
Dave FlloDavid Ku Claudionor N. Coelho. Jr. Giovanni De Micheli

Center for Integrated Systems
Stanford University

1 Introduction

Past effortS in high-level synthesis have focused primarily on the synthesis of a single process [1]. Under this

assumption, hardware behavior can be represented as a control-flow and/or data-flow graph, and tasks such as

scheduling and binding are defined with respect to operations within a single graph. Whereas this assumption is

adequate for uni-processor synthesis, they are less effective in synthesizing more complex and realistic DSP or

application-specific (ASIC) designs consisting of multiple concunent and interacting processes.
Modeling a system as a collection of concurrently executing processes poses additional challenges to a synthesis

system. In particular, synthesizing one process can in general alter the way it communicates with its envil:onment

These changes in turn affect and constrain the synthesis of other processes in the system. The correctness of a

design depends not only on the correctness of its data computations, but also on the timing and synchronization

requirements that define when these results are communicated to and from the external environment Of critical

imponance are the analysis and synthesis of the interfaces between the processes and the protocol governing their

interaction, as well as their efficient implementation on shared channels and busses.

With few exceptions [2, 3, 4], existing techniques do not adequately address the synthesis of communication

for concurrent systems. This paper presents a methodology for the analysis and synthesis of interfaces for time-
constrained concurrent systems. Such systems are characterized by tightly interacting lX'ocesses operating under

strict timing and sequencing constraints. We abstract the inter-process communication using blocking and non-

blocking messages. This is in contrast to approaches where the communication is achieved structurally through the

use of ports. We consider only point-to-point communication because of its determinism (i.e., knows exactly who

is receiving what message) and lack of arbitration, both important characteristics for time constrained designs.

We model the timing and sequencing relationships between messages using a graph abstraction called an causality

dependency graph. This graph effectively captures the sequencing dependencies in the communication protocol and

serves as the basis for rigorous analysis on the cross-process interfaces. We present a novel technique called

interface matching that minimizes the required inter-process handshaking by scheduling each process using timing
information of the modules communicating with it Our technique is guaranteed to yield the minimum number of

required explicit handshaking, for a class of designs.

202

Modeling Concurrency2

The choice of a hardware model largely impacts the scope and applicability of the synthesis algoothms. 1be

sequencing graph model proposed by [5] is an appropriate sWting point because of its explicit representation for

detailed timing constraints and synchronization. along with the availability of analysis aOO synthesis t«hniques fcx
time-constralaed desigas. We fu1t give a brief overview of the sequenciag graph model. then describe the exteasioas

we have added to model iot~-process syncbroaizatioo.

Modellag 8 lingle process. We model a single process as a hierarchical s~q~ncing graph G.(V, E.). where

the vertices V. represent operations to perform and, the edges E. represent the ~uencing dependencies among
operations. The sequencing gr~ is K)'Clic because loops are broken through the use of hi~archy. A II"oces5

starts ex~ution at the source vertex. executes each vertex Kcording to the ~uencing dependencies. and restans
execution upon completion of the sink vertex. The ~:UCUlion delay of a vertex Vi. denoted by 6' (Vi). can be ftud c:.-
data-depende1ll. The delay associated with' a fixed delay operation depends solely on the nature of the operation,
e.g.. addition or register loading. In contrast. the time to ex~ute a data-dependent delay operation may change for

different iDput data sequences. e.g.. waiting for the assertion of an external signal. We call the set of data-dependeDt

delay vertices (includiDg the source vertex) the anchors of G(V, E). denoted by the set A ~ V.
Detailed minimum and maximum timing constraints can be specified betw~n pairs or operations in the ~.

In particular. consider two vertices Vi and Vj with stan times T(Vi) and T(vj), respectively. A minimum constraint

Iii ~ 0 between vertices Vi and Vj implies T(Vj) ~ T(Vi) + lij. and a maxim"m constraint Uij ~ 0 implies

T(Vj) :S T(Vi) + Uij. We derive a constraint graph G(V, E) from a given s~uencing graph as the basis for
timing analysis; the vertices are identical (i.e.. V = V.). but the edges E are now weighted. For a given edge

(Vi, Vj) e E. its edge weight Wij corresponds to a timing constraint on the activation or the two operations V i and

Vj. Specitically. sequencing arcs (in the original seq~ncing graph) and the set or minimum timing constraints are
converted into forward ~dg~s E J ~ E; the set of maximum timing constraints are converted into OOckward ~dg~S

E. ~ E. Forward (bKkward) edges have positive (negative) weights and represent minimum (maximum) timing
requirements. An example of the sequencing graph for a netw<X'k packet d~oder und~ timing constraints is shown

in Figure 1.

IaterfKe between multiple proc~ Given a constraint graph. we can synthesize an implemenWion that meets

the required timing constraints. or detect if no such implementation exists. using relative scheduling [5]. We now

extend the mooel to suppon inter-process communication.

We abstract inter-process communication in tenDS of messages that are sent and received between processes.

Messages are assumed to be synchronous. taking one or more clock cycles to complete. Returning to Figure 1.

the decod~ process sends three messages {A, B, C} containing the preamble. content, and parity information.

respectively. The communication can be static or dynamic. In static communication. a message send action in

one process is statically linked to a message receive ~tion in anoth~ process. Because of the cl~e relationship

betw~n processes. more can be done in matching their executions to optimize the communication. Unfortunately.
this close relationship also results in several limiWions. inclooing the need to restrict the sending and receiving

processes to have the same control-flow structure. In contrast, messages in dynamic communication are proouced

and consumed dynamically. often using queues to decouple the sending and receiving processes. As stated before,

we win restrict our focus to the synthesis of processes with sWic communication. The extension to suppon dynamic

203

(
L1:

L2:
L3:

L4:
L5:

L8:
L7:

L8:

rctc8t . r..dPack8tO;

pr.."bl8 = extractPreamble(p8Cket);
..nd(A. pre~le)

}
parallel (

oontent . extractContext(packet);
88nd(B. content)

}
parallel (

parity = 8xtractParity(pactcet);
send(C. parity)

};
cteanuPO

)

(8) e.havloraJ d.8Cription of d8c0d8r proc... (b) Sequ8nang/COnatJalnt graFi\

Figure 1: A network packet d«OOer: (a) behavioral description, where ";" and "parallel" keywords denote serial
and parallel ex«ution, res~velY. (b) conesponding constraint graph with S timing constraints (3 maximum aIXI
2 minimum).

communication is currently under investigation.
A message caD either be blocking or IIOn-blocting. The distinction lies in that a block.ing oasage requires

explicit handshaking to establish connection before data is transferred, whereas no such handshaking is ~ for
non-blocking messages. Th~efore sending and receiving non-blocking messages have fixed delays, and blocking

messages raluire data-dependent execution delays. Non-blocking messages in our context are unbll8'ered, i.e., they
are implemented as reads and writes to external ports without the use of queues and handshaking control logic.

Non-block.ing messages are useful when the sender and receiv~ are implicitly coordinated, i.e.. the ~iVa' is

always ready to ~ive new messages.

With the assumption of single-send~ and single-receiver und~ static communication, we make explicit the

relationship bet~n the message send ~tion and the message receive action by an undirected edge bet~n the

respective graphs, called a message event. Figure 2 iJlustrates the thr~ message events (shown as dashed lines)
bet~n the decooer process PI of Figure I and a slave process p". In some cases, the communication between

two processes may stall because of circular dependencies in the execution onier of the blocking message events.

For example, consid~ two processes PI and P2 communicating ov~ two blocking message events A and B. In

PI, A executes before B, and in ~, B executes before A. Upon executing A, PI win suspend execution waiting

for P2 to execute its A event Simultaneously, P2 win first execute event B, then wait for PI. Neith~ processes

can proceed and the communication is said to be in deadlock.

An obvious solution to avoid deadlock is to make all messages non-block.ing, wh~ a process is never baIted

to wait for incoming messages. For unbufferm messages, bowev~, this implies the possibility of the ~iver

sampling when the send~ is not ready. To ensure that data is properly communicated across the p-ocesses, we

define a communication to be valid if two conditions are satisfied: (I) it is free of deadlocks, and (2) the seooing

and receiving processes are .f}'IiChrolliztd, i.e., they execute simultaneously at the point of every message event

204

~P2
PrOC88 P 1

0

eyMA

~

-_.~!-

i ";;'c--:

Figure 2: Mooeling inter-process communication between pr~ PI and ~ by th~ message e\'en~ {A, B, C}.
shown as d~ lines bet~n the processes.

Otherwise. it is an iDY8lkl communication. In other words. all messages that are ttansmitted are properly ~eived.
The oojective of interface synthesis is twofold: to analyze the communication for deadlocks and timing coDlualnt

violar.ions. and to reduce synchronization costs while still ensuring valid communication.

3 Extracting the Interface

We are now ready to formally define the inttlfact bet~n two {X'occsses. An interface describes two types

of inf(X'lDation: the causality dt~ndtllCitS between events indicating whether ex~uting one event relies on the

completion of another event. and the timing relalionships that must be satisfioo bet~n the events. Obvioosly,

any timing relationship must be compatible with the causality dependencies. Intuitively, composing two {X'oce5ses

consists of making sure the causality dependencies are mutually compatible, as well as propagating the timing

relationships between the processes.

Before describing each part in detail, we first present the relevant background on constraint graphs. For eKb

Va1ex Vi e V, the anchor set A(Vi) consists of the subset of anchm A whose completion Vi depends on bef~ it

can stan execution. A schtdult for G is o~noo by assigning an offset value IT .(Vi) to eacb anchor (J e A(Vi) for

all vertices Vi e V ~ A valid (also calloo wtliposed) schedule is one that satisfies all timing consb'aints. We refer

the in~ reader to [5] for further details.

Figure 3(a) sbows the constraint grapb for our decoder example under a given set of ex~tion delay information.

The bold arcs represent forward ooges weighted by a data-depeooent delay, e.g., the edge (L3, L5) bas weight

6(L3) + 2, meaning L5 must wait at least 2 cycles after the completion of L3. A valid scbooule is given in (b),

wbere the offsets are simply ~uaI to the longest path length between the vertex and its anchor. Consider the
schedule for L5 = {(6),L3(2)}; its anchor set consists of two anchors: the source vertex and L3, with offset

val~ 6 and 2, respectively.

205

«
-5

0
@
Wl

@ 9 (1:6)

~ w -m
@ @ tL'7\
W (6).~ (9).L3(S),1a

(9)~~~
~.nd¥Ir

I'
-21 ,

\ I

0
~ 88quenck'G qe

0 an aIdtOr

(c) Causality dependency
graph

(b) A valid schedule(a) Original constraint graph
d(L1)=3~8
d(L2)-d(L4}:-d(l6) . 1 cycle

Figure 3: Dlustratlng the consb'aint graph for the decooer process example. (b) a valid schedule, where irredundant

anchors are underlined. and (c) the corresponding causality dependency graph

Causality dependency graph3.1
Given a process represented by a constraint graph G(V, E), the set of message events M = {ml, m2, ... ,mi} ~ V
originating (or terDlinating) in G represents the points at which the process interacts with its environment Initially,
we assume all events to be blocking, which implies all events are also anchors in G. Eacb message event is associated

with a send vertex in the sending process and a receive vertex in the receiving process. For a process represented

by G(V, E) communicating with other processes via message events M, we define its causality dependency graph

as follows.

Definition 3.1 The causality dependency graph of a process G(V, E) with respect to a set of message events
M ~ V, denoted by G e (V e, E e). is an induced subgraph of G. The vertices Ve = {vo} U M consist of the source

vertex vo and the message events M. A directed arc (Vi, Vj) E Ee exists if Vi E A(Vj).

In other words, Ge captures the sequencing (causal) dependencies between message events. Note that Ge is always

connected. namely, all events depend on the source vertex. Figure 3(c) shows the causality graph for the decoder

example. It is easy to show that if the original graph G is valid, then the causality dependency graph is acyclic.

Since G e captures the causal relationships between message events within a process, any valid communication
between two processes must be compatible with respect to the causal relationships in the individual [Kocesses. To

formalize this notion, consider two processes Gland G2 communicating over a set of message events M; let Gel
and Ge2 be the respective causal dependency graphs. The vertex set for Gel and Ge2 is identical ({vo} UM). We

define the composition of Gel and G e2 as follows.

Definition 3.2 The composition of Gel and Ge2 is a graph Gelxe2 wilh the same vertex set Velxe2 = Vel = Ve2,

where an arc ("i I "i) exists if it exists in eilher Gel or G e2.

206

calmaHty graph for P1
(decoder)

oomposed causaity graph

causaity graph kK P2
(encOOer)

Figure 4: Composing the causality dependency graphs for the decoder and encoder processes.

Tbeorem 3.1 If the composition causality graph G clxc2 has a cycle. then the communication is invalid.

Proal: Consider tWo vertices Vi and Vj on the cycle. The cycle means Vj depends on the completion of Vi,

and Vi depends on the completion of Vj. If Vi and Vj are blocking message events, then the communication will

deadlock because one process would be halted waiting for an event that can only occur if the process completes
another operation. which depends on the first event occurring. If the events are non-blocking, then the two (X'ocesses

will not be synchronized after each message event, hence the communication is invalid. \I
If the composition causality graph is cycle-free, then we say the communication is COnsisteDt. We state the

following theorem:

Theorem 3.1. A consistent communication can always be made valid by making all message events blocking.

Proor: A consistent composed causality graph defines a partial order among message events. Any scheduling

of the individual processes will necessarily be compatible with this partial order. Consider the case all message

events are blocking. For a given event v, let pred(v) be the set of immediate predecessors in the partial order, and

let 8UCC(v) be the set of immediate successors. Consider the region of time between the completion of all events in

pred(v) and the start of all events in 8UCC(v). Compatible partial order means that there is no cyclic dependency
betw~n the pred' 8 and 8UCc' 8 of the two processes. This means that the region of time can always overlap, which

implies the event v can always be syn~hronized. Therefore. the communication is valid. 1\

Figure 4 illusU'ates the composition of our decoder and encoder processes example. We will consider only
consistent communication in me sequel, since otherwise me communication is invalid.

Incorporating interface timing relationshi~3.2

Consistency of the sequencing dependencies among message events can be analyzed by composing causality depen-
dency graphs and checking for cycles. However. there are also detailed timing relationships that are not represented

207

in the causality graph abstraction. For this purpose. we schedule the causality graph G e via relative scheduling [5];
the schedule defines for each event Vi E Ve offsets from a set of anchors satisfying the timing constraints in the

original constraint graph G. We then perform redundancy removal to guarantee that, for a given schedule. a vertex

depends on the minimum number of anchors. Since G is assumed to be wellposed. it is always possible to find the

minimum and irredundant schedule [5]. In Figure 3(b). the irredundant schedule is underlined in bold.

All message events are anchors; the reverse. however. is not necessarily true. Examples of these internal anchors

include data-dependent loops and conditionals. Therefore. the start time of an event may refer to delay information

that is not externally visible. These internal data-dependent delays are important in determining whether a message

event needs to be blocking (Section 4); however. their exact offset values are not as important as knowing that

they exist. We define the iaterf8ce schedule (Jezf(Ge) of Ge(Vel Ee) as restricting the start time of an event to
include only offsets from externally visible events in Ve. An event is called controllable if its start time refers to

only externally visible events; otherwise. it is called uncontrollable.
Let us consider the effect of composing interface schedules DeZf(Gel) and (Jezt(Ge2). This basically means

we would like to find a valid schedule for the composed causality graph G elxe2. We assume Gelxe2 to be acyclic.
since otherwise the communication is invalid. The composed interface schedule can be obtained as follows. Let

Ael(V) and Ae2(V) be the anchor sets of an event V E Velxe2 in the interface schedules (J.zt(Gel) aOO (Jezf(Ge2).

respectively. The anchor set for v in the composed interface schedule is the union of the anchor sets:

Aclxc2(V) = Acl U Ad

An event is uncontrollable in the composed schedule if it is uncontrollable in either of the interface schooules.
Let D':l(v) and D':2(v) be the offset of an event v w.t.t. an anchor a in the individual interface schedulesl. The
composed offset is computed as the maximum of the individual offsets. e.g..

max{D':I(V), D':I(V)}

D':I(V)

D'~(V)

if a E Acl(V) nAc2(V)

if a ~ Ac2(V)

if a ~ Acl(V)
D'a(V) =

Consider the example in Figure S. The top pan of the figure shows the causality dependency graphs before and

after composition. The bottom part of the figure shows an ex~ution scenario for PI and n, based on schedules
that are consistent with with the individual processes. For example, for P2, event A is scheduled to execute one

cycle after the source venex. If the events A and B are non-blocking, then the communication is invalid ~use

there would be no overlap between the event ex~utions in the two processes. If the events are blocking, then

event A in P I would wait one cycle until its counterpart in P2 ex~utes, and event B in P2 would wait 3 cycles

to synchronize with Pl. In the composed schedule, we see that if we schedule events B and A ill both processes

to be 3 cycles and I cycle after the source vertex, then they can be made non-blocking while still ensuring valid

conununication.
There are several important advantages to explicitly extracting and composing interfaces. First, it permits

rigorous analysis of timing constraint consistency across process boundaries. Second, it enables each process to be
synthesized individually, yet with all the requirements on its interactions with other processes fully relX'e5CDted as

explicit timing constraints. Finally, it provides a formalism to manipulate and model inter-process interactions, e.g.,
we can now constrain the interface by directly applying timing constraints on the external events; these constraints

can then be reflected to the individual processes for use during synthesis.

lit is posaiNe the fIts« is UDdefilled if a is DOt in d1e 1DdXX' set of " iD die individual sdIeckIles.

208

Proce88' Proce882 C0mp088d P1 0 P2

Figure S: Composing two causality dependency graphs with respect to {A, S, C, D}.

TreatIDeDt of BJerarcby. If processes PI and P2 contain control-flow. then their corresponding constraint ~
representations are hierarchical. This causes difficulty in several areas. First, timing constraints can only be ~fied
betw~n vertices of the same graph. which means that if we s~fy constraints betw~n message events occurring

in different graphs. it must be distriooted w;r~ the hierarchy. S~nd. since we synthesize each gr&Iil in the

hierarchy separately. it is n~essary to partition the message links such that events within each partition exist solely

between two graPis in the hierarchy. Interf~ composition is then applied to each partition in QIrn. Since the

temporal relationship between o~ations ~r~ the graph hierarchy is not directly capnared. there is a JX)ssible loss

of KCuracy in hierarchical extr~tion of timing relationships. In the case the control-flow structures of the sending

and receiving processes are similar. this assumption is not a serious limitation. In general. however; it is n~ary

to resttucture the control-flow by transfomlations. or relax the static communication assumption. B~ strategies

are currently under investigation.

4 Interface Matching

Given two p-ocesses. if their composed causality graph is consistent. then Theorem 3.2 states that we can always

make all message events blocking to guarantee valid communication. Howe~. it is often the case !hat dJe

communicadon remains valid even if some events are made non-blocking instead. To iUuSb'ate dJis point. consid~

again the example of the decOOet and CDCOOcr processes. From the com~ed causality graph. we ~ that the

message events {L3, LS, L7} are serially related. In particular. once dJe p-oces5es have been syncbronizal using

event L3. the execution of subSa)uent events can be defined with respect to the completion of L3. Th~fore. if

209

Cc ;>oeec:

B

~

A

PIoceaa P1 Proc-.P2

OXIo,Ijx..d n-'- ~ ..

I

L3

L5
t+2

~-~-(!:V
(4) L3(2) L5(3)

L7
1+6

-biodck'G- non.bk)Cklng

Figure 6: Scheduling the decoder and encoder processes based on the composed interface schedule. Events {LS, L7}
can be implemented as non-blocking without making the communication invalid.

we can schedule LS and L 7 to have the same offsets from the completion of L3 in both processes, then they can

be implemented as non-blocking messages. One such schedule is illustrated in Figure 6; once }X'ocesses PI and

P2 are synchronized by event L3 at time t, the remaining events in both processes can ex~ute in lockstep. The

resulting communication is still valid since the sending of a non-blocking message is ex~uted simultaneously with
the corresponding ~eiving action. This constitutes a significant saving in terms of synchronization logic.

We formalize this observation by introoucing the interface matching problem. Consider two }X'ocesses PI

and P2 with common message events M and a corresponding cycle-free composed causality dependency graph

Gelxe2. Let M.'oek and Mnon61oei be the subset of blocking and non-blocking messages, respectively, wbtte
M = M.'oek U Mnon61oci. The interface matching }X'oblem is stated as follows:

Minimize the number of blocking messages M 6'oek while ensuring valid communication.

Reducing the nwnber of blocking messages leads to savings in two areas. FIrSt, blocking messages are implemented

with a set of handshaking signals (e.g., request and acknowledge) to coordinate the data transf~ betw=n sender
and r~eiver. Making a message non-blocking means these handshaking signals and the associated logic and pons

can be removed. S~ond, a blocking message event has data-dependent execution delay. This can lead to larger

controller cost because of the need to synthesize busy waits in both the sending and receiVing processes. In contrast,

DO busy waits are n~essary for non-blocking messages. which can result in a simpl~ control implementation [6].

Before we present the details of the algorithm, we briefly describe the ov~all synthesis flow. Given a set

of communicating processes and a common set of message events, we first extract and compose the causality

dependency graphs. If the resulting composed graph is cyclic. then the communication is invalid and no solution
is possible. Otherwise, find the minimum irredundant interface schedules for the individual processes and compose

them togeth~. The composed scheduling information is then the input to the interface matching algorithm, described

next, to identify the minimum set of blocking messages. Once the blocking messages have been identified, the

remaining messages are marked as non-blocking and have fixed execution delay of 1. The sequencing and timing

constraints implied by the composed interface schedule are then refl~ted to the individual processes as external

timing constraints, and each process is scheduled and synthesized accordingly. The resulting implementation is

guaranteed to have valid, deadlock-free communication.

210

IIIl~rfaceMGlC1(EM, G«) {
'~dI event m. in topological order {

let predSet = {mili = O...i -I 8nd mi a: m.};
let predRoot. = UPEP"84S81 root(p);
If predRoot. = . {

root(m.) = {m.};

} e- {
let r - 111 data-depeodeot delays in IWt time of m.;

If r ~ predSet {
root(m.) = predRoot.;

}..{
root(m.) = {m.};

)

}
}

Figure 7: The interface matching algmthm.

4.1 Interface matching algoridlm

The input to the interf~ marcbing algorithm is a composed causality graph G clxc2 and a corresponding consistent

minimum. irredundant scb~ule. Each message event nIi e M bas a corresponding label root (mi) that relX'eseDts

the set of blocking D6sage events to which mi depends upon for its ~tivation. The label is initializal to the event
itself: root(mi) = {fni}. implying all messages are initially blocking.

We define the dominance relation between events as follows.

Defiaitioa 4.1 A message event nli domiaata another message event mj. denoted by fni ~ mj if two conditions

hold.' (1) mj is controllable. and (2) the start time olmj contains the offset from mi,

In «b~ words. m. CX mj if the activation of mj depends on a given offSet from the completion of mi. Condition

(1) states that an uncontrollable event can never be dominated. Since the composed causality graph is acyclic. the

dominalK:e relation is Kyclic aOO transitive. We call the graph induced by the dominance relation as the dominll1U:e

gr~ G«. The dominance graph for the example in Figure 6'is a chain, from L3 - LS - L7.

Since G« is Kyclic, it induces a topologkal ordering among the events. The inta'fKe matching algoodlm visits

each ~age event n1t according to its topological order, setting die corresponding label root(m,). Upon visiting

all events. die set of blocking messages M.'oet is exactly equal to die union of all labels:

M"ock = U root(fni)
m;EM

Tbe algorithm is described in detail in Figure 7. Inblitively, it delennines which messages must be blocking and

partitions the rest of the messages into groups that are scheduled with respect to the blocking ODes. Messages must

be blocking if Ibeir start time depends on some internal delay that is not available to other p-oces5es.

211

Original After" MessagesDesign
'~lock I ports I ' block I ~

2
2
2
2

16

16

3

3

16

16

3

3

32

32

6

6

ECC encoder

ECC decoder
p~ket xmit

p~~et RCV t

Table I: Experimental results of applying interface matChing technique.

is to extend the formalism by using automata to describe the time progression of message actions on channels. These

issues are currently under investigation.

Acknowledgements

This research was sponsoroo by NSF/ARPA, under grant No. MIP 8719546, by AT&T and DEC jointly with NSF,

under a PYI Award program. The third author was supportoo by CNPq-Brazil under contract 20021~.7.

References

[1] M. McFarland. A. Parker. and R. Camposano. '"The high-level synthesis of digital systems." Proceedings oft'"

IEEE. vol. Vol. 78. no. No.2. pp. pp. 301-318. Feb. 1990.

[2] J. Nestor, "Specification and synthesis of digital systems with interfaces," ph.d. dissertation, Carnegie-Mellor

University, Apr. 1987.

[3] G. Borriello and R. Katz, "Synthesis and optimization of interface transducer logic," in Proceedings of thi
International Conference on Computer-Aided Design, (Santa Cara. CA), pp. 56-60, Nov. 1987.

[4] G. Borriello, "Combining event and data-flow graphs in behavioral synthesis," in Proceedings of the Interna.

tional Conference on Computer-Aided Design, (Santa Oara, CA), Nov. 1988.

[5] D. Ku and G. D. Micheli, High Level Synthesis of ASICs Under 1iming and Synchronization Constraints

Kluwer Academic Publishers, June 1992.

[6] D. C. Ku, D. Filo, and G. D. Micheli, "Control optimization based on resynchronization of operations," iI
Proceedings of the Design Automation Conference, June 1991.

[7] G. D. Micheli, D. C. Ku, F. Mailhot. and T. Truong, '"The Olympus Synthesis System for digital design," IEEJ

Design and Test Magazine, pp. 37-53, Oct 1990.

213

	cut:

