Interface Optimization for Concurrent Systems under Timing

Constraints using Interface Matching

David Ku Dave Filo Claudionor N. Coelho, Jr. Giovanni De Micheli

Center for Integrated Systems
Stanford University

1 Introduction

Past efforts in high-level synthesis have focused primarily on the synthesis of a single process [1]. Under this
assumption, hardware behavior can be represented as a control-flow and/or data-flow graph, and tasks such as
scheduling and binding are defined with respect to operations within a single graph. Whereas this assumption is
adequate for uni-processor synthesis, they are less effective in synthesizing more complex and realistic DSP or
application-specific (ASIC) designs consisting of multiple concurrent and interacting processes.

Modeling a system as a collection of concurrently executing processes poses additional challenges to a synthesis
system. In particular, synthesizing one process can in general alter the way it communicates with its environment.
These changes in turn affect and constrain the synthesis of other processes in the system. The correctness of a
design depends not only on the correctness of its data computations, but also on the timing and synchronization
requirements that define when these results are communicated to and from the external environment. Of critical
importance are the analysis and synthesis of the inferfaces between the processes and the protocol governing their
interaction, as well as their efficient implementation on shared channels and busses.

With few exceptions [2, 3, 4], existing techniques do not adequately address the synthesis of communication
for concurrent systems. This paper presents a methodology for the analysis and synthesis of interfaces for time-
constrained concurrent systems. Such systems are characterized by tightly interacting processes operating under
strict timing and sequencing constraints. We abstract the inter-process communication using blocking and non-
blocking messages. This is in contrast to approaches where the communication is achieved structurally through the
use of ports. We consider only point-to-point communication because of its determinism (i.e., knows exactly who
is receiving what message) and lack of arbitration, both important characteristics for time constrained designs.

‘We model the timing and sequencing relationships between messages using a graph abstraction called an causality
dependency graph. This graph effectively captures the sequencing dependencies in the communication protocol and
serves as the basis for rigorous analysis on the cross-process interfaces. We present a novel technique called
interface matching that minimizes the required inter-process handshaking by scheduling each process using timing
information of the modules communicating with it. Our technique is guaranteed to yield the minimum number of
required explicit handshaking, for a class of designs.

202

2 Modeling Concurrency

The choice of a hardware model largely impacts the scope and applicability of the synthesis algorithms. The
sequencing graph model proposed by [5] is an appropriate starting point because of its explicit representation for
detailed timing constraints and synchronization, along with the availability of analysis and synthesis techniques for
time-constrained designs. We first give a brief overview of the sequencing graph model, then describe the extensions
we have added to model inter-process synchronization.

Modeling a single process. We model a single process as a hierarchical sequencing graph G,(V, E,), where
the vertices V, represent operations to perform and, the edges E, represent the sequencing dependencies among
operations. The sequencing graph is acyclic because loops are broken through the use of hierarchy. A process
starts execution at the source vertex, executes each vertex according to the sequencing dependencies, and restarts
execution upon completion of the sink vertex. The execution delay of a vertex v;, denoted by §(v;), can be fixed or
data-dependent. The delay associated with a fixed delay operation depends solely on the nature of the operation,
e.g., addition or register loading. In contrast, the time to execute a data-dependent delay operation may change for
different input data sequences, e.g., waiting for the assertion of an external signal. We call the set of data-dependent
delay vertices (including the source vertex) the anchors of G(V, E), denoted by the set A C V.

Detailed minimum and maximum timing constraints can be specified between pairs of operations in the graph.
In particular, consider two vertices v; and v; with start times T'(v;) and T(v;), respectively. A minimum constraint
li; > O between vertices v; and v; implies T'(v;) > T(v;) + Lj, and a maximum constraint u;; > 0 implies
T(vj) < T(%) + u;;. We derive a constraint graph G(V, E) from a given sequencing graph as the basis for
timing analysis; the vertices are identical (i.e., V = V,), but the edges E are now weighted. For a given edge
(vi,vj) € E, its edge weight w;; corresponds to a timing constraint on the activation of the two operations v; and
vj. Specifically, sequencing arcs (in the original sequencing graph) and the set of minimum timing constraints are
converted into forward edges E; C E; the set of maximum timing constraints are converted into backward edges
E, C E. Forward (backward) edges have positive (negative) weights and represent minimum (maximum) timing
requirements. An example of the sequencing graph for a network packet decoder under timing constraints is shown
in Figure 1.

Interface between multiple processes. Given a constraint graph, we can synthesize an implementation that meets
the required timing constraints, or detect if no such implementation exists, using relative scheduling [5]. We now
extend the model to support inter-process communication.

We abstract inter-process communication in terms of messages that are sent and received between processes.
Messages are assumed to be synchronous, taking one or more clock cycles to complete. Returning to Figure 1,
the decoder process sends three messages {A, B,C} containing the preamble, content, and parity information,
respectively. The communication can be static or dynamic. In static communication, a message send action in
one process is statically linked to a message receive action in another process. Because of the close relationship
between processes, more can be done in matching their executions to optimize the communication. Unfortunately,
this close relationship also results in several limitations, including the need to restrict the sending and receiving
processes to have the same control-flow structure. In contrast, messages in dynamic communication are produced
and consumed dynamically, often using queues to decouple the sending and receiving processes. As stated before,
we will restrict our focus to the synthesis of processes with static communication. The extension to support dynamic

203

Lt cket = readPacket();
Le: preamble = extractPreamble(packet);
L3: send(A, preambie)
Larallol { L L6 start
L4: content = extractContext(packet);
LS:) send(B, content)
parallel {
L6: parity = extractParity(packet); 1 w.r.L. LE completion

L7 L send(C, parity)

Le: cleanup()
} == — == Max liming constraint

== Min timing constraint

j === Sequencing constraint

(a) Behavioral description of decoder process (b) Sequencing/constraint graph

Figure 1: A network packet decoder: (a) behavioral description, where “;” and “parallel” keywords denote serial

and parallel execution, respectively, (b) corresponding constraint graph with S timing constraints (3 maximum and
2 minimum).

communication is currently under investigation.

A message can either be blocking or non-blocking. The distinction lies in that a blocking message requires
explicit handshaking to establish connection before data is transferred, whereas no such handshaking is required for
non-blocking messages. Therefore sending and receiving non-blocking messages have fixed delays, and blocking
messages require data-dependent execution delays. Non-blocking messages in our context are unbuffered, i.e., they
are implemented as reads and writes to external ports without the use of queues and handshaking control logic.
Non-blocking messages are useful when the sender and receiver are implicitly coordinated, i.c., the receiver is
always ready to receive new messages.

With the assumption of single-sender and single-receiver under static communication, we make explicit the
relationship between the message send action and the message receive action by an undirected edge between the
respective graphs, called a message event. Figure 2 illustrates the three message events (shown as dashed lines)
between the decoder process P, of Figure 1 and a slave process P,. In some cases, the communication between
two processes may stall because of circular dependencies in the execution order of the blocking message cvents.
For example, consider two processes P, and P, communicating over two blocking message events A and B. In
Py, A executes before B, and in B, B executes before A. Upon executing A, P, will suspend execution waiting
for P, to execute its A evenl. Simultaneously, P, will first execute event B, then wait for P;. Neither processes
can proceed and the communication is said to be in deadlock.

An obvious solution to avoid deadlock is to make all messages non-blocking, where a process is never halted
to wait for incoming messages. For unbuffered messages, however, this implies the possibility of the receiver
sampling when the sender is not ready. To ensure that data is properly communicated across the processes, we
define a communication to be valid if two conditions are satisfied: (1) it is free of deadlocks, and (2) the sending

and receiving processes are synchronized, i.e., they execute simultaneously at the point of cvery message eveat.

204

= Y

|
L

Figure 2: Modeling inter-process communication between processes P, and P; by three message events {A, B, C},
shown as dotted lines between the processes.

Otherwise, it is an invalid communication. In other words, all messages that are transmitted are properly received.
The objective of interface synthesis is twofold: to analyze the communication for deadlocks and timing constraint
violations, and to reduce synchronization costs while still ensuring valid communication.

3 Extracting the Interface

We are now ready to formally define the ime}jace between two processes. An interface describes two types
of information: the causality dependencies between events indicating whether executing one event relies on the
completion of another event, and the fiming relationships that must be satisfied between the events. Obviously,
any timing relationship must be compatible with the causality dependencies. Intuitively, composing two processes
consists of making sure the causality dependencies are mutually compatible, as well as propagating the timing
relationships between the processes.

Before describing each part in detail, we first present the relevant background on constraint graphs. For each
vertex v; € V, the anchor set A(v;) consists of the subset of anchors A whose completion v; depends on before it
can start execution. A schedule for G is obtained by assigning an offset value o 4(v;) to each anchor a € A(v;) for
all vertices v; € V. A valid (also called wellposed) schedule is one that satisfies all timing constraints. We refer
the interested reader to [5) for further details.

Figure 3(a) shows the constraint graph for our decoder example under a given set of execution delay information.
The bold arcs represent forward edges weighted by a data-dependent delay, e.g., the edge (L3, L5) has weight
6(L3) + 2, meaning LS must wait at least 2 cycles after the completion of L3. A valid schedule is given in (b),
where the offsets are simply equal to the longest path length between the vertex and its anchor. Consider the
schedule for LS = {(6), L3(2)}; its anchor set consists of two anchors: the source vertex and L3, with offset
values 6 and 2, respectively.

205

©
B

3

©

QO (sl;qa(sxwm.

Oe®ed® O

g
(8).L3(5).L5(3).L.7(0

imedundant anchor

(a) Original constraint graph (b) A valid schedule (c) Causality dependency
dL1) =3 cghs graph
d&.z;-d(u d(L8) = 1 cycle

Figure 3: Illustrating the constraint graph for the decoder process example, (b) a valid schedule, where irredundant
anchors are underlined, and (c) the corresponding causality dependency graph

3.1 Causality dependency graph

Given a process represented by a constraint graph G(V, E), the set of message events M = {my,my,....m}CV
originating (or terminating) in G represents the points at which the process interacts with its environment. Initially,
we assume all events to be blocking, which implies all events are also anchors in G. Each message event is associated
with a send vertex in the sending process and a receive veriex in the receiving process. For a process represented
by G(V, E) communicating with other processes via message events M, we define its causality dependency graph
as follows.

Definition 3.1 The causality dependency graph of a process G(V, E) with respect fo a set of message events
M C V, denoted by Gc(Ve, E.), is an induced subgraph of G. The vertices V. = {vo} UM consist of the source
vertex v, and the message events M. A directed arc (v, v;) € E. exists if v € A(vj).

In other words, G captures the sequencing (causal) dependencies between message events. Note that G, is always
connected, namely, all events depend on the source vertex. Figure 3(c) shows the causality graph for the decoder
example. It is easy to show that if the original graph G is valid, then the causality dependency graph is acyclic.

Since G. captures the causal relationships between message events within a process, any valid communication
between two processes must be compatible with respect to the causal relationships in the individual processes. To
formalize this notion, consider two processes G and G, communicating over a set of message eveats M;let G
and G., be the respective causal dependency graphs. The vertex set for G.; and G, is identical ({vo} U M). We
define the composition of G and G, as follows.

Definition 32 The composition of G 1 and G, is a graph G.i1x 2 with the same veriex set Vaxea = Va = Ve,
where an arc (v;,v;) exists if it exists in either G or Gea.

206

ity graph for P1
(decocer)

© ‘@‘ composed causality graph

®

causality graph for P2
{encoder)

L @ @

Figure 4;: Composing the causality dependency graphs for the decoder and encoder processes.

Theorem 3.1 If the composition causality graph G cixc2 has a cycle, then the communication is invalid.

Proof: Consider two vertices v; and v; on the cycle. The cycle means v; depends on the completion of v;,
and v; depends on the completion of v;. If v; and v; are blocking message events, then the communication will
deadlock because one process would be halted waiting for an event that can only occur if the process completes
another operation, which depends on the first event occurring. If the events are non-blocking, then the two processes
will not be synchronized after each message event, hence the communication is invalid. ||

If the composition causality graph is cycle-free, then we say the communication is consistent. We state the
following theorem:

Theorem 3.2 A consistent communication can always be made valid by making all message events blocking.

Proof: A consistent composed causality graph defines a partial order among message events. Any scheduling
of the individual processes will necessarily be compatible with this partial order. Consider the case all message
events are blocking. For a given event v, let pred(v) be the set of immediate predecessors in the partial order, and
let succ(v) be the set of immediate successors. Consider the region of time between the completion of all events in
pred(v) and the start of all events in succ(v). Compatible partial order means that there is no cyclic dependency
between the pred’s and succ’s of the two processes. This means that the region of time can always overlap, which
implies the event v can always be synchronized. Therefore, the communication is valid. ||

Figure 4 illustrates the composition of our decoder and encoder processes example. We will consider only
consistent communication in the sequel, since otherwise the communication is invalid.

3.2 Incorporating interface timing relationships

Consistency of the sequencing dependencies among message events can be analyzed by composing causality depen-
dency graphs and checking for cycles. However, there are also detailed timing relationships that are not represented

207

in the causality graph abstraction. For this purpose, we schedule the causality graph G . via relative scheduling [5];
the schedule defines for each event v; € V. offsets from a set of anchors satisfying the timing constraints in the
original constraint graph G. We then perform redundancy removal to guarantee that, for a given schedule, a vertex
depends on the minimum number of anchors. Since G is assumed to be wellposed, it is always possible to find the
minimum and irredundant schedule [S). In Figure 3(b), the irredundant schedule is underlined in bold.

All message events are anchors; the reverse, however, is not necessarily true. Examples of these internal anchors
include data-dependent loops and conditionals. Therefore, the start time of an event may refer to delay information
that is not externally visible. These internal data-dependent delays are important in determining whether a message
event needs to be blocking (Section 4); however, their exact offset values are not as important as knowing that
they exist. We define the interface schedule £2.:¢(G.) of G.(V., E.) as restricting the start time of an event to
include only offsets from externally visible events in V.. An event is called controllable if its start time refers to
only externally visible events; otherwise, it is called uncontrollable.

Let us consider the effect of composing interface schedules §2..:(G.1) and .Q,,.(G,z) This basically means
we would like to find a valid schedule for the composed causality graph G ixc2. We assume G.1xc2 to be acyclic,
since otherwise the communication is invalid. The composed interface schedule can be obtained as follows. Let
Ac1(v) and Ay(v) be the anchor sets of an event v € Vcixc2 in the interface schedules 2¢st(Ge1) and Rest(Gea),
respectively. The anchor set for v in the composed interface schedule is the union of the anchor sets:

Aclxc!(v) =AqUAa

An event is uncontrollable in the composed schedule if it is uncontrollable in either of the interface schedules.
Let o<'(v) and oc2(v) be the offset of an event v w.r.t. an anchor a in the individual interface schedules'. The
composed offset is computed as the maximum of the individual offsets, e.g.,

max{cg!(v), ot (v)} ifa € Aa(v) NAa(v)
ga(v) = o (v) ifa g Aca(v)
oS3(v) ifag Aa(v)

Consider the example in Figure 5. The top part of the figure shows the causality dependency graphs before and
after composition. The bottom part of the figure shows an execution scenario for P1 and P2, based on schedules
that are consistent with with the individual processes. For example, for P2, event A is scheduled to execute one
cycle after the source vertex. If the events A and B are non-blocking, then the communication is invalid because
there would be no overlap between the event executions in the two processes. If the events are blocking, then
event A in P1 would wait one cycle until its counterpart in P2 executes, and event B in P2 would wait 3 cycles
to synchronize with P1. In the composed schedule, we see that if we schedule events B and A in both processes
to be 3 cycles and 1 cycle after the source vertex, then they can be made non-blocking while still ensuring valid
communication.

There are several important advantages to explicitly extracting and composing interfaces. First, it permits
rigorous analysis of iming constraint consistency across process boundaries. Second, it enables each process to be
synthesized individually, yet with all the requirements on its interactions with other processes fully represented as
explicit timing constraints. Finally, it provides a formalism to manipulate and model inter-process interactions, €.g.,
we can now constrain the interface by directly applying timing constraints on the external events; these constraints
can then be reflected to the individual processes for use during synthesis.

1]t is possible the offset is undefined if a is oot in the anchor set of v in the individual schedules.

208

Processt Composed P1 o P2

‘ "ﬂ‘) h 1)) = sre(1)
src(0)

src(max(3,0})) = src(3)

Schedule P1 Schedule P2 Composed Schedule
B B A 8 A
3 cycles B: - ﬂjﬂwe 3 cycles | ﬂ

Figure 5: Composing two causality dependency graphs with respect to {A, B,C, D}.

Treatment of Hierarchy. If processes P, and P; contain control-flow, then their corresponding constraint graph
representations are hierarchical. This causes difficulty in several areas. First, timing constraints can only be specified
between vertices of the same graph, which means that if we specify constraints between message events occurring
in different graphs, it must be distributed across the hierarchy. Second, since we synthesize each graph in the
hierarchy separately, it is necessary to partition the message links such that events within each partition exist solely
between two graphs in the hierarchy. Interface composition is then applied to each partition in turn. Since the
temporal relationship between operations across the graph hierarchy is not directly captured, there is a possible loss
of accuracy in hierarchical extraction of timing relationships. In the case the control-flow structures of the sending
and receiving processes are similar, this assumption is not a serious limitation. In general, however, it is necessary
to restructure the control-flow by transformations, or relax the static communication assumption. Both strategies
are currently under investigation.

4 Interface Matching

Given two processes, if their composed causality graph is consistent, then Theorem 3.2 states that we can always
make all message events blocking to guarantee valid communication. However, it is ofien the case that the
communication remains valid even if some events are made non-blocking instead. To illustrate this point, consider
again the example of the decoder and encoder processes. From the composed causality graph, we see that the
message events {L3, LS, L7} are serially related. In particular, once the processes have been synchronized using
event L3, the execution of subsequent events can be defined with respect to the completion of L3. Therefore, if

209

Process P1 Process P2
composed intertace schedule . .
. . L3 . 4
142 .l. LS _l. w2
L3
(4) L3(2) L5(3)
15 1 7 2 s
R e
v NON<blOCKing

Figure 6: Scheduling the decoder and encoder processes based on the composed interface schedule. Events {Ls,L7)
can be implemented as non-blocking without making the communication invalid.

we can schedule L5 and L7 to have the same offsets from the completion of L3 in both processes, then they can
be implemented as non-blocking messages. One such schedule is illustrated in Figure 6; once processes P, and
P, are synchronized by event L3 at time ¢, the remaining events in both processes can execute in lockstep. The
resulting communication is still valid since the sending of a non-blocking message is executed simultaneously with
the corresponding receiving action. This constitutes a significant saving in terms of synchronization logic.

We formalize this observation by introducing the interface matching problem. Consider two processes P,
and P; with common message events M and a corresponding cycle-free composed causality dependency graph
Geixez- Let Myioer and Mponsiock be the subset of blocking and non-blocking messages, respectively, where
M = Mot U Mponbiock- The interface matching problem is stated as follows:

Minimize the number of blocking messages Myiock While ensuring valid communication.

Reducing the number of blocking messages leads to savings in two areas. First, blocking messages are implemented
with a set of handshaking signals (e.g., request and acknowledge) to coordinate the data transfer between sender
and receiver. Making a message non-blocking means these handshaking signals and the associated logic and ports
can be removed. Second, a blocking message event has data-dependent execution delay. This can lead to larger
controller cost because of the need to synthesize busy waits in both the sending and receiving processes. In contrast,
no busy waits are necessary for non-blocking messages, which can result in a simpler control implementation [6).
Before we present the details of the algorithm, we briefly describe the overall synthesis flow. Given a set
of communicating processes and a common set of message events, we first extract and compose the causality
dependency graphs. If the resulting composed graph is cyclic, then the communication is invalid and no solution
is possible. Otherwise, find the minimum irredundant interface schedules for the individual processes and compose
them together. The composed scheduling information is then the input to the interface matching algorithm, described
next, to identify the minimum set of blocking messages. Once the blocking messages have been identified, the
remaining messages are marked as non-blocking and have fixed execution delay of 1. The sequencing and timing
constraints implied by the composed interface schedule are then reflected to the individual processes as external
timing constraints, and each process is scheduled and synthesized accordingly. The r;sulting implementation is

guaranteed to have valid, deadlock-free communication.

210

InterfaceMatch Ene, G) {
foreach event m; in topological order {
let predSet = {m;|; =0...i — 1 and m; x m;};
let pred Roots = U'e"“s“ root(p);
if predRoots = @ {
root(m;) = {m,};
} elee {
let I' = all data-dependent delays in start time of m;;
¥ I’ CpredSet {
root(m;) = pred Roots;
} else {
root(m;) = {m,};

}

Figure 7: The interface matching algorithm.

4.1 Interface matching algorithm

The input to the interface matching algorithm is a composed causality graph G .1xc2 and a corresponding consistent
minimum, irredundant schedule. Each message event m; € M has a corresponding label root(m;) that represents
the set of blocking message events to which m,; depends upon for its activation. The label is initialized to the event
itself: root(m;) = {m;}, implying all messages are initially blocking.

We define the dominance relation between events as follows.

Definition 4.1 A message event m; dominates another message event m;, denoted by m; o m; if two conditions
hold: (1) m; is controllable, and (2) the start time of m ; contains the offset from m;.

In other words, m; o< m; if the activation of m; depends on a given offset from the completion of m;. Condition
(1) states that an uncontrollable event can never be dominated. Since the composed causality graph is acyclic, the
dominance relation is acyclic and transitive. We call the graph induced by the dominance relation as the dominance
graph G«. The dominance graph for the example in Figure 6'is a chain, from L3 — LS — L7.

Since G« is acyclic, it induces a topological ordering among the events. The interface matching algorithm visits
cach message event m; according to its topological order, setting the corresponding label root(m;). Upon visiting
all events, the set of blocking messages My .1 is exactly equal to the union of all labels:

Mot = U root(m;)
mEM

The algorithm is described in detail in Figure 7. Intuitively, it determines which messages must be blocking and
partitions the rest of the messages into groups that are scheduled with respect to the blocking ones. Messages must
be blocking if their start time depends on some internal delay that is not available to other processes.

211

Dominance graph G,

Figure 8: Example of the interface matching algorithm, showing the dominance graph G « and the resulting labeling
of events. The transitive relationship in G« is omitted for simplicity.

We illustrate the algorithm on the example in Figure 8. The dominance graph G is shown in (a) and the
root labels for each event is shown in (b). The topological ordering of the traversal is refiected in the naming of
the message events, starting from mo and ending at mjo. The result implies that we require only three blocking
messages {mg, m3, mg} in the final implementation. Given the original causality dependencies, this algorithm
produces the minimum number of blocking messages. However, by allowing additional causality dependencies
through the use of serialization [6], the minimum set of blocking messages is potentially reduced and can be found

_with a modified algorithm.

5 Conclusion and Future Work

In this paper, we described an approach to the analysis and synthesis of interfaces for time-constrained concurrent
systems. We proposed an explicit representation of the interface between processes in terms of causality dependency
graphs. We described the interface matching technique to minimize the number of required blocking messages that
is needed for valid, deadlock-free communication under detailed timing constraints. Preliminary experimental results
within the Olympus Synthesis system [7] are encouraging. Table 1 shows the number of blocking messages and
ports before and after the optimization. :

We are working to extend the formulation to better support hierarchy in the model. Currently, it is necessary to
partition the message events such that events within each partition originate from a single graph in the hierarchy
and terminate in a single graph in another hierarchy. For many time critical designs where the control-flow structure
of the sending and receiving processes is similar (to minimize the effect of control delays), this assumption is not
a severe limitation. For other designs, there is potential loss of accuracy in extracting the timing requirements
because the relationship across hierarchy may be lost. A solution is increase the scope of analysis by transforming
the description to reduce the number of partitions, e.g., flattening or restructuring the control-flow. Another approach

212

Design # Messages Original After
block | ports | # block | ports
ECC encoder 16 16 32 1 2
ECC decoder 16 16 32 1 2
packet xmit 3 3 6 1 2
packet recv 3 3 6 1 2

Table 1: Experimental results of applying interface matching technique.

is to extend the formalism by using automata to describe the time progression of message actions on channels. These
issues are currently under investigation.

Acknowledgements

This research was sponsored by NSF/ARPA, under grant No. MIP 8719546, by AT&T and DEC jointly with NSF,
under a PYI Award program. The third author was supported by CNPq-Brazil under contract 200212/90.7.

References

[1]1 M. McFarland, A. Parker, and R. Camposano, “The high-level synthesis of digital systems,” Proceedings of the
IEEE, vol. Vol. 78, no. No. 2, pp. pp. 301-318, Feb. 1990.

[2] J. Nestor, “Specification and synthesis of digital systems with interfaces,” ph.d. dissertation, Carnegie-Mellor
University, Apr. 1987.

[3] G. Borriello and R. Katz, “Synthesis and optimization of interface transducer logic,” in Proceedings of the
International Conference on Computer-Aided Design, (Santa Clara, CA), pp. 56-60, Nov. 1987.

{4] G. Borriello, “Combining event and data-flow graphs in behavioral synthesis,” in Proceedings of the Interna.
tional Conference on Computer-Aided Design, (Santa Clara, CA), Nov. 1988.

{5} D. Ku and G. D. Micheli, High Level Synthesis of ASICs Under Timing and Synchronization Constraints
Kluwer Academic Publishers, June 1992.

(6] D. C. Ku, D. Filo, and G. D. Micheli, “Control optimization based on resynchronization of operations,” il
Proceedings of the Design Automation Conference, June 1991.

[7] G. D. Micheli, D. C. Ku, F. Mailhot, and T. Truong, “The Olympus Synthesis System for digital design,” IEE,
Design and Test Magazine, pp. 37-53, Oct. 1990.

213

	cut:

