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Abstract

We describe in this paper a new approach for technology
mapping of fuse/antifuse-based field-programmable gate ar-
rays (FPGAs). These are amrays of uncommitted mod-
ules, where the personalization and wiring is achieved by
fuse/antifuse technology and can be modeled by stuck-at
and/or bridging inputs. The method extends a previous ap-
proach presented in [9].

The contribution of this paper is twofold. First we show
a new efficient way of determining a matching that requires
input bridging. Second, we compare the ease of mapping
of standard logic benchmark circuits into different FPGAs
and the relative importance of the personalization by means
of stuck-at and bridging. Experimental results are reported
and critically compared.

1 Introduction

There has been an increasing interest in digital-system pro-
totyping using Field-Programmable Gate Arrays (FPGAs)
due to their fast turm-around time and low non-recurrent
engineering costs. One class of FPGAs uses anti-fuse tech-
nology, where logic gates and their interconnections are
programmed by shorting wire segments in prescribed lo-
cations. These FPGAs consists of an array of identical
multiple-input/single-output logic modules. A module can
be configured to impiement a logic function by forcing any
input to logic O or logic 1 or by bridging inputs. An exam-
ple of circuits in this class are those manufactured by Actel
Inc. [1]. :

System design with FPGAs requires specific logic de-
sign tools. In particular, technology mapping is crucial for
achieving an efficient implementation. Technology map-
ping is the process of transforming a set of logic equations
into an interconnection of parts that are instances of the
elements in a given library. In the case of FPGAs, the “li-
brary” consists of the set of combinational logic gates that
can be derived from the uncommitted module.

FPGAs were conceived before efficient logic design tools
were available for this echnology. As a result, FPGA mod-
ules were devised on the basis of their electrical and geo-
metrical properties (i.e. area, timing, wirability). A thor-

ough analysis of the ease of mapping logic circuits into
FPGAs was not possibie at first due to the lack of special-
ized tools.

Previous existing approaches to technology mapping in-
clude algorithms and tools that support an explicit arbitrary
library definition, such as MislI [4), Ceres [S] and commer-
cial products. These tools need a library of cells explicitly
derived from the uncommitted module. Since the enumera-
tion of the library cells may be long, a subset of the library
may be used to increase the mapping speed at the expense
of the quality of the mapping.

Mis-pga [2] and Amap (3] are specialized technology
mappers for the FPGAs fabricated by Actel Inc. These
programs exploit the particular structure of the uncommit-
ted module, based on multiplexers, in the mapping process.
Conversely, the approach presented here is general in na-
ture and it applies o any kind of FPGA based on fuse or
antifuse technology.

In general, existing logic design tools for FPGAs rely
on a library description and assume a given programmable
module. Therefore it is hard to use them to explore the
impact of choosing different programmable modules, be-
cause the full enumerated library has to be derived for each
module.

The authors presented in [9] a new approach (o technol-
ogy mapping for fuse/antifuse-based FPGAs (called Elec-
trical PGAs) that:

e Does not require an explicit library enumeration, nor
a manual process to tailor the algorithms on the par-
ticular module used in the FPGA.

e Supports generic FPGAs which can be personalized
according to a stuck-at and bridging model. The un-
committed module is assumed to be an arbitrary single-
output combinational function.

e Can be used as an exploratory tool to benchmark the
mapping performance of different uncommitted mod-
ules.

In this approach the full library is replaced by the descrip-
tion of the uncommitted module only. The technology map-
ping algorithms check whether a given logic function can
be implemented by programming the uncommitied module.
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Indeed, the process of personalizing an uncommitted mod-
ule can be modeled by tying some input to logic O (input
stuck-at-0) or logic 1 (input stuck-at-1) or by connecting
two inputs together (inpw bridging) on the uncommitted
module. Therefore, the FPGA library can be represented
by the set of equivalent gates that the personalization in-
duces on the uncommitted module. As a result, any FPGA
can be used as a target architecture by just describing the
logic function of the uncommitted module, i.e. by a single
Boolean expression.

The contribution of this paper is twofold. First we show
an enchancement of the matching technique presented in [9]
that achieves comparable results in a much shorter comput-
ing time. Second, we compare the ease of mapping of stan-
dard logic benchmark circuits and we consider the effects
of using input stuck-at 0/1 and input bridging separately, to
contrast the relative merit of the two techniques. Indeed, the
major contribution of this research has been the creation of
an exploratory tool to evaluate fuse/antifuse programmable
modules for FPGAs, to deepen the understanding between
personalization features and quality of the final logic im-
plementation.

2 Technology Mapping for FPGAs

Algorithms for technology mapping were pioneered by
Keutzer (7], Rudell [8] and Detjens [10). Similarly to their
approach, we use a heuristic method based on three different
tasks. Partitioning a network into a collection of multiple-
inpuysingle-output combinational sub-networks. Decompo-
sition of each sub-network into two-input functions, to in-
crease the network granularity. Covering each decomposed
network by committed modules so that either area or delay
is optimized.

Standard techniques are used for the first two tasks
[7, 8, 10). The covering algorithm is borrowed from Mail-
hot [S). It uses the notion of cluster and module functions.
The former represents a portion of the network 10 be cov-
ered, the latter the FPGA primitive. Details of the covering
algorithms are presented in [9].

The major contribution of this paper is related to solv-
ing the matching problem for FPGAs. The algorithms used
here, as well as those presented in {9), perform a run-time
customization of the FPGA module: by comparing the clus-
ter and the module functions, it determines which module
inputs should be set to 0/1, which should be bridged to-
gether, and which input ordering, if any, makes the module
implement the cluster function. If no match is found, the al-
gorithm returns that no matching exists and another cluster
function is tried.

We denote the module and cluster functions by
G(z1,22,...,2zn) and F(3, 1, ...,ym) respectively. We
call stuck-at set of the module the set of variables that are
set to 0/1 and we denote it by: S. We call bridge set
B; (7 = 1,2,...,1) each set of variables that are bridged
together and we denote by B the class of the bridge sets

(or, briefly, the bridge class), ie. B = {B;}. We definc
G's the function obtained from G by setting each variable
z; € S 0 0/1. Similarly, we define Gsp 10 be the function
obtained from G5 by bridging the inputs comresponding to
variables z; € B;j, V B;. We represent by R the set of
independent input variables, i.e. those that are not stuck-
at and one for each bridge set. We define the matching
problem as follows:

Given a cluster function F(yi,...,ym). and the module
Junction G(z1,...,2,) m < n find a stuck-at set S, a
bridge class B and an ordering S2(R) such that F and
Gsp are functionally equivalent.

In our previous approach, we considered first a simplified
matching problem:

Given a cluster function F(y,...,¥ym), m < n, and the
module function G(z,,...,z,) find a stuck-at set S, and
an ordering 2(R) such that F and Gs are functionally
equivalent.

We showed how this problem can be solved efficiently
by means of Global Binary Decision Diagrams (GBDDs).
Then we showed how to compute a solution to the full
matching problem by solving repeatedly the simplified
maiching problem. ,

We present here an extended set of results of applying the
algorithms presented in [9] to three different FPGA mod-
ules: act0, actl and act2. Their logic circuit diagrams
are shown in Fig. 1. While only actl and act2 are com-
mercially available, we consider also actO since this cell is
the fundamental block of which both act1 and act2 can be
considered extensions.

| Circuit || act0 H actl H act? ]

duke2 212 211 178 175 164 162
f51m 85 83 65 59 52 50

bw 89 | 87 67 | 63 64 | 61
clip 86 | 86 74 | 68 62 | 60
vg2 57 | 57 46 | 45 41 41

rd84 92 87 75 65 63 61
5xpl 66 65 54 50 48 46
C499 279 175 274 170 170 170
C1908 307 244 280 206 209 204
C5315 1048 | 932 912 796 729 723
misex|1 30 30 25 24 23 23
misex2 52 52 46 42 40 39
apex6 426 417 411 383 295 288
apex7 137 135 122 114 108 104
des 1995 | 1945 || 1783 | 1673 || 1404 | 1384

Table 1: Number of cells needed to implement a set of
benchmarks using FPGA act0, actl and act2. For any of
the modules, the first column reports the cost only for the
stuck-at personalization and the second one the cost for the
complete personalization.

Table 1 shows the results on several ISCAS and MCNC
benchmarks. For each of the uncommitted modules, we
report the number of cells needed to implement the circuit
when only stuck-at inputs are used in the personalization
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Figure 1: FPGA uncommitted modules

(simplified matching problem), as well as when stuck-at and
bridged inputs are used (full matching problem). Run times
are in the order of few seconds for the simple matching
problem and several minutes for the full one.

Comparing the results was very interesting since we no-
ticed that, in most cases, the full personalization of the cells
by input bridging decreases the mapping cost by only a few
cells. This observation led us to think that considering all
the possible bridging between inputs is formally correct, but
of little practical importance for the cells considered. It is
also the case in practice [15] that bridging is rarely used,
usually between only two inputs. Moreover, the average ex-
ecution time of the algorithm for the full matching problem
is much higher than the one for the simplified problem.

For the reasons above, we introduced a simplified bridg-
ing procedure that bridges only any two inputs of the mod-
ule cell. This procedure turned out to be very effective, con-
firming our hypothesis about the relevance of input bridging
in the personalization process.

Figure 2: When bridging is allowed only for two input
variables, the matching problem is equivalent 10 checking
for a double sub-graph isomorphism.

3 A New Simplified Bridging Algo-
rithm: Onebridge

The basic idea of the algorithm is to express a bridging
between two input variables as a pair of double stuck-at’s.
Suppose that the variables to be bridged are b and d. The
bridge is represented by the equation b = d. This can also
be expressed as b'd’ + bd, or ((b = 0) AND (d = 0)) OR
((b=1) AND (d = 1)). '

Let us now refer to Fig. 2 and consider the module func-
tion G = ab + a'd’c whose BDD is drawn for the input
ordering (b,d, a, c) and the cluster function F = zy+z'y'z
whose BDD is drawn for (z, y, 2).

A solution 10 the matching problem with one bridge be-
tween b and d for the given input ordering exists if and
only if the equations G ¢ = F/ and Gyq = F, are simul-
taneously verified. Therefore, this problem of one simple
bridge (i.e. one bridge between two input variables of the
module function) is reduced to verifying that the BDD of
Gyg is isomorphic to the BDD of F,. and that the BDD
of G4 is isomorphic to the BDD of F,.

Since in this algorithm we associate the bridged variables
of G with the first variable of F, we have to perform a cyclic
permutation of the variables of F, so that each of them, in
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turn, is in first position. The algorithm can be described as
follows:

Matching 3(G, F')
{

/= No bridging at first attempt =/

if Matching.1( G, F))
return(TRUE);

m = |sup(F)|;

for (each cyclic permutation of F inputs) {
nodef = Root(BDD.F);

for (each of the subgraphGBDD.G of height m + 1 ) {

nodeg = Root(subgraphGBDD G);
if (OneBridgeBdd(node.g, nodef)) {
2 = DetermineOmega( );
S = DetermineStuckatSet( );
return(TRUE),

}
}
return(FALSE);

OneBridgeBdd(node.g, node f)
{

/= Initialize pointers to cluster subBDDs =/

lowS = nodef->low;

highf = nodef->high;

/= Initialize pointers 10 module subBDDs »/

low.g = nodeg->low;

if Qevelof(low.g->low) == levelof(low.g) - 1)
low.g = low.g->low;

high.g = node_g->high;

if (evelof(high_g->high) == levelof(high.g) - 1)
high_g = high.g->high;

remarked that the reason why the algorithm is much faster
than the full matching one is twofold: 1) fewer candidate
solutions are considered and 2) the particularly simple casc
of one bridge of two variables allows a very efficient im-
plementation.

| Circuit || act0 | act] T act2]

duke2 211 175 164
f51m 83 59 52

bw 87 63 64
clip 86 68 62
vg2 57 45 41
rd84 87 65 63
5xpl 65 50 48

C499 175 170 170
C1908 244 207 206
C5315 932 796 724
misex1 30 24 23
misex2 52 42 40
apex6 417 383 292
apex7 135 114 107
des 1945 | 1673 | 1404

Table 2: Implementation cost for FPGA act0, actl and
act2 when onebridge is applied.

This algorithm can be extended to the more general case
of one bridge of many variables. Indeed, we tried this ap-
proach and we obtained the same results of the full matching
algorithm. Even though the execution time became larger
than for the onebridge algorithm, it was still much smaller

return (Doublelsomorphism(low g, low.{, high.g, highN)) than the time required by the fullbridge.

)

The functions Maiching.l, DetermineOmega and Deter-
mineStuckatSet are described in [9). The former solves the
simplified matching problem. The other two determine the
input permutation and the detailed stuck-at set.

In function Doublelsomorphism shown below, the two
pairs of BDDs (nodex!, node_yl) and (nodex2, node_y2)
must be isomorphic under the same mapping of levels and
nodes. The function isomorph_body is similar 0 Isomorph
as defined in [9], the only difference being that the initial-
ization is performed outside the function.

Doublelsomorphism(nodex1, node.y1, nodex2, node.y2)
{

Level_Table = InitializeLevel Table( );

Node.Table = InitializeNodeTable( );

return(isomorph body(nadex1, node.yl) &&
isomorph body(nodex2, node.y2));

This algorithm has advantages over both the simplified
maiching and the full matching algorithms described in [9].
It delivers results very close (and in most cases identical) to
those obtained with the latter, but requires a computational
effort comparable to the former. The implementation cost
for our set of benchmarks is shown in Table 2. It should be

4 Program Implementation

The algorithms presented here have been incorporated in
Ceres (5] 1o form an option called Proserpine. The pro-
gram reads the logic description of the module and creates
the global BDD data structure. The partitioning, decom-
position and covering tasks are those of Ceres, while the
matching algorithm is based on the BDD sub-isomorphism
described in this paper. Three options can be chosen: zer-
obridge corresponds to allowing only input stuck-at’s as a
means of module personalization, onebridge allows bridg-
ing between any two inputs and fullbridge solves the full
matching problem. Proserpine has been implemented in
C and has been tested on the MCNC and ISCAS bench-
marks. The results are summarized in Tables 1 and 2. Run
times are in the order of a few seconds (on a DECstation
5000) for the zerobridge and onebridge options. They are
significantly higher in the case of fullbridge.

So far, we considered FPGAs where each module is a
multiple-input/single-output combinational logic gate [1).
Extensions to FPGAs with a multiple-output module and
latching capability, as very recently proposed [16), are pos-
sible. They are straightforward when no functional sharing
is done inside each module.
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§ Evaluation of FPGA Module Func-
tions

In this section, we want to show that Proserpine can be a
useful tool in researching module primitives that support ef-
ficient implementations. Uncommitted modules have been
chosen by looking at the circuit configurations and perfor-
mance. No analysis to study and evaluate the ease of map-
ping logic circuits onto different FPGA architectures during
their design phase has been done. By means of Proserpine,
some very important issues in FPGAs design can be ad-
dressed.

Comparing the mapping behavior of actl and act2 was
quite interesting. Even though these two cells have similar
area/delay characteristics, their performances turned out to
be quite different. The module act2 outperforms actl in
all the cases that we tried. In Table 3, we compare the
geometric mean of the results of Table 1 and Table 2 related
to act] and act2.

{ || zerobridge | onebridge | fullbridge |

actl 133.6 118.9 118.8
act2 1105 110.2 108.0

Table 3: Geometric mean of the implementation costs of
act] and act2 when the three different options of Proserpine
are applied.

An interesting result was the different mapping behavior
of these cells when using zerobridge and fullbridge. The
two cells have a different functionality with respect to the
stuck-at personalization. In the case of act2, the geometric
means that we obtained for the two options have almost
identical values (110.5-108.0). For the other cell, instead,
there is a fairly large gap (133.6-118.8). Therefore act2
requires fewer bridges than actl.

Limiting the number of bridges in an FPGA is important
for other remarks. There are two technical problems related
to bridging. A first issue is the added cost required by
customizing a cell by input bridging. In the architecture we
considered, antifuse elements are located in such a way that
setting any of the inputs to ground/power requires simply
blowing an antifuse. A bridge between two inputs can be
achieved in two ways. If an antifuse connects the inputs we
want to bridge, the cost is equivalent to that of a stuck-at.
However, some input pairs are not connected by antifuse.
In this case, the bridge requires an added wiring costL

Also, in the presence of bridges, load problems might
occur. Suppose a net feeds several celis that need multiple
bridges. In this case the total load on the fanout stem is
affected by the input bridging within the cells with possible
consequences on the driving capability of the net. There-
fore, an ideal cell for FPGASs is one requiring the smallest
number of bridges.

It was rather interesting Lo notice that litte variations to a
FPGA cell can affect its performance to mapping. Here we
applied Proserpine 10 two new uncommitied module cells,

whose logic diagram is shown in Pig. 3. Thesc are simplk
variations of actl and act2, swapping oh and AND gaics.
The results are given in Table 4.

By comparing the results in Tables 1, 2 and 4 we remark
that test1 performs much worse than act1, while test2 is
comparable to act2. This is an example of how Proserpine
can be used by a designer of FPGAs to explore the impect
of different module cells.

Figure 3: New FPGA uncommitted modules

[ Circuit || test] | tes2 |

duke2 185 178 164 164
f51m 73 62 52 52

bw 83 79 64 64
clip 76 72 62 62
vg2 50 46 41 41
rd84 87 74 63 63
Sxpl 61 56 48 48

C499 279 173 170 170
C1908 296 220 209 206
C5315 931 802 729 724
misex] 28 26 23 23
misex2 48 45 40 40
apex6 329 305 295 292
apex7 123 114 108 107

des 1568 | 1455 || 1404 | 1404

Table 4: Number of cells needed to implement the bench-
marks using FPGA testl, test2, when zerobridge and one-
bridge are applied.
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6 Conclusions

We have extended a set of techniques for technology map-
ping of field-programmable gate arrays (9], that personalize
an uncommitied module to perform a desired logic function,
when possible, by determining the set of input variables that
need to be stuck at 0/1 or bridged together. This matching
algorithm allows a mapping program to capture the entire
family of functions that can be implemented by a module
by describing only one logic function, thus avoiding the
enumeration of the entire library. In addition, the algorithm
is not specific to a type of module, but can be applied 10
any module that can be represented by a single-output com-
binational logic function.

We have introduced here a novel algorithm, called one-
bridge, that is a heuristics to solve a simplified version of
the full matching problem. The algorithm has fast execu-
tion times and it performs nearly as well as a previous one
that solves exactly the full matching problem, but that is
much slower.

The matching algorithm has been implemented as part
of a technology mapping program called Proserpine. We
have tested the program on a set of benchmarks and have
concluded that it compares favorably to other approaches.
An outcome of this research has been the development of a
tool to evaluate the effectiveness of different modules, for
use in future FPGAs.
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