @ = {o(v;)|Vo; € V} denote a schedule of the con-
straint graph Go(V, E) satisfying the constraints. Con-
sider now a cycle in the graph, denoted by (v, v,),
(g, U3), "+, W1, Us)s (Vs U))- The inequality con-
straints implied by the edges of the cycle are as follows:

o(vy) + wiy = a(y)

a(vy) + wy3 = 0(v3)

aW,_y) + w15 S 0(vs)
o(v,) + wyy < a(vy)-
Adding the inequalities above, we have
a(v;) + (sum of edge weights on cycle) < a(vy)-

Since all constraints are consistent, the above inequality
must also be satisfied. Therefore, the length of the cycle
must not be positive. This is true for any cycle in the graph
G,, and we conclude that no positive cycle exists in the
graph.

Conversely, assume that no positive cycles exist in the
graph. Then we define o (v) to be the length of the long-
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est path from the source vertex v, to v assuming the un-
bounded delays are set to 0, i.e., 0“* (v) = length (v,, v).
We will show that {¢"*(v), v € V'} is a solution set, i.e.,
for any edge e; € E with weight w,;, the inequality o' (v;)
+ wy < o'f(v)) is satisfied, which will imply the con-
straint graph is feasible.

Assume for the sake of contradiction that there exists
an edge e; € E such that the constraint is violated, i.e.,

LP LP
g (U,') + Wi >0 (l)])

The above inequality implies that the longest path from
v, to v; does not pass through the edge e;, since otherwise
o) + w;; would be equal to oLP(vj). Specifically, the
path from 2, to v; consisting of the longest path from v,
to v;, followed by the edge e;;, is longer than the longest
path from v, to v;. This contradicts the definition of
olf (v;); hence the above inequality is not true. Since the
previous argument holds for all edges, {¢'(v), v € V}
is a solution set and the graph is feasible. g

We now consider the consistency of constraints in the
presence of unbounded delay vertices. Intuitively, the un-
bounded delay vertices create time gaps that cannot be
resolved statically. Depending on the execution profile of
these operations, a timing constraint may or may not be
satisfied by a given schedule. We extend the analysis by
introducing the concept of well-posed versus ill-posed
timing constraints, in the presence of unbounded delay
operations.

Definition 7: A timing constraint is well-posed if it can
be satisfied for all values of execution delays of the un-
bounded delay vertices.

Conversely, a timing constraint is said to be ill-posed
if it cannot be satisfied for some values of the unbounded
delays. A constraint graph G(V, E) is well-posed if every
constraint implied by the edges E is well-posed. From the
definition of feasible constraints, if a graph is well-posed,
then it is also necessarily feasible. The contrapositive also
holds; specifically, if a graph is unfeasible, then it is ill-
posed. Because of the observation that no schedule exists
for unfeasible constraint graphs, we assume in subsequent
analysis the constraint graphs to be feasible, unless oth-
erwise indicated.

Note that minimum timing constraints are always fea-
sible and well-posed, because the check for their validity
does not depend on the values of the execution delays, as
explained in the previous section. On the other hand, a
maximum timing constraint defines an upper bound be-
tween the activation of two operations. If its satisfiability
depends on the completion time of an unbounded delay
vertex, then the constraint cannot be met in general be-
cause it is possible that an input data sequence exists such
that the execution delay of the unbounded delay vertex
exceeds the upper bound imposed by the constraint.

Consider the examples in Fig. 3. Both graphs contain
an ill-posed maximum timing constraint u; from v; to v},
represented by a backward edge (v;, v;) with weight —u;;.

(b) ©

Fig. 3. Examples of ill-posed timing constraints (a) and (b), and well-posed
constraint (c), where the double-circled vertices are anchors with un-
bounded delays.

In Fig. 3(a), an unbounded delay vertex a exists on the
path from v; to v;. Depending on how long it takes to
complete execution, the constraint may or may not be sat-
isfied. Similarly for Fig. 3(b), the activation of v; depends
on the completion of a;, and the activation of v; depends
on the completion of a,, both of which are unbounded.

Assume for the sake of simplicity that the anchor set of
v; consists of a; and the source vertex v, and that the an-
chor set of v; consists of a, and the source vertex v. The
start times for »; and 2; can be written as

T(v;) = max {T(a;) + &(a;) + a,,(v;),
T(vy) + 8(vy) + a,,o(v,-)}
T(v;) = max {T(ay) + 8(ay) + 04,(v)),

T(v) + 8(vo) + 0, (vp)}-

Since T(v;) does not depend on a,, and T(v;) does not
depend on a;, the satisfiability of a maximum timing con-
straint between v; and v; depends on the unbounded delays
6(a,) and 8(a,), making it ill-posed.

Consider, however, the situation in Fig. 3(b) if we in-
troduce a forward edge from a, to v; with unbounded edge
weight equal to 8(a, ), as shown in Fig. 3(c). In this case
the constraint will become well-posed. The reason is that
by the time v; begins execution (after the completion of
both a; and a,), all the unbounded delays in the fan-in of
v; are already known, i.e., 8(a,) is common to both T(v;)
and T(v;). The satisfiability of the constraint can there-
fore be determined independently of unbounded delays.
We formalize this observation in stating the following
lemma as the necessary and sufficient condition for check-
ing if a given maximum timing constraint is well-posed.

Lemma 1: Let G(V, E;) be acyclic. A feasible maxi-
mum timing constraint u; = 0 is well-posed if and only
if A(v;) € A(v;).

Proof: We prove first the necessary condition. For
the sake of contradiction, assume A(v;) is not a subset of
A(v;) and the maximum timing constraint u;; is well-posed.
The start time of v; is T(v;) = MaX,eqqy, {1(@) + 6(a)
+ o,(v;)}, and the start time of v; is T(v;) =
MaXseq0)> 11(a) + 8(a) + o,(v;)}. The maximum tim-
ing constraint implies the condition T(v;) = T(v;) + u;.
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The inequality can be written as
T(Uj) - T(Ui) < uj

max {T\a) + 6a) + 0,(v;)}
aeA(v))

— max {T(a) + 8(a) + 0,(v))} < uy.
acA(vi)

Since A(v;) is not a subset of A(v;), there exists an anchor

b such that b € A(v;) but b ¢ A(v;). Thus it is always

possible to find a value of 6(b) such that the inequality is

violated. Hence, the constraint graph is ill-posed.

We now prove the sufficient condition. If the anchor
sets of v; and v; for a feasible maximum timing constraint
u; satisfy the condition A(y;) < A(v;), then the constraint
implies the following inequality:

Tw) < T(v;) + u;
max {T(a) + &(a) + 0, (v))}

aeA(vj)

= max {T(a) + 8(a) + 0, (v;))} + u;
aeA(vi)

max {T(@) + 8(a) + ¢,(v;)}

aeA(vj)

=< max {T@ + &) + (0,(v) + uy)}

max {T(a) + 8(a) + o,(v))}

a€A(v))

< max { max) {T(a) + 8(a) + (o,(v;) + uy)}

aeA(vj

max
xeA(vi), x¢A(v))

max {T(a) + &(a) + 0,(v;)} < max {A, B}

acA(v))

{TO) + 86(0) + (o:(vy) + uy)}}

where we define ¢ = max,eqq;), 17(@) + 8(a) + (0,(v)
+ )}, and B = MaXe ) xgawy {1 *) + 6x) + o, (v;)
+ u;)}. It is sufficient to verify that max, e {T(a@) +
8(a) + 0,(v;)} = A, because maxye () {T(a) + 6(a) +
0,(v))} < & implies max,cay {T(@) + 8(a) + 0,(v))}
< max {, B}. Therefore,

max {T(a) + 8(a) + 0,(v))} = A

acA(v))

n;a\(x) {T(@) + &) + o,(v))}

< max {T(a) + &a) + (0,(v)) + uyp}.

aeA(v)
Note that all quantities in the inequality above are non-
negative. Since both the left hand and the right hand side
of the inequality refer to the same set of anchors, deter-
mining whether it can be satisfied can be stated in terms

of the individual anchors. In particular, for all anchors a
€ A(v;), the following inequality is checked:

T(a) + 8(a) + o,(v;) = T(a) + da) + (0,(v;) + uy)

(Ta(l/j) = Oa(Ui) + Uujj.

By the definition of feasible timing constraints, the in-
equality holds for all offsets o,(v;), v; € V and anchors a
€ A(v)). Therefore, the maximum timing constraint u;; is
satisfied.

Lemma 2: Given a well-posed constraint graph G(V,
E), the anchor sets of the vertices on a cycle of G are
identical.

Proof: Let a cycle be formed in the graph by the
edges (Ul» UZ)(vb 1)3) e (vs—l’ vs)(vsa vl)' The edges
can be classified either as forward or backward. We con-
sider each case separately. If (v,_,, v)) is a backward
edge, then A(v, ) € A(v,) by Lemma 1 because of the
well-posedness property. If (v, v) is a forward edge,
then from the definition of anchor sets, A(v,— ;) & A(¥)
because vy _ ; is the predecessor of v,. Combining the two
requirements, the edges in the cycle imply that

Aw) € Awy) € -+ S A(vy) € Awy),

which can be true if and only if the anchor sets are iden-
tical,

A(vy) = Aw) =+ - = A(vy)

for all cycles in the graph. O

Since two cycles in the graph with a common vertex is
also a cycle, the anchor sets for the vertices on all con-
nected cycles are identical. A direct corollary of the
lemma is the following.

Corollary 1: Given a well-posed constraint graph G(V,
E), no cycles with unbounded length exist in G.

Proof: We will prove by contradiction. Assume G is
well-posed but there exists a cycle with unbounded length.
Let the cycle be denoted by €. Since € has unbounded
length, this implies that there exists an anchor a on the
cycle such that the length of the cycle is greater than or
equal to the execution delay &(a). Consider now the next
vertex v that follows a on the cycle . By definition of
anchor sets, a is in the anchor set of v, i.e., a € A(v).
From Lemma 2, the anchor sets of all vertices on the cycle
must be identical, implying that a is also in the anchor set
of a itself. This results in a contradiction. Therefore, we
conclude that no cycle of unbounded length exists in G.

O

With Lemma 1 and Lemma 2, we state the following
key theorem.

Theorem 2: Let G(V, E;) be acyclic. A feasible con-
straint graph G(V, E) is well-posed if and only if A(v;)
€ A(v;) for all edges ¢; € E.

Proof: First we prove the necessary condition by in-
duction. We will show that for a given well-posed con-
straint graph, if an edge e; is added such that A(v;) €
A(v;), then the resulting graph is well-posed also. Ini-
tially, consider the graph consisting of forward edges E;
only. Since G(V, E;) is acyclic and by the definition of
anchor sets, the condition holds and G(V, Ej) is well-
posed. Now consider a backward edge e; € E, represent-



702 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 11, NO. 6, JUNE 1992

ing a feasible maximum timing constraint u;, where by
assumption A(v;) S A(v;). From Lemma 1, ; is well-
posed if and only if A(v;) S A(v;). Therefore, the result-
ing graph is well-posed also, and the induction is com-
plete.

Now we prove the sufficient condition. Assume G(V,
E) is well-posed and there exist an edge ¢; € E for which
A(v;) is not a subset of A(v;). By definition of anchor sets,
e;; cannot be a forward edge, and hence e;; must be a back-
ward edge that is derived from a feasible maximum timing
constraint. Since all constraints implied by G are well-
posed, it follows from Lemma 1 that A(v;) S A(v;). This
results in a contradiction. Therefore, the criterion A(v;)
S A(v;) must be satisfied for all edges in the graph. [J

C. Properties of Relative Schedule

In this subsection, we analyze several properties of rel-
ative scheduling. The following theorem states the exis-
tence criterion for making a constraint graph well-posed.

Lemma 3: A feasible constraint graph G(V, E) can be
made well-posed if and only if no unbounded length cycles
exist in G.

Proof: We prove first the sufficient condition. If no
unbounded length cycle exists, we prove by induction that
it is possible to satisfy the well-posedness condition for
all edges. As the basis of the induction, consider the for-
ward constraint graph G;. By definition of anchor sets, Gy
is well-posed. Now consider a backward edge ¢; € E,. If
A(v;) € A(v;), the constraint is well-posed. Otherwise,
there exists an anchor x € A(v;) but x ¢ A(v;). By as-
sumption, there are no unbounded length cycles. There-
fore there must not be a pathdfrom v; to x since otherwise

the unbounded cycle (from x —>) v; — x) would be formed.
Because of this observation, we can add an edge from x
to v; without creating an unbounded length cycle. This
can be done for all {x|x € A(v;), x & A(v;)}, and e; can
be made well-posed without creating an unbounded length
cycle. The induction is complete and a well-posed solu-
tion exists by considering all backward edges until all
edges are well-posed.

Now we prove the necessary condition by showing that
if it is possible to make a constraint graph well-posed,
then no unbounded length cycles exist. Assume G can be
made well-posed by addition of a set of edges E,44, Such
that G(V, E U E,q) is well-posed. From Corollary 1,
there are no unbounded length cycles in G. The introduc-
tion of additional edges E,y; does not affect the original
cycles in G; i.e., any cycle in the original graph will re-
main a cycle in the final graph by the addition of E,y.
Therefore, if G has no unbounded length cycles, then no
unbounded length cycle can exist in G also. The proof is
complete. O

Given the existence criterion for well-posed con-
straints, we state the following theorem, which interprets

the minimum relative schedule Q™" = {¢T"(v;)|a €

A(v;), Vu; € V} in terms of the lengths of the longest
paths in the constraint graph. Assume G(V, E) to be well-
posed; this implies that there are no positive cycles in the
graph (by feasibility). Let QL = {6 (v))]a € A(vy), YU,
€ V} be the relative schedule where the offset otf (v)
w.r.t. anchor a € A(v;) is the length of the longest path
from a to v; in the constraint graph G(V, E), or, equiva-
lently, o%f (v;) = length(a, v;). We show now the equiv-
alence Q™" = Q%

Theorem 3: Assume the constraint graph G(V, E) to
be well-posed. Then for all offsets o}”(z;) € 2 and
ai"(v;) € Q™ o) = o7"(w).

Proof: The proof uses an extension of the analysis
presented in [20]. We show first that QL = (ot (v)]a e
A(v;), Vv; € V} is a relative schedule of G(V, E). For the
sake of contradiction, assume there exists an edge e; € G
with weight w;; that does not satisfy the inequality con-
straint. This implies that there exists an anchor ¢ common
to both anchor sets, a € A(v;) N A(v;), such that the cor-
responding offsets violate the inequality constraint. Let
o%(v;) and ¢57(v;) denote the offset of v; and v; W.r.t.
anchor a, respectively. Then the violation is given as

ol w;) + wy > o (V).

The inequality implies that the longest weighted path from
the anchor a to v; does not contain the edge ¢;;; otherwise,
o P(v;) + w; would be equal to o;’(v)). If we consider
the path from a to v; as consisting of the longest weighted
path from a to v; and the edge e, then the sum of edge
weights on this path is greater than il (v;). This is con-
trary to the definition of the longest path from a to v;, and
the inequality cannot be true. Since the inequality holds
for all anchors common to A(v;) and A(v;) for all edges
e; in the graph, the set @ p is a relative schedule of G.
We still need to prove that 9 = {05(v,)|a € A(v)),
vu; € V} is the minimum relative schedule. Let @' =
{oL(v))|a € A(v;), Yu; € V} be any relative schedule sat-
isfying the inequalities implied by G. We need to show
that for all offsets 07(v,) € Q,p and ol(v;) € @', 057 (v)
< o(v;) for all anchors a € A(v;) of all vertices v; € V.
For an anchor a € A(v;), the offset o5"(v;) is defined to
be the length of the longest weighted path from a to v;.
Represent this path as (a, v}) (v}, v} -+ (@I, v,
where v} = v;and ¥ = a. Let W(v;, v;) denote the weight
associated with the edge (v;, v;); then o) =
Ti_, W', v%). The anchor sets A(v¥), 1 < k < s, on
the path above all contain the anchor a because it is the
predecessor of every vertex vf, 1 < k < s. The relative
schedule Q' (v;) satisfies all the following inequalities,

ai@) + W, v}) < ol(v))

ol o)) + Ww!, v} < ol(v])

o) + Wi, vl) < o),
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where /(%) is the offset of v* w.r.t. the anchor a in ©'.
Adding the inequalities above, we have

oia) + X Wil ol) = ol(w).

We normalized the offset g/(a) to 0, and hence by defi-
nition,

o) = kzl W™, vf) = alwy).

for all anchors a € A(v;). This implies 05" (v,) < ol(v;)
for all a € A(v;) and v; € V. We conclude that Q% is the
minimum relative schedule of G. X

D. Relevant and Irredundant Anchor Sets

An important issue that arises in the calculation of start
times is the cascading effect of anchors. Let A(v;) and
T (v;) be the anchor set and start time of a vertex v;, where
T(v;) is given as

T(v)

max {T(a) + 8(a) + 0,(v;)}.

acA(vy)

In general, there may be disjoint paths to a vertex v; from
every anchor a € A(v;). Therefore, the corresponding off-
sets g,(v;), Ya € A(v;) are necessary in the computation
of the start time T(v;).

However, consider the case of a path of anchors fol-
lowed by the vertex v;, as shown in Fig. 4. Note that A(v;)
includes both anchors a and b. Since anchor b can begin
execution only after a completes, and since v; can begin
execution only after b completes, it is sufficient to define
T(v;) with respect to the completion of b only. In other
words, anchor a is dominated by b; hence o,(v;) is not
needed to compute T(v;).

We formalize this observation by identifying the an-
chors in the anchor set whose offsets are not necessary in
computing the start time. These anchors and the corre-
sponding offsets can be removed without altering the re-
sult of subsequent scheduling steps. The advantages of
removing redundancies are twofold. First, we improve
significantly the efficiency of the scheduling algorithm
(subsection IV-E) by focusing on a smaller number of an-
chors. Second, we can achieve a smaller and faster con-
trol implementation of a relative schedule because the start
time depends on fewer offsets and, hence, on fewer syn-
chronizations.

This subsection is organized as follows. We introduce
first the concept of the relevant anchor set of a vertex as
points of reference that may directly affect its start time.
We demonstrate in Theorem 4 that for the case of well-
posed constraints and minimum offsets, the start time
computed using the relevant anchor set is equivalent to
the start time computed using the full anchor set. We then
use the relevant anchors as the basis for defining irredun-
dant anchors. We present Theorem 6, which states that
the irredundant anchors of a vertex are the minimum set
of anchors necessary to compute its start time. The theo-

aa(vi) ob(vi)
Fig. 4. Cascading effect on the anchor set, where a and b are anchors of
v,

rem sets the theoretical framework for our use of irredun-
dant anchors in the scheduling algorithm.

1) Relevant Anchor Set: We identify the anchors of a
vertex v; that may directly affect the start time T'(v;) by
introducing the concept of the relevant anchor set of a
vertex. We present first the following definitions.

Definition 8: A defining path of an anchora € A to a
vertex v;, denoted by p(a, v;), is a path from a to v; in
G(V, E) such that it has exactly one edge with unbounded
weight equal to 6(a). The length of p(a, v;), denoted by
{p(a, v;)|, is the sum of the edge weights on the path
excluding the unbounded weight é(a).

Definition 9: The relevant anchor set of a vertex v; in
a constraint graph G(V, E) is the set of anchors R(v;) =
{r|r € A such that there exists a defining path p (7, v;)}.

Definition 10: A maximal defining path of a relevant
anchor r € R(v;) of a vertex v; is the defining path p* (r,
v;) whose length is maximal among all defining paths from
rto v;.

Therefore, the maximal defining path of a relevant an-
chor r € R(v;) is the longest path by which r is defined to
be relevant. Obviously, there can be more than one defin-
ing path for a particular relevant anchor since there can
be more than one path from r to v;. Similarly, the maxi-
mal defining paths may not be unique.

It is important to point out that the definition of relevant
anchor set considers all paths in the full constraint graph,
as opposed to the definition of anchor set that considers
only paths in the forward constraint graph. This is be-
cause the definition of the full anchor sets is independent
of the property of well-posedness, whereas the relation-
ship between the relevant anchor set and the full anchor
set strongly depends on the property of well-posedness.
To illustrate the concept, consider the examples in Fig.
5. The double-line edge from v to v; is a backward edge;
all other edges are forward edges. For Fig. 5(b), a is rel-
evant anchor of v; because there is a bounded path from
a to v; to v;, which is the defining path of a € R(v;).
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{a,b} € A(w)
{b} € R(v;)

{a7b7 C} € A(vi)
{a,b} € R(v:)
(@) (b)

Fig. 5. Illustrating the difference between A(v;) and R(v;): (a) b is a rel-
evant anchor of v;; (b) both a and b are relevant anchors of v;.

We define the relevant start time of a vertex v;, denoted
by Tz(v;), as the start time of v; computed with offsets
from the relevant anchors R (v;) only. Specifically,

Tp(v)) = max {T(r) + &) + o,(v;)}.
reR i)

We present now several properties of relevant anchor
sets that are important in proving the equivalence between
the start time and the relevant start time of a vertex. First,
the following lemma casts the property of well-posedness
in terms of the relationship between the relevant anchor
set and the anchor set.

Lemma 4: Let G(V, E;) be acyclic. A feasible con-
straint graph G(V, E) is well-posed if and only if R(v;)
C A(y;) forall v; e V.

Proof: From Theorem 2, it is sufficient to show that
R(v;) € A(v;) Vv, € V implies A(v;) S A(v;) Ve; € E,
and vice versa. We prove the sufficient condition first.
Assume that A(v;) € A(v;) for all e; € E. Consider a
relevant anchor r € R(v;) of a vertex v; € V. By definition,
there exists a defining path from r to v;, denoted by (r,
v), (vy, v3), * * +, (v, ©v;), such that r is an anchor and
{v\, * -+, v} are not anchors. By assumption of well-
posedness, the edges imply that

A(v)) € A(vy) € * -+ C A(yy) S Avy).

Since r € A(v,), this implies that r € A(v;) for all relevant
anchors r € R(v;). Therefore, R(v;) S A(v;).

We prove the necessary condition by contradiction. As-
sume R(v;) S A(v;) for all v; € V. Assume also there
exists vertices v; and v; such that ¢ ; € E, and the condition
A(v;) € A(v;) is violated. Then there exists an anchor x
such that x € A(v;) and x g A(v;). By the definition of
anchor sets, the violation edge e cannot be a forward
edge. Since x € A(v;), there is a path of forward edges
from x to v; with the unbounded edge weight 6(x). If the
path contains no other unbounded delay edges, then we
have a contradiction because x is a relevant anchor of v;
(by the defining path from x to v; followed by the edge
ej;), but x g A(v;).

Now consider the case where the path contains other

unbounded delay edges. In particular, let an anchor g be
on the path from x to v; such that g € A(v;). However, g
cannot be in the anchor set A(v;); otherwise we would
violate our initial assumption of x ¢ A(v;). By replacing
x by g, the same argument can be applied. Therefore, the
condition A(v;) € A(v)), Ve; € E is satisfied, and the
graph is well-posed. 0

For ease of notation, let X(v;) = {x|x € A(v;), x ¢
R(v;)} denote the set of irrelevant anchors of v;, where
A(v;) = R(v;) U X(v;). The following lemma states the
relationships between the relevant and irrelevant anchors
of a vertex.

Lemma 5: Consider a well-posed constraint graph G(V,
E). For each irrelevant anchor x € X(v;), x is a predeces-
sor of at least one relevant anchor r € R(v;).

Proof: Consider an anchor x € A(v;); then there is a
path of forward edges from x to v;. Denote the path as (x,
v )0y, v2) * (v, v;). Assume x € R(v;); there must
exist by definition at least one anchor on the path. Let the
last anchor on the path be denoted as v,, where v, € A(v;).
This implies that v, is a relevant anchor of v;, i.e., v, €
R(v;). Since there is a path of forward edges from x to
v,, X is a predecessor of v,. The argument holds for all
paths from x to v;. Therefore, x is the predecessor of at
least one relevant anchor of v;. 0

In other words, the set of relevant anchors of a vertex
v; forms a vertex separation set on the subgraph induced
by all the paths to v; from every anchor a € A(v;). We can
now present the following theorem, which demonstrates
the equivalence between the start time and the relevant
start time in the presence of well-posed constraints and
minimum offsets.

Theorem 4: Let G(V, E) be a well-posed constraint
graph with a minimum relative schedule Q™" =
{o™(v;)|a € A(v;), Yv; € V}. Then the corresponding
start time T(v;) is equivalent to the relevant start time
Tgr(v;) forall v; e V.

Proof: We will prove by induction. We note that
since the forward constraint graph G(V¥, Ej) is acyclic,
there exists a topological ordering < of the vertices such
that v; < v; if v, is a predecessor of v;. Consider each
vertex according to its topological ordering, starting with
the source vertex v,y. Obviously T(vy) = Tg(vy) since
A(vy) = R(vg) = ¢. Now consider the next vertex, vy;
since the graph is polar, the equality is again satisfied be-
cause the anchor set and the relevant anchor set are iden-
tical and equal to the source vertex vy, i.e., A(v;) = R(v;)
= {vo}.

The inductive hypothesis assumes that for a vertex v;,
if all vertices vy, * * * , v;_ that precede it in the ordering
satisfy the equality in start times, then the equality will
also be satisfied for v;. Note this implies that for all an-
chor a € A(v;), T(a) = Tg(a) because the anchors of v;
are also predecessors of v; and hence precede v; in the
topological ordering.

We will now show that T(v;) = Tr(v;). Expanding the
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expressions for T'(v;) and Tg(v;),

T(v;) = max {T(a) + 8(a) + e™(v;)}

acA(vi)

max { max {T(r) + 6(r) + o/ ()},
reR(vi)

{max {T(x) + 8(x) + o™ (v))}}
xeX(vi)

Te(v)) = max {T(r) + 8(r) + o™ (v))}.
reR(v)
If the following inequality is satisfied, then the equality
Tr(v;) = T(v;) is satisfied:

max {T(r) + 6(1) + o™ (v))}
reR(vi)

> max {T() + 6(x) + o™ (v))}
xeX(vi)
where X (v;) is the set of irrelevant anchors of v;. Let X (v;)
={x, -+ ,x}and let R(v;) = {ry, - -, r}. We
expand the inequality above as follows:

% = max {T(r)) + 8(r) + o™ (vy),
T(rp) + 8(r) + oR" (),

T(r) + 6(r) + an"(v)}

43

where for notational convenience we define & to be the
left-hand side of the inequality, and & the right hand side.
By Lemma 5, any x € X(v;) must be a predecessor of at
least one relevant anchor r € R(v;). Fig. 6 shows the rel-
evant anchors R(v;) forming a vertex separation set be-
tween the irrelevant anchors X (v;) and v; in the subgraph
induced by all the paths to v; from A (v;). Since the irrel-
evant anchors x;, - - - , x; are predecessors of the relevant
anchors ry, -+ + , r, we can rewrite the start time of the
relevant anchors T'(r), - - -, T(ry) in terms of the irrel-
evant anchors. In particular,

T(r) = max {T(x}) + 8(x}) + o (r),

xled@)
TG) + 8@ + o (r), - -}

T(r) = max {TG) + 6Gd) + o2 (r),

x2eA(r)

TG +8GdH + o), - -}

T(ry) = max {T(h) + 8(e%) + oi (),
xkeA(ry)

Te) + 8% + o (), - - -,
where {x!, x3, - - - } is the set of anchors for the relevant

anchor ry, and likewise for {x3, x3, - - - }, and so on. We
know that the set of irrelevant anchors {x,, -+ - , x;} is

>l
)

Fig. 6. lllustrating the relevant and irrelevant anchors of v;. All edges rep-
resent paths in the graph with unbounded length.

equal to the union of the anchor sets of the relevant an-
chors, i.e., X(v;) = UJ’LIA(rj). This follows from
Lemma 5 because the relevant anchors R(v;) form a ver-

R = max {T(x)) + 0(x) + Umin(Ui)x

X1

T(xy) + 8(x) + o™ (v),

x

T(x) + 6(x) + o™ (1)},

tex separation set between the irrelevant anchors X(v;)
and v;. For each of the terms in &, we replace T(r;) by
the corresponding expression, then rearrange the terms to
reexpress in terms of the set of irrelevant anchors {x,,

-, x;}. The expression & can be rewritten as follows:

% = max {T(x)) + 8(x;)) + max {o™"(") + (")
riel (x1)

+ om" (v},

T(x;) + 6(x;) + max {a,‘;i"(rz) + 8(r%)

r2el (x2)

+ o (v},

T() + 6(x) + max {o™(r') + 6(r")
el (x)

+ o™ ()}

Note that we have regrouped the expressions in terms of
the irrelevant anchors {x,, - - - , x;}. The set I' (x;) con-
sists of the relevant anchors of »; which lie on all paths
from x; to v; in the full graph G(V, E). Similarly, the set
T (x,) consists of the relevant anchors of »; which lie on
all paths from x, to v; in G(V, E), and so on. Comparing
the expression above with the preceding inequality, we
note that a sufficient condition to satisfy the preceding in-
equality (£ = ) is for the following new set of in-
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equalities to be satisfied:

max {o™"(r') + 8(r') + oW (v)} =

U;T:in(vi)
rlel’(x)

max {U“““(rQ) +8(rY) + aT @)} = W (v)
r2el (x2)

max {o™"(r') + 6(r) + 7" (v)} = o™ (v)).

el (x)
Let us consider the first inequality in the set above. Any
path from x, to v; contains at least one relevant anchor r!
€ I' (x;). From Theorem 3, the minimum offsets {c™"|q
€ A(v;), Yv; € V} for a constraint graph G(V, E) corre-
spond to the lengths of longest paths from the anchors to
their successors, where all unbounded edge weights are
set to 0. Since all paths from x; to v; contain at least one
relevant anchor, by the assumption of minimum offsets,
which are equal to the lengths of the longest paths (Theo-
rem 3), the following equality holds:

o™ (v;) = length(x, v;) = max {on"(r") + oN"(v)}.

r'el(x))

Since 8(r') = 0, vr' € I'(x)), the first inequality is
satisfied. A similar argument can be applied to the other
inequalities. We conclude then that the start time of v; is
equal to its relevant start time, T(v;) = Tr(v;), and the
induction is complete. g

2) Irredundant Anchor Set: A relevant anchor may di-
rectly affect the activation of a vertex. However, redun-
dancies could still arise. Consider the example in Fig. 7,
where both a and b are relevant anchors of v;. Then a is
redundant in the computation of the start time of v, since
there is a path (through a-b-v;) with length at least as
long as the length of the maximal defining path p* (a, v;)
of a (through a-v,-v;). We generalize the above obser-
vation by defining the notion of redundancy in the rele-
vant anchor set.

Definition 11: An anchor r € A(v;) of a vertex v; is
redundant if there exists an anchor ¢ such that 1) r € A(g)
and q € A(v;), and 2) length(r, v;) = length(r, q) +
length(q, v;). Otherwise, r is an irredundant anchor of
v;. The set of irredundant anchors of v; is denoted by
IR (v;).

Theorem 5: An irredundant anchor a € IR(v;) of a ver-
tex v; is always a relevant anchor of v;, i.e., IR(v;) €
R(v)).

Proof: Consider an irrelevant anchor x € X(v;). By
Lemma 3.5, the relevant anchors form a vertex separation
set between x and v;, such that for all paths p from x to
v;, p contains a relevant anchor r € R(v;). Therefore,
length (x, v;) = MaXger ) {length(x, q) + length(q, v,)}.
This implies that there exists a relevant anchor g such that
length (x, v;) = length(x, q) + length(q, v;). This is ex-
actly the definition of redundancy. Since all irrelevant an-
chors are redundant, all irredundant anchors must be rel-
evant, i.e., IR(v;) € R(v;) forall v; e V. O

Fig. 7. Example of a redundant anchor a of vertex v;.

To illustrate the concept, consider the two graphs in
Fig. 8. In (a), a is irredundant since there is a maximal
defining path of a (through a-v,-v;) that is the longest
path from a to v, assuming unbounded weights are set to
0. In (b), a is redundant because the length of its maximal
defining path is less than length (a, v3).

The above theorem states that IR (v;) S R(v;). We pre-
sent now Lemma 6, which states that the start time com-
puted using IR(v;) only, denoted by Tpr(v;) =
max,egey LT + 8(r) + o7 (v)}, is equivalent to
T(v;) computed using the full anchor set 4 (v;), for well-
posed constraints and minimum offsets. Tjg(v;) is called
the irredundant start time of v;.

Lemma 6: Let G(V, E) be a well-posed constraint
graph with a minimum relative schedule Qrin =
{o™(v;)la € A(v;), Yv; € V}. The corresponding start
time T(v;) is equivalent to the irredundant start time
Tir(v;) forall v; € V.

Proof: By Theorem 4, T(v;) = Tr(v;). It is suffi-
cient therefore to show that Tir(v;) = Tr(v;), Yv; € V.
We will prove by induction in a similar manner as in
Theorem 4. We note that since the forward constraint
graph G(V, E;) is acyclic, there exists a topologlcal or-
dering < of the vertices such that v; < v; if v; is a pre-
decessor of v;. Consider each vertex accordmg to its to-
pological ordermg, starting with the source vertex ;. Ob-
viously Tr(vg) = Tr(vo) since A(vg) = R(vo) = IR (vy)
= . Now consider the next vertex, v,; since the graph
is polar, the equality is again satisfied because the rele-
vant anchor set and irredundant anchor set are identical
and equal to the source vertex vy, i.¢., R(v)) = IR(v)) =
{vo}-

The inductive hypothesis assumes that, for a vertex v;,
if all vertices vy, * * * , v;_ that precede it in the ordering
satisfy the equality in start times, then the equality will
also be satisfied for v;. This implies that for all anchors a
€ A(v;), Tr(a) = Tir(a) because the anchors of v; are
predecessors of v; and, hence, precede v; in the topolog-
ical ordering. We will now show that Tr(v;) = Tjr(v;).
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Fig. 8. Illustrating the difference between (a) irredundant and (b) redun-

dant relevant anchors.

We expand the expression for the start times as follows:

Te(v;) = max {T() + 8() + o™ (1))}

reRwi)

= max { max {T(r) + 8(r) + o™ (v;)},
relR(vy)

{ max {T(x) + 6(x) + o™ (v,)}}
x¢IR W)

Tr(v) = max {T(r) + 8(r) + o7 (v;)}.
relR(vi)

If the following inequality is satisfied, then Tr(v;) =
Tir(vy):

max {T(r) + 6(r) + o™ (v,)}
relR(vi)

= max {T() + 6(x) + o™ (v,)}.
x¢IR(vi)

Let us consider one redundant relevant anchor x ¢ IR (v;)
but x € R(v;). For all maximal defining paths of x to v,
there exists a path from x to v; passing through at least
one irredundant anchor g with longer length, since oth-
erwise x is irredundant. By definition, there exists a path
k from x to v; in G(V, E) containing an irredundant rele-
vant anchor g € IR (v;) such that the length of « is equal
to the length of the longest weighted path from x to v,
i.e., |k| = length(x, v;). By Theorem 3, |«| is equal to

mm(v,) which is greater than or equal to the length of
any maximal defining path of x, i.e., |x| = |p*(x, )],
Vo*(x, v;). Furthermore since the longest path contains
anchor g, 67" (v;) is equal to the sum of the offsets o} (¢)
+ o"‘"‘(v,) The relationship is summarized as follows:

T() + 8() + o™ (v,) < T(g) + 8(q) + o™ ;)
T(x) + 8(x) + o (1) < [T(x) + 6(x) + o™ (q)]
+6(g) + 07" (v)
o™ (V) = o7 (q) + 8(g) + o ().

For every redundant anchor x ¢ IR (v;), there exist an ir-
redundant anchor g € IR(v;) that dominates the offset
07" (v;). Since 8(g) = 0, the inequality above is satis-
fied, and the induction is complete. O

With Lemma 6, we state the following important theo-
rem.

Theorem 6: Let G(V, E) be a well-posed constraint
graph with a minimum relative schedule Q™" =
{o™™(v;)|a € A(v;), Vv; € V}. The irredundant anchor
set IR (v;) is the minimum set of anchors that is required
to compute the start time T(v;), Vo, € V.

Proof: The sufficient condition is already satisfied by .
Lemma 6. We prove the necessary condition by showing
that if an irredundant anchor r € IR(v;) is not used, then
the resulting start time 7™"(»;) will violate one or more
constraints implied by the edges of G(V, E).

By Theorem 5, the irredundant anchors are also rele-
vant anchors. Therefore, there exists a maximal defining
path p*(r, v;) of r € IR (v;) where the | p* (r, v;)| is equal
to length(r, v;). By Theorem 3, length(r, v;) is equal to
the minimum offset 6™ (»;). Let T™"(v;) and T™" (r) be
the start times of »; and r computed with the minimum
offsets, where the unbounded edge weights are set to their
minimum value of 0. Since T™"(z;) and T™"(r) satisfy
the constraints of G(V, E), the following equality must
be satisfied:

T™"(v;) = T™"(r) + length(r, v;)
Tmin (vi)
Because r is irredundant, for all paths « from r to v; con-
taining one or more anchors {a;, - - * , @, } such that r €
A(a),a, € A(ay), * * -, a, € A(v;), the length of « is less

than the longest path from r to v;; i.e., the following con-
dition holds:

mln(v) > amm(al) + omm(a2) + e .

™) + o™ (v)).

+ o™ (v).
If r is not included in the computation of the start time of
v;, then the offset ¢™" '(v;) is not included in the expres-
sion for T™"(v;). Let T™" (z;) denote the start time of v;
computed without the offset ™" (v;), where all un-
bounded edge welghts are set to 0. Let k| = 0™"(a;) +
“““ @)+ -+ 02}‘“ (v;) denote the length of the long-
est path from r to v; excluding the maximal defining paths
from r to v;. Then the equality satisfied by the new start
time, T™"(v,), is

T (1) = T™"(r) + |«].

However, since || < ¢™" = length(r, v;), the inequality
implied by the longest path from r to v; in the constraint
graph is violated, i.e., T™"(v;) < T™"(y,). We conclude
that r must be used to compute the start time of ;. The
same argument applies to every irredundant anchor; hence
IR (v;) is necessary to compute the start time of ;. |

IV. ALGORITHMS FOR RELATIVE SCHEDULING

Given a sequencing graph and a set of minimum and
maximum timing constraints, we generate a constraint
graph G(V, E) consisting of forward edges E; and back-
ward edges E,. The forward edges are first checked to
ensure that no cycles are formed. We approach the rela-
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tive scheduling problem in four steps, as shown in Fig.
9.

1) Checking Well-Posed: The constraint graph is
checked for well-posedness using Theorem 2 using
an algorithm called checkWellposed.

2) Making Well-Posed: 1f the constraint graph is ill-
posed, then no schedule can satisfy the constraints
for all input sequences. We can, however, attempt
to make it well-posed by adding sequencing depen-
dencies to selectively serialize the graph. This is
performed by the algorithm makeWellposed, which
is guaranteed to yield a well-posed graph with min-
imum serialization, if one exists. If the constraint
graph cannot be made well-posed, then the set of
constraints is inconsistent, and we exit the algo-
rithm.

3) Remove Redundant Anchors: At this point, the con-
straint graph is well-posed. We then identify and
remove the redundant anchors that are not needed
to compute the start times.

4) Iterative Incremental Scheduling: Finally, the rela-
tive schedule can be computed by decomposing the
constraint graph into a set of subgraphs for each an-
chor of the graph. Each subgraph could then be
scheduled independently. We present instead a more
efficient algorithm, called iterative incremental
scheduling, which solves the relative scheduling
problem without decomposing the constraint graph.
The algorithm is an extension of the technique used
by Liao and Wong [20] for layout compaction to
support vector solutions. It is guaranteed to find the
minimum relative schedule, or detect the presence
of inconsistent timing constraints, in polynomial
time.

A. Finding Anchor Sets

We describe first an algorithm, called findAnchorSet,
which finds the anchor sets of the vertices. Each anchor
of the graph is propagated to its successors, terminating
at the sink vertex. The anchor set A(v) for each vertex v
€ Vis initialized to null. A vertex v has a counter firav (v),
initialized to 0, that is used to coordinate the traversal
through the graph so that each forward edge in Gy(V, Ey)
is transversed exactly once. Note that Ge(V, Ey) is as-
sumed to be acyclic, as described in Section III.

findAnchorSet(v, tagSet )
{
/* increment counter */
if (v is not source vertex )
ftrav(v) + +;
/* merge tagSet */
A(V) = A(v) U tagSet;

if ( frav(v) == |pred(v)|) {
if ( v is not anchor ) {
for each ( s € succ(v) )
findAnchorSet (s, A(v) );

1 {

Check for
Well-posedness

l

Make
Well-posed

l

Remove
Redundant Anchors

l

Iterative
Incremental Scheduling

Exit
No solution

Compute
Offsets
1
Readjust
Offsets

Scheduled
G(V,E)

Fig. 9. Block diagram of Relative Scheduling approach.

Exit
No solution

} else {
for each ( s € succ(v) ) {
if (w,, = 8(v))
findAnchorSet (s, {v} U A(v) );
else
findAnchorSet (s, A(V) );
}

}
}
}

The function succ (v) returns the set of successors of v.
Procedure findAnchorSet is applied to the source vertex
vy, where tagSet is initialized to ¢. The worst-case
complexity of the algorithm is O(|E;| - |4]) since each
forward edge is traversed once, and each traversal re-
quires worst-case merging of |4| tags.

B. Checking Well-Posed

From Theorem 2, a constraint graph is well-posed if
and only if A(v;) & A(v;) for all ¢; € E, and the forward
constraint graph G(V, Ej) is acyclic. We describe an al-
gorithm, called checkWellposed, that determines whether
a constraint graph G(V, E) is well-posed. First, the con-
straint graph G, (V, E), where all unbounded delays are
set to 0, is checked for positive cycles to ensure the con-
straint graph is feasible. The algorithm then checks the
anchor sets associated with the ends of every edge in G
for containment.
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checkWellposed( G(V, E) )
{
/* check for cycles */
if ( Gy(V, E) has positive cycles )
return unfeasible constraints;

/* check for containment */
for each (¢; € E, ) {
if (not A(v)) € A(v;))
return ill-posed constraints;
}

return well-posed;

}

The worst-case complexity of checkWellposed is domi-
nated by the check for cycles, which is O(|V| - |E|) [22].
The check for containment requires worst-case complex-
ity of O(|E;| - |4]).

C. Making Well-Posed

In some cases, an ill-posed constraint graph G(V, E)
can be made well-posed by adding sequencing dependen-
cies to G. Consider for example Fig. 3(b). The ill-posed
constraint can be made well-posed if one adds a sequenc-
ing dependency from a, to v;. Although this forces v; to
be serialized with respect to a,, it is necessary to make
the constraint well-posed, i.e., if we are looking for a
solution valid under all input sequences. Note that it is
not always possible to make an ill-posed constraint well-
posed. In particular, if the added sequencing dependency
induces a cycle in the forward constraint graph Gy, as in
Fig. 3(a), then the constraint cannot be transformed into
a well-posed constraint.

We present the following algorithm, called make-
Wellposed, which guarantees minimal serialization in
making a constraint graph well-posed.

makeWellposed( G(V, E) )

for each (e; € E, ) do {
D = {alae A(v;) and a & A(v))};
foreach (ae D)
addEdge( a, v; ),
}

}
addEdge( a, v)

if (agA()){

if ( v is predecessor of a )
stop with ill-posed constraints;

Add forward edge (a, v);

Set weight on (a, v) = é(a);

A() = A@) U {a};

for each ( backward edge (v, b) € E}, )
addEdge( a, b );

For every backward edge e; € E,, the algorithm first
checks if there is an anchor a such that a € A(v;) but a
g A(v)), i.e., the set D as defined in makeWellposed. If
no such a exists, then the constraint is well-posed. Oth-
erwise, it attempts to make the constraint well-posed by
adding a forward edge from a to v;. Procedure addEdge
adds a forward edge from anchor a to all vertices reach-
able by a path of backward edges from v.

The worst-case complexity of the makeWellposed al-
gorithm is O(|4] - |E,|?), where |A]| is the number of
anchors in G. This is because the maximum cardinality of
the set D is |4| — 1, and the complexity of addEdge is
O(|E,|). We prove later that makeWellposed yields a min-
imally serialized well-posed constraint graph, if one ex-
ists.

D. Removing Redundant Anchors

The equivalence between irredundant start times and
start times computed with the full anchor set, as stated by
Theorem 4, makes possible the computation of start times
based on irredundant anchors sets. This has advantages of
improving the efficiency of the scheduling algorithm and
reducing the cost of control. To compute the irredundant
anchor sets, we first identify the relevant anchor sets using
an algorithm called relevantAnchor, and then identify the
redundant anchors using algorithm minimumAnchor ap-
plied to every vertex of the given constraint graph G(V,
E).

Find Relevant Anchors: The algorithm relevantAnchor
finds the relevant anchor sets for all vertices. The idea is
to propagate an anchor as far as possible on every out-
going path until either an unbounded weight edge is en-
countered or the sink vertex is reached. Each vertex v; has
a flag transversed (v;), initialized to false, which is used
to detect whether the vertex has been previously tra-
versed. The algorithm is applied to every anchor a of the
graph with the argument anchor set to a.

relevantAnchor( v;, anchor )
{
/* mark traversed */
if ( traversed(v;) )
return;
traversed(v;) = true;

if ( v; = anchor) {
/* start propagating anchor outwards */
for each ( outgoing edge e; with §(v;) )
relevantAnchor( v;, anchor );
} else {
/* propagate anchor on bounded weight edges */
R(v;) = R(v;)V anchor;
for each ( outgoing bound edge ¢;; )
relevantAnchor(v;, anchor );
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The worst-case complexity of the algorithm is O(|4] -
|V]), since each vertex is traversed at most once for each
anchor in the graph.

Find Irredundant Anchors: The algorithm minimum-
Anchor detects the redundant relevant anchors, given that
the relevant anchors have been identified. The algorithm
is applied to every vertex v of the graph, where the func-
tion length(a, b) returns the longest path from vertices a
and b, including backward edges.

minimumAnchor( v ')

/* for all relevant anchors */
for each ( relevant anchor r € R(v) ) {
/* all relevant anchors predecessor to r */
X = {x{x € R(v), x € A(")}
foreach (x € X))
if (length(x, v) < length(x, r) + length(r, v)
) {
mark x redundant in R(v);
}
}
}

The set of unmarked relevant anchors for v form the ir-
redundant anchor set for v, which by Theorem 6 is the
minimum anchor set for v. The worst-case complexity of
the algorithm is dominated by computing the longest
paths, and is O(|V| - |E|). The checking requires O (|R|%)
once the longest path lengths are known, where |R| is the
size of the largest relevant anchor set in G.

E. Iterative Incremental Scheduling

The scheduling algorithm is performed by iteratively
applying two tasks. The first is incrementally computing
the offsets. The offsets are initially set to 0 and increased
incrementally until all the minimum timing constraints
implied by the forward edges are satisfied. This is fol-
lowed by readjusting offsets to meet the maximum timing
constraints implied by the backward edges. The schedul-
ing algorithm is described below.

IncrementalScheduling( G(V, E) )

for (c = 1to |Ey| + 1) do {
Incremental Offset(Gy, vy);
E,ioime = {€; € Ep|violate constraint};
if ( Evialate = @)
return minimum relative schedule;
ReadjustOffsets(G(V, E));

return no schedule;

}

The algorithm is an extension of Liao and Wong’s algo-
rithm for vectored solutions. Similar techniques have also
been proposed by Burns [22] and Borriello [21]. We prove
later that the algorithm finds the minimum relative sched-
ule, or detects inconsistent timing constraints by execut-

ing at most (|E,| + 1) iterations. The details of each task
are described next.

1) Incremental Offset Computation: The offsets are
computed by successive approximations. Recall that a
forward constraint graph G(V, Ey) is acyclic. Therefore,
the set of offsets satisfying the minimum timing con-
straints can be found using the longest path calculation
from the anchors to their successors. The edge weights in
the constraint graph corresponding to the execution delays
of unbounded delay vertices are set to 0, since the graph
is assumed to be well-posed. Note that the iterative incre-
mental scheduling algorithm can also be applied initially
to check for feasible constraints.

Let @ = {o,(v;)|a € A(v;), Yv; € V} be the values of
offsets after the rth iteration of the scheduling algorithm.
Note that in describing the algorithms, the full anchor sets
A(v;), Yu; € V are used. However, we can equally use the
irredundant anchor sets without affecting the correctness
of the scheduling algorithm. The algorithm Incre-
mentalOffset incrementally finds the longest path from the
anchors to their successors in the forward constraint graph.
Specifically, it takes as input G,(V, Ef) and the values of
the offsets ¢/,(v;), and computes the new offsets o, Y(v;)
as follows:

o, '(v) = max {o(v))
O0<j=<n

+ length longest path from v; to v; in G}

for all vertices v; that have a path from ; to v; in Gy, i.e.,
vv; € pred(v;). Initially, for r = 0, the offsets are set to
0. The first invocation of IncrementalOffset sets each off-
set ¢ (v;) equal to the length of the longest path from a
to v; in G However in a subsequent invocation r, the
offset o/, (v;) may be longer than the length of the longest
path from a to v; in G, because of the readjustment strat-
egy to satisfy the maximum timing constraints, described
in the next subsection. A formal description of
IncrementalOffset is given below.

Incremental Offset( Gy, v )
{
/* increment counter */
if ( v is not source vertex )
ftrav(v) = ftrav(v) + 1;

if ( ftrav(v) == |pred(v)| ) {
for (p e pred(v) ) {
foreach (a € A(p)) {
o, (v) = max( 0, (v), 0L(P) + Wy );
}
}
for ( s € succ(v) )
IncrementalOffset( Gy, s );
}
}

Procedure IncrementalOffset is applied to the source ver-
tex, where ftrav(v) is initialized to 0. Since each edge in
E; is traversed once, each invocation of the
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IncrementalOffset procedure has worst-case complexity of
O(]A|). The worst-case complexity for finding all longest
paths is O(|4| - |Ef]).

2) Readjusting Offsets: After invoking Incremental-
Offset at the rth iteration, the resulting values of the off-
sets Q" = {o5(v;)|a € A(v;), Yv; € V} satisfy all the min-
imum constraints implied by the forward edges in Gy. If
all the inequalities implied by the backward edges (max-
imum timing constraints) are satisfied, then Q' (v;) is the
minimum relative schedule and the algorithm terminates.
Otherwise, the algorithm successively accesses each
backward edge in E, to test if the maximum timing con-
straint implied by the edge is violated. There is a con-
straint violation on a backward edge e; € E, with weight
w; = 0 if there exists an anchor ¢ common to both anchor
sets a € A(v;) N A(v;) such that o, (v;) < o,(v;) + wy.
If the constraint is violated, then the offset ¢,(v;) is in-
creased by the minimum amount to satisfy the inequality
constraint:

-~ r
aa(vj) = O-a(vi) + Wij-

The modified offsets o/ (v;) are then updated in the sched-
ule ©'. It is important to note that in the case of well-posed
timing constraints, A(v;) & A(v;). After the readjust-
ments, IncrementalOffset is reapplied, and the process re-
peats until all maximum timing constraints arising from
the backward edges are satisfied. A formal description of
ReadjustOffset is given below.

ReadjustOffset( G(V, E) )
{

for each (¢; € E,) {
for each (ae A(v;) N A(v)) {
if(g;(vj) < og(w) + wy)
UZ(Uj) = o,(v;) + Wis
}

}
}

3) Complexity of Algorithm: We comment now on the
total computational complexity of the algorithm. The
complexity of the IncrementalOffset is O(|A| - |E;|). The
complexity of the readjustment is O(|A| - |E,|). There-
fore, each iteration has computation complexity O(|4| -
|E|), proportional to the number of edges in the graph.
The iterative incremental scheduling algorithm has worst-
case complexity O((|E,| + 1) - |4] - |E|). Note that in
practice the number of backward edges |E,| and the num-
ber of anchors |A4| are usually small. We illustrate the ap-
plication of the algorithm on the graph of Fig. 10.

There are two anchors, v, and a, the dashed arcs rep-
resenting backward edges. The offsets with respect to
these two anchors for each vertex are given, where a dash
in the table implies that the corresponding anchor is not
in the anchor set of the vertex. For example, a is not in
the anchor set of ve. In the first iteration, the offsets are
initialized to O and computed using longest path search
considering only the forward edges. At this point, three
backward edges (maximum timing constraints) are vio-

71

Vertex Iteration 1 Iteration 2 Final
Compute | Readjust || Compute | Readjust Compute
[ 0uo,0a Gog, Oa Gugr Ta TuprTa
v - . -
a 1, 2, 2, 2,
v 1,0 20 2,0
v 2,1 43 43 53 53
v3 54 64 64
v4 42 42 42
vs 53 63 63 6,3
v6 8- 8, 8, -
v 12,5 12,6 12,6

Fig. 10. Trace of offsets in the scheduling algorithm.

lated. We then delay the offsets by the minimum amount
to meet the maximum constraints. Consider vertex v,. Be-
fore the readjustment, the values of the offsets are (2, 1).
However, it violates the backward edge from v; to v, with
weight — 1. Therefore, the offsets are adjusted by delay-
ing v, by the minimum amount (—1) to meet the con-
straint, i.e., adjust to (5 — 1,4 — 1) = (4, 3). With these
offset values, the incremental offset computation is reap-
plied. In this case, only one backward edge remains vio-
lated. The offsets are readjusted again, and the offsets are
recomputed incrementally. The scheduling algorithm ter-
minates with the minimum schedule in the third iteration.

V. ANALYSIS OF ALGORITHMS

We analyze in this section properties of the algorithms
presented in Section IV. We prove first the make-
Wellposed algorithm can minimally serialize an ill-posed
constraint graph in an attempt to make it well-posed, if a
well-posed solution exists. We then prove the irerative
incremental scheduling algorithm can construct a mini-
mum relative schedule, if one exists, in polynomial time.

A. Analyzing Making Well-Posed

Given an ill-posed constraint graph, we prove in this
section that the makeWellposed algorithm yields a mini-
mally serialized constraint graph that is well-posed, if one
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exists. Let G(V, E) be a constraint graph, where the edges
are divided into forward and backward edges E = E; U
E,. Then a serial-compatible graph of G(V, E), denoted
by G'(V, E; U E,) is a constraint graph with identical
vertex set V and backward edge set Ej,, where E; & Ef.
In other words, a serial-compatible graph G’ of G is the
original graph G with additional forward edges.

We state first the existence condition for a well-posed
solution using the algorithm.

Lemma 7: Given a feasible constraint graph G, the
makeWellposed algorithm yields a serial-compatible graph
of G that is well-posed, if one exists.

Proof: We show first that if it is possible to make
the constraint graph well-posed, makeWellPosed can find
a solution. By Theorem 2, it is sufficient to show that
makeWellposed guarantees the anchor containment crite-
rion, e.g., A(v;) € A(v;) for all ¢; € E. We prove first
that makeWellposed constructs a graph that meets the con-
tainment criterion; then we show the graph to be a well-
posed serial-compatible graph of the original graph.

The containment criterion is satisfied by definition for
forward edges Ey. We consider now backward edges E,.
To make the graph well-posed, for a backward edge e;;
that does not satisfy the condition A(v;) € A(v;), it is
necessary to add a forward edge e,; to v; from every an-
chor a € A(v;) but a ¢ A(v;). The weight of the edge w,;
is set to 6(a). Consider now a path of backward edges (v,

vy, (v1, v2), * * * (v, ;). If each backward edge satisfies
the anchor containment criterion, i.e., A(v;) S A(v)),
A(vy) € A(vy), * - A(v,) € A(v)), then the vertices v;

and vj; also satisfy the anchor containment criterion, i.e.,
A(v;) € A(y)).

Extending the previous argument, in order for a path of
backward edges from v; to v; to meet the anchor contain-
ment condition, it is necessary to add a forward edge e,;
to v; from every anchor a € A(v;) but a ¢ A(v;). Since the
anchors from the tail of every backward edge violating
the condition are propagated by procedure addEdge, and
since addEdge adds a forward edge from the anchor to the
anchor set of every vertex reachable by a path of back-
ward edges, the resulting graph satisfies the anchor con-
tainment condition. Furthermore, since makeWellposed
adds new edges to the graph, leaving the original edges
unchanged, the resulting graph is a serial-compatible
graph of the original graph.

We now show that the algorithm can detect that no well-
posed solution exists. From Lemma 3, G can be made
well-posed if and only if no unbounded length cycle ex-
ists. Before adding the edge, the algorithm checks whether
a cycle would be formed in the graph. If a cycle is formed,
then the graph cannot be made well-posed, and the algo-
rithm terminates. If no unbounded length cycle exists,
then makeWellposed will not introduce any unbounded
length cycle because of the check in procedure addEdge
for whether vertex v is a predecessor of a. Since the al-
gorithm checks the anchor set containment condition for
every edge, and since no unbounded cycle is introduced

if the original graph has no unbounded cycles, the pro-
cedure can always find a well-posed solution, if one
exists. O

We now prove the minimum serialization property of
makeWellposed. A minimum serial-compatible graph of
G(V, E), denoted by Gin(V, Eli), is a serial-compati-
ble graph that is well-posed, and such that the longest
path length length (v;, v;) Yv;, v; € V is minimum for all
well-posed serial-compatible graphs of G. We state the
following theorem.

Theorem 7: Given a feasible constraint graph G, the
makeWellposed algorithm yields a minimum serial-com-
patible graph of G, if one exists.

Proof: By the definition of anchor sets, an anchor a
is the anchor set of a vertex v; if there exists a path of
forward edges from a to v; with unbounded length. With-
out loss of generality, we consider a backward edge ¢; €
E,, for which there exists an anchor a € A(v;) but a ¢ A(v;).
Procedure makeWellposed adds a forward edge from a to
v; with unbounded weight &(a).

Note that a is now added A(v;), where the maximal
defining path p* (a, v;) trivially reduces to a path contain-
ing only the newly created forward edge. Since the orig-
inal edges remain unchanged, and since the created for-
ward edges satisfy the condition A(v;) S A(v;) Ye; € E,
with minimum length (i.e., {o*(a, v;)| = 0, meaning that
the length of the longest path from a to v;, excluding the
delay 8(a), is 0), if the resulting graph is well-posed, then
it is a minimum serial-compatible graph of G. ([

B. Analyzing Iterative Incremental Scheduling

The iterative incremental scheduling algorithm con-
structs a minimum relative schedule, or detects the pres-
ence of inconsistent timing constraints, with at most |E,|
+ 1 iterations. This is a very desirable property, since the
number of maximum timing constraints, |E,|, is in gen-
eral small. The proof follows the outline in [20]. Note that
in the sequel the full anchor set A(v;) for a vertex, v; is
used in the computation of the start time and offsets. By
Theorem 4 and Theorem 6, the result is applicable when
the relevant anchor set R(v;) or the irredundant anchor set
IR(v;) are used instead.

We consider the effect of iterative application of the
iterative incremental scheduling algorithm. For any inte-
gerr,r = 0,1let @ = {o,(v;)|a € A(v;), Vv; € V} denote
the offsets after the rth call to the Incremental Offset pro-
cedure. Initially, all offsets ¢%(z;) are set to 0. We state
the following lemma.

Lemma 8: For all v; € V, the offset o,(v;) w.r.t. an
anchor a € A(v;) is equal to the length of a path from a to
v; in the constraint graph G(V, E). Furthermore,
o'(v;) = o \(v;) forany r = 1.

Proof: We will prove by induction. After the first
call to procedure IncrementalOffset, the offsets Q =
{o)(v)|a € A(v;), Yv; € V} are equal to the longest paths
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in Gy from the anchors to their successors. In addition, all
offsets o,,(v,) are greater than or equal to 0. Since Gyis a
subgraph of the constraint graph G, the assertion holds
forr = 1.

Assume the assertion is true for » = k. This means that
for every anchor a in Q¥, the corresponding offset k)
is the sum of edge weights on a path from a to v; in G
after the kth call to IncrementalOffset. Before the next
call, the algorithm successively examines each backward
edge (v;, v;) to see if the inequality constraint is satisfied.
Let w; < 0 be the weight of a backward edge. Consider
an anchor sets, a € A(v;) N A(v;). A violation arises if

k k
Ua(vj) < aa(vi) + wijy

whereupon a (v ) is set to o¥(v;) + w;. This means that

a(v) is a551gned a value equal to the length of a path
from a to v; consisting of a path a to v; with length

a(v,) followed by the edge (v;, v;) with length w;;. The
increased offset becomes the length of a new path from a
to v;. For the anchors a € A(y; ) and a g A(v;), the offsets
remain the same. Note that o,,(v,) may be moved more
than once, each time it is moved to the end of a longer
path from a to v;. Therefore, either the offsets remain the
same after the readjustment or they are increased to the
length of a longer path.

IncrementalOffset accepts these readjusted offsets as in-
put and finds the offsets Q%' = {o!"'(w))la € A(w), ¥
kalV} such that, for every anchor a € A(v;), the offset

(v;) is

¥ Y(w) = max {ok(v)
O<sj=n

+ length longest path from v; to v; in Gy}.

For i = j, the above inequality states that ) =

o*(v,) for anchors a € A(v;). Furthermore, Q**1 consists
of offsets that are equal to the lengths of paths from the
corresponding anchors a € A(v;) to v; in G. The induction
is complete. O

Now we consider the optimality of the scheduling al-
gorithm. For a constraint graph without positive cycles,
define V(a) S V to be the subset of the vertices in the
graph whose anchor set contains a. Specifically, V(vy) =
V — {v,} since vy is included in the anchor set of every
vertex. Let S7, k = 0, be a subset of V(a) such that a
vertex v is in S% if, among all the longest weighted paths
from a to v, the one with the smallest number of backward
edges has exactly k backward edges. By definition, S} can
be the empty set, and Sf N §7 = ¢ if i # j. Letb = |E,|;
then for k > b, S} is the empty set. Furthermore, the set

{86, - -+, St} is a partition of V(a), where V(a)
= U?_, §% Define a number L, as follows:
L, = min {u|S{ =¢  fori > u}.

This means that L, is the smallest number such that, for
any vertex v € V(a), any of the longest weighted paths
from a to v has no more than L, backward edges. Fur-

thermore, define L as
L = max {L,|Va € A}.

Obviously, L < b. We state the following theorem.

Theorem 8: Let G(V, E) be a well-posed constraint
graph. Then the iterative incremental scheduling algo-
rithm yields the minimum relative schedule after at most
L + 1 iterations.

Proof: By Lemma 8, for a vertex v; € V in a con-
straint graph without positive cycles, the offset o,(v;)
w.r.t. an anchor a € A(v;) will remain unchanged by fur-
ther iterations once it becomes the length of the longest
weighted path from a to v;. We will prove by induction
that after the rth call to IncrementalOffset, r = 1, the
offset ol(v;) w.r.t. an anchor a € A(y;) of a vertex v; €
$9_, becomes the length of its longest weighted path from
a to v; in G. Therefore, for all v; € §;7_, the offsets o, (v;)
are equal to the corresponding minimum offsets. If this
assertion is true, then Theorem 3 implies that the algo-
rithm will terminate and return a minimum relative sched-
ule, taking at most L + 1 iterations.

Consider any anchor a of the constraint graph. For the
vertices v € S§, the longest path from a to v is in Gy be-
cause there are no backward edges on the longest paths to
these vertices. The first call to IncrementalOffset sets
o, (v) to the length of the longest weighted path from a to
v. Therefore, the assertion is true for r = 1.

Now assume the assertion is true for r = k. From
Lemma 8, after the kth call to IncrementalOffset, a vertex
ve U’; (I,S“ is the tail of the longest path from anchor a
to v. Now, let v; be a vertex v; € S§ such that the longest
path p from a to v; contains k backward edges. Let (v,,
v,) be the last, i.e., kth, backward edge on the path p
with edge weight u,,, as shown in Fig. 11. The v,-to-v;
portion of p does not have any backward edges by defi-
nition. For all longest weighted paths from a to a vertex
on the path p, the one going through p has the fewest
backward edges Therefore, v, € S§_,. By the induction
hypothesis, o%(v,) becomes the length of the longest
weighted path from a to v,. When the (k + 1) call to
IncrementalOﬁ”set begins, o%(v},) has aiready been set to

o*(v,) + ug, which is also the length of the longest
weighted path from a to v,.

After the (k + 1)th call to IncrementalOffset, we have

the following:

k+1(vl) > k+1(vb)

+ length of the longest path v, to v;.

The right-hand side expression is equal to the length of
the longest path a to v; in G. From Lemma 8, once the
offset is equal its longest path length, it will not be in-
creased further. Therefore, all offsets of v, € S¢_; will
remain unchanged in later iterations, and of*1(v;) equals
the length of the longest path from a to v;.

For an anchor a, at most L, + 1 iterations are needed
to find the minimum relative schedule because S; = ¢, k
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Fig. 11. The longest path p from anchor a to v; € S¢, containing the u,,
as the last backward edge on p.

> L,. For all anchors, the algorithm will give the mini-
mum relative schedule with at most L + 1 iterations. [J

Corollary 2: If the constraints implied by the con-
straint graph G are inconsistent, then the algorithm will
detect the inconsistency and terminate after [E,| + 1 it-
erations.

Proof: Assume the constraints are inconsistent, im-
plying a positive cycle exists in the graph. Consider the
offset o, (v;) w.r.t. an anchor a € A(v;) for a vertex v; on
the positive cycle, denoted by o,(v;). As Incremental-
Offset incrementally tries to increase the offsets in order
to meet the constraints implied by the forward edges, the
readjustment strategy will always increase the value of
g, (v;). At least one inequality implied by the backward
edges will not be satisfied at each iteration. Thus, the al-
gorithm will continue until the (|E,| + 1)th iteration,
whereupon the algorithm terminates and returns no
schedule. t

VI. CoNTROL GENERATION

Once we have computed the relative schedule corre-
sponding to a constraint graph, it is necessary to generate
the control logic that will activate each operation accord-
ing to its schedule. There are many different styles of con-
trol implementation, ranging from ROM-based micropro-
grammed controllers [24] to finite state machines [2] to
distributed control [6]. In the simple case where the hard-
ware model does not contain any unbounded delay oper-
ations, the task of control generation reduces to the tra-
ditional control synthesis approaches of microprogrammed
controllers and FSM’s. We consider now control synthe-
sis for the general case.

We use a control synthesis approach that is based on an
extension of the adaptive control synthesis scheme [25].
The approach takes as input a scheduled sequencing graph
and produces a modular interconnection of FSM’s that
implement the control. Communication and synchroni-
zation among the FSM’s is achieved through a set of
handshaking signals. In addition to uniformly supporting
unbounded delay operations and concurrency, the ap-
proach also supports control synthesis of hierarchical se-

quencing graphs that include procedure calls, loops, and
conditionals. The adaptive control scheme also has the
advantage of guaranteeing the minimum number of cycles
in executing the hardware behavior modeled by the se-
quencing graph, for all input sequences [25].

Although adaptive control is a general scheme that sup-
ports hierarchy, we consider in this paper control gener-
ation for a flat sequencing graph only. We refer the inter-
ested reader to [25] for the details of the general approach.
In particular, we assume that the completion of an anchor
a € A is indicated by the assertion of a signal done,. The
objective is to generate an enable signal for each opera-
tion v € V, denoted by enable,, such that the assertion of
enable, will initiate the execution of v. For the descrip-
tion that follows, we define o5 to be the maximum offset
among all vertices with respect to the anchor a, i.e.,
00% = MaX,ep.qeaw) 0a(v). We will use in the sequel the
full anchor set A(v) in the control generation for the sake
of simplicity. The extension to using the irredundant an-
chor set IR(v) is straightforward, and it can be achieved
by replacing A(v) with IR(v) for each vertex v € V.

Among the many possible implementation strategies,
we describe two different approaches to control genera-
tion—counter-based and shifted-register-based schemes.

e Counter-Based Control: Since the start times are de-
fined as offsets from the completion of anchors, the
most intuitive and direct approach is to use a counter
for each anchor that starts to count upon the comple-
tion of the anchor. The enable signals can then be
described as comparisons between the values of the
counters with the corresponding offsets. Specifi-
cally, let Counter, denote the value of the counter
corresponding to anchor a. Then the enable signal
enable, for an operation v is

enable, = II

acA(v)

(Counter, = 0,(v))

where the II in the expression denotes logical con-
junction. The counter-based approach is illustrated
in Fig. 12(a) for an operation v that depends on two
anchors a and b, with offsets ¢,(¢) = 2 and 0, (v) =
3. Although the control scheme is straightforward,
the amount of combinational logic that is needed for
the comparisons may be large. Note that in the sim-
ple case without unbounded delay operations, the
control reduces to a single counter, which can be im-
plemented using either microprogrammed control-
lers or state machines.
® Shift-Register-Based Control: The comparator cost
in the previous approach can be reduced by using
shift registers instead of counters. For an anchor a €
A, we create a shift register SR, of length o7, whose
input is the done, signal corresponding to the com-
pletion of the anchor a. The output of stage i of the
shift register is denoted by SR, [i]; therefore it is as-
serted when at least i clock cycles have elapsed since
the completion of a. With this formulation, the en-
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done, doney done, doney

| b | |
Counter, Countery SRaf1] SR.{1]

SRa[2) SRi2)
SRa[3) SR
SRal4] SR)4]

enable, enable,

(a) (b)
Fig. 12. Control generation for a relative scheduling: (a) counter-based;
(b) shift-register based.

able signal for an operation v is defined as follows:
enable, = I SR.[0.(»)].
acA(v)

The shift-register-based approach is illustrated in
Fig. 12(b) for the same example as before. Note the
significant savings in terms of combinational logic
compared with the previous approach, at the expense
of higher register costs. We see that trade-offs can
be made between register and combinational logic in
the control implementation. The final decision rests
both on the cost parameters of the logic elements and
on the resulting schedule.

The importance of removing redundant anchors for
control generation should be evident from the analysis.
The savings arise in two areas. First, the cost of the syn-
chronization logic in generating the enable signals is re-
duced. Second, the maximum offset o™ corresponding
to an anchor a € A is reduced by taking advantage of the
cascading effect of anchors, which in turn reduces the
number of registers in the control implementation.

We close this section with an observation. Relative
scheduling and the control generation schemes described
here aim at synthesizing the fastest possible hardware for
a given behavior and constraints. Other schemes that add
serialization of the operations can reduce the complexity
of the control implementation, at the expense of hardware
performance. Optimizing control synthesis for relative
scheduling is the object of further research, and it is not
reported here for the sake of conciseness.

VII. IMPLEMENTATION AND RESULTS

To illustrate the practical use of relative scheduling, we
briefly describe its integration within the Hercules/Hebe
high-level synthesis system [17], [19]. The input to Her-
cules is a behavioral hardware description in a language
called HardwareC. Hercules first optimizes the behavior
using compiler techniques to identify the maximal paral-
lelism in the input description. The optimized behavior is
translated into a maximally parallel sequencing graph ab-
straction that is the basis for the structural synthesis phase,
performed by the Hebe program. The objective of struc-
tural synthesis is to explore design trade-offs in meeting

process gcd ( xin, yin, restart, result)
in port xin[8], yin[8], restart;
out port result (8]

boolean x(8], y[8];
tag a, b;

[+ wait for restart to go low */
while ( restart)

’

[+ sample inputs */

{
constraint mintime from a to b = 1 cycles;
constraint maxtime from a to b = 1 cycles;
a: y = read(yin);
b: x = read(xin);

}

/+ Euclid’s algorithm +/
f(x!'=0&@!=0){
repeat {
while x >=y)
X=X-Y;
/+ swap values */
<y=x;x=Yy;>
} until (y == 0);

/% write result to output */
write result = X;
]

Fig. 13. Example of a HardwareC description to find the greatest common
divisor of two values. Timing constraints are imposed between the sam-
pling of the inputs such that X i is sampled exactly one clock cycle after
the sampling of y i .

the timing and resource constraints that are imposed on
the design.

The two main tasks of structural synthesis are module
binding and scheduling. A binding of operations to spe-
cific components of the resource pool is selected to meet
the resource constraints. The selection is evaluated based
on resource utilization and interconnect costs. The se-
lected binding may have resource contentions; for exam-
ple, two parallel operations bound to the same resource
component may simultaneously access the shared re-
source. In this case, a technique called constrained con-
flict resolution is applied to resolve the conflicts by seri-
alizing the operations bound to the same resource. Both
heuristic and exact branch and bound search for a serial-
ization that satisfies the required timing constraints can be
used [26]. The serialization is modeled by adding se-
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Fig. 14. Simulation trace of the gcd example. The signals peek x and peeky reflect the values of the variables x and y in
the description before entering the loop, respectively. Note that because of the timing constraints on the input sampling, upon
the rising edge of rst [0 : 01, the yi is sampled first, followed by x i in the cycle after.

quencing dependencies (edges) to the graph model. Fi-
nally, relative scheduling is performed on the graph model
to construct a minimum schedule that satisfies the timing
constraints, if one exists. The computed offsets are used
to derive a control unit for the resulting hardware.

We applied relative scheduling to several ASIC de-
signs, including the digital audio input output [27] phase
decoder and receiver, the bidimensional discrete cosine
transform [28], and several benchmarks, including the
traffic light controller (traffic), pulse length detector
(length), the greatest common divisor (gcd), and simple
microprocessor ( frisc). The designs have been synthe-
sized by Hercules and Hebe starting from HardwareC de-
scriptions. Timing constraints were introduced to experi-
ment with the results of relative scheduling, and the
resulting logic-level implementations have been exten-
sively simulated to verify correctness of the synthesis ap-
proach. Minimum and maximum constraints were intro-
duced to the HardwareC description through tagging of
the operations. As an illustration of the application of tim-
ing constraints, we consider the gcd description in Figure
13. Minimum and maximum timing constraints were in-
troduced between the two read operations in ged to en-
sure that the sampling of x i occurs exactly one cycle
after the sampling of yi. Note that the timing con-
straints in the gcd example are used to constrain the sam-
pling of the input signals x i and y i ; they are not used
to constrain the writing of the signals x and y , although
this can also be achieved by specifying additional con-
straints in the example. A plot of the simulation trace is
given in Fig. 14. The consistency of the timing con-
straints is checked by relative scheduling. The optimality
of the well-posedness analysis and scheduling algorithms
is readily verified.

We present in Table III an analysis of the differences

TABLE 111
COMPARISON BETWEEN FULL ANCHOR SETS AND MINIMUM ANCHOR SETS
IN RELATIVE SCHEDULING

[4@)] R (v)|
Design |4]/|V| Total Average Total Average
traffic 3/8 8 1.00 6 0.75
length 5/12 15 1.25 9 0.75
ged 16/41 51 1.24 32 0.78
frisc 34/188 177 0.94 161 0.86
DAIO phase decoder 14 /44 45 1.02 38 0.86
DAIO receiver 30/67 76 1.13 49 0.73
DCT phase A 41/98 105 1.07 87 0.89
DCT phase B 49/114 137 1.20 108 0.95

between the full anchor sets and the minimum anchor sets.
In particular, the total number of anchors, |4, the total
number of vertices, |V|, and the sizes of the anchor sets,
|A(v)|, are shown for each design. It is important to note
that the sequencing graph models of the designs are in
general hierarchical, and the values in the table are based
on results for the entire graph. For example, there are 14
anchors in the DAIO phase decoder, which include the
source vertices and the set of unbounded delay operations
of every graph in the input sequencing graph hierarchy.
In the DAIO phase decoder, there is a total of nine se-
quencing graphs, which means that out of the 14 anchors,
nine of the anchors represent source vertices. Table IV
shows the maximum offset ¢™* and the sum of the max-
imum offsets ¢™* over all anchors if only the full or min-
imum anchor set is used. The sum of the maximum offsets
is directly related to the complexity of the resulting con-
trol implementation, as described in Section VI.

The execution times of the algorithm running on a
DecStation 5000/200 are negligible. Most examples take
less than | s to execute, with the worst case taking 2 s.
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TABLE IV
COMPARISON BETWEEN FULL ANCHOR SETS AND MINIMUM ANCHOR SETS
IN RELATIVE SCHEDULING FOR MAXIMUM AND SUM OF MAXIMUM OFFSETS

Full Anchor Minimum Anchor

Design Max Sum of Max Max Sum of Max
traffic 1 1 1 1
length 2 5 1 2
ged 4 15 2 7
frisc 12 112 12 107
DAIO phase decoder 2 10 2 9
DAIO receiver 3 16 1 8
DCT phase A 2 24 1 16
DCT phase B 2 19 1 16
SUMMARY

We have presented a generalization of the scheduling
problem that supports unbounded delay operations. The
relative scheduling problem under timing constraints is an
important task in the synthesis of ASIC designs that in-
terface to external signals and events. We introduced the
property of well-posed timing constraints, which is used
to check the consistency of constraints in the presence of
unbounded delay operations. We presented an algorithm
to generate a well-posed constraint graph from an ill-posed
constraint graph with minimum serialization, if one ex-
ists. We analyzed the redundancy of anchors in the com-
putation of start times, and identified the minimum set of
anchors that are required. Removing anchor redundancies
is important, both to improve the efficiency of the sched-
uling algorithm and to reduce the complexity of the con-
trol generation. We presented a technique, called iterative
incremental scheduling, that finds a probably minimum
relative schedule or detects the presence of inconsistent
timing constraints, both in polynomial time. The tech-
niques are integrated in the framework of the Hercules/
Hebe synthesis system.
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