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Abstract

We review in this paper different techniques to enha~e the circuit pcrf(X'n1~ of sYIK:hrooous diaital
circuits. In particular we concentrate on the mechanisms that can be used in a global framework for performance
optimization. We survey logic tran5rormations that operate on structural models or synchronous networks,
dc.~cribcd in terms or interconnections of logic gates and regi5tcrs. These approaches are alternative to traditional
sequential logic optimization algorithms ~cd on slate tran5ition diagranls.

1 Introduction

Logic synthcsis and oplimi7.3tion tcchniqucs have bccn uscd successfully for prodoct-level design of digital
circuits in the last dccade. Neverthclcss only some digital dcsign problems have 00cn solved satisfactorily by
lhe use of Computer-Aidcd Design (CAD) tools. In ~rticular, high-performance digilal design is still oflen
hand-croflcd, due to the enormous imporlance of tuning the circuil implcmenlalion to achieve top performance
with a given circuit tcchnology.

Logic synthcsis lcchniqucs have ~n slriving to oplimize tllree figurcs of mcrit of digilal OOsigns: area,
testability and performance. The three issucs are cxlrcmely complex recause of the intractability of the under-
lying decision problems. For lhis reason. rulc-base<J syslcms and hcurislic ulgorilhms have bcen used in this

perspcclive.
Conlbinalional circuit optimi7.alion has rcachcd a ccrtain maturity today. Most problems arc understood,

even thOugh oottcr Solulion methods arc conlinuously scarchcd for. Scquenlial circuit oplimizalion is still in
its infancy duc lo the addilionnl complcxily of handling rcgislcrs and feedback conneclions. Recently, moch
attcnlion has bccn dcvolcd lO CL\"ynchronou.\" circuits, bccausc inlCrface asynchronous circuilS are often a serious
bottlcnccks in digilal dcsign.

Hcrc wc consider .\"ynchronous circuits, bccause mosl digilal designs have synchronous opcralion. This
corrclalcs to a rclalivcly easier tksign mcthodology. Synchronous logic circujts arc inlcrconncclions of logic
galcs and rcgislCrs with syochronous clocking. FccdOOck connections are restricted to ~ through synchronous
registers, to guarantce rocc-free dcsign. Synchronous circuilS can 00 mO<klcd by the interconnoction of their
componcnlS. Wc call such a m(>dcl a structural vicw of a synchronous circuits. AIlCmalively, tile Slate transitions
may bc tkscribcd in lcnns of tablcs or diagrams. We rcfer to this modcls as beJlavioral views.

Historically, scquenlial logic synlhcsis has been sludied on bchavioral modcls. Synlhcsis and optjmizalion
relates lhcn to solving c.lassical problcms, such as stalC minimizalion and slalC assignment [I) [16). In this
papcr, wc rcport on perforlnance-orienled oplimizalion based on an ilCralivc rclincmcnl of a circuit. We con-
sider Slructurul vicws. oocausc lhey can bc morc easily rclalcd to liming modcls for tklay evaluation thM the
corrcsponding bchavioral modcls. Wc nssumc that the origin3l structural modcl, that we would like to opli-
mi7.c, is citllcr a humun-tksigncd schemalic. or a nctlist synthesii'.c<l by high-lcvcl synthcsis tools or by classical

scqucnlial synthesis programs.
Wc prcscnt herc logic transformations tllal aim Ul rcducing lhe cycle-time of synchronous circuilS, by refining

stroclural descriptions. Some of UlcsC lransfonnalions arc extcnsions of lhose used in combinalionai logic
synthcsis and operUlC within and across lhc rcgislCr boundarics. by exploiling thc possibilily of moving and/or
rcmoving rcgislCrs. Wc conccntralc on thosc lransformulions thUl are specific to synchronous circuits and thal
can 00 cm~ddcd in CAD systcms for pcrfonnancc-oricnlcd synlhcsis.
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Figure Synchronous Boolean Nelwork and its representation.

2 Circuit model.

We consider structural models of digilal circuits. Such circuits can be specified by an interconnection of
combinational logic gates and clocked registers. For the sake of simplicity. wc assume first that all the registers
are driven by one clock (i.e. single-phase circuits) and lhatthe latching is always positive (or always negative)
edge-triggered. Master-slave registers fall in this class. We assume. again for the sake of simplicily. that the
clock skew. the regislcr setup. hold and propagation timcs arc ncgligiblc.

Wc modcl synchronous circuiLS by synchronou.f Boolean network..f. A synchronous Boolcan nclwork is
describcd in tcrms of Boolean variables and Boolean equations. Each Boolcan variable cOITesponds to either a
primary input/output of too circuit or to thc output of a combinational logic gate. A positive inleger label on a
variablc dcnolcs the synchronous rcgislCr dclay. if any. of the corrcsponding signal with rcs~ctto the primary
input or combinational logic galc that gcncrates it. Zcro-valucd labcls arc omitlCd for the sake of simplicity.
Labels are represented oore in two equivalcnt ways: parenthesized su~rscripts and subscripts to which a current
index n is addcd. For example. variablc x wiLh labcl k = 2 is denoted as x(2) or X,'+2. while thc unlabclcd
variable is denotcd by x or Xn. Eoch Boolean equation has an unlabeled variable (i.e. with zero-valued label) as
left tcrm and a Boolean expression as right lCml. Thc laucr spccifies Lhe valuc of Lhe left tcrm variable in terms
of othcr (labcled) variablcs. i.e. it is a multiplc-input singlc-oulpUl combinational logic function. We denote by
I the Boolean expression associated to variable i.

Thc network is modelcd by the synchronous network graph. thal is a directcd weighted graph G(V, E, W).
whose vertex sct V = VI U VG U VO = {V} is .-rtitioncd into input. inl.emal and output vertices that are in
one-to-one corrcspondcnce with the variables corresponding to the set of primary inputs. logic gates and primary
outputs respectively. We denote Vi Lhe vertex corresponding LO variable i. The edge set E and the edge weight
set I-V are defined as follows. There is an edgc bctween tli and Vj with weight k whcn variable i appears in
the expression .1 for vcrtex Vj with tabcl k. Zero-valucd wcights are not indicalCd by convcnuon. There is a
(weighted) edge LO e.:h output verlcx in VO from the internal vertex in 1..' G corresponding t~le gate gencrating
that output signal. For each .-ir of verlices joined by a path in G( l.', E, It:). the path weight is the sum of the
weights along the path. We assume that each cyclc (i.e. closed path) has striclly positive weight. to modellhc
restriction of breaking combinational logic cycles by atlcast one regislCr.

An example of a synchronous digilal circuit and its represcntations is shown in Figure 1. Note that
othcr reprcsenlations of synchronous nctworks havc bcen proposed [6J. wherc variablcs and vertices have bccn
associated also to nets of Lhe circuits. This extended nolation is not uscd hcre. because not neccssary for the
level of detail of tOO LOpics dealt with in this pa~r.

In general. a synchronous Boolean nctwork may have cyclic dependencics. i.e. its corresponding graph be
cyclic. A network is called defmite. or unidirectional. when Lhc graph G( 1.', E. ~V) is acyclic. A network is called
pipeline woon it is definite and all path wcighLS from any input to any output vertex are equal. The latency of a
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pipeline network is the product of thc cycle-time timcs the 1/0 path weight Note that the combinational Boolean
nctwork (without synchronous rcgistcrs) introduccd by Brayton [4J is just a special case of the synchronous
Boolcan nctwork that is acyclic and whose labcls arc all zcrocs.

Thc fanin (fanoUl) sct or a vcrtcx Vi is tI1C subsct or vcrticcs that arc tail (hcad) or an edge whose head
(tail) is ~'i and il is dcnotcd by F T( Vi) (T"O( ~)i ). Wc associatc a propa,J,'fllion delay 10 cach vcrlcx and 10 each
path. Notc thai a correct compUlaLion should include fal.\"e palhs dclcction [13 J; oLhcrwisc only uppcr-bounds
on delay can be compuLcd and thcsc can be mislcading at limcs. Notc also thai the model can be cxlCndcd to
thc usc of transparenl lalchcs and multiplc clock phases. Rccently Sakal1ah l15J proposed methods for verifying
thc corrCClncss of such ncLworks as wcll as computing tI1C minimum cyctc limc.

3
..

Algorithms for cycle-time minimization.

Some logic synthesis systems deal with cycle-time minimization by considering sequential circuits as an in-
tcrconnection of a combillauonal logic component and registers. Thc combinational portion of the circuit is
optimized by combinational logic algorithms. 1llcn registers arc added back to the circuit Needless to say,
such optimization techniques are limited in their scope by this partitioning strategy.

It is tl1C pul1>OSC of this paper to survey tJlOSC techniques that exploit tJlC particular nature of sequential circuits.
1llcrcrorc wc do not rcl>ort hcrc on pcrfonnancc-oricntcd syntJ1csis techniques for combinational circuits, tJ1at
can still play an important role in optimizing sequential ones. Wc rcfcr the reader to [17J and [13] for dcta.ils.

Wc conccntratc in lhis paper on lIlcfundamenlal mechanisms for circuit transforn1ations. The transformations
themsclves can be driven by an overall pcrformance optimization algorithm, lI1at sclects the transformation type
and the targets. We refer lI1C reader lO [2, 4, 8, 10, ]4J for details and examples of overall opumizalion strategies.

3.1 Retimillg.

Thc original retiming algorithm was prcscntcd first by Leiscrson and Saxc [II]. The circuit cycle-time can
bc minimizcd by moving thc rcgislCr position. While retiming a circuit. the combinational component is not
modified. Thercforc the approach is orthogonal to performance-optimization by combinational logic speed-up.

Lciscrson showcd that the minimum clock period corrcsponds to some path delay between a pair of vel1iccs of
the sYI1Chronous Boolean network. Therefore 1I1c search for an optimum cycle-time can be reduccd to verifying
whClI1Cr a rctimcd circuit can opcralC at a given clock rate.

To formalize the rctiming problem, we associalC a retiming vector to the network, whose enLrics are in
one-to-one corrcspondct1Cc will1 the vertices. Each clement rcprcsents 1I1C amount of regislCr units moved from
the outputs of the corresponding gate to its inputs. (Negative entries represent the opposite register movement).
The rctiming of the corrcsl)()nding variable is equivalcnt to adding the retiming entry to its labcl. The weight
on each cdge is increased by the retiming of its head and dccrcascd by lite rctiming of its tail.

A necessary condition for a valid retuning is that the weights of allll1c edges remain non-negative. A second
ncccssary condition is that the weight on any path whose propagation delay exceeds the cycle-time must bc at
IC<lSt one. This condition is equivalc.nt to stating tltat in any valid implementation tl1e dclay of any path with
zero rcgistcrs (weight) is boundcd from abovc by tllC cycle-time.

Both conditions can be represented by linear incqualitics in tcnns of thc entries of the rctiming vector.
Thcrcfore. thc rctiming decision problem can bc cast into solving a set of inequalities, or equivalently checking
for positive cyclcs in a representative graphs. Rctiming can bc solved exactly by the Bellman-Ford Algorithms
in O(I~113) time [IIJ. or by more cfficient relaxation schemes tl1at can cxploit thc sparsity of the network. It
can also bc cast as a mixed integer-linear program at1d solved by the simplex algorithm.

Despite the fact tl1at retiming guarantees a global minimum cyclc-timc. it has not been uscd much by logic
synthesis syslems. The main reasons arc the following. Retiming was conceived for communication networks
and nol for Boolean networks. The assumption of constant gate delay is invalidaled by the fact thal gatc fanouts
changc a.~ registers move. The total numbcr of registers (that rclates to circuit area and power) cannot be boundcd

during cycle-timc oplimi7.ation. Thercfore, a performance-optimal implementation may have an unacceptable
area. NOlC that when wiring is taken into account. excessive area correlates to degraded pcrfonnance. Moreover,
retiming ncglects the possibility of rcstructuring the combinational component of the network. which is the source
of the propagalion delay.

Exlcnsions to retiming have bccn proposed, such as rctiming for multiple-phase circuits [3J.
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Figure 2: Example of peripheral reliming [12]. (8) Original circuit. (b) Pcriphcrally reLimed circuit with Lime
borrowing. (c) Resynli1esis. (d) RelUrn of borrowed Lime.

3.2 Peripheral retiming.
Peripheral retiming is a novel technique introduced by Malik [12] to leverage combinational logic synthesis as
much as possible in scquential circuit design. Peripheral retiming can be thought as of defining a boundary
(periphery) around a circuit and extracting all registers from the region inside the boundary. This allows the
designer to apply combinational logic tcchniqucs to the region (e.g. the combinational speedup algorithm [17])
and to return latcr thc rcgistcrs to the rcgion so tJlat thc optimi7.cd circuit is cquivalcnt to tIle original one.

In order to cxtract the registcrs from a region, the corrcsponding nctwork must be dcfinilc. Cyclic nctworks
can bc cut, for cxamplc by using thc sliding }vindow paradigm [12). An imporUlnt dcgrce of frecdom of pcripheral
retiming is that edgcs crossing thc pcriphcry can havc lcmlX>rarily ncgativc wcights. This corrcsponds to borrow
some time from thc environmcnt (OUlSidc thc pcriphery), to extract tJ\C rcgistcrs.

Malik showed also the neccssary and sufficicnt conditions on a circuit for tJle existence of a pcripheral
rctiming. Whcn considering ally 110 pair (Vi E VI. Vj E Vo), no two paths Vi , Vj must differ in path
weights and for any 1/0 path Vi. . . . . Vi thc weight must equal thc sum of two intcgcrs Q i + fJj associated with
Vi and vi' Obviously pi~lincd nctworks satisfy the assumptions for periphcral retiming.

An exam pIc of periphcral retiming is given in Figure 2, whcrc thc conditions for pcripheral retiming are
satisficd. Thus, all registcrs can bc extracted from thc region. To ocCOtnplish this, time is borrowed from
input f, by introdocing a tcmporary ncgative synchronous delay. Thc extraction of tJ1C rcgisters allows a tool
to resynthesize the cOlTcslX>nding combinational circuit A redundant AND gatc is removed. Thcn, retiming
is applicd to return thc registcrs into thc circuit Notc that the pcripl\Cral rctiming conditions guarantee that
ncgativc synchronous dclnys can always be removcd, so that tJlC final implcmCtIUllion is a fcasiblc circuit.

Thc imporlance of pcripheral reliming stCtns from the fact that thc optimization of the register IX>sition can
be pcrformcd in conjunction with the optimization of lhc combinational logic. The j)ar:adigm for pcripheral
reliming allows us to separate thc two tasks, and lhereforc Icvcraging powcrful existin1 syntJlcsis programs.

Brglcz [5) proposed a way of partitioning synchronous circuits into sub-nctworks, callcd consiSltnl corollae,
defincd on the basis of signal rcconvcrgcnce. Hc showcd that such corollac satisfy ~e assumption of pcriphcral
retiming. Thcn he propos cd a gcneral mclhod for circuit optimi7.ation, bascd on corolla partitioning. pcripheral

rctiming and combinational logic rcsyntJ\Csis.

3.3 Algebraic transformations for synchronous circuits.
Unfortunately, many synchronous Boolcan networks do not satisfy the assumptions for perfonning peripheral
reliming. Notablc examplcs are those where two paths Wilh difrcrenl palh weight reconverge, as for example
shown in Figurcs I and 5. In this case. circuil oplimi7.alion can be pcrrormcd by combining locally reliming
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Figure 4: Example of synchronous res ubsli lu lion.

and combinational logic Lransformations. We call synchronous algebraic tran.iformations the extensions of the
algebraic Lransformations for combinational logic [4] that incol"JX>rate local retiming. We call here retiming of
an algebraic exprcssion the retiming of all iLS variables. We denote the reliming of a variable or an expression
by an integer k by using the operator Rk(.).

Examples of synchronous algebraic Lransformations are synchronous elimination, resubstitution, extraction
and decomposition [9]. They are extension of the corresponding combinational Lransformalions [4].

The elimination of a variable with labcl k is the replaccmcnt of tile variable by iLS corresponding expression
retimed by k. Given two internal vertices Vi and Vj E F 1(1Ii), the elimination of Vj into Vi is the elimination of
variable j in all its occurrcnccs in the expression I for Vi. The elimination of vertex vi is its elimination into all
the vertices in FO( 1Ij). Note that the elimination of a variable wi1l1 labcl zcro is equivalent lo the elimination
used in combinational logic synthesis [4]. The elimination of a variable with non-zero larel corresponds to
merging two logic gates that are separated by a register, by shifting the register to the inpuLS of the gate
corresponding to the variable being eliminated. An example is shown in Figure 3, where variable c has been
eliminated. This corresponds to the merging of the AND and OR gates into a complex gate, and to the shift of
the registers to its inpuLS.

Lel us consider now re.fub.ftitution [4] for synchronous Boolean networks. Let I,.1, Q and n be Boolean
expressions. Then ..1 is a synchronous divisor of I if 3k ? 0 such lIml I = Rk(..1)Q + n and Rk(.1)Q i 0.
Given two internal vertices Vi and Vj such that the expression ..1 is a synchronous divisor of I, the resubstitulion
of vi into Vi is the factoring of I as RA- (j)Q + .R.. An algorithm for synchronous division was presented in [9].
Note again that the divisors dcfined in [4] are a subset of the synchronous divisors and therefore resubstitution
with null rcliming (i.e. k = 0) is equivalent to rcsubstitution in combinational logic. The rcsubslilution of a
variable with non-zero retiming corresponds to adding one (or more) rcgister retwecn two gates to simplify the
latter. An example is given in Figure 4. The complcx gate corrcsponding to variable y is simplified by using
variable x delayed by one, i.e. RI(X).

The extraction of a common sub-expression of expressions I and ..1 corresponding lo two vertices Vi and vi
is the addition to the nctwork of a vertcx v, (with the relatcd cdges) corresponding to a common synchronous
divisor of I and ..1 and lO the factoring of I and ..1 in terms of the new variable I. Similarly, the decomposition
of an cxprcssion I its rcplaccmcnl by the expression: Rk(j)Q + R., where j is a new variable, iLS corresponding
expression ..1 is a synchronous divisor of I, k is an integer and Rk(j)Q i 0. The decomposition of a vertex
Vi implies the addition lo the nclwork of vertex v j . Decomposition can re applied recursively lO Vi and Vj.



Synchronous algebraic transformations can be combined with combinational logic transformation and global
retiming. In particular, it was shown that synchronous elimination can be applied to gates that are head of
critical paths and synchronous resubstitution to gates that are tails of critical paths. In both cases, often such
transformations are the only ones that can locally improvc tllC cyclc time. Unfortunately, it was also shown that
thc rrcqucncy in which such transronnations can bc applicd succcssrully in rcal circuits is low.

3.4 Boolean transformations for synchronous circuits.

Boolean transfonnations for logic synthesis exploit the full power of lhe Boolean representation and lhe use
of don't care sets. As in the case of combinational circuits, don't care conditions are related to the impossible
patterns that are input to a (sub-) nelwork, called controllability don't cares and to those for which the outputs
are not sampled, called obsenlability don't cares. DifferenLly from tl1e combinalional case, obscrvabilily don't
care scts spell the obscrvability of a variablc at prescnt and fulure timcs. In gencral, don', care conditions in
synchronous circuits may contain time-invariant and time-dependent components. Only tJ1e use of the former is
sLraighlforward for logic simplificalion. Tl1C lauer may relate to thc circuit inilialization or to periodic patlerns
produced by the circuit [6].

The most simple case for don't care computation is the one of pipcline networks, where lhe effect of registers
can be ignored. In other words, such networks can always undergo peripheral retiming, and all registers be
moved to the circuit inputs or oulputs as far as the don't care computation is concerned. Therefore, lhe don't care
evaluation is as complex as in the combinational casc. Thc same applies to Lhe don't care set computation within
a corolla. In Ll1C gcncral case, the evaluation of thc don't care sct is more involved, due to Lhe reconvergcnce
of signals, possibly with different synchronous delays.

There is an additional complication in using lhe don't care condilions as dcgrees of frcedom to perform
Boolean Lransfonnations. For combinalional circuits, don't care condilions can be represcnted as sets (and in
particular as sum of products of cubes). Each element of the set represcnts an indcpendent condition, and
the don't care ensemble represents all thc dcgrees of freedom for oplimizalion. In synchronous circuit, Lhe
individual don't care conditions are correlated and thercforc tJ1C overall degrccs of freedom for optimization
cannot bc simply described by a set.

This remarkablc properly docs not necessarily stem from fecdback in thc nctwork. It is present also in definite
networks and it is due to the existence of reconverging palhs wilh differcnt synchronous delays. Considcr for
example the circuit of Figure 5. It can easily bc verified thal Lhe invcrtcr driving the variable y can be replaced
by a simple interconncction, i.e. that the function 9(X) = x' can be rcplaced by f(x) = x. Since there are two
110 paLhs with differcnt wcight, no ~riphcral rctiming opcraLion is possiblc on Lhe circuit It is also interesting to
observc that thc invCrLcr can bc rcplaccd cvcn tl10ugh therc arc no indcpcndcnt don't care collditions associalcd
to it To check this, il sufficcs lO obscrvc lhal any don't care condilion on y would rcsull in Lhc possibility of
replacing thc invcrter wiLh a constant 1 or 0, which is clcarly incorrcct.

Damiani [7) proposcd a formulation thal allows us to caplure lhc dcgrecs of frcc<k>m for the optimization of
a subnctwork cmbedded in a synchronous system. In tJ1is approach, it is ncccssary to fully capture the terminal
spccifications imposed on that subnctwork. In the synchronous case, thc most general terminal specifications
are reprcsented by the set of its possible execution traces, where a trncc is defined as a pair of input/ootput
scqucnces. Hcre, due to Lhe limited space, we will show thc approach on the simple examplc of Figure 5.

In thc circuit in Figure 5, we seek to replace the input inverter by a simpler funcLion, gcnerating the
intermediate signal y. The replacemcnl is possiblc as long as the input/output bchavior of lhc whole nctwork is
unaffccled. Tl1e dcsired input/output behavior for Lhe nelwork is Z n = x:. 1:£1 x~-I' The primary oulput z can be
exprcssed in terms of Lhe internal signal y (to bc re-synLhesizcd) as Z n = y,. 17[. y,. -I. The signal y must thcrefore
satisfy the consLraint: Yn ~ Yn-1 = x:, ~ x~-I' Vn ~ O. The above cquation represcnts Lhc conSlraint on Lhe
execuLion Lraccs by Lhe circuit replacing the inverter. It can be rewrilten as (.I:~ $ X~-I)$(Yn ~ Yn-l) = 1 and
it is called a synchronous recurrence equation..

It is worth rClnarking Lhat for any givcn inpul sequencc ;1:(')' tJ1cre cxist morc than one output sequcnce y(.)
that saLisfy thc equation. Two possible solulions are

Y-I=.1:-I; Y-I=O
Yn = .1:,. Vn ~ 0; Yn = .1:,. \II %,,-1 $ Yn-1 Vn ~ 0

The first solution corresponds \0 replacing the inverter by a wire and it is shown in Figure 5 (b). The second,
shown in Figure 5 (c), relates \0 a more complex circuit with feedback and it is obtained by adding Y,.-I \0
both terms of the equation. The assignments of Y-I correspond to the assignment of the initial conditions for
the subcircuit.

- 138 -



G. De. Micheli

z

.-,

Figure 5: (a) Example of a non-rcLimable but opLimizablc circuit (b) Simplified circuit implementation. (c)
Other circuit implcmentaLion.

In lhc gcneral case, lhc problem can be formulated by representing the dcgrces of freedom as a constraint
equation, lhat rclatcs lhc variable associated to the subnetwork to be optimizcd to its input variables. Note tJ1at
variables are labcled to denotc the time dcpcndcncy. Such a constraint equation is a synchronous recurrence
equation and it dcscribcs implicitly lhe don't care conditions.

A solution to a synchronous recurrcnce cquation is a logic function 1, lhat can replace the subnetwork.
Thcrcforc tlte Boolcan optimization problcm can bc sccn as thc synthcsis of an appropriate function, that
satisfics thc boundary constrdints sct by the synchronous rccurrcncc cquation.

Whilc this function can bc gcncral in nature, a rcasonable simplification is to assume lhat is definite, i.e.
ttmt 1 is a combinational function, whosc support are thc (possibly delaycd) variables associated to the network
inputs. As an cxamplc, for lhe circuit of Figurc 5 (a), we would bc sccking solutions of the type shown in
Figurc 5 (b), and nOf. in Figurc 5 (c).

Sincc thc function 1 is the unknown of thc problcm, it can bc rcpresentcd by its truth table, where tile cntries
of thc truth lablc arc coefficients to be dctermincd. For the previous example, we seek a function l(xn, Xn-l)
of minimum cost lhat can replace lhe inverter. The function is entirely dcscribcd by its truth table, represented
in Table 1. The cocfficicnts 10,1" h, 13 rcprcscntthe unknowns of the problem. Feasible solutions (in terms
of dcfinitc networks) arc rcprcscnted by 10 = I, it = I, h = 0,13 = 0 (corresponding to lhe original inverter)
and by 10 = 0, I, = 0, h = 1,13 = 1 (corresponding to lhe simplc intcrconncction).

Table 1: Tabular rcprcscntalion of an unknown function f(z n I %n-l).

By expressing the synchronous recurrence equaLion in lCrms of the coefficients of the truLh table, it is possible
to dctcnnine a set of clauses that fully describes the problem. For the previous problem, Lhe synchronous
recurrence equation is (.1::, $ .1:~-I)$(Yn $ Yn-l) = I. Corresponding any assignment of (.1:nl .1:n-l, .1:n-2), we
can derive Lhe values of Yn, Yn-1 that satisfy Lhe recurrence relation. These are tabulated in the second column
of Table 2. For example, for the assignment .1:" = 0, .1:,.-1 = 1 (sccond row of Table 2), the relation reduces to
Yn ~ Yn-1 = I, that is true for (Yn = O,Yn-1 = 1) or (Yn = I,Yn-1 = 0).

We can now re-express the constraints on Yn. Yn-1 in terms of the coefficients. For the relation table of
Table 2. corresponding to the assignment (zn. Zn-i. Z,,-2) = (0.0. I). the possible assignments for (Yn, Yn-l)
are either (0,0) or (1,1), i.e. it must be (Yn + y'n-l)(y'n + Yn-l) = 1. Since we assume y,. = !(Zn,Zn-l)
and Yn-1 = I(zn-i. Zn-2). we have y" = 1(0,0) = 10 and Yn-1 = 1(0.1) = fl. Therefore. the possible
assignments for Yn-I.Yn are also described by (/0 + 1:)(/&+ II) = 1. The same process is repeated for all
rows of the relation table. The resulting constraints on tile truth table coefficients are described in column 3 of



Tablc 2: Relation table for lite inverter optimization problem. The second column shows the possible assignments
lo Yn, Yn-t corresponding lO each input sequence; the third one expresses those assignments in terms of the
coefficients Ij.

Table 2.
With this fonnalism, the possible solutions are the sets of coefficients that make true all the clauses in the

table. Among the feasible solutions, an optimal one can be chosen to satisfy any particular property, e.g. delay
or number of literals. The scarch for a feasible or optimum solution requires solving a binate covering problem.
The binate nature stems from the fact that coefficients can appear in the clauses with boLh phases. Exact and
heuristic methods can be used for the opLimal synLhcsis of the function f [7J.

We summaril-c here the mosL imporLanL points of this approach. FirsL, the synLhcsis of a function Lhat replaces
a subneLwork is used instead of the classical Boolean optimization step. Second, the degrees of freedom
(represenLed by don't care conditions in classical Boolcan optimization) are represenLed here as constraints
implied by a synchronous recurrence equation. Third, tile synthesis meLhodS involves the SoluLion of a binate
covering problem; the implicaLions among Lhc values of tile coefficients relaLe LO the fact that the degrees of
freedom are correlated.

This synthesis technique allows us to define a circuit transfonnaLion that is applicable across regisLers even
in presence of reconverging paLhs with different weights. Therefore, it is Lhe mosL general transfonnation that
can be applied among those described here. It subsumes Boolcan simplification and division. Unfortunately, the
functional synthesis problem is difficult, because it involves binate covcring and because its size is exponential
willi Lhe number of inputs of thc subncLwork being replaccd. Tllcreforc opLimil.aLion steps based on synLhesis
from rccurrcncc rclations should be uscd in conjunction witll othcr circuiL LransfomlaLions, wiLh complcmcntary
prol>crtics and LhaL can also insurc a fine granul~lfiLy of tile overall ncLwork.

3.5 Wave Pipelining.

The cycle time of combinational networks can bc reduced by pipelining techniques. The introduction of inter-
mediate registers shortens the combinational logic p41ths, allowing for the reduction of the cycle time. Since
we consider here logic circuits where data arc strobcd in and out every clock cycle, then throughput is just the
invcrsc of the cycle-time. Unfortunately, tlte added registers increasc the ovcrall arca and powcr consumption.
In addition, the overall latency of a pipclincd circuit tends to bc higher tllan the propagation dclay through the
corresponding combinational logic circuit, because of the propagation delays tllrough the registcrs and the need
to sct the cyclc time to bc largcr than thc largest propagation dclay in all tllC combinational pipc-stagcs.

Wc considcr now a design stylc and CAD algorililms for designing high-IJCrfonnance pipclined circuits with
wave pipelining [19J. Wave pipclining can bc applicd to combinational circuits to reduce the cyclc-time, just as
regular pipclining. Howcvcr, when compared to regular pipclining, lower latcncy, power and area consumption
can bc achieved.

In essencc, wave pipclining consists of a pipelinc implcmentation wililout intcnnediatc registers. Throughput
(and thcreforc cycle-timc) are comparablc to a rcgular pil~linc implcmcntation. Instead, latency, area and power
consumption are smaller, bccause of the lack of lite inlermcdiate rcgisters. In addition, wave pipclining simplifies
the clocking distribution.

TlIC difficulty in designing a wave pipclined circuit stClns from the following fact. The cycle-time is now
smallcr than the prop.lgation delay through tile combinational logic. Thcrcforc, at any given time, more than
one wavc of data prop-dgates bctwccn the boundary rcgistcrs. Data arc storl'.d tcmporarily by the capacitances of
thc circuit. On thc othcr hand, in a regular pipclinc implcmcntation, only onc wave of data propagates between
two registers at any given time. This is shown in Figure 6.

A nccessary condition for corrcct opcration of a wave pipclincd circuit is that the waves do not mix. Thcre-
forc thc path propagation delays from lite inputs to each vertex of lItc Boolcan nctwork must bc equal or
approximativcly equal. In a wave pipclincd circuit, the cyclc-timc is bountJcd from below by the maximum
unbalancc in path delays (plus a componcnl related to clock skcw, rise/fall timc and setup/hold times.) Con-
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Figure 6: Regular pipelining versus wave pipelining.

verscly, in a regular implementatiOn the cycle-lime is bounded from below by the maximum path delay (plus
again clock skew and setup time.)

Exacl ~th delay balancing is not only difficulllO achieve in practice but also not very relevanL Indeed, in
such case, the cirt:uil cycle-lime would still bc determined by the clock skew and by the timing paramelers of
lhc boundary registers. Il is important though lo achieve a path balancing comparable to these quantities. This
was shown lO be feasible by expcrimcnling with practical cirt:uiLS.

To achieve a near balancing of path delays, two techniques can be used: inserting delay elcmenlS and fine
luning circuit parameters, such as currcnlS. The former problem is discrete in nature and serves the purpose lO
reduce large unbalances. A polynomial-time algorithm lO solve this problem was re(X>rted in [19). The latter is
a continuous optimization problem, that can be approached by lincar or non-linear programming techniques.

In practice, il has bccn shown thal circuilS can be balanced so thallwo or three waves can fit. i.e. that a
two/three-fold decrease in cycle-lime can be achieved with respect LO the combinational circuiL A few wave..
pipclincd implementation have been achieved. Hislorically, the first application was in the floating point unit
of he IBM 360/91 computer. Reccnl implementations included a populalion counter realized in bipolar CML
technology [18), whose cycle time was dccrcascd by a factor 2.5 by using wave pipclining.

4 Summary
Logic-lcvcl opumizauon or synchronous digilal circuits, and in ~ucular cyclc-lime minimizauon, can be
perfonncd by using a struclural rx:lwork mockl and by applying circuil lransformations. The lransfonnatioos
includc lhose lhal can re applicd just to lhc combinational componenl or lhc circuit, and lhat can be extended
to moving and/or rcmoving rcgistcrs. Rcliming can re uscd lO sclcct lhc oplimum rcgister positions. Peripheral
rcliming cxtcnds thc rcliming conccpt to cxlroct lhc rcgistcrs from a rcgion, whcrc combinational optimization
can re applicd.

Algcbraic and Boolcan transrormations mix combinalionallogic restructuring with local register movement
Thc former opcrations arc based on an extcnsion or algcbraic transrormations lO labcled expressions. The lauu
rcquire thc computation or don', cart conditions. Since the extrocuons or don', cart conditioos in synctuooous
nctworks can bc difficult. duc lO somc corrclation induccd by the reconvcrgcncc or palhs wilh dirrerent weights,
oplimi7.3lion can bc achicvcd by funclional synlhcsis undcr lhc constraints imlX>scd by a synchronous recurrence

cquation.
Wavc pipclining allows us lO optimizc thc cyclc-timc and lhc latcncy of a circuit, by providing a pipeline mode

or opcralion wilhout inlcrmcdiatc rcgislcrs. Thc dcsign or wave pipclincd circuits requires carcrul balancing of
t~ ~lh dclays and has it bcen uscd successrully to dcsign high-pcrrorrnancc chips.
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