Synthesis of High-Performance Digital Circuits:
Logic Transformations for Cycle-Time Reduction of Synchronous Circuits

Giovanni De Micheli

Center for Integrated Systems

Stanford University
Stanford, CA 94305

Abstract

We review in this paper different techniques 10 enhance the circuit performance of synchronous digital
circuits. In particular we concentrate on the mechanisms that can be used in a global framework for performance
optimization. We survey logic transformations that operate on structural models of synchronous networks,
described in terms of inlerconnections of logic gates and registers. Thesc approaches arc alternative to traditional
scquential logic optimization algorithms based on state transition diagrams.

1 Introduction

Logic synthcsis and optimization tcchniques have been uscd successfully for product-level design of digital
circuits in the last decade. Ncevertheless only some digital design problems have been solved satisfactorily by
the usc of Computer-Aided Design (CAD) tools. In particular, high-performance digital design is still ofien
hand-craficd, duc to thc cnormous importance of tuning the circuit implementation to achieve top performance
with a given circuit technology.

Logic synthesis lechniques have been suriving o optimize three figures of merit of digital designs: area,
testability and performance. The three issucs arc extremcly complex because of the intractability of the under-
lying dccision problems. For this rcason, rulc-based systems and hcuristic algorithms have been used in this
perspective.

Combinational circuit optimization has rcached a certain maturity 10day. Most problems arc undersiood,
even though better solution methods are continuously scarched for. Scquential circuit optimization is stll in
its infancy due to the additional complexily of handling rcgisters and fcedback connections. Recently, much
atiention has been devoted to asynchronous circuits, because inicrface asynchronous circuits are often a serious
bottlcnecks in digital design.

Here we consider synchronous circuils, because most digital designs have synchronous operation. This
corrclates to a rclativcly easier design mcthodology. Synchronous logic circuils arc interconncclions of logic
gatcs and registers with synchronous clocking. Fecdback conncctions are restricted to be through synchronous
registers, to guarantee race-free design. Synchronous circuits can be modcled by the interconnection of their
componcnts. We call such a model a structural vicw of a synchronous circuits. Alicrnatively, the stale transitions
may be described in tenns of tables or diagrams. We refer 1o this models as behavioral views.

Historically, sequential logic synthesis has been studied on behavioral models. Synthesis and optimization
relates then 1o solving classical problems, such as slatc minimization and statc assignment [1} {16]). In this
paper, we report on performance-oriented optimization based on an itcralive refinement of a circuit. We con-
sider structural views, because they can be morce casily related to timing modcls for delay cvaluation than the
corrcsponding behavioral models. We assume that the original structural modcl, that we would like to opti-
mizc, is cither a human-designed schematic, or a netlist synthesized by high-levcl synthesis tools or by classical
scquential synthesis programs.

We present here logic transformations that aim at reducing the cycle-time of synchronous circuits, by refining
structural descriptions. Some of these transformations arc exticnsions of those used in combinational logic
synthesis and operatc within and across the register boundarics, by exploiting the possibility of moving and/or
removing registers. We concentrate on those ransformations that are specific 10 synchronous circuils and that
can bc cmbedded in CAD systems for performance-oricnicd synthesis.

- ugﬁl/ oo

Figure Synchronous Boolean Network and its representation.

2 Circuit model.

We consider structural models of digital circuits. Such circuits can be specified by an interconnection of
combinational logic gales and clocked registers. For the sake of simplicily, wc assume first that all the registers
are driven by one clock (i.e. single-phase circuits) and that the latching is always positive (or always negative)
edge-triggered. Master-slave registers fall in this class. We assume, again for the sake of simplicity, that the
clock skew, the register sctup, hold and propagation times are ncgligible.

We model synchronous circuils by synchronous Boolean networks. A synchronous Boolcan nciwork is
described in erms of Boolean variables and Boolean equations. Each Boolcan variable corresponds 10 either a
primary input/output of the circuit or to the output of a combinational logic gate. A positive integer label on a
variable denolcs the synchronous register delay, if any, of the corrcsponding signal with respect 10 the primary
input or combinational logic gatc that gencrates il. Zcro-valucd labels arc omitied for the sake of simplicity.
Labels are represented here in lwo equivalent ways: parenthesized superscripts and subscripts to which a current
index n is added. For cxample, variable z with label & = 2 is denoted as z(?) or z, 47, while the unlabeled
variable is denoled by z or z,. Each Boolean equation has an unlabeled variable (i.c. with zero-valued label) as
le(t term and a Boolean expression as right tcrm. The latter specifies the value of the left term variable in terms
of other (labcled) variables, i.e. it is a multiple-input singlc-output combinational logic function. We denote by
I the Boolcan cxpression associated to variable i.

The network is modeled by the synchronous neiwork graph, that is a direcied weighted graph G(V, E, W),
whose vertex set V = VI UVE UV = {v} is partitioncd into input, internal and output vertices that are in
one-lo-one correspondence with the variables corresponding to the sct of primary inputs, logic gates and primary
outputs respectively. We denote v; the vertex corresponding to variable i. The edge set E and the edge weight
set W are dcfincd as follows. There is an edge between ; and v; with weight k& when variable i appears in
the expression 7 for vertex v; with label k. Zero-valued weights arc not indicated by convention. There is a
(weighted) edge 1o cach output veriex in V' © from the internal vertcx in V' ¢ corresponding the gate gencrating
that output signal. For each pair of vertices joined by a path in G(V, E,1V'), the path weight is the sum of the
weights along the path. We assume that cach cycle (i.e. closed path) has strictly posilive weight, to model the
restriction of breaking combinational logic cycles by at lcast one regisier.

An cxample of a synchronous digital circuit and its rcpresentations is shown in Figure 1. Note that
other representations of synchronous networks have been proposed [6], where variables and vertices have been
associated also to nets of the circuits. This extended notation is not uscd here, because not neccssary for the
level of detail of the topics dealt with in this paper.

In general, a synchronous Boolean nctwork may have cyclic dependencics, i.e. its corresponding graph be
cyclic. A newwork is called definite, or unidirectional, when the graph G(V, E, W) is acyclic. A nctwork is called
pipeline when it is definite and all path weights from any input to any outpul vertcx are equal. The latency of a

G. De. Micheli

pipeline network is the product of the cycle-time times the 1/0 path weight. Note that the combinational Boolean
network (without synchronous registers) introduced by Brayton [4] is just a special case of the synchronous
Boolcan network that is acyclic and whose labels are all zcroces.

The fanin (fanour) sct of a veriex v; is the subsct of vertices that arc tail (head) of an edge whose head
(wil) is »; and it is denoted by F1(v;) (FO(v;)). We associale a propagation delay 10 cach veriex and to each
path. Note that a correct computation should include false paths detection {13]; otherwisc only upper-bounds
on declay can bc computed and these can be misleading at times. Notc also that the model can be extended 1o
the usc of transparent latches and multiple clock phascs. Recently Sakallah {15] proposed methods for verifying
the correctness of such nctworks as well as computing the minimum cycle time,

' 4 .
3 Algorithms for cycle-time minimization.

Some logic synthesis systems deal with cycle-lime minimization by considering sequential circuits as an in-
terconnection of a combinational logic component and registers. The combinational portion of the circuit is
optimized by combinational logic algorithms. Then registers arc added back 1o the circuit. Needless to say,
such optimization techniques are limited in their scope by this partitioning strategy.

Itis the purposc of this paper 10 survey thosc techniques that exploit the particular nature of sequential circuits.
Therclore we do not report here on performance-oricnted synthesis techniques for combinational circuits, that
can still play an important role in optimizing sequential ones. We refer the reader o {17} and [13] for details.

We concentrate in this paper on the fundamental mechanisms for circuit transformations. The transformations
themsclves can be driven by an overall performance optimization algorithm, that sclects the transformation type
and the targets. We reler the reader 1o (2, 4, 8, 10, 14] for details and cxampics of overall optimization strategies.

3.1 Retiming.

The original retiming algorithm was presented first by Leiscrson and Saxe [11]. The circuit cycle-time can
be minimized by moving the register position. Whilc retiming a circuit, the combinational component is not
modificd. Therelore the approach is orthogonal to performance-optimization by combinational logic speed-up.

Leiscrson showed that the minimum clock period corresponds 1o some path delay between a pair of vertices of
the synchronous Boolcan nctwork. Thercfore the scarch for an optimum cycle-time can be reduced to verifying
whether a retimed circuit can operate at a given clock ratc.

To formalize the retiming problem, we associate a retiming vector to the network, whose entrics are in
onc-10-once correspondence with the vertices. Each clement represents the amount of register units moved from
the outputs of the corresponding gate 1o its inputs. (Ncgative entrics represent the opposile register movement).
The retiming of the corresponding variable is equivalent 1o adding the retiming entry 1o its labcl. The weight
on cach cdge is incrcascd by the retiming of its head and decreased by the rctiming of its ail.

A nccessary condition for a valid retiming is that the weights of all the cdges remain non-negative. A second
necessary condition is that the weight on any path whose propagation dclay cxceeds the cycie-time must be at
lcast onc. This condition is cquivalent 1o stating that in any valid implcmentation the delay of any path with
zero registers (weight) is bounded from above by the cycle-time.

Both conditions can be represented by lincar incqualitics in tenns of the entries of the retiming vector.
Therefore, the retiming decision problem can be cast into solving a sct of inequalitics, or cquivalently checking
for positive cycles in a representative graphs. Retiming can be solved cxactly by the Bellman-Ford Algorithms
in O(|V[*) time [11], or by more cfficient relaxation schemes that can cxploit the sparsity of the network. It
can also be cast as a mixed intcger-linear program and solved by the simplex algorithm,

Despite the fact that retiming guarantees a global minimum cycle-timc, it has not been used much by logic
synthesis sysicms. The main rcasons are the following. Retiming was conccived for communication networks
and not for Boolean nctworks. The assumption of constant gatc dclay is invalidated by the fact that gate fanouts
change as registers move. The total number of registers (that relates to circuit area and power) cannot be bounded
during cycle-lime optimization. Thercfore, a performance-optimal implemcentation may have an unacceptable
arca. Note that when wiring is taken into account, excessive arca correlates 10 dcgraded performance. Moreover,
retiming neglects the possibility of restructuring the combinational componcnt of the network, which is the source
of the propagation dclay.

Extcnsions to retiming have been proposed, such as retiming for multiplc-phase circuits |3).

(a) (b)

(e) (@

Figure 2: Example of peripheral retiming (12]. (a) Original circuit. (b) Peripheraily retimed circuit with time
borrowing. (c) Resynthesis. (d) Return of borrowed lime.

3.2 Peripheral retiming.

Peripheral retiming is a novel technique introduced by Malik [12] to leverage combinational logic synthesis as
much as possible in scquential circuit design. Peripheral reliming can be thought as of defining a boundary
(periphery) around a circuit and extracting all regisiers {rom the region inside the boundary. This allows the
designer to apply combinational logic tcchniques to the region (e.g. the combinational speedup algorithm [17])
and 10 return later the registers 10 the region so that the optimized circuil is cquivalent Lo the original one.

In order o cxtract the registers from a region, the corresponding nctwork must be definite. Cyclic nctworks
can be cut, for cxample by using the sliding window paradigm [12]. An important degree of frecdom of peripheral
reliming is that edges crossing the periphery can have temporarily negative weights. This corresponds to borrow
some time from the environment (outside the periphery), to extract the registers.

Malik showed also the necessary and sufficicnt conditions on a circuit for the existence of a peripheral
retiming. When considering any 1/O pair (v; € V/,v; € V©), no two paths v;,...,v; must differ in path
weights and for any 1/O path v;, ..., v; the weight must equal the sum of two integers a; + f; associated with
v; and v;. Obviously pipclincd nciworks satisfy the assumptions for periphcral retiming.

An examplc of periphcral retiming is given in Figure 2, where the conditions for peripheral reliming are
satisficd. Thus, all registers can be extracted from the region. To accomplish this, time is borrowed from
input e, by introducing a temporary ncgative synchronous delay. The exuraction of the registers allows a tool
to resynthesize the corresponding combinational circuit. A rcdundant AND gate is removed. Then, retiming
is applicd to rcturn the regisicrs into the circuit. Note that the peripheral retiming conditions guarantee that
ncgative synchronous delays can always be removed, so that the final implementation is a fcasible circuit.

The importance of peripheral retiming stens from the fact that the optimization of the register position can
be performed in conjunction with the optimization of thc combinational logic. The paradigm for peripheral
retiming allows us 10 separate the two tasks, and therefore leveraging powerful exislin{;ynmcsis programs.

Brglez [5) proposed a way of partitioning synchronous circuits into sub-nctworks, called consistent corollae,
defincd on the basis of signal reconvergence. He showed that such corollac satisfy ghe assumplion of periphcral
retiming. Then he proposed a general method for circuit optimization, based on corolla partitioning, peripheral

rcetiming and combinational logic resynthesis.
3.3 Algebraic transformations for synchronous circuits.

Unfortunatcly, many synchronous Boolcan networks do not satisfy the assumptions for performing peripheral
retiming. Notablc examples are thosc where (wo paths with diffcrent path weight reconverge, as for example
shown in Figures 1 and 5. In this casc, circuil optimization can be performed by combining locally retiming

—136 -

G. De. Micheli

x:doe“) l-dol“’i“’

Figure 3: Example of synchronous elimination,

Xz +b x:.mob

y-n“ﬁo b"& Yll(‘l

Figure 4: Example of synchronous resubstitution.

and combinational logic transformations. We call synchronous algebraic iransformations the extensions of the
algebraic transformations for combinational logic [4] that incorporate local retiming. We call here retiming of
an algebraic expression the retiming of all its variables. We denote the retiming of a variable or an expression
by an integer k by using the operator R*(.).

Examples of synchronous algcbraic transformations are synchronous elimination, resubstitution, extraction
and decomposition [9). They are extension of the corresponding combinational transformations [4).

The elimination of a variable with label k is the replaccment of the variable by its corresponding expression
retimed by k. Given two intcrmal vertices v; and vj € F/(1;), the climination of v; into v; is the elimination of
variable j in all its occurrences in the expression I for v;. The climination of vertex v; is its climination into all
the vertices in 7O(v;). Note that the climination of a variable with label zcro is equivalent (o the elimination
used in combinational logic synthesis [4]. The climination of a variable with non-zero label corresponds t0
merging two logic gates that are scparatcd by a register, by shifting the register to the inputs of the gate
corresponding 10 the variable bcing eliminated. An cxample is shown in Figure 3, where variable ¢ has been
climinated. This corresponds to the merging of the AND and OR gales into a complex gate, and to the shift of
the registers 1o its inputs,

Let us consider now resubstitution [4] for synchronous Boolean networks. Let Z, 7, Q and R be Boolean
cxpressions. Then 7 is a synchronous divisor of I if 3k > 0 such that Z = R¥*(7)Q + R and R*(J)Q # 0.
Given two internal vertices v; and v; such that the expression 7 is a synchronous divisor of Z, the resubstitution
of v; into v; is the factoring of 7 as R¥(j)Q + R. An algorithm for synchronous division was presented in [9].
Note again that the divisors defined in [4]) are a subsct of the synchronous divisors and therefore resubstitution
with null retiming (i.e. k = 0) is equivalent 1o resubstitution in combinational logic. The resubstitution of a
variable with non-zero retiming corresponds 1o adding one (or morc) regisier between two gates to simplify the
latier. An example is given in Figure 4. The complex gate corresponding to variable y is simplified by using
variable z delayed by one, i.e. R'(z).

The extraction of a common sub-expression of expressions Z and 7 corresponding 1o two vertices v; and vj
is the addition 10 the network of a vericx v; (with the related cdges) corresponding to a common synchronous
divisor of T and J and 1o the factoring of Z and .7 in terms of the new variable . Similarly, the decomposition
of an expression 7 its replacement by the expression: R¥(5)Q+ R, where j is a new variable, its corresponding
expression 7 is a synchronous divisor of Z, k is an intcger and R*(j)Q # ®. The decomposition of a vertex
v; implics the addition to the nctwork of vertex v; . Decomposition can be applied recursively to v; and vj.

Synchronous algebraic transformations can be combined with combinational logic transformation and global
retiming. In particular, it was shown that synchronous elimination can be applicd to gates that are head of
critical paths and synchronous resubstitution to gates that are tails of critical paths. In both cases, often such
transformations are the only ones that can locally improve the cycle time. Unfortunately, it was also shown that
the frequency in which such transformations can be applicd successfully in rcal circuits is low.

3.4 Boolean transformations for synchronous circuits.

Boolcan transformations for logic synthesis cxploit the full power of the Boolean representation and the use
of don't care sets. As in the case of combinational circuits, don’t care conditions are related to the impossible
paltcrns that are input to a (sub-) nciwork, called controllability don’t cares and to those for which the outputs
are not sampled, called observability don't cares. Diffcrently from the combinational case, obscrvability don't
care scts spell the obscrvability of a variablc at prescnt and future timncs. In gencral, don't care conditions in
synchronous circuits may contain time-invariant and time-dependent components. Only the use of the former is
straightforward for logic simplification. The latter may relate to the circuit initialization or to periodic patierns
produced by the circuit [6).

The most simple case for don't care computation is the onc of pipcline networks, where the effect of registers
can be ignored. In other words, such networks can always undergo peripheral retiming, and all registers be
moved to the circuit inputs or outputs as far as the don't care computation is concerned. Therefore, the don’s care
evaluation is as complex as in the combinational case. The same applies (o the don’t care set computation within
a corolla. In the general case, the evaluation of the don't care sct is more involved, due to the reconvergence
of signals, possibly with different synchronous delays.

There is an additional complication in using the don't care conditions as degrees of freedom to perform
Boolcan transformations. For combinational circuits, don’t care conditions can be represented as sets (and in
particular as sum of products of cubes). Each element of the set represcnts an independent condition, and
the don't care ensemble represents all the degrees of freedom for optimization. In synchronous circuit, the
individual don’t care conditions are cormrelated and thercfore the overall degrees of freedom (or optimization
cannot be simply described by a set.

This remarkable property docs not necessarily stem {rom fecdback in the network. It is present also in definite
networks and it is due to the existence of reconverging paths with differcnt synchronous delays. Consider for
example the circuit of Figure 5. It can easily be verificd that the invericr driving the variable y can be replaced
by a simple intcrconncction, i.e. that the function g(z) = z’ can be replaced by f(z) = z. Since there are two
1/O paths with differcnt weight, no peripheral rctiming opcration is possible on the circuit. Itis also interesting to
observe that the inverter can be replaced even though there arc no independent don't care conditions associated
10 it. To check this, it suffices to obscrve that any don't care condition on y would resull in the possibility of
replacing the inverter with a constant 1 or 0, which is clearly incorrect.

Damiani [7) proposcd a formulation that allows us Lo capture the degrees of frecdom for the optimization of
a subnctwork embedded in a synchronous system. In this approach, it is nccessary to fully capture the terminal
specifications imposed on that subnctwork. In the synchronous case, thc most general terminal specifications
are represented by the set of its possible execution traces, where a trace is defined as a pair of input/output
scquences. Here, due to the limited space, we will show the approach on the simple example of Figure 5.

In the circuit in Figure S, we seek to replace the input inverter by a simpler function, generating the
intermediate signal y. The replacement is possible as long as the input/output behavior of the whole network is
unaffected. The desired input/output behavior for the network is z,, = x/, & =], _,. The primary output z can be
expressed in terms of the intcrnal signal y (to be re-synthesized) as z, = y, 4*yn—1. The signal y must therefore
satisfy the constraint: y, ® yn—1 = zi, ® z/,_,, Vn > 0. The above cqualion represcnts the constraint on the
execution traces by the circuit replacing the inverter. It can be rewritten as (&}, & &/ _;)®(yn ® ¥n-1) = 1 and
it is called a synchronous recurrence equation..

It is worth remarking that for any given inpul sequence x(-), there exist morc than one output sequence y(-)
that satisfy the equation. Two possible solutions arc

Y-1=2_1; y.1=0
Yn=2a V20, Yo =2n BT 1DYn-1 V2 >0
The first solution corresponds 10 replacing the inverter by a wire and it is shown in Figure 5 (b). The second,

shown in Figure 5 (c), relates to a more complex circuit with feedback and it is obtained by adding y,_; to

both terms of the equation. The assignments of y_, correspond to the assignment of the initial conditions for
the subcircuit.

G. De. Micheli

(2)

— D—

(c)

Figure 5: (a) Example of a non-rctimable but optimizable circuit. (b) Simplified circuit implementation. (c)
Other circuil implecmentation.

In the general case, the problem can be formulated by representing the degrees of freedom as a constraint
cquation, that rclates the variable associated to the subnetwork to be optimized to ils input variables. Note that
variables are labeled to denote the time dependency. Such a constraint equation is a synchronous recurrence
equation and it describes implicitly the don't care conditions.

A solution to a synchronous recurrence cquation is a logic function f, that can replace the subnetwork.
Therefore the Boolcan optimization problem can be scen as the synthesis of an appropriate function, that
satisfics thc boundary constraints sct by the synchronous recurrence cquation,

While this function can be gencral in nature, a rcasonable simplification is to assume that is definite, i.e.
that f is a combinational function, whose support are the (possibly delayed) variables associated to the network
inputs. As an cxample, for the circuit of Figure 5 (a), we would be secking solutions of the type shown in
Figure 5 (b), and not in Figure 5 (c).

Since the function f is the unknown of the probicm, it can be represented by its truth table, where the entries
of the truth table are coefficients 10 be determined. For the previous example, we seek a function f(z,,Zn-1)
of minimum cost that can replace the inverter. The function is entirely described by its truth table, represented
in Table 1. The cocfficients fo, f1, f2, f3 represent the unknowns of the problem. Feasible solutions (in terms
of definite nciworks) arc represented by fo = 1, fi = 1, f, = 0, f3 = 0 (corresponding (o the original inverter)
and by fo =0, fi =0, f2=1, f3 = 1 (corresponding to the simple interconnection).

Tn Ln-—1 /
0 0 fo
0 1 h
1 0 || f2
1 1 'E

Table 1: Tabular representation of an unknown function f(z,, Za-1).

By cxpressing the synchronous recurrence equation in terms of the cocfficients of the truth table, it is possible
to determine a set of clauses that fully describes the problem. For the previous problem, the synchronous
recurrence equation is (2}, @ =/, _)®(yn ® yn-1) = 1. Corresponding any assignment of (2,,, Tn_1,Zn-2), WE
can derive the values of y,, y,—; that satisfy the recurrence relation. These arc tabulated in the second column
of Table 2. For example, for the assignment z,, = 0, z,,_) = 1 (second row of Table 2), the relation reduces to
Yn @ yn—1 = 1, that is true for (yn = 0, yn_y = 1) of (yo = 1,yn—1 = 0).

We can now re-cxpress the constraints on y,, yn— in terms of the coefficicnts. For the relation table of
Table 2, corresponding to the assignment (2, Za—1,2n-2) = (0,0, 1), the possible assignments for (yn, ¥n—1)
are cither (0,0) or (1,1), i.e. it must be (yn + ¥p_1 (¥ + ¥n-1) = L. Since we assume y, = f(Zn,Zn-1)
and yo_1 = f(Tn-1,%n-2), we have y, = f(0,0) = fo and y,_1 = f(0,1) = f,. Therclore, the possible
assignments for y,_1, ¥, are also described by (fo + f1)(fo + /i) = 1. The same process is repeated for all
rows of the rclation table. The resulting constraints on the truth table cocfficicnts are described in column 3 of

In Tn-1 Tn-2 Yn Yn—1 Yn Yn-1
0 0 = 00,11 |f (fo+ fo)(Jo+ J§) =1
0o 1 - 0L10 | (fi+/B)A+) =1
1 0 - 0L,10 | (f5+)2+ 1) =1
1 1 - 00,11 (3+ 0B+) =1

Table 2: Relation table for the invertcr optimization problein. The second column shows the possible assignments

10 yn, yn—-1 corresponding to each input scquence; the third one expresses those assignments in terms of the
coefficients f;.

Table 2.

With this formalism, the possible solutions are the sets of coefficicnts that make true all the clauses in the
table. Among the feasible solutions, an optimal one can be chosen to satisfy any particular property, e.g. delay
or number of literals. The scarch for a fcasible or optimum solution requires solving a binate covering problem.
The binate nature stems from the fact that cocfficients can appear in the clauses with both phases. Exact and
heuristic methods can be used for the optimal synthesis of the function f (7).

We summarize here the most important points of this approach. First, the synthesis of a function that replaces
a subnectwork is used instcad of the classical Boolcan optimization sicp. Second, the degrees of freedom
(represcnted by don’t care conditions in classical Boolcan optimization) are represented here as constraints
implied by a synchronous recurrence equation. Third, the synthesis methods involves the solution of a binate
covering problem; the implications among the values of the cocfficicnts relate o the [act that the degrees of
frecdom are corrclated.

This synthesis technique allows us to define a circuit transformation that is applicable across registers even
in presence of reconverging paths with different weights. Thercfore, it is the most general transfonnation that
can be applied among those described here. It subsumes Boolcan simplification and division. Unfortunaicly, the
functional synthesis problem is difficult, because it involves binate covering and because its size is exponential
with the number of inputs of the subnciwork being replaced. Therefore optimization steps based on synthesis
from recurrence relations should be used in conjunction with other circuit transformations, with complementary
propertics and that can also insure a finc granularity of the overall network.

3.5 Wave Pipelining.

The cycle time of combinational networks can be reduced by pipelining techniques. The introduction of inter-
mediate registers shoricns the combinational logic paths, allowing for the reduction of the cycle time. Since
we consider here logic circuits where data arc strobed in and out every clock cycle, then throughput is just the
inverse of the cycle-time. Unfortunatcly, the added registers increase the overall arca and powcer consumplion,
In addition, the overall latency of a pipelined circuit tends 1o be higher than the propagation dclay through the
corresponding combinational logic circuit, because of the propagation delays through the registers and the need
to sct the cycle ime to be larger than the largest propagation dclay in all the combinational pipe-stages.

We consider now a design style and CAD algorithms for designing high-performance pipclined circuits with
wave pipelining [19]. Wave pipclining can be applicd to combinational circuits to reduce the cycle-time, just as
regular pipclining. Howcver, when compared to regular pipclining, lower latcncy, power and arca consumption
can be achicved.

In essence, wave pipelining consists of a pipelinc implementation without intcrmediate registers. Throughput
(and therefore cycle-lime) are comparable 1o a regular pipeline implementation. Instead, latency, area and power
consumption are smallcr, because of the lack of the intermediate registers. In addition, wave pipclining simplifies
the clocking distribution.

The difficulty in designing a wave pipclined circuit stems from the following fact. The cycle-time is now
smalicr than the propagation delay through the combinational logic. Thercfore, at any given time, more than
onc wavc of data propagatcs between the boundary registers. Data arc stored temporarily by the capacitances of
the circuit. On the other hand, in a regular pipcline implementation, only onc wave of data propagatcs between
two registers at any given time. This is shown in Figure 6.

A nccessary condition for correct operation of a wave pipclined circuit is that the waves do not mix. There-
forc the path propagation dclays from the inputs to cach veriex of the Boolcan nelwork must be equal or
approximatively cqual. In a wave pipelined circuit, the cycle-time is bounded from below by the maximum
unbalance in path delays (plus a componcent related to clock skew, rise/fall time and sctup/hold times.) Con-

- 140 -

G. De. Micheli

clock
clock

combinational logic

wavel wave2

i wave3

Figure 6: Rcgular pipelining versus wave pipelining.

verscly, in a regular implementation the cycle-time is bounded from below by the maximum path delay (plus
again clock skew and sclup time.) :

Exact path delay balancing is not only difficult to achieve in practice but also not very relevant. Indeed, in
such case, the circuit cycle-time would still be determined by the clock skew and by the liming parameters of
the boundary rcgisters. It is important though to achicve a path balancing comparable to these quantities. This
was shown 10 be fcasible by experimenting with practical circuits.

To achicve a ncar balancing of path dclays, two techniques can be used: inserting dclay elements and fine
tuning circuit parameters, such as currents. The former problem is discreie in nature and serves the purpose o
reduce large unbalances. A polynomial-lime algorithm 10 solve this problcm was reported in (19). The latter is
a continuous optimization problcm, that can be approached by lincar or non-linear programming techniques.

In practice, it has been shown thal circuils can be balanced so that two or three waves can fit, i.e. that a
two/three-fold decrcase in cycle-time can be achicved with respect 1o the combinational circuit. A few wave-
pipclincd implementation have been achicved. Historically, the first application was in the floating point unit
of hc IBM 360/91 computcr. Recent implementations included a population counter realized in bipolar CML
tcchnology [18], whose cycke time was decreascd by a factor 2.5 by using wave pipclining.

4 Summary

Logic-lcvel optimization of synchronous digital circuits, and in particular cycle-lime minimization, can be
performed by using a structural nctwork modcl and by applying circuit transformations. The transformations
include those that can be applied just to the combinational component of the circuit, and that can be extended
to moving and/or rcmoving registers. Reliming can be uscd (o sclect the optimum register positions. Peripheral
rctiming cxtends the retiming concept 1o extract the registers from a region, where combinational optimization
can bc applicd.

Algebraic and Boolcan transformations mix combinational logic restructuring with local register movement.
The former opcrations arc based on an extcnsion of algebraic transformaltions o labeled expressions. The latter
rcquire the computation of don’t care conditions. Since the extractions of don’t care conditions in synchronous
nctworks can be difficult, duc to some corrclation induced by the reconvergence of paths with different weights,
oplimization can be achieved by functional synthesis undcr the constraints imposcd by a synchronous recurrence
cquation,

Wave pipclining allows us o optimizc the cycle-time and the latency of a circuit, by providing a pipeline mode
of operation without intcrmcediate registers. The design of wave pipelined circuits requires carcful balancing of
the path delays and has it been used successfully to design high-performance chips.

5 Acknowledgments

This rescarch was sponsored by NSF/ARPA, under grant No. MIP 8719546 and by DEC jointly with NSF,
under a PYI Award program,

References

[1] P.Ashar, S. Devadas and A. R. Newton, Sequential Logic Synthesis, Kluwer, 1991.

(2} K.Bartlett, W.Cohcn, A.De Geus and G.Hachicl, "Synthesis and Optimization of Multilevel Logic under
Timing Constraints” /EEE Transactions on CAD/ICAS, Vol. CAD-5 No. 4, pp.582-596, October 1986.

[3) K.Bardeu, G.Borricllo and S.Raju, “Timing Optimization of Multiphasc Scquential Circuits”, IEEE Trans-
actions on CAD, vol. 10, pp. 51-62, 1991.

[4] RK. Brayton, R. Rudell, A. Sangiovanni-Vincenlelli, and A.R. Wang, "MIS: A Multiple-Level Logic
Optimization System”, IEEE Transactions on CAD, November 1987, pp. 1062-1081

(5] S. Dey, F. Brglez, and G. Kedem, * Partitioning Sequential Circuits for Logic Optimization”, Proceedings
of 374 Int'l Workshop on Logic Synthesis , Research Triangle Park, 1991.

[6] M.Damiani and G.De Micheli, “Don’t care Specifications in Combinational and Synchronous Logic Cir-
cuils”, JEEE Transactions on CAD, (to appear) and CSL Technical Report, CSL-TR, 1992.

(7] M.Damiani and G.De Micheli, “Synthesis and optimization of Synchronous Logic Circuits from Recurrence
Equations™, Proceedings of EDAC , 1992.

(8] J.Darringer, D.Brand, J.Gerbi, W.Joyncr and L.Trevillyan, "LSS: A Systemn for Production Logic Synthesis”,
IBM Journal of Research and Development Vol. 28, No 5, pp. 537-545, Scpiember 1984.

(9] G. De Micheli, * Synchronous Logic Synthesis: Algorithms for Cycle-Time Optimization”, IEEE Trans-
actions on CAD, vol. 10, pp. 63-73, 1991.

(10] G. De Micheli, "Performance-oricnied synthesis in the Yorktown Silicon Compiler”, IEEE Trans on
CADIICAS, Vol. CAD-6, NO 5, pp. 751-765, Scptember 1987.

{11} C.Leiserson, F.Rose and J.Saxe "Optimizing Synchronous Circuitry by Retiming”, in R.Bryant, Editor
Third Caltech Conference on VLSI, Computer Science Press, 1983, pp. 87-116.

(12] S. Malik, E. M. Sentovich, R. K. Brayton, and A. Sangiovanni-Vincentclli, “ Retiming and Resynthesis:
Optimizing Scquential Neiworks with Combinational Techniques”, /EEE Transactions on CAD, vol. 10,
pp. 74-84, 1991.

[13) P.McGeer and R.Braylon, /ntegrating Functional and Logic Domain in Logic Synthesis, Kluwer, 1991,

(14] S.Muroga, Y.Kambayashi, H.Lai and J.Cullincy, "The Transduction mcthod - Design of Logic networks

bascd on permissible functions”, IEEE Transactions on Computers Vol. 38, No. 10, pp 1404-1424, October
1989.

(15]) K.Sakallah, T.Mudge and K.Olukotun, “Analysis and Design of Latch-Controlicd Synchronous Digital
Circuits™ Proceedings of DAC, 1990, pp.111-117

(16] G. Saucicr , M. Crastcs dc Paulet and P. Sicard, "ASYL: A Rulc-Based System for Controller Synthesis”,
IEEE Transactions on CAD/ICAS, Vol. CAD-6 No. 6, pp. 1088-1097 November 1987.

[17]) K.Singh, A.Wang, R.Brayton and A.Sangiovanni, “Timing Optimization of Combinational Logic™” Pro-
ceedings of ICCAD, pp. 282-285, 1988.

(18] D.Wong, G. Dc Micheli and M.Flynn, “A Bipolar Population Counter Using Wave Pipelining to Achieve
2.5X Normal Clock Frequency”, Proceedings of ISSC, San Francisco, 1992,

[19] D.Wong, G. De Micheli and M.Flynn, “Inserting Aclive Delay Elements 10 Achieve Wave Pipelining”,
Proceedings of ICCAD, pp. 270-273, 1989.

- 142 -

