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Abstract

We describe in this paper a new appr~h for technology
mawing of fuse/antifuse-based field-programmable gate ar-
rays (FPGAs). These are arrays of uncommitted moo-
ules, where the personalization and wiring is achieved by
fuse/anti fuse technology and can be mooeled by stock-at
and/or bridging inputs. The method extends a previous ap-
proach presented in [9].

The contribution of this paper is tWofold. First we show
a new efficient way of determining a matching that requires
input bridging. Second, we compare the ease of mapping
of standard logic benchmark cilCuits into different FPGAs
and the relative importance of the personalization by means
of stuck-at and bridging. Experimental results are reported
and critically compared.

1 Introd uction

ough analysis of the ease of mapping logic circuits into
FPGAs was not possible at first due to die l~k of special-
ized tools.

Previous existing approaches to technology mapping in-
clude algoolhms and tools that support an explicit arbitrary
library definition, such as Misl/ [4], Ceres [5] and commer-
cial products. These tools need a library of cells explicitly
derived from the uncommitted module. Since the enumera-
tion of the library cells may be long, a subset of the library
may be used to increase the mapping speed at die expense
of die quality of the mawing.

Mis-pga [2] and Amap [3] are specialized technology
mappers for the FPGAs fabricated by Actel Inc. These
programs exploit the particular suucture of die uncommit-
ted module, based on multiplexers, in die mapping process.
Conversely, the approach presented here is general in na-
ture and it applies to any kind of FPGA based on fuse or
antifuse technology.

In general, existing logic design tools fa FPGAs rely
on a library description and assume a given programmable
module. Therefore it is hard to use them to explore the
imp~t of choosing different programmable modules, be-
cause the full enumerated library has to be derived for each
module.

The audlors presented in [9] a new awroach to technol-
ogy mapping for fuse/anti fuse-based FPGAs (called Elec-
trical PGAs) that:

. Does not require an explicit library enumeration, D<X'
a manual {Kocess to tailor the algcxithms on the ~-
ticular module used in the FPGA.

. Supports generic FPGAs which can be personalized
~cording to a stuck-at and bridging model. The un-
committed module is assumed to be an arbitrary single-
ouq>ut combinational function.

. Can be used as an exp)ora~ tool 10 benchmark the
mawing performance of different uncommitted mod-
ules.

There has been an increasing interest in digital-system pro-
totyping using Field-Programmable Gate Arrays (FPGAs)
due to their fast turn-around time and low non-recurrent
engineering costs. One class of FPGAs uses anti-fuse tech-
nology, where logic gates and their interconnections are
programmed by shorting wire segments in prescribed lo-
cations. These ~As consists of an array of identical
multiple-inplt/singte-ouq>ut logic mooules. A mooule can
be configured to implement a logic function by fon:ing any
input to logic 0 or logic 1 or by bridging inputs. An exam-
ple of circuits in this class are those manuf~tured by Actel
Inc. [1].

System design with FPGAs requires s~ific logic de-
sign tOOls. In particular, technology mapping is crucial for
~hieving an efficient implementation. T~hnology map-
ping is the process of ttansforming a: set of logic equations
into an interconnection of ~ that are instances of the
elements in a given library. In the case of FPGAs, the "li-
brary" consists of the set of combinational logic gates that
can be derived from the uncommitted mooule.

FPGAs were conceived before efficient logic design tOOls
were available for this technology, As a result, FPOA mod-
ules were devised on the basis of their electrical and geo-
meDical properties (i.e. area, timing, wirability). A thor-

In this approach the full library is repla:ed by the descriP-
tion of the uncommiued module only. The tochnology map-
ping algorithms check whether a given logic function can
be implemented by programming the uncommitted mooule.
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Indeed, the process of personalizing an uncommitted mod-
ule can be modeled by tying some input to logic 0 (input
stuck-at-o) or logic 1 (input stuck-at-l) or by connecting
two inputs together (input bridging) on the uncommitted
module. Therefore, the FPGA library can be represented
by the set of equivalent gates that the personalization in-
duces on the uncommitted module. As a result, any FPGA
can be used as a target archi~blre by just describing the
logic function of the uncommitted module, i.e. by a single
Boolean expression.

The contribution of this paper is twofold. First we show
an enchancement of the maaching ~hnique presented in [9]
that achieves com~le results in a much shorter comput-
ing time. Second, we compare the ease of mapping of stan-
dard logic benchmark circuits and we consider the effects
of using input stuck-at 011 and input bridging separately, to
contrast the relative merit of the two ~hniques. Indeed, the
major contribution of this reseaICh has been the creation of
an exploratory tool to evaluate fuse/anlifuse programmable
modules for FPGAs, to deepen the understanding between
personalization features and quality of the finaJ logic im-
plementation.

(or. briefty. d1e bridge class). i.e. B = {Bj}. We define
G s the function obtained from G by setting each variable
z, E S to OIl. Similarly. we define G SB to be d1e function
obtained from G S by oodging the inputs corresponding to
variables z, E Bj. V Bj. We represent by R the set of
independent input variables. i.e. those that are not stuck-
at and one for ea::h bridge set We define the matching
problem as follows:

Given a cluster function F{Yl,... ,Yon). and the module
function G{Z),...,Zn) m $ n find a stuck-at set S. a
bridge class B and an ordering f1( R) such that F and
GSB are functionally equivalent.

In our previous approoch. we considered first a simplified

matching }X"Oblem:
Given a cluster function F{Yl, ... ,Yon). m .$: n. and the

module function G(Z),... ,zn) find a stuck-at set S. and
an ordering f1(R) such that F and G S are functionally
equivalent.

We showed how this problem can be solved efficiently
by means of Global Binary Decision Diagrams (GBDDs).
Then we showed how to compute a solution to the full
matching }X"Oblem by solving repeatedly the simplified
matching }X"Oblem.

We present here an extended set of results of applying the
algorithms presented in [9] to three different FPGA mod-
ules: actO. act 1 and act2. Their logic circuit diagrams
are shown in Fig. 1. While only act1 and act2 are com-
mercially available. we consider also actO since this cell is
the fundamental block of which ooth act I and act2 can be
considered extensions.

2 Technology Mapping for FPGAs

Table I: Number of cells needed to implement a set of
benchmarks using FPGA actO, act I and act2. For any of
the modules, the first column reports the cost only for the
stock-at personalization and the second one the cost for the
complete personalization.

Algorithms for technology mapping were pioneered by
Keutzer [7], Rudell [8] and Detjens [10]. Similarly to their
approach, we use a heuristic methoo based on three different
Wks. Partitioning a network into a collection of multiple-
input/single-output combinational sub-networks. Decompo-
sition of each sub-network into two-input functions, to in-
crease the network granularity. Covering each decomposed
network by committed modules so that either area or delay
is ~timized.

Standard techniques are used for the first two tasks
(7, 8, 10]. The covering algorithm is oorrowed from Mail-
hot [5]. It uses the notion of cluster and module functions.
The former represents a portion of the network to be cov-
ered, the latter the FPGA primitive. Details of the covering
algorithms are presented in [9].

The major contribution of this paper is related to solv-
ing the matching problem for FPGAs. The algorithms used
here, as well as those presented in [9], perform a run-time
customization of the FPGA mooule: by comparing the clus-
ter and the mooule functions, it d~tennines which mooule
inputs should be set to 0/1, which should be bridged to-
gether, and which input ordering, if any, makes the module
implement the cluster fuoction. If no match is found, the al-
gorithm returns that no matching exists and another clus[er
fuoction is tried.

We denote the mooule and cluster functions by
G(Zl,Z2,...,Zn) and F(Yl,Y2,...,Ym) res~tively. We
call stuck-at set of the moou1e the set of variables that are
set to 0/1 and we deno[e it by: S. We call bridge set
Bj (j = 1,2,... ,I) ~h set of variables that are bridged
together and we denote by B the class of the bridge sets

Table 1 shows the results on several ISCAS and MCNC
benchmarks. For ~h of the uncommitted modules. we
repon the number of cells needed to implement the circuit
when only swck-at inputs are used in the personalization
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Figure 2: When bridging is allowed only for two input
variables, the matching problem is equivalent to checking
for a double sub-graph isomorphism.
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Figure 1: FPGA uncommitted modules

A New Simplified
rithm: Onebridge

Bridging Alga-3
(simplified matching problem), as well as when stuck-at and
bridged inputs are used (full matching problem). Run times
are in the <X'der of few seconds for the simple matching
problem and several minutes for the full one.

Comparing the results was very interesting since we no-
ticed that, in most cases, the full personalization of the cells
by input bridging decreases the mapping cost by only a few
cells. This observation led us to think that considering all
the )X>Ssible bridging between inputs is formally correct, but
of liuJe IX'8ctical importance for the cells considered. It is
also the case in practice [15] that bridging is rarely used,
usually between only two inputs. Moreover, the average ex-
~utioo time of the algorithm for the full matching problem
is much higher than the one for the simplified problem.

For the reasons above, we introduced a simplified bridg-
ing procedure that bridges only any two inputs of the moo-
ule cell. This procedure turned out to be very effective, con-
firming our hypothesis about the relevance of input bridging
in the personalization process.

The basic idea of the algorithm is to express a mdging
between two input variables as a pair of double stuck-at's.
Sup)X)se that the variables 10 be bridged are b and d. The
bridge is represented by the equation b = d. This can also
be expressed as b'd' + bd, or «(b = 0) AND (d = 0)) OR
((b = 1) AND (d = 1».

Let us now refer to Fig. 2 and consider the module func-
tion G = ab + a' d' c wh~e BDD is drawn for the input
ordering (b, d, a, c) and the cluster function F = zy+z'y' z
wh~e BDD is drawn for (z,y,z).

A solution 10 the matching problem with one bridge be-
tween b and d for the given input ordering exists if and
only if the equations Gb'd' = FZI and Gbd = Fz are simul-
taneously verified. Therefore, this problem of one simple
bridge (i.e. one bridge between two input variables of the
module function) is reduced 10 verifying that the BDD of
Gbldl is isomorphic to the BDD of F Zl and that the BDD
of Gbd is isomorphic to the BDD of F z.

Sioce in this algorithm we associate the bridgoo variables
of G with the first variable of F, we have to perform a cyclic
permutation of the variables of F, so that each of them, in
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turn, is in first position. The algorithm can be described as
follows:

remarked that the reason why the algorithm is much fasler
than the full matching one is twofold: 1) fewer candidate
solutions are considered and 2) the particularly simple case
of one bridge of two variables allows a very efficienl im-
plementation.

MalcllillgJ( G, F )
{

/- No bridging at first attempt -/
If (MalChing.1( G, 1"»

r8urn{fRUE);
m = 16Up(F)I;
lor (each cyclic penn..-i<X\ of F inputs) {

nOOeJ = ROOI(BDD.F);

lor (each of Ihe 8IbarapbGBDD.G d' heigN m + 1 ) {
Dade.a = R~(subgrapIGBDD.G);
If (CkleBridgeBdd(n<xle.a. node.l) {

n = DetennineOmega( );
S = DetennineStuckatSet( );

r8urn(I'R UE);
}

>.

}
rdum(FAl.SE);

}

O/lcB,idg~Bdd(node-&. nodeJ)
{

/* Initialize pointen to cluster subBDDs */ Table 2: Implementation cost for FPGA actO. act I and
low.! = node'!->low; act2 when onebridge is applied.
high.! = node.f->high;

/* Initialize pointen to mooule subBDDs */
low~ = nOOe~->low; This algorithm can be extended to the more general case
If (levelo((low~->low) = levelo((low~) - I) of one bridge of many variables. Indeed. we tried this ap-
. low~ = low~->low; proach and we obtained the same results of the full matching

hlgh~ = node-a->hlgh; al .th E th h th .. -~ft-
IIf (levelof(hiih-&->high) = levelo((high~) - I) gon m. ven oug e execution bme ~lIe arger

high~ = high~->high; than for the onebridge algorithm. it was still much smaller
return (DoubleIsomorphism(low.a. low.!. hi&ho&. high.!) than the time required by the fullbridge.

)

4 Program ImplementationThe functions MalchingJ, DetermineOmega and Deler-
mineSluckatSel are described in [9). The former solves the
simplified matching problem. The other two determine the
input permutation and the detailed stuck-al set.

In function Doublelsomorphism shown below, the two
pairs of BDDs (node..:xl. node_yl) and (node..:x2. node_y2)
must be isomorphic under the same mapping of levels and
nodes. The function isomorph.body is similar to Isomorph
as defined in [9), the only difference being that the initial-
ization is perfonned outside the function.

Dollblds_,.pltism(nooe..x I, node-y I, n~2. node.y2)
{

Uvel_Tabie = Iniua1i~uvelTab1e( );
Node. Table = IniuaiiuNodeTable( );

rdurn(i scxnorPt.j)Ody(nooe..x I , nOOe.yl) U
, iJom(lfph.body(nooe..x2, node-y2»;

The aJgorithms presented here have been incorporated in
Ceres [5] to fonn an option called Proserpine. The pro-
gram reads the logic description of the mooule and creates
the globaJ BDD data structure. The partitioning, decom-
position and covering tasks are those of Ceres, while the
matching aJgorithm is based on the BDD sub-isomorphism
described in this pa~r. Three options can be chosen: zer-
obridge cOlTesJX}nds 10 allowing only input stuck-at' s as a
means of module personalization, onebridge allows bridg-
ing between any two inputs and fullbridge solves the full
matching problem. Proserpine has been implemented in
C and has been tested on the MCNC and ISCAS bench-
marks. The results are summarized in Tables 1 and 2. Run
times are in the order of a few seconds (on a DECstation
S<XX» for the zerobridge and onebridge options. They are
significantly higher in the case of fuUbridge.

So far, we considered FPGAs where each mooule is a
multiple-input/single-oulput combinational logic gate [I].
Extensions to FPGAs with a multiple-oulput mooule and
latching capability, as very recently proJX}sed [16], are JX}s-
sible. They are sb'8ightforward when no functional sharing
is done inside each module.

This algmthm has advantages over both the simplified
matching and the fun matching algorithms described in [9).
It delivers results very close (and in most cases identical) to
tIK>se obtained with the latter, but requires a computational
effort com~ble to the former. The implementation cost
for our set of benchmarks is shown in Table 2. It should be
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Evaluation of FPGA Module Func-
tions

5 whose logic djaaram is shown In Ft,. 3. Thole arc .Imp&e
variations or Qct I and Q('t2, IwlPPlna OM and ANIJ pi".
The results are given in Table 4.

By comparing &he results in Tables I, 21nd 4 we ~
that test I perf(Wn1S much wone than act I, while ",'2 I.
comparable 10 act2. This is an example or how Pro"'plu
can be used by a designer or FPGAs to explore (he Im~t
or different module cells.

'0

In this s«tioo. we want to show dW Proserpine can be a
useful tool in researching module primitives that su~n ef-
ficient implementations. Uncommiuoo mooules have been
chosen by looking at the circuit configurations and perfCI-
m80ce. No analysis to swdy and evaluate the ease of map-
ping logic circuits onto different FPGA architectures dtDing
wir design phase has been oone. By means of Proserpine.
some very imponant iss~ in FPGAs design can be ad-
dressed.

ComJmring the mapping behavior of ad I aIxI ad2 was
quite interesting. Even tlK>ugh these two cells have similar
area/delay c~teristics. their perfonnaoces turned out to
be quite different The module ad2 oUq>erforms ad I in
all the cases that we tried. In Table 3. we compare d)e
geometric mean of the results of Table 1 and Table 2 related
to ad I and ad2.

I urobrid~ o-bridg,- I p.llbridg,-

I ~~.!108.0

Table 3: Geomettic mean of
act I and act2 when the three d
are applied.

G

Figure 3: New FPGA uncommitted mooules

Table 4: Number of cells ~ to implement the bench-
marks using FPGA test!, test2. when zerobridge and one-
bridge are awlied.

An interesting result was the different mapping behavior
of these cells when using zerobridge and fullbridge. The
two cells have a different fuoctionality with respect to the
stuck-at penooalizatioo. In the case of act2, the geonetric
means that we obtained fcx the two options have almost
identical values (1IO.S-IO8.0). For the other cell, instead,
there is a fairly large gap (133.6-118.8). Therefore act2
requires fewer bridges than act I.

Limiting the number of bridges in an FPGA is important
for other remarks. There are two technical problems related
to bridging. A first issue is the added cost required by
customizing a cell by input bridging. In the architecture we
considered, antifuse elements are locatOO in such a way that
sening any of the inputs to ground/power requires simply
blowing an antifuse. A bridge between two inputs can be
~hieved in two ways. If an antifuse con~ts the inputs we
want to bridge, the cost is equivalent to that of a stuck-at.
However, sone input pairs are not con~ted by antifuse.
In this case, the bridge requires an added wiring COSL

Also, in the presence of midges, load problems might
occur. Suppose a net feeds several cells that need multiple
bridges. In this case the total Imd on the fanout stem is
affectOO by the input bridging within the cells with IX>ssible
consequences on the driving capability of the neL There-
fore, an ideal cell for FPGAs is one requiring the smallest
number of bridges.

It was rathcr interesting to notice that litUe variations to a
FPGA cell can affect its performaoce to mapping. Heze we
applied Proserpine to two new uncommitled module cells,
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ping with Boolean Matching ". European Design Au-
tomation Conference, Glasgow. Scotland. March 1990.
pp. 212-216
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We have extended a set of techniques for technology map-
ping of field-programmable gate arrays [9], that ~rsonalize
an uncommitted module to perform a desired logic function,
when JX)Ssible, by detennining the set of input variables that
n«;d to be stock at 011 0' bridged together. This matching
alg<X'ithm allows a mapping JX'ogram to capture the entire
family of fuoctions that can be implemented by a module
by ~bing only one logic function, thus avoiding the
enumeration of the entire library. In addition, the algorithm
is oot specific to a t~ of module, but can be awlied to
any module that can be represented by a single-output com-
binatimallogic function.

We have introdoced here a novel algorithm, called one-
bridge, that is a heuristics to solve a simplified version of
the full matChing problem. The algorithm has fast execu-
tion times and it ~rforms nearly as well as a previous one
that solves exactly the full matching problem. but that is
much slower.

The matching algorithm has been implemented as J8n
of a technology mapping program called Proserpine. We
have tested the program on a set of benchmarks and have
concluded that it compares favorably to other approaches.
An outcome of this research has been the developnent of a
tool to evaluate the effectiveness of different modules, for
use in future FPGAs.
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