Control Optimization Based on Resynchronization of Operations

David C. Ku

Dave Filo

Giovanni De Micheli

Center for Integrated Systems
Stanford University
Stanford, CA 94305

Abstract

Most approaches to control optimization use a finite state ma-
chine model, where operations are bound to control states. How-
ever, when synthesizing circuits from a higher, more abstract level
of hardware specification that supports concurrency and synchro-
nization, these approaches may be overly restrictive. We present
a strategy for optimizing control circuits based on resynchroniza-
tion of operations such that the original specification under timing
constraints is still satisfied, but with a lower control implemen-
tation cost. We use a general constraint graph model to capture
the high level specification; the model supports unbounded delay
operations, detailed timing constraints, and concurrency. We in-
troduce the notion of synchronization redundancy, and formulate
the optimization problem as the task of mapping operations to
synchronization points. We present algorithms to find a minimal
control cost implementation. Results of applying the technique
within the framework of the Hercules/Hebe High-level Synthesis
system are presented.

1 Introduction

‘We consider the synthesis of synchronous digital systems from be-
havioral descriptions that include the specification of timing con-
straints [1]. We address the problem of finding a minimal-area
control implementation, such that the overall hardware is a valid
implementation of its behavioral model.

Control optimization can be performed either at the logic level,
by using a finite-state machine model [2], or at a higher level, by
using a hardware model described in terms of constraints on the
sequencing and timing of the operations [3]. In the former case,
the operations are bound to control states. This implies that the
cycle-per-cycle behavior of the control cannot be altered without
changing the control specification. Techniques such as sequential
logic synthesis and microcode compaction can be used to reduce
the cost of the control implementation [4]. In contrast, in the lat-
ter approach, hardware behavior is modeled as a set of sequencing
and timing constraints on the operations; the activation of an op-
eration is synchronized to the completion of a set of operations.
Since operations are not bound to control states, it is possible to
modify the activation time of an operation provided the sequencing
dependencies and timing constraints of the original specification

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

are still satisfied. The wider latitude in choosing among a set of
possible implementations can lead to a more efficient control im-
plementation in terms of area, which can be further improved by
logic synthesis techniques.

In this paper, we present algorithms for control optimization
based on resynchronization of operations that supports concur-
rency, detailed timing constraints and external synchronizations
(unbounded delay operations). After an overview of the hardware
and control model, we present the concept of synchronization re-
dundancy in Section 3. We show how redundancies can be intro-
duced by delaying operations through lengthening and serializing a
graph-based hardware model. Section 4 describes the optimization
algorithms. We conclude with results of applying the technique in
the framework of the Hercules/Hebe High-level Synthesis system.

Hardware Model. Most existing high-level synthesis systems
model hardware behavior as control/data flow graphs [5]. We
model hardware timing behavior as a partial order among a set of
operations, and we represent it as a polar directed edge-weighted
constraint graph G(V, E). The vertices V represent the opera-
tions, and the edges £ capture the precedence and timing relation-
ships among the operations. Each operation v € V is synchronous
and therefore takes an integral number of cycles to execute, called
its execution delay, which is denoted by §(v). The execution
delay may not be known a priori, as in the case of external syn-
chronization and data-dependent loops. In this case, we say the
execution delay is unbounded. The model supports concurrency,
hierarchy, and detailed timing constraints that specify bounds on
the minimum/maximum time separation between the activation of
operations. We refer the interested reader to [6] for details of the
constraint graph model. We now describe properties of the model
that are important in the control formulation.

A weight w;; associated with each edge e;; = (vi,v;) € F
represents the requirement that the start time of v; (denoted by
T(»;)) must occur later than w;; after the start time of v, i..
T(v;) > T(vi) + wi;. For example, a sequencing dependency
from v; to v; is represented by a forward edge from v; to v; with
weight 6(v;). The edges are categorized into forward (E f) and
backward edges (E). The forward (backward) edges have posi-
tive (negative) weights and represent minimum (maximum) timing
requirements among the operations. Both forward and backward
edges may have unbounded weights, i.e. an unbounded forward
edge represents a minimum sequencing constraint whereas an un-
bounded backward edge represents a maximum sequencing con-
straint between two operations. Without loss of generality, we as-
sume the graph induced by the forward edges is acyclic, and that
all cycles in the graph have bounded length. The graph model
serves to determine the extent to which the activation of opera-
tions can be modified in optimizing the control implementation.
We assume that the mapping of operations to resources has been

28th ACM/IEEE Design Automation Conference®

Paper 23.1
366

©1991 ACM 0-89791-395-7/91/0006/0366 $1.50

performed, and that resource conflicts have been resolved prior to
control synthesis by serializing between the conflicting operations.

2 Control Model

To define the cost function that will drive the control optimization,
we describe first the mapping from a constraint graph to a control
implementation. The mapping involves two tasks — scheduling
and control generation. Given a constraint graph, scheduling finds
the start times of the operations satisfying the timing constraints,
which are then used by control generation to derive a FSM spec-
ification of the control.

2.1 Scheduling the Operations

Traditionally, the scheduling problem assigns operations to con-
trol states, and it can be formulated as an integer labeling problem
that assigns to each operation an integer value representing the
time from the beginning of the schedule at which it begins execu-
tion. The presence of unbounded delay operations in our hardware
model invalidates this traditional scheduling formulation since an
absolute schedule satisfying timing constraints no longer exists.
We use a formulation called relative scheduling that schedules an
operation with respect to the completion of a set of unbounded
delay operations. We now review some terminology and results
that are pertinent to our presentation, and we recommend to those
unfamiliar with relative scheduling to first read [6].

We define a subset of the vertices, called anchors, that serve
as reference points in specifying the activation of operations. The
anchors (denoted by A C V) of a constraint graph consist of
the source vertex vo and all vertices with unbounded delay. The
anchor set of a vertex » (denoted by A(v)) is the subset of
anchors that are in the transitive fan-in of v. In other words,
the anchor set consists of all unbounded delay vertices which
affect the activation of a given operation. The start time of
a vertex v (denoted by T'(v)) is defined as offsets ¢ 4(v) from
the completion of each anchor in the anchor set a € A(v), i.e.
T(v) = maxaeav){T'(a) + 6(a) + 0a(v)}.

A constraint graph is feasible if its constraints can be satis-
fied when the unbounded delays are equal to zero. If there are
no unbounded delay operations, then the concept of feasibility is
sufficient to guarantee that a schedule exists. It can be shown that
a graph is feasible if it contains no positive length cycles. In the
presence of unbounded delays, however, we extend the analysis by
defining a graph to be well-posed if its constraints can be satisfied
for all values of unbounded delays. The concept of well-posedness
is important to ensure the resulting synthesized hardware is valid
for all possible input conditions. Note that well-posedness implies
feasibility, and non-feasibility implies ill-posedness; therefore, we
assume that we are given a well-posed constraint graph as input
to the control optimization.

22 Generating the Control Circuit

Given a schedule, the task is 1o generate the corresponding control
logic. We model the control in terms of a modular interconnection
of synchronous FSMs; the FSM abstraction decouples the control

generation from a particular style of logic-level implementation.

The task of control generation is abstracted as generating enable
and done signals for each vertex v, suchthat its activation (comple-
tion) is indicated by the assertion of the signal enable, (done,).
The completion of the unbounded delay operation corresponding
to each anchor ¢ € A is indicated by the assertion of a signal
done,, which stays asserted until all operations in the graph have
completed. Details of generating done o, along with the support
for conditional branching and looping, are described in [7]. We
now describe control generation for the remaining signals.

T T
7] PP TN
RIS o Lsm)
SR,{3) f— SR,
SR,[4] SRy f4)
lmbl«_
®

Figure 1: Alternate implementation styles for control generation:
(a) counter-based, and (b) shift-register based.

We illustrate two possible alternatives for control generation
in Figure 1, where we show. the circuit that enables an operation
v. For the sake of illustration, we assume the anchor set of v is
comprised of a and b, with offsets 0a(v) = 2 and as(v) = 3,
respectively. That is, operation v must start at least 2(3) cycles
after the completion of operation a(b). In the first case, we im-
plement the offset control as a counter and the synchronization
control as a set of comparisons between the counter values and
appropriate offsets. For the second case, we implement the offset
control as a shift register and the synchronization control as logic
conjunctions of the appropriate shift register outputs. We see that
the control circuit consists of two types of components: an offset
control circuit for each anchor and a synchronization control cir-
cuit for each vertex. The offset control circuit generates signals
that indicate the time offset from the completion of an anchor, and
the synchronization control circuit coordinates the activation of an
operation with respect to offsets in its start time.

Given a specification of control logic in terms of FSMs, we
estimate the total control cost COST,r.q Of the control imple-
mentation as:

COSTarea = Y, COSToss(a)+ Y COSTiync(v)

Ya€A YveV

=a Y fors (o0 + B Y fome(A(v)])

Ya€A Yvev

The first term COST,5(a) is related to the cost due to the length
of the schedule corresponding to an anchor a € A; it is a func-
tion foz; of the maximum offset value for ¢ (07'%%) that yields
the number of registers implementing the offset FSM for anchor
a. The second term COST,ync(v) is related to the cost of the
synchronization logic for v € V; it is a function f,ync of the
cardinality of the anchor set of v (JA(v)]). The values a and g
represent appropriate weight factors related to the actual cost of
the logic implementation. ’

Alternative strategies to implement the control logic exist, i.e.
it is possible to specify the control as a finite state machine. In
all formulations, the control complexity can be reduced by either
minimizing the maximum offsets and/or by reducing the size of the
anchor sets. This can be achieved by modifying the graph topology
and/or the edge weights as shown in the following sections.

3 Redundancy in Synchronization

It is often the case that some anchors in the anchor set of a vertex
are not needed in the computation of its start time, i.e. T(v) is
unchanged if offsets from these anchors are not used in its compu-
tation. Intuitively, redundancy arises due to the cascading effect of
the synchronization dependencies. Consider the example in Fig-
ure 2(b) with two anchors a and b (represented by double circles),

Paper 23.1
367

a vertex v, and arcs that represent minimum timing requirements
between the operations. Vertex v can execute only when 4 cy-
cles have elapsed after the completion of a and 2 cycles after the
completion of 4. In contrast, v in Figure 2(c) no longer depends
directly on the completion of a; instead this dependency exists
implicitly through the dependency on anchor b. Therefore, a is
redundant with respect to v and can be ignored in computing the
start time T°(v).

Q@ O

&(a)ed 8Pp2

Figure 2: Example of redundancy: (a) original graph (b) serializa-
tion edge e,p added (c) edge e b lengthened to make a redundant
wrt v

More formally, let Ip(v,w) denote the length (sum of edge
weights) of the longest path in the constraint graph from v to w
such that all unbounded execution delays are set equal to zero.
We define an anchor a to be redundant with respect to vertex v
if there exists an anchor g that lies on a path from a to v, i.e.
g € A(v) and a € A(g). such that Ip(a, v) < Ip(a, q) + Ip(q, v);
otherwise it is irredundant. The irredundant anchor set of a vertex
v, denoted by T R(v), is the minimum set of synchronizing points
affecting the activation of v. It can be shown that the start time
computed with only irredundant anchors is identical to the start
time computed with the full anchor set, for well-posed constraints
and minimum offsets.

By using only irredundant anchors in computing the start time,
the control cost can be reduced significantly by (1) reducing the
size of the anchor sets, translating to lower synchronization costs,
and by (2) reducing the maximum offset values, translating to
fewer number of states in the corresponding FSM.

3.1 Making Anchors Redundant

Consider an irredundant anchor a with respect to a vertex ». It
is sometimes possible to make it redundant either by lengthening
an existing path, or by serializing to introduce new paths in the
constraint graph, or by a combination of both. Figure 2 illustrates
how the anchor a can be made redundant with respect to vertex v
by the two techniques.

The delaying of operations must be carried out with care to
avoid violating the constraint graph, i.e. make the resulting graph
ill-posed. Both lengthening and serializing can be modeled as
adding a forward edge eav = (a, v) representing a sequencing
constraint from anchor a to vertex v, with the edge weight wa., =
§(a)+k, k > 0. If a path already exists from a to v, then the new
edge implies lengthening; otherwise, it implies serializing. We
state the following theorem that provides the basis for determining
the validity of a given lengthening or serialization.

Theorem 3.1 Consider a well-posed constraint graph G(V,).
If a forward edge ea, from anchor a to vertex v with weight

Paper 23.1
368

way = 8(a) + k, k > 0 is added from anchor a to vertex v, then
the resulting graph G can be made well-posed if and only if:

(1) G is feasible, and

(2) G does not contain unbounded length cycles.*

The two conditions described in Theorem 3.1 are used to ensure
that the control optimization constructs valid solutions.

3.2 Prime versus Non-prime Anchors

If an operation is delayed by lengthening existing paths in the
constraint graph without introducing new serializations, then the
full anchor sets of the vertices remain unchanged. The reason is
because the transitive fan-in relation for the vertices is not affected
by lengthening paths. It is useful to identify the subset of anchors
in the anchor set which can be made redundant by lengthening
alone. We state the following definition and theorem.

Definition 3.1 An anchor p € A(vi) of a vertex v; is prime if for
all paths of forward edges from p to v;, no unbounded delays other
than §(p) are encountered. Otherwise, the anchor is non-prime.
The set of prime (non-prime) anchors of a vertex v is the prime
(non-prime) anchor set of v, denoted by PA(v) (NPA(v)).

Theorem 3.2 A prime anchor p € PA(v;) of a vertex v; is al-
ways irredundant with respect to v;.

Consider for example Figure 2(a), since there exists no other an-
chors on any path from anchors a and b to vertex v, both are
prime anchors of v. On the other hand, anchor a in Figure 2(b)
is not a prime anchor of » because it is possible to lengthen the
graph to make a redundant with respect to v (as in Figure 2(c)).

‘We observe that an irredundant non-prime anchor can be made
redundant by lengthening a path from the non-prime anchor to
the vertex, provided that no timing constraints are violated. A
constraint graph is called taut if all non-prime anchors of a vertex
are made redundant with respect the vertex, for all vertices. We
state the following theorem.

Theorem 3.3 Given a well-posed constraint graph G (V,E),
there always exists a lengthening of G, denoted by G, such that
G is taut and well-posed.

It is important to point out that the prime anchor sets are fixed
for a given graph topology, and they remain unchanged even if
the graph is lengthened. However, it is possible to change the
prime anchor sets by serializing the graph. Consider the example
in Figure 2. In (a), the prime anchor set of v consists of {a, b}. By
serializing between a and b, anchor a has been made non-prime,
as shown in (b). Since a is non-prime, it can be made redundant
with respect to » by lengthening, as shown in (c).

4 Control Optimization Approach

From the previous section, we see that synchronization redun-
dancies can be used to reduce the control cost. Since redundant
anchors do not affect the start time of an operation, the irredun-
dant anchors of an operation represent its synchronization points,
i.e. they synchronize the execution of the operation with respect
to multiple concurrent execution flows.

We now formulate the task of control optimization as mini-
mizing the control cost COSTarea by modifying the constraint
graph, where the modification is modeled as either graph length-
ening, graph serialization, or a combination of both. We consider
any modification to the constraint graph to be acceptable as long

The proofs can be found in [8] and are not presented here for brevity.

as the resulting graph satisfies all the constraints in the original
specification, and remains well-posed.

The two factors in the control cost - synchronization and offset
costs, are tightly coupled. The reduction of one may result in an
increase of the other. A globally minimum solution does not nec-
essarily imply minimum values in both synchronization and offset
control costs. Since simultaneous minimization of both factors
may be computationally hard to solve exactly, we use the fol-
lowing three step heuristic strategy. The strategy is based on the
observation that non-prime anchors can always be made redun-
dant, and a prime anchor can be made non-prime by serializing it
with respect to another prime anchor.

1. Minimize the prime anchor sets — by serializing among the
anchor.

2. Resynchronize operations with respect to new synchroniza-
tion points — by serializing among the operations to minimize
the offset control cost.

3. Remove redundancy — by lengthening the graph to make it
taut, in order to minimize the synchronization control cost.

Although alternative optimization strategies exist, this approach
has the advantage of being able to yield a globally minimum so-
lution for a subclass of constraint graphs.

e

W L

Figure 3: Illustrating the serializing of anchors, and assignment
of operations (represented by shaded blocks) to segments of the
ordering. Each shaded block requires 5 clock cycles to execute.
The offset cost is reduced from 154+ 10+5=30to 5+54+5= 15.

Before describing the details of each step in subsequent sec-
tions, we illustrate our strategy with the example in Figure 3 con-
taining four anchors. Each shaded block represents a group of op-
erations requiring 5 cycles to execute; there is a minimum timing
constraint of 5 from a to b, and another minimum constraint from
b to c. Originally, the offset control cost is proportional to the sum
of the maximum offsets og %+ 0§ % + 07" = 15+10+5 = 30.
If we serialize the anchors to form a chain, and then partition the
vertices to each segment of the chain as in Figure 3(b), the sum
of the maximum offsets is reduced, from 30 to 5+ 5+ 5 = 15.
Furthermore, the synchronization cost for v, has been reduced
because its activation no longer depends on the completion of
anchors a and b.

4.1 Minimize Prime Anchor Sets

The motivation for serializing anchors is based on the observa-
tion that non-prime anchors can always be made redundant by
graph lengthening. Therefore, serialization is performed to re-
duce the prime anchor sets of the vertices as much as possible,
which reduces the synchronization cost of the final control imple-
mentation. This is important because the synchronization cost for
control-dominated machines in certain implementation styles may
dominate the overall control cost.

The lower bound on the synchronization control cost corre-
sponds to the case where every vertex excluding the source has
a single synchronization point, ie. 3 ., [[R(v)] = |V| -1,
where |T R(v)| is the number of irredundant anchors of v. This
implies that the anchors are completely serialized with respect to
one another. However, in the presence of maximum timing con-
straints, the constraint graph may be cyclic; it is therefore not
always possible to arbitrarily serialize two anchors without violat-
ing timing constraints. To address this issue, we define an anchor
cluster as follows.

Definition 4.1 An anchor cluster denoted by X is a maximal
subset of strongly connected anchors in the constraint graph.

The set of anchor clusters is denoted by A, where A ¢ is the cluster
containing the source vertex. A constraint graph is called elemen-
tary if all anchor clusters contain a single anchor, i.e. |Ai| = 1,Vi.
Since strong connectivity is an equivalence relation, the anchor
clusters form a partition over the set of anchors A. Furthermore,
the set of anchor clusters form a partial order, and it is possible to
find a serialization of the anchor clusters such that the clusters are
completely ordered. In the case where all clusters contain a single
anchor, an ordering results in a chain of anchors from source to
sink. More formally, we define a cluster ordering as follows.

Definition 4.2 A cluster ordering of a constraint graph G is a
complete serialization of the anchor clusters of G, such that for
every pair of clusters X ; and), every anchor a € \; is serialized
with respect to every anchor b € X ;. The graph G with a cluster
ordering is called an ordered graph.

Theorem 4.1 For a well-posed, ordered, elementary constraint
graph, the sum of the cardinality of the prime anchor sets is equal
to |V]-1.

The reason that the sum is equal to |V'| -1 is because [PA(v)| =
1,Vv € V except PA(vo) = 0. Cluster ordering reduces the syn-
chronization requirement of a vertex. Since we can make a graph
taut, the theorem above states that it is possible to achieve the
lower bound in synchronization costs for elementary graphs. We
note that imposing a cluster ordering in a graph will not affect the
property of well-posedness. The reason is because by definition
the clusters are not connected by a cycle in the constraint graph;
therefore, no cycles are formed by serializing among the clusters,
and hence the resulting graph remains well-posed.

The search for a cluster ordering that is compatible with the
original partial order can be carried out using branch-and-bound
techniques. Alternatively, heuristic algorithms can be applied to
limit the search for a good solution. We use a heuristic that finds
an ordering based on ranking the clusters with respect to increasing
lengths of the longest path from the source vertex, and serializing
the clusters according to the ranking.

4.2 Partition to Resynchronize Operations

A cluster ordering can be viewed as a chain of clusters; each link
in the chain represents a set of synchronization points along with
a set of operations that depend on these points. Given that the
prime anchor sets for the vertices have been minimized by impos-
ing the cluster ordering, the idea is to partition the operations to

Paper 23.1
369

the links of this chain so as to minimize the offset control cost for
a given cluster ordering. The process of assigning operations to
links involves serializing among operations, and is called resyn-
chronization since the activation of operations now depend on
a possible new set of anchors (i.e. synchronization points). We
formalize this idea with the following definition.

Definition 4.3 Given a well-posed, ordered graph with two con-
secutive anchor clusters A and Xiy1. The subgraph that is in-
duced by the vertices on all paths from the anchors in X ; to but
excluding the anchors in Xy is called the cluster link L; cor-
responding to Ai. A segmented graph is a graph for which all
vertices belong to cluster links.

A vertex v belonging to a cluster link £; satisfies the condition
that it is a successor of at least one anchor in A;, and therefore
its prime anchor set is equal to a subset of the anchors in A4, i.e.
PA(v) C Xi. A segmented graph is a special form of ordered
graph where all operations belong to links.

8a)+s

® ®)

Figure 4: Example of (a) an un-segmented constraint graph, where
vz is the only c-opset belonging to a link, (b) a segmented con-
straint graph. The shaded arcs represent the cluster ordering that is
derived based on ranking of longest path lengths from the source.

In general, not all vertices of an ordered graph belong to cluster
links. For example, a vertex may not fall between consecutive
clusters, but rather lie on a path between non-consecutive clusters.
Consider the ordered, elementary graph in Figure 4. In (a), only
v belongs to a link, whereas in (b), all vertices belong to links.
The objective is to partition the vertices by assigning them to the
links in such a way as to minimize the overall offset control.cost.
The assignment is made by serializing a vertex with respect to the
cluster corresponding to the assigned link.

Due to the presence of maximum timing constraints, the ver-
tices cannot be assigned arbitrarily. We define a constrained
operation-set (c-opset) as a maximal subset of strongly connected
vertices, so called because the execution of these vertices are con-
strained with respect to each other. We state without proof that
all elements of a c-opset must be assigned to the same segment in
the chain if the resulting graph is to be well-posed.

We present a heuristic algorithm, called ResyncGraph, that par-
titions vertices (c-opsets) to links of the chain. The algorithm is
based on a greedy ranking strategy, and is described below. Given

Paper 23.1
370

a cluster ordering, a vertex is assigned to the link corresponding to
the nearest anchor cluster that precedes the vertex in the ranking.
The partitioning is subject to the condition that the constraint graph
remains well-posed. We know from the previous section that the
elements of a c-opset must reside in the same link; therefore, if a
c-opset is not completely encapsulated between two clusters in the
ranking, then some anchors must be delayed by the least amount
to ensure full containment of the c-opset within a link. The com-
plexity of the algorithm is limited by the search for the longest
path, which is quadratic in the number of vertices/edges [6].

ResyncGraph(G) .

I+ Rank based on longest path lengths */

Sort v € V' based on ip(vo,v)

/= Resynchronize vertices »/

Last = cluster containing source vertex vg

foreach (unassigned c-opset ¥ in increasing ranking order)
Assign y to cluster Last by serializing ¢ — Last
Update Last if ¢ is an anchor cluster

return modified G

4.3 Making the Graph Taut

The final step in the optimization is to remove redundancies by
making the constraint graph faut, i.e. the non-prime anchors of a
vertex are made redundant by lengthening the graph appropriately.
Since the prime anchor set is necessarily irredundant, making the
non-prime anchors redundant reduces the synchronization control
cost. However, it is possible to increase the maximum offset val-
ues as a result of lengthening. Therefore, an important criterion in
lengthening is to minimize the amount of increase. The algorithm
for lengthening, called LengthenTaut, is given below.

LengthenTaut(G)
foreach (vertex v € V in topological order) .
foreach (irredundant non-prime anchor a € IR(v) — PA(v))
find forward path p = path(a,q1,---,qk,v) 1 g5 € PA(v)
lengthen p by amount [Ip(a,v)| — |o}

The algorithm for lengthening visits each vertex of the graph and
lengthens paths from non-prime irredundant anchors as necessary.
From a non-prime anchor @ to vertex v, it is possible to find a
forward path from a to v containing all anchors in the subgraph
induced by the forward edges between ¢ and v. This forward path
is denoted by p = path(a, q1,---,qk,b,v). The path is length-
ened by visiting the segments of the path starting from (a,q1),
(g1,¢2), and so on, where a path segment is increased as much
as possible until either a maximum constraint limit is reached, or
until a is made redundant with respect to v. The complexity of
the procedure is O(|V| - |A|?).

The algorithm is guaranteed to make a constraint graph taut. In
addition, the algorithm also guarantees for elementary constraint
graphs that the control offset costs are reduced, or in the worst
case remain the same. We state the following important theorem.

Theorem 4.2 Given a well-posed, elementary constraint graph
G, procedure LengthenTaut can make G taut without increasing
the maximum offset values of the anchors of G.

S Analysis and Example

In general, the interaction between anchor clusters and c-opsets
complicates the analysis of the problem formulation and its so-
Iution space. For example, it is not guaranteed that a globally
minimum cost graph is always ordered or segmented. However,
for the case of an elementary and ordered constraint graph, we

can show that it is always possible to find a minimuem control cost
COST,rea solution using our formulation. Specifically, it can be
shown that of all the possible minimum solutions, at least one of
them is segmented. Thus, by searching all possible ways to seg-
ment the graph, it is guaranteed that a minimum solution will be
found. '

We illustrate the application of our strategy in Figure 4.
The graph contains four anchors {a,b,c,d}, and five vertices
{v1, vz, v3, v4, vs}, where v3 and v4 form a c-opset. The graph
is elementary since each anchor cluster contains a single element.
Based on the ranking of longest path lengths, the algorithm im-
pose a cluster ordering [a, b, ¢, d] corresponding to the lengths 0,
5, 8, 18. An assignment of c-opsets to links is then performed,
resulting in assigning v, to Ly, v2 to La, v3 and v4 to Ly, and vs
to L.. The graph is then lengthened to make it taut, i.e. all non-
prime anchors are made redundant. This results in lengthening the
distance of a-to-b to 5, b-to-c to 8, and c-to-d to 5. The offset
cost is reduced from o7'** + o*** + 0*** =84+ 13+5=26
05+9+5=19.

6 Implementation and Results

The control optimization algorithms have been implemented in the
framework of the Hercules/Hebe High-level synthesis system. The
constraint graph model is derived from a high-level specification
of hardware behavior, which is then used as the basis for schedul-
ing and control synthesis. We present in Figure 5 the results of
applying the heuristic technique on several benchmark examples,
including diffeq, elliptic digital filter, error-correcting encoder and
decoder, and the greatest common divisor. The benchmark ex-
amples have been extended to support reset and synchronizing
sequences, indicated by the RM suffix. For each example, the
table gives the number of anchors |A|, the number of vertices
|V, the sum of the maximum offsets and the sum of the anchor
sets for (1) the full anchor set, (2) the irredundant anchor set,
and (3) after control optimization has been performed. Recall that
anchors include both the source vertex and the set of unbounded
delay operations, i.e. data-dependent while loops. In particular,
multiplication, modeled as repeated conditional addition and shift,
and division operations are anchors. This explains the relatively
large number of anchors in some of the examples. The control
implementation style is a shift-register based scheme. The mapped
control logic cost in terms of Actel cells is also given. Note that
for control-dominated designs, such as the ECC encoder and de-
coder, the reduction in control is significant in terms of the overall
reduction in area.

7 Summary

We have presented a control optimization strategy based on resyn-
chronization of operations. Using a constraint graph model that
supports concurrency, external synchronization (unbounded delay
operations) and detailed timing constraints, we showed how the
graph can be mapped to a control implementation that consists of
synchronization and offset control components. The total control

cost can be reduced by introducing synchronization redundancy in

the graph, where any modification to the graph is considered to
be acceptable as long provided the original timing constraints are
not violated. We formulated control optimization as partitioning
operations to synchronization points, and we described heuristic
algorithms based on greedy ranking to improve the computational
efficiency at the possible expense of quality. Results of applying
the control optimization strategy to examples are presented. Fu-
ture work includes investigating properties of multi-anchor clus-
ters, and optimization considering both synchronization cost and
offset cost simultaneously.

Example 1Al/IVI T Offset > “oxe* T Sync) TJA(v)]
graph Fall [Trr | Opt | Full | It | Opt |
Diffeq 14741 2T T 12 106 T32T 36
Elliptic 12/66 370 | 141 95 | 247 | 73 63
ECC encoder 6/47 62 62 42 80 | 63 43
ECC decoder 6/53 591 59] 32 92 | 76 | 49
Ged 16/38 15 7 7 45 | 28 | 28
Example Mapped logic
graph Before After
Diffeq
Elliptic 6472147 | 525/2025
ECC encoder | 246/256 203,213
ECC decoder | 316/366 2517301
Ged 320/434 320/434

Figure 5: Summary of results. The control costs are given for the
full, irredundant, and optimized anchor sets. The logic cost is the
of Actel cells for the control portion and the fotal area.

8 Acknowledgments

The authors would like to thank Bill Lin for many helpful discus-
sion and comments. This research was sponsored by NSF/ARPA,
under grant No. MIP 8719546, by AT&T and DEC jointly with
NSF, under a PYI Award program, and by a fellowship provided
by Philips/Signetics.

References

[1] R. Camposano and A. Kunzmann, “Considering timing constraints in
synthesis from behavioral description,” in Proceedings of the Interna-
tional Conference on Computer Design, pp. 69, Nov. 1986.

[2] S. Malik, E. Sentovich, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “Retiming and resynthesis: Optimizing sequential net-
works with combinational techniques,” in Pr dings of the H
International Conference on System Sciences, (Hawaii), pp. 397-406,
1990.

[3] W. Wolf, “Rescheduling for cycle time by reverse engineering,” in
Proceedings of the ACM International Workshop on Timing Issues in
the Specification and Synthesis of Digital Systems, (Univ. of British
Columbia), Aug. 1990.

[4] G. Goosens, J. Rabaey, J. Vanderwalle, and H. DeMan, “An effi-
cient microcode compiler for custom DSP-processors,” in Proceedings
of the International Conference on Computer-Aided Design, (Santa
Clara), pp. 24-27, Nov. 1987.

[5] R. Camposano and W. Wolf (Ed.), High-Level VLSI Synthesis. Kluwer
Academic Publishers, June 1991.

(6] D. C. Ku and G. D. Micheli, “Relative scheduling under timing
traints,” in Pr dings of the Design Awomation Conference,
pp. 59-64, June 1990.
[71 D. C. Ku and G. D. Micheli, “Optimal synthesis of control logic from
behavioral specifications,” Journal of VLSI Integration, Mar. 1991.

[8] D. Ku, D. Filo, and G. D. Micheli, “Control optimization based on
resynchronization of operations,” CSL Technical Report CSL-TR-91,
Stanford, 1991.

Paper 23.1
371

