
131

David C. Ku and Giovanni De Micheli
Center for Integrated Systems, Stanford University, Stanford, CA 94305-4055, USA

Abstnct. Hardware resources can be shared to reduce the area of the resulting design. The
synthesis system must ensure that no resource conflicts arise due to simultaneous access of a
shared hardware resource. With traditional scheduling formulations where operations are
statically assigned to control steps, conflict resolution simply determines whether two
operations can execute concurrently based on their control step assignment. In this case,
operations are assumed to have fixed execution delay. For hardware models that supports
external synchronization and handshaking. however, operations may have unbounded execu-
tion delay, e.g., detecting the rising edge of a signal. The presence of unbounded delay
operations invalidates the traditional scheduling and conflict resolution approaches. We
formulate in this paper conflict resolution as the task of serializing operation bound to the
same hardware resource. A technique called constrained conflict resolution is presented to
resolve resource conflicts such that the resulting design satisfies the required timing and
handshaking requirements. The timing constraint topology is used to reduce the computation
time of the algorithm. This technique extends the relative scheduling formulation to support
resource sharing under timing constraints. We describe both exact and heuristic algorithms to
resolve resource conflicts; these algorithms are implemented in a synthesis system called
Hebe that is targeted towards the synthesis of Application-Specific Integrated Circuit designs.
Results of applying the system to the design of benchmark and complex ASIC designs are

presented.

Keywords. Resource conflict resolution, high-level synthesis, automated synthesis, behavioral

synthesis, hardware model

1. Introduction
The trend of Very Large Scale Integration (VLSI) circuit designs is towards

greater density and complexity. An effective way to deal with the increasing
complexity of designs is to raise the level of abstraction at which circuits are
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designed. High-leve synthesis refers to computer-aided design approaches starting
from the algorithmic description level. The benefits of such a methodology
include shortened design time to reduce design cost, ease of modification of the
hardware specifications to enhance design reusability, and the ability to more
effectively explore the different design tradeoffs between the area and perfor-
mance of the resulting hardware.

Previous work in high-level synthesis addressed mainly general-purpose
processor and signal processing designs [1]. In these designs, the behavior usually
consists of a set of computations that are performed within a certain amount of
time. Synthesis of these designs can produce cost-effective implementations
because the synthesis system can take advantage of domain-specific knowledge to
optimize the underlying architecture. In contrast, Application-Specific Integrated
Circuit (ASIC) designs perform computations that are specific to a particular
application. An example in an Ethernet controller that coordinates the activities
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between a microprocessor and an Ethernet line. In this case the controller is
constrained to both the microprocessor architecture and the Ethernet protocol,
requiring complicated handshaking protocols to interface between concurrently
executing components and strict timing constraints on the handshaking.

We believe ASIC designs to be particularly suited for high-level synthesis
because the manual synthesis of these designs is tedious and error prone. The use
of a high-level synthesis methodology significantly reduces the design time and
cost, which is often as important as minimizing area or improving performance.
Although logic synthesis techniques are well established and have been used for
industrial ASIC chip designs [2], very few commercial designs have been synthe-
sized using high-level synthesis techniques. This lack of acceptance is most likely
due to a mismatch between the requirements of ASIC designs and the assump-
tions and capabilities of existing high-level synthesis systems. One largely unre-
solved issue is the difficulty of integrating a synthesized design with other
components in the system. In particular, a synthesized design needs to communi-
cate with other modules in the system using a given handshaking protocol and

possibly under timing requirements.
To address the issues related to ASIC synthesis, we have developed a high-level

synthesis system which consists of two parts: Hercules that performs the front-end
parsing and behavioral optimizations [3], and Hebe that synthesizes one or more
logic-level implementations that realize the given behavior [4]. This paper pre-
sents the hardware model and synthesis methodology of Hebe, focusing on its
resource sharing and conflict resolution strategies. Specifically, a novel technique
called constrained conflict resolution is presented to resolve resource conflicts by
serializing operations bound to the same hardware resource, such that the
resulting design satisfies the required timing and handshaking requirements. In
addition to supporting unbounded delay operations and timing constraints, the
technique uses the timing constraint topology to reduce the computation time of
the algorithm. This technique extends the relative scheduling formulation [5] to
support resource sharing under timing constraints.

This paper is organized as follows. We put our research in perspective by
summarizing the related research in the area in Section 2 and describing the
overall synthesis flow in Section 3. Section 4 describes the sequencing graph
model of hardware behavior that is used as the underlying representation for the
synthesis algorithms in Hebe. Hardware resources and the design space formula-
tion are described in Section 5. Section 6 presents the constrained conflict
resolution formulation and algorithms as the major contribution of this paper.
The system has been implemented and applied to the synthesis of benchmark
circuits and ASIC designs starting from behavioral level specification. We present
the experimental results and conclude in Section 7.

2. Related research

The focus of most high-level synthesis efforts todate has been on synthesizing
and optimizing the data-path [1]. While these systems have been effective in
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synthesizing certain types of designs and efficient algorithms have been developed
to address many difficult synthesis problems, they do not adequately address the
synthesis of ASIC designs with complex handshaking protocols and strict timing

requirements.
Most approaches assume that the execution delay of operations is bounded,

which stems from the use of pre-designed micro-architectural library modules as
primitive hardware elements for the data-path. This implies that hardware inter-
facing and synchronization, modeled as operations with unbounded execution
delay, are not supported. This research incorporates external interfacing and
handshaking requirements as an integral part of hardware model and performs
synthesis based on this hardware model.

In contrast to micro-architectural synthesis approaches where the final imple-
mentation is an interconnection of primitive functional blocks, this research uses
logic synthesis as the underlying synthesis base. The characterization of resources
to evaluate hardware sharing feasibility is carried out using logic synthesis
techniques to provide estimates on timing and area. This methodology is particu-
larly suited for ASIC designs that tend to rely on application-specific logic
functions. The use of logic synthesis for estimates improves the quality of the
synthesized designs and avoids erroneous high-level decisions due to insufficient

data or inappropriate assumptions.
With the exception of CADDY [6], SAW [7], and SALSA [8], most synthesis

approaches do not support detailed timing constraints. That is, they support
either no timing constraints at all or they support at most constraints on the
overall latency. This may be inadequate to describe complicated requirements on
the timing of operations. SA W, because of the heuristic nature of its scheduling
step, cannot guarantee that if the algorithm fails to fmd a solution that satisfies
the timing constraints then no solution is possible. Rigorous analysis of the
consistency of detailed timing constraints is either limited or lacking. In contrast,
our approach considers synthesis under detailed timing constraints in both the
synthesis fonnulation and the algorithms. The proposed synthesis approach in the
sequel guarantees that these synchronization and timing requirements are satis-
fied by the resulting synthesized hardware, when the constraints are satisfiable.

3. System overview

We consider synchronous non-pipelined hardware implementations. Hardware
is modeled in the HardwareC language [9] and compiled into a logic-level circuit
specification by two programs, called Hercules and Hebe. They form the front-end
to the Stanford Olympw Synthesis system, a research project in computer-aided
synthesis at Stanford University [10]. A block diagram of the Olympus system is
shown in Fig. 1. We refer the reader to [10] and [12] for the details of the system.

Hercules takes as input an algorithmic description of hardware behavior in
HardwareC [9]. It identifies the inter-operation parallelism in the input behav-
ioral description by performing compiler optimizations such as dead-code
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Fig. 2. Structural synthesis flow in Hebe.

elimination, constant and variable propagation, loop unrolling, and common
subexpression elimination. Logic operations in the description are clustered to
form blocks of combinational logic that are passed directly to logic synthesis for
minimization and delay jarea estimates. Operation chaining, where multiple oper-
ations are packed within a single control state, is supported through combina-
tional coalescing. The optimized behavior is translated to an implementation-in-
dependent description of the hardware behavior in a graph-based representation,
called the Sequencing Intermediate Form (SIF).

Hebe takes as input a hardware behavior represented by a sequencing (SIF)
graph, and produces a synchronous logic-level implementation that realizes the
original behavior. The input to Hebe consists of a sequencing graph model and
the following constraints: timing constraints that specify upper and lower bounds
on the time separation between activation of operation, resource constraints that
both limit the number of instances allocated for each resource type and partially
bind operations to specific allocated resources, and the cycle time for the final
synchronous logic implementation. These constraints can be specified either in
the input description or entered interactively by the designer. Note that they are
not mandatory. For example, if the cycle time is not given, then the cycle time is
by default equal to the critical combinational logic delay in the fmal logic-level
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implementation. The final implementation contains both data-path and control.
The data-path is an interconnection of functional units, registers and multi-

plexers.
Hebe performs resource allocation and binding before scheduling. This strategy

has the advantages of providing scheduling with detailed interconnection delays
and incorporating partial binding information to limit the number of design
choices. The structural synthesis flow in Hebe is illustrated in Fig. 2. Among the
features of the Hebe system, we would like to stress the support for:

. Hardware model with concurrency, external synchronization, and detailed timing
constraints. To provide support for the requirements of ASIC designs with
handshaking and timing requirements, our underlying hardware model sup-
ports multiple threads of concurrent execution flow, external synchronization
modeled as unbounded delay operations, and minimum and/or maximum
timing constraints on the activation of operations.

. Partial binding of operations to structure. Often the designer may wish to share
resources by manually binding certain operations to resources in order to meet
some high-level design requirements. Hebe incorporates this information to
restrict the search space for a valid implementation.

. Constraint-driven synthesis algorithms with provable properties. Synthesis al-
gorithms in Hebe are driven by timing and synchronization r~uirements
which guarantee that the resulting implementation satisfies these constraints,
or detect if no such implementations exist.

. Systemic exploration of the design space. Tradeoffs between area and perfor-
mance provide a spectrum of implementation alternatives to the designer. In
complex designs, viewing the design space as a smooth area-time curve is
overly simplistic [13]. Furthermore, the curve provides evaluation of a design
choice after it has been made rather than guiding the designer during the
decision making process. Hebe supports a systematic search of the design space
by considering all, or a subset, of the possible resource bindings. The search
can be performed either interactively or automatically, using an evaluation of
the possible design tradeoffs.

In our paradigm, resources correspond to models that are described and
invoked in the high level description. The characterization of resources to
evaluate sharing feasibility is carried out using logic synthesis techniques to
provide estimates on timing and area.

4. Sequencing graph model

The sequencing graph model is a concise way of capturing the partial order
among a set of operations. This model captures the precedence relationship
among the operations and defines the execution flow in implementing a given
behavior. To be more exact, a sequencing graph is a polar, hierarchical, vertex-
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weighted, directed acyclic graph, denoted by G.( V, E., 8). The vertices V-
{vo,"" VN} represent operations to be performed, where Vo and VN denote the
source and sink vertices. respectively, of the polar (single-source and single-sink)
graph. Directed edges E. represent sequencing dependencies among the oper-
ations. An integer weight 8(v;) is associated with each vertex VI e V representing
its execution delay.

Sequencing dependencies can arise due to data-flow dependencies extracted
from the behavioral model (i.e. a value must be written before it can be
referenced), explicit sequencing that is specified in the input description (i.e.
detect the rising edge of a control signal before reading a bus), or resource
sharing restrictions that are introduced during structural synthesis (i.e. operations
sharing the same hardware resource are serialized to avoid resource conflicts). A
directed edge Slj e E. from vertex Vi to Vj means that Vj can begin executing only
after the completion of VI; Vi is called a predecessor of vi' and Vj is called a
successor of VI'

Vertices are classified into different types according to the operations they
perform. Vertices are further categorized as either simple or complex: simple
vertices are primitive computations that do not involve other operations (i.e.
arithmetic or logic operations and message passing commands), and complex
vertices allow groups of operations to be performed. They include model calls,
conditionals. and loops, and are analogous to structured control-flow constructs in
most programming and hardware description languages. Complex vertices induce
a hierarchical relationship among the graphs. A call vertex invokes the sequencing
graph corresponding to the called model. A conditional vertex selects among a
number of branches, each of which is modeled by a sequencing graph. A loop
vertex iterates over the body of the loop until its exit condition is satisfied, where
the body of the loop is also a sequencing graph. The sequencing graph is acyclic
because only structured control-flow constructs are assumed (i.e., no goto's) and
loops are broken through the use of hierarchy. All forms of conditional branching
are represented as complex vertices in the graph model.

We separate the sequencing graph hierarchy into two components: calling
hierarchy and control-flow hierarchy. Calling hierarchy refers to the nesting
structure of procedure and function calls in the model. Control-flow hierarchy
refers to the nesting structure of conditionals and loops in the sequencing graph.
An example of control-flow hierarchy is shown in Fig. 3. Let M be a model
which is represented in general by a hierarchy of sequencing graphs. The
sequencing graph at the root of the hierarchy is called the root graph of M.
denoted by GAl' The cf-hierarchy of GAl' denoted by G':, is the control-flow
hierarchy of GAl' In Fig. 5, the cf-hierarchy of model M consists of all four
graphs in the figure.

The semantic interpretation of the sequencing graph is as follows. A vertex
executes by performing its corresponding operation. For example, to execute a
conditional vertex. operations in the selected branch are executed. Executing a
sequencing graph is equivalent to executing the vertices according to the prece-
dence relations implied by the graph "starting from the source vertex. A vertex can
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Model M

BralK:ll 0 Braid 1
Fig. 3. Example of the control-now hierarchy for model M containing a loop vertex. which in turn

contains a conditional vertex with two branches.

execute only when its predeCessors have
have multiple predecessors and multiple
threads of concurrent execution flow.

Unbounded delay operations. Each vertex represents an operation requiring an
integral number of control steps (clock cycles), possibly zero, to ex~te. The
execution delay of a vertex Vi represents the number of cycles it takes to execute.
Execution delays are defmed by the mapping 8 : V -+ Z+ from the set of vertices
to non-negative integers, where 8( Vi) ~ 0 denotes the ex~tion delay of vertex Vi.
These delays are derived either from the operation type, i.e. loading a register
takes one clock cycle, or from estimates obtained through logic synthesis, i.e.
delay is obtained by computing the critical delay through the logic expressions
normalized to the cycle time.

A problem arises for conditionals and loops because their ex~tion delays
depend on external signals and events that are not known statically. We further
categorize the vertices based on this observation by saying that a vertex has
bounded delay if the time required to execute its operation is fIXed for all input
data sequences; otherwise, it has unbounded delay and is called an anchor of the
graph. The delay associated with a bounded delay vertex depends solely on the

completed execution. Since a vertex can
successors, the model supports multiple
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nature of the operation. Examples include addition and register loading. On the
other hand, the time to execute an unbounded delay is data-dependent. Loops
whose exit condition depends on some signal value, or message passing com-
mands that synchronize between two concurrent processes are examples of
unbounded delay vertices. Unbounded delay vertices are important to specify

interfaces and handshaking protocols.

Constraint graph model. The sequencing edges represent the precedence relation-
ships that are due to data-flow and control-flow dependencies. We describe now
the derivation of a constraint graph model from the sequencing graph model with
timing constraints. The constraint graph captures the timing behavior and timing

requirements of a given sequencing graph.
Consider a sequencing graph Gs(V, E., 8). Let T(vj) represent the start time of

Vi' i.e. the time at which Vj begins execution with respect to the source vertex of
Gs' Detailed timing constraints consist of the following:
. Minimum timing constraints Ijj ~ 0 from Vj to vi' requiring that T(Vj) ~ T(Vj)

+ IjF This constraint implies that Vj should be activated at least I. cycles after
th . . f II

e activation 0 Vi'
. Maximum timing constraints Ujj ~ 0 from Vi to Vi' requiring that T(Vj) ~ T(Vj)

+ Ujj' This constraint implies that Vj should be activated no more than Uij
cycles after the activation of Vi'

Timing constraints are defined only between vertices of the same sequencing
graph; constraints across the graph hierarchy is not permitted.

The timing behavior of a sequencing graph G.(V, E., 8) under timing con-
straints is captured by a polar, edge-weighted, directed constraint graph
G( V, E, ",). A constraint graph is an alternate representation of the sequencing
graph which emphasizes its timing requirements. Vertices of the constraint graph
are identical to the vertices of the sequencing graph; they represent the activation
of the corresponding operations. Edges capture the minimum and maximum
timing relationships between the activation of operations. They are categorized
into forward (Er) and backward (E b) edges, i.e. E = Er U Eb' Weights are
associated with the edges by the mapping", : E - Z, which assigns to each edge
ejj a weight "'( ejj) that corresponds to the following inequality constraint

between Vi and vi:

T(Vi) + "'jj~ T(vj)

Forward edges have positive weights and represent minimum timing con-
straints; backward edges have negative weights and represent maximum timing
constraints. The derivation of edges and weights from the sequencing graph and
timing constraints is described below.
. Sequencing edge Sij E E.: Create a forward edge eij E Er with weight "'( ejj) -

8(v;), modeling a minimum timing constraint equal to the execution delay of

v..I. Minimum timing constraint Iii: Create a forward edge eij E Er with weight

"' (e..) = 1..II IJ'
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. Maximum timing constraint "ij: Create a backward edge e ji E Eb with weight
"'( eft) - "ij' because T(vj) ~ T(v;) + "ij can be rewritten as T(vj) - "/j ~ T(Vi).

The length of the longest path betw~ two vertices Vi and Vj is denoted by
length ( V;. vi)' where all unbounded delays are set to zero; it is the minimum
timing separation between Vi and Vj for all input data sequences.

S. Hardware resources and the design space

The data-path in the final hardware implementation consists of three types of
elements: functional units, registers, and multiplexers. Functional units corre-
spond to arithmetic operations (e.g. + or .) or to generic models (e.g. a
procedure describing some application-specifc functions). Registers are intro-
duced either by the input behavioral specification or as required to implement
hardware sharing. Multiplexers form the interconn~t logic to steer appropriate
signals between functional units and registers.

In our approach, a model in the input description corresponds to a resour~e
that can be allocated and shared among the calls to that model. Each different
implementation of the called model represents a particular resource type, which
has its own area and performance characteristics. Predefmed operators, such as
+ or -, are either converted into calls to the appropriate library models or
implemented, by default, as combinational logic. Therefore, the only operations
whose implementing hardware can be allocated and controlled by the designer
are calls to procedure or function models. This model of resources implies that
resource sharing is possible only for call vertices in the sequencing graph model.
We assume that the calling hierarchy is traversed bottom-up, where all called
models in the control-flow hierarchy of a model have already been synthesized
before the given model can be considered for synthesis. Hebe also assumes the
resource type implementing each call vertex is specified prior to synthesis; it
performs tradeoffs in the number of resource that are allocated, not in the types
of resource implementing the operations.

There are several motivations for treating models and resources in this manner.
First, since many complex ASIC designs use application-specific logic functions
to describe hardware behavior, the delay and area attributes of these modules are
not known a priori since they depend on the particular details of the logic
functionality. HaVing the ability to synthesize each model in a bottom-up fashion
according to its distinct needs allows the calling models to more accurately
estimate their resource requirements. Second, the granularity of resource sharing
can be controlled by the designer by modifying the calling hierarchy in the high
level specification. Finally, instead of relying on parametrized and predefined
modules, logic synthesis t~hniques applied hierarchically to each model can
significantly improve the quality of the resulting design.

5. J. Design space formulation

For a sequencing graph G.( V, E., 8), we focus our attention on the subset of
vertices in G.- (cf-hierarchy of G.) whose corresponding resources can be shared.
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Gs
resource type A: { A 1, A2, A3}
resource type B: {B1, B2}

GioCf'

~

""

~~

Shareable opera~
V={ A1, A2, A3, 81, 82}

Fig. 4. Example of sequencing graph with 3 calls to model .4. and 2 calls to model B, where

V- {AI, .4.2, .4.3, 81, B2}.

These operations are called shareable operations and are denoted by Y ~ V',
where V. represents all vertices belonging to graphs in G,.. Shareable operations
define the scope within which resource allocations and bindings are defmed.
Consider, for example, the sequencing graph hierarchy of Fig. 4. The root graph
G, contains 2 calls to model A and 1 call to model B. It also contains a loop, the
body of which is a sequencing graph containing two call vertices: one to A and
the other to B. The set of shareable operatio~ is Y = {AI, A2, A3, BI, B2}.

Let Y denote the set of resource types in V. For example, the set Y = {model
A, model B} represents the Y resource types for the example in Fig. 4. The
operation set for type t eY, denoted as O(t) ~ Y, consists of shareable oper-
ations with resource type t. A resource allocation is formally defmed as follows.

Definition 5.1. Given a sequencing graph Gs(V, Es, 8) and resource types .9'", a
resource allocation is the mapping a:.9'" - Z+ from the set of resource types to
positive integers, where a( t) denotes the number of resources allocated for resource

type t E.9'".

Each resource type in .9'" must have at least one resource, i.e. a( t) ~ 1 'vi t E .9'",
since otherwise an implementation is not possible. A resource instance in an
allocation a is described by a pair (t, i), where 1 E.9'" denotes the type of the
resource instance and i (1 ~ i ~ a(t» denotes the specific allocated instance. For
examples, Fig. 5 shows a resource allocation for the sequencing graph example in
Fig. 4: 2 instances of model A (a( A) - 2) and 1 instance of model B (a( B) = 1).

The range of possible allocations for model A is 1 ~ a(A) ~ 3 and for model Bit

is1~a(B)~2.
Given a resource allocation a, a resource binding for a sequencing graph G is

A s
an assignment of shareable operations V to specific instances of the allocated
resources. It is defined as follows.
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Operation set O(A)

operation set
of instance O(A,l)

operatiofl set
ofillStance O(A.2)

operation set
o/instance 0(B.1)

Shareable operations Allcx:aled ~
( Al.A2.A3,BI,B2 ) a(AF2 a(SFl

Fig. 5. lllustrating the relationship between shareable operations and allocated resoUr0e5. The
allocation is a( A) - 2 and a( B) -I, and the arcs represent the resource binding .8.

a(A)-1
(b)

a(A)-4
(0)

~rx:i~

graph

(8)

a(A)-2 a(A)a2
(d) (e)

Fig. 6. Examples of different resource bindings, where operations within a shaded block are bound
to the same resource instance.
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Definition 5.2. A resource binding of a sequencing graph G. given a resource
allocation a is a mapping fJ: V -+ (..o/"X Z+), where fJ( v) = (t, i) if operation v e V
is being implemented by the ith instance of resource type t e9", 1 ~ i ~ a(t);

otherwise, fJ(v) is undefined.

A vertex for which {J is defined is called a hardware-bound vertex; otherwise it is
called an hardware-unbound vertex. If there are no hardware-unbound vertices in
V, then {J is a complete binding; otherwise, it is a partial binding. Figure 5 shows
a binding (J defined on the sequencing graph example of Fig. 4 for the allocation
(a(A) = 2, a(B) = I}.

Examples of different resource bindings for a sequencing graph containing 4
calls are shown in Fig. 6 (b) through (e). All operations grouped by the shaded
rectangle share the same hardware resource in the final implementation, e.g. the
binding of (b) utilizes one resource, the binding of (c) utilizes four resources.

A partial binding can be defined for more than one allocation, where it is
assumed that the number of resources required by the partial binding is satisfied
by these allocations. This leads to the concept of compatible bindings, defined

below.

Definition 5.3. A complete binding Pc is compatible with a partial binding Pp for a
a A

resource a//ocation a, denoted by Pc -< Pp' if for a// hardware-bound vertices v E V.
the implementing resource instance is identical: Pp( v) = Pc( v).

In other words, a compatible binding can be derived from a given partial binding
by mapping all hardware-unbound vertices to resource instances. Obviously, if .Bp
is already a complete binding (i.e. all operations are pre-assigned to resources),
then there is a single compatible binding.

Each resource instance (t, i) is bound to a subset of vertices °(1./) s;: V called
the instance operation set of (t, i), i.e. O(I.n = {v 1.B(v) = (t, i)}. ~e cardinality
of 0(1,;) is denoted by 10(1,1) I. Instance operation sets partition V into groups,
each of which is implemented by a particular allocated resource instance. Obvi-
ously, an instance operation set of (t, i) is a subset of the operation set of t, i.e.
°(1,;) s;: O(t), and the union of the instance operation sets for all allocations of t
is equal to the operation set of t, i.e. U7~'JO('./) = O( t).

If there is a single instance allocated for a particular resource type t, then all
operations with resource type t are automatically bound to that instance. If there
is a single resource type t in the graph, then t is implied and the instance
operation set is abbreviated as 0;. For example, instance operation sets for a
binding.B are shown in Fig. 5. In Fig. 6(b), there is a single instance operation set
{At, A2' AJ' A4}; in Fig. 6(c), there are four operation sets {At}, {A2}, {AJ},
{A4}' The dermitions presented in this section are summarized in Table 1.

Given resource constraints in the form of a partial binding .Bp and a set of
resource allocations {at,..., ak }, the design space of a sequencing graph
Gs( V, Es, 6) is defined as follows.
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Table 1
Summary of resource allocation and binding terminology

Root of sequencing graph hierarchy
Control-now hierarchy of G.
All vertices in cf-hierarchy G..
All call vertices in V.'
Set of all resource types for G.
Subset of V with type 1 E .1""
# of allocated instances of type 1 E §"
ith instance of type 1 E.1""
Partial mapping of V to a. A

Complete mapping of V to a
All vertices bound to resource instance (I. i)

root graph
cf-hierachy of G.
operation domain of G.
shareable operations of G.
resource type set
operation set of t
resource allocation for t
resource instance
partial resource binding
complete resource binding
instance operation set of (t. i)

Definition 5.4. For a set of resource allocations {a),..., ak} and a partial binding
fJp' deSign space S of G. is the entire set of possible compatible bindings, i.e.

a,
S = {fJc I fJc -< fJp' Val}'

The design space of possible resource bindings for Fig. 6 with allocation a = 2 is
illustrated in Fig. 7. There are seven different resource bindings in the design

space.
An important aspect of the design space formulation is that it is a complete

characterization of the entire set of possible design tradooffs for a given alloc-

Fig. 7. The design space for an allocation of 2 ~.
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ation of resources. This formulation allows partial binding information to be
uniformly incorporated, where the partial binding is used to limit the design
space so that the synthesis system focuses on the remaining unmapped oper-
ations. At the extreme, if all operations are bound initially, then the design space
trivially reduces to a single point.

5.2. Design space exploration

With the design space formulated as a set of resource bindings for a given
resource allocation, Hebe explores the design space to find a favorable implemen-
tation with respect to a particular design goal, such as minimal area or minimal
latency. Any valid implementation must satisfy both resource and timing con-

straints.
A set of resource allocations {al"'.' ak} is specified either by the user

manually or by the system automatically 1. Hebe supports both exact and
heuristic strategies to explore the design space; they are summarized below.

. Exact design space exploration: Exact exploration finds an optimum hardware
implementation for a given design. This strategy synthesizes a logic-level
implementation for each point in the design space. For many ASIC designs,
this is an appropriate strategy because of the restricted size of the design space
that sterns from the few number of shareable operations and resources.

. Heuristic design space exploration: For designs with a large design space,
exhaustive synthesis may be prohibitive. To address this difficulty, two heuris-
tic strategies are supported by Hebe. The first strategy constructs only a
portion of the design space and the second strategy evaluates and ranks the
design space according to a set of cost criteria. The resource bindings with the
most favorable cost are synthesized first to determine if they are valid under
timing constraints.

Details of the design space exploration strategy are described in [10] and [12].

6. Resource conflict resolution

A resource binding implies a certain degree of hardware sharing. It is necessary
in general to resolve resource conflicts present in the binding. Resource conflicts
arise when two operations bound to the same resource execute in parallel. Most
synthesis approaches formulate conflict resolution as a scheduling problem where
operations are assigned to fixed control steps. Resource conflict occurs if two
operations bound to the same resource are assigned to the same control step and
they are not in mutually exclusive conditional branches. Consider for example the

t Note that an allocation of "/(1) means that exactly "/(1) resources are used. Therefore, allocating

up to 3 resources is represented by the allocations {I, 2, 3}.
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force-directed scheduling technique [14]. Operations with similar resources are
first scheduled to reduce their concurrency, then they are bound to hardware
resources subject to this schedule. The binding step ensures that no resource
conflicts will arise. This approach is, however, restricted to bounded delay

operations.
The support for unbounded delay operations in the sequencing graph model

invalidates this formulation because operations can no longer be assigned to fIXed
control steps. Furthermore, detailed timing constraints impose bounds on the
activation of operations. These constraints must be analyzed for consistency. To
address these issues, the relative scheduling formulation [5] was developed in
which operations are activated with respect to time offsets from the completion of
a set of anchors, i.e. unbounded delay operations. Resource conflict resolution is
formulated as the task of serializing the graph model so that operations bound to
the same resource cannot execute in parallel.

This section presents a technique called constrained conflict resolution that
takes as input as sequencing graph with timing constraints and a resource
binding. It serializes the sequencing graph to resolve the resource conflicts such
t~at the timing constraints are still satisfied after the serialization. In addition to
the support for unbounded delay operations and detailed timing constraints, this
technique uses the topology of the timing constraints to improve the computation
time of the resolution algorithm. Resource sharing among mutually exclusive
conditional branches is also supported in this formulation. Once the graph model
has been appropriately serialized. relative scheduling is performed and the
corresponding control logic is generated. If the resource conflicts cannot be
resolved under timing constraints, then another resource binding is selected as
candidate for synthesis. The consistency of timing constraints is based on the
relative scheduling formulation.

6.1. Review of relative scheduling

Before describing the conflict resolution strategy, we first briefly describe the
main results in relative scheduling as necessary background for the conflict
resolution formulation. The interested reader is referred to [5] for further details.
Given a constraint graph G(V, E, ",), we use the set of anchors A as reference
points for specifying the start times of the operations, where the anchors consist
of the source vertex Vo and the set of unbounded delay vertices in G. We defme
the anchor set A(Vi) of a vertex Vi as the set of anchors that are predecessors to
the vertex, representing the unknown factors that affect the activation time of the
vertex. In particular, for each anchor 0 E A( Vi)' the following condition holds for
all values of unbounded delay 8(0): length(o, Vi) ~ 8(0). The start time T(Vi) of
a vertex Vi is then generaliZed in terms of fIXed time offsets aa(Vi) from the
completion of each anchor 0 E A( Vi) in its anchor set. The expression for the
start time T( Vi) is defined recursively as follows:

T(Vi) = max (T(o) + 8(0) + aa(Vi)}
aEA(o/)
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A minimum relative schedule of a constraint graph is the set of minimum offsets
for all vertices of the graph.

An important consideration during scheduling is whether the timing con-
straints can be satisfied for any value of the unbounded delay operations. We
have introduced the concept of feasible and well-posed constraints in the presence
of unbounded delays [5]. A constraint graph is feasible if the constraints are
consistent assuming all unbounded delays are set to zero. A constraint graph is
well-posed if the constraints are satisfied for all values of unbounded delays. A
relative schedule is guaranteed to exists if and only if the graph is well-posed. We
state without proof in this paper that a constraint graph is well-posed if and only
if (i) it is feasible, and (ii) no unbounded length cycle exists in the graph [5]. The
time complexity of making the constraints well-posed and the scheduling al-
gorithm are both polynomial. This allows relative scheduling to be effectively
integrated within the conflict resolution.

6.2. Conflict resolution formulation

A resource binding is valid if it is possible to resolve its resource conflicts and
still satisfy the required timing constraints. For a given resource binding ,8, recall
that an instance operation set 0(1.;) of,8 is a subset of vertices that are bound to an
allocated resource instance (t, i). Obviously, resource conflicts will occur if the
vertices in 0(1.;) can execute in parallel. An implementable binding is defined as
follows.

Definition 6.1. An instance operation set 0(1,;) is impiementable if the elements of
°(1,;) are disjoint in time, i.e. they do not execute concurrently. Given a binding.B of
a constraint graph G(V, E), Gis implementable if every instance operation set in .B

is implementable.

Two operations op1 and op2 are disjoint in time if one of the two following
conditions holds: (1) op1 is serialized with respect to op2 in the graph, such that
op1 can execute only if op2 has completed execution or vice versa, and (2) op1
and op2 each belong to different mutually exclusive branches of a conditional.
The two cases are illustrated in Fig. 8. Since the conditional branching structure
cannot be arbitrarily altered without changing the algorithmic flow of the model,
we resolve resource conflicts by serializing operations. The example in Fig. 8
illustrates the hierarchical control-flow of the sequencing graph model. In particu-
lar, elements of an instance operation set 0(1,;) may not all belong to the same

sequencing graph.
To address this issue, conflict resolution for an instance operation set °(1,;) in a

sequencing graph GM is performed hierarchically in a bottom-up manner. A
candidate operation set 0(1.;)( G) for each graph G in the cf-hierarchy Gt, is
identified as candidates to be serialized. A vertex v is a candidate if v belongs to
the instance operation set 0(1.;) or if one or more elements of 0(1.;) belong to
graphs in the cf-hierarchy induced by v.
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OPt serialized w.r.t. on OPl aoo on mUtually exclusive
(a) (b)

Fig. 8. Two cases when opt and op2 arc implementable: (a) when they arc serialized with eaCh other,
or (b) when they reside in mutually exclusive conditional branches.

We consider in the rest of this section a single constraint graph G that is
derived from a ~uencing graph with timing constraints, where conflict resolu-
tion has been performed on all graphs in its cf-hierarchy G.. Therefore, the term
.. instance operation set" in the ~uel refers to the candidate operation set of

°(1./) with respect to Go The objective in conflict resolution is to resolve the
conflicts among elements of the set °(1./)( G). An ordering of the instance
operation set is defmed as follows.

Definition 6.2. An ordering of an instance operation set O(tol)( G), denoted by
(01' 02'...' Ok) where k = I O(I,i)(G) I, is a serialization of the vertices of O(tol)(G)
in G(V, E) such that in the resulting constraint graph, OJ is a predecessor to °j+1'
1 ~j ~ k - 1.

The activation of the vertex OJ E 0(1./) in an ordering must depend on the
completion of the preceding vertex °j-l E 0(1.;) in the ordering. An ordering for
an instance operation set 0(1.;)( G) is a sufficient condition to ensure that 0(1./)( G)
is implementable. It is a valid ordering if the resulting serialized graph G satisfies
the timing constraints, i.e. the graph is well-posed [5].

6.3. Constraint topology

This section analyzes the topology of timing constraints in a constraint graph
G( V, E). We describe several concepts that are used in the conflict resolution
formulation. Let the target instance operation set 0(1.;)( G) be denoted by 0 ~ V,
where we dropped the terms (t, i) and G for conciseness. The instance operation
set 0 consists of k - I 0 I vertices, denoted by 0;, i = 1,.. . , k. Each vertex °1 E 0
has an associated execution delay 8( OJ) that can be bounded or unbounded. In
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the simplistic case of flat graphs, all elements of 0 are call vertices to the same
model; therefore, they have identical execution delays. However, for hierarchical
graphs, unequal execution delays may result.

A cycle in the constraint graph represents a cyclic timing relationship among a
set of vertices. It has been shown that a violation of timing constraints can occur
if the constraint graph is unfeasible or if the constraint graph is ill-posed. A
constraint graph is feasible if and only if no positive cycle exists in G assuming
unbounded delays are set to zero; it can be made well-posed if and only if no
unbounded length cycles exist in G. In both cases, timing constraint violation
occurs in the presence of cycles in the graph model. Based on this observation, we
partition the elements of the instance operation set by introducing the concept of
operation clusters, defined below.

Definition 6.3. A n operation cluster 'I of an instance operation set 0 is the
maximal subset of vertices in 0 that is strongly connected, i.e. there exists a directed
path between every pair of vertices in the operation cluster. I 'II denotes the
cardinality of 'I.

Theorem 6.1. A partial order exists among the operations clusters of an operation
set.

Proof. Elements of an instance operation set are strongly connected in the
constraint graph. Since strong connectivity is an equivalence relation, two oper-
ation clusters cannot be connected by a cycle. This is the definition of partial
order. 0

The set of operation clusters is denoted by n = {~i' i = 1,..., I n I}, where I n I
is the number of operation clusters in O. The operation clusters form a partition
over the elements of 0 because the property of strong connectivity is an
equivalence relation. We illustrate the concept in Fig. 9, where the dotted arcs
represent backward edges with negative weights and the solid arcs represent
forward edges with positive weights. There are two operation clusters C1 =
{A, B, C} and C2 = {D, E} in the example. A partial order is formed over the
two clusters, i.e. from C1 to ~.

This partial order over the operation clusters provides the basis for a conflict
resolution strategy based on decomposition. Specifically, the problem of finding a
valid ordering for an instance operation set is divided into two steps:
. Ordering among the operation clusters: Find a linear order of operation clusters

that is compatible with the induced partial order in n, and
. Ordering within each operation cluster: Find a valid ordering for the vertices

within each operation cluster.
We state the following theorem.

Theorem 6.2. If valid orderings exist for the vertices inside each operation cluster
~; E 11, ; = 1, . . ., I 111, then any ordering of operation clusters that is compatible
with the partial order induced by 11 is a valid ordering for O.
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- Forwant edge
- -- Backwant edge

Fig. 9. Example of an instance operation set with 5 vertices {A, S, C, D, E}. Two operations
clusters are fonned: C1 - {A, S, C} and ~ - {D, E}.

Proof. Assume each operation cluster has a valid ordering. Since clusters are not
connected by a cycle. the serialization of one cluster does not affect any cyclic
constraints of the other operation clusters. Since each cluster is ordered and no
constraints are violated by ordering among the clusters. the resulting ordering is
valid for the entire instance operation set. 0

With Theorem 6.2. the problem of finding a valid ordering for an instance
operation set 0 has been reduced to the problem of finding a valid ordering for
the elements of an operation cluster ~; E ll. The formation of operation clusters
is strongly dependent on the extent to which operations are related by timing
constraints. By linking the complexity of the resolution effort with the complexity
of operation clusters. we take advantage of the topology of constraints in finding
an efficient serialization.

6.4. Orientation and polarization

We introduce in this section the concepts of orientation and polarization of an
operation cluster. For conciseness. we consider one operation cluster 't' that
contains I't'l vertices. i.e. 't'={cili=I I't'I}.

We make the following assumptions. First, the cardinality of the operation
cluster must be greater than one ( I 't' I > I). since otherwise the ordering is trivial.
Second. each vertex Ci E 't' must either be an unbounded delay operation (i.e.
anchor) or have non-zero bounded execution delay. i.e. 8(Ci) > O. Note that
registers have already been introduced prior to conflict resolution to latch the
outputs of the shared resource. For example. the execution delay for shared calls
to a combinational adder is 1 cycle because of the latching delay.
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c; E ~ is a predecessor to another vertex Cj E ~ if there exists a pair (Ct, Cj) E ~..;
successors are defmed in a similar manner.

Based on this predecessor-successor relation, the leaves (roots) of an orienta-
tion fJ'.. are the subset of elements of ~ that have no successors (predecessors).
They are denoted by ~:-f and ~:o', respectively. Returning to the example in
Fig. 10, the roots of the orientation are : A, B} and the leaves are {D, E}.

6.4.2. Polarization
It is straightforward to show that any valid ordering of ~ must be compatible

with the partial order induced by the orientation ~9" This observation implies
that the first element of any valid ordering must be a root, and similarly the last
element must be a leaf. For a root-leaf pair (r, I): r e ~~, Ie g:-" r.,.. I, we
can make the orientation polar (single-source and single-sink) by serializing from
r to all other vertices and from all vertices to I. We fonnalize this observation in
defining a polarization.

Definition 6.5. A simple polarization with respect to r E ~~ and I E~:-r of an
orientation 9,#, r + 1, denoted by ~,#(r, I), is the relation that is derived from
union of 9,# with the relations (r, v), 'v'v + rand (w, I), 'v'w '" I. An (extended)
polarization, denoted by .9"; (r, I), is .9'..( r, I) extended with the all pairs (v, w)
such that length(w, v) + a(v) > O.

The reason for disallowing the serialization from w to v if the condition
length(w, v) + 8(v) > 0 holds is to avoid creating a positive cycle. Figure 11
shows an operation cluster of 5 vertices {VI' V2' V3' v.' v,}o Vertices V2' V3 and v.
are connected with one another by negatively weighted edges representing maxi-
mum timing constraints, i.e. wi)zoi)z - - 3 means that V2 can start no more than 3

cycles after the activation of V3° The orientation ~ is the subgraph induced by
the positive weighted edges, where the roots consist of ~rooc - {VI' V2' V3' v.}
and the leaves consist of ~Iea' = {VI' V3' v,}. A simple polarization ~(VI' v,)
adds edges from VI to all remaining vertices and from all non-leaf vertices to v,.
The extended polarization ~.(vl, v,) considers in addition the value of the
negatively weighted edges. For example, (V2' V3) E~.(vI' v,) becuase a positive
cycle is formed if V3 with execution delay of 4 is serialized to V2°

Theorem 6.3. If a cycle exists in a polarization ~:('" I), then no valid ordering
exists that is compatible with the polarization.

Proof. A pair (x. y) in the polarization implies a precedence relationship between
x and Y. i.e. x must be serialized beforey. Assume the presence of a cycle in the
graph. denoted by (x. Yl)' (Yl' Y2)"..'(Yk' x). By transitivity of the precedence
relationship. the cycle implies that x must be serialized with respect to x. which is
inconsistent. Therefore, since any serialization must be compatible with the
polarization. no valid ordering exists if a cycle exists in the graph. 0
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Any valid ordering of an operation cluster must be compatible with one of its
polarizations. There is a finite number of polarizations for a given orientation.
The total number of possible polarizations for an orientation 9,# is given by the

expression:

l'I~:-rl# polarization = IfIJ:;o' IfIJ:;o' nfIJ~ear I

where the I fIJ~t n fIJ~ear I term corresponds to the isolated vertices in the

orientation.
Figure 12 shows an operation cluster with 5 vertices. The bold arcs are due to

the orientation and the shaded vertices denote root and leaf vertices in a
polarization. There are 2 . 2 - 0 = 4 polarizations for this cluster. The concept of
polarizations allows us to prune the search for a valid ordering. Since the simple
polarization fIJ,,(r, I) is a restriction of the polarization fIJ-1(r, I), we use strictly
fIJ -1 ( r, I) in the rest of the section.

6.5. Properties of polarizations

This section describes two theorems related to polarizations that are used as
filters to speed the search for a valid ordering. The first theorem is related to the
presence and position of anchors in a given polarization.

Theorem 6.4. For a polarization 9:(r, I), if any non-leaf vertices is ~ in an
anchor, then no valid ordering exists for the polarization.

Proof. Assume there exists a non-leaf vertex v:# 1 with unbounded execution
delay. A valid ordering of ~:(r, I) implies that v must be serialized with respect
to I. Since v has unbounded execution delay, the serialization requires introduc-
ing an edge with unbounded weight to the constraint graph. The vertices in ~ are
however strongly connected, meaning that an unbounded length cycle has been
formed. This means the timing constraints cannot be satisfied, and no valid
ordering exists. 0

The following theorem provides an effective and exact pruning measure that is
used in the exact conflict resolution algorithm, described in Section 6.6.2. The
theorem states that the sum of the execution delays of the vertices to be serialized
(}:"e".".,8(v» must not exceed the allowed maximum timing constraint from /
to r, i.e. length( /, r).

Theorem 6.5. Consider a polarization !1";(r, I). If the following condition holds:

length(/,r)+ r. 8(v»O
DE '# .v~1

then no valid ordering exists for the polarization.

Proof. A valid ordering within an operation cluster implies that all vertices are
serialized to form a chain. Given a polarization (r, I), r is the first element of the
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SinfJ/e ~ p(vf. VS)

Extended poIatlza#on P"(V1, VS)

Fig. 11. Illustrating an operation cluster and its orientation ~,a simple polarization ~(Vl' us), and
the extended polarization ~.(Vl' us).

chain and I is the last element of the chain. The minimum length of such a chain
is equal to the sum of the execution delays of the vertices excluding the leaf I, i.e.
EvE'I.V.,8(v). A necessary condition for a valid ordering is that no positive
cycles are formed in the resulting constraint graph. Consider the cycle formed by
the chain and the backward path from I to r, the length of the latter is denoted
by length( I, r). If the cycle has positive length, then the resulting graph is invalid
and no valid ordering exists. 0

6.6. Algorithms for conflict resolution

Two algorithms for conflict resolution are presented in this section. The input
is a resource binding .B consisting of a number of instance operation sets. The
instance operation sets in fJ are selected in turn. For a given instance operation
set 0, its operation clusters are first identified using standard graph techniques
such as cycle detection or path tracing. The following steps are then performed
for each operation cluster 't'j in 0:
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Polarization (a,d) Polarization (a,e)

Polarization (b.d) Polarization (b.e)
Fig. 12. Four possible polariDtions for an operation cluster where bold arcs represent the

orientation.

1. Identify the orientation 9". The orientation is obtained by categorizing the
edges based on the sign of their weights. The roots 9:;0' and leaves .9""eaf of
the orientation are identified.

2. Select a polarization .9'J(r, I). A particular polarization with root r and leaf I
is selected. If a cycle exists in the polarization or if the polarization violates
the condition in Theorem 6.4, then it is discarded and another polarization is
selected. If all polarizations are invalid, then the resource conflicts for the
given operation cluster cannot be resolved under timing constraints.

3. Apply heuristic ordering algorithm. A polynomial-time complexity heuristic
algorithm is performed to find a valid ordering with the goal of minimizing
the latency of the resulting hardware. If a solution is found, another cluster is
selected as candidate and the steps are repeated until all clusters have been
ordered. Otherwise, the exact ordering algorithm in the next step is performed.

4. Apply exact ordering algorithm. A branch-and-bound ordering algorithm is
applied if the heuristic fails to find a solution. The exact algorithm is
guaranteed to find a solution if one exists. Theorem 6.5 is used in the cost
function to prune the branch-and-bound search.

For designs with a large number of possible orderings, the exact ordering
algorithm (Step 4) can be skipped. In this case, no guarantee on the existence of a
solution is possible if the heuristic (Step 3) fails.

After the operations within each clusters have been serialized, the clusters are
linearly ordered compatible with the original partial order. This linear order can
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current = I; / * construct ordering upwards * /
while (unordered candidates exist) (

Candid = compatible(Ord);
/ * select most constrained candidate * /
Vy = Select arg minzeCandid{ j(z)};

Add Vy to the ordering Ord and serialize graph;
Recompute all-pairs longest path;
/* check timing constraints * /
if (positive cycle formed)

return no valid ordering foun,d;
current = v .

>,'
}
return valid ordering Ord;

serializing Vy with respect to current, the length of the longest path between them
is the maximum of the length 8( Vy) of the serializing edge and the previous
longest path length. Note that by definition of clusters the longest path is defined
between every pair of vertices in a cluster.

Intuitively, the slack is a measure of the length of the longest cycle that would
be formed if Vy is selected and serialized as the next element in the ordering Ord.
I t must always be positive since otherwise the serialization is not valid. Among
the possible candidates, the one with minimum slack is selected as the next
element in the ordering. The procedure to incrementally construct an ordering
Ord = ( . . .) is described in the heuristic ordering Procedure Heuristic-order.

The routine compatible(Ord) returns a set of candidates with respect to a
partial ordering Ord. To define it, we first augment the original polarization
.9':(r, /) with the partial ordering Ord = (Ord"...,Ordl"') by adding the
relations {(Ordj,Ordj+l)' i~j~ 1~I-l} to .9':(r, I). An unordered element
Vc is in compatible(Ord) if there exists no other candidate Wc E compatible(Ord)
such that the relation (vc' wc) is in the augmented polarization.

At each iteration of the loop, the graph is serialized with respect to the
constructed partial ordering. This ordering is constructed incrementally until the
root r is reached. At each iteration, the serialized graph is checked for con-
sistency. Consistency analysis involves computing the longest path lengths be-
tween pairs of operations, which using Floyd's algorithm requires complexity
0( I ~ 13). Therefore, the overall procedure has 0( I ~ 14) complexity.

Example. We illustrate the application of procedure Heuristic - order in Fig. 13 to
an operation cluster consists of 7 vertices { VI'" . . , V7}' starting with the polariza-
tion {J'. ( VI' V7). Th~ partial order Ord is constructed from the leaf V7 upwards
to the root VI. At step 1, the candidates based on the partial order of the
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rll- 13. Example or the heuristic ordering algorithm applied to a cluster with 7 vertices.

polarization (represented by bold arcs) are {v.. v,. V6}' The slacks for these
candidates are:

/(11.) - - (max{2, - 2) + 0 + (-5» - 3

/(o,) - - (max{2. - 2) + 0 + (-10» - 8

f(~) - -(max(2,l) + 0+ (-7» -;

Vertex v. has minimum slack and hence is added to the partial ordering
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Ord = (v., V7)' The graph is serialized accordingly. At step 2, the candidates are
{vs, v6}. The slacks for these candidates are:

f (v,) = - (max{2, - 2) + 2 + -10» - 6

!(V6) = -(max(2. -4)+2+(-7»-3

Vertex V6 has minimum slack and is added to Ord = (V6' v.' v7). The algorithm
repeats until the root vertex VI is reached. The final order (VI' v2' vs, V3' V6' v.'
V7) results in a valid constraint graph.

6.6.2. Exact ordering search
The heuristic ordering strategy in the previous section may fail to find a valid

ordering in some cases. This section presents an exact ordering algorithm based
on branch-and-bound called Exact - order that is performed to find a valid
ordering for a given polarization 9;(r, I). If a valid ordering is not found for
this polarization, the algorithm is applied to another polarization. If a valid
ordering is not found for any polarization, then it is not possible to resolve the
conficts in the operation cluster ~.

This recursive algorithm constructs an ordering incrementally, starting from
the leaf I of the polarization. The partial ordering that is being constructed is
denoted by Ord = (Ord"...,Ord",,); the index i is the index of the current
element in the partial ordering, 1 ~ i ~ I ~ I. Note that the first and last elements
of Ord are the root and leaf vertices, respectively. The procedure is described in
the exact ordering algorithm Exact _order, where the routine compatible(Ord) is
the same as in the previous section.

The ordering is complete when i = 1, whereupon the procedure records the
valid ordering Ord and returns true. Otherwise, one of the candidates in the set
returned by compatible(Ord) is added to Ord. For each candidate, pruning is
performed to filter out candidates that will violate timing constraints. The
pruning strategy is based on defining for the subsequence (Ord"..., Ord 1"1) a
cost function, denoted by cost(Ord;) representing a bound on the length of the
longest path from the root vertex r to the leaf vertex I, assuming the partial
ordering is applied. Specifically, the cost function for a subsequence
(Ord;,...,Ordl"l) is given as follows:

cost(Ord;) = I L 8( v)} + length(Ordi, I)

've'ls.t.vEOrd

The first tenD is a lower bound to the longest path length of the remaining
unordered vertices after they have been serialized. The second term length(Ordi, I)
represents the longest path length from the first element Ordi of the subsequence
to the leaf I. Theorem 6.5 guaranteeS that cost(Ordi) is always a lower bound to
length( r, I) in the serialized graph. The branch-and-bound strategy terminates
when the flfst valid ordering is found.
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Procedure Exact _order(partial ordering Ord, current index i)

if(i=l){
Record valid orderig Ord;
return TRUE;

}
/ . try each compatible candidates. /
foreacb (z E Compatible(Ord) (

Append z to the ordering Ord; ,

/ . prune based on cost . /
if (cost(Ord,) + length(/, r) < 0) {

Serialize graph subject to Ord;
if (resulting graph valid)

if (Exact _order(Ord, i-I) = TRUE)
return TRUE;

/ . backtrack. /
return FAlSE;

)

7. Implementation and design experiences

Hercules and Hebe have been implemented in C, with approximately 140000
lines of code. Several digital ASIC designs were synthesized using this system,
including an Ethernet controller [17], a digital audio input-output chip [18], and
a hi-dimensional discrete cosine transform chip [19]. The functionality and
synthesis results are summarized below.

. Ethernet controller-manages transmitting and receiving data frames over a
network under CSMA/CD protocol. The purpose is to off-load the host
processor from managing the communication activities. Its capabilities include
data framing and deframing, network and link operations, address sensing,
error recovery, data encoding, dir~t memory access, and collision det~tion.
The entire design is modeled by 13 concurrent processes, described in over
1200 lines of HardwareC code. Port read and write, as well as message passing
send/receive commands, are used extensively in the design to specify
handshaking protocols. The logic-level implementation was mapped to 11000
complex gates in LSI Logic's LCA10K library. The controller was designed for
operation frequency of 20 MHz.

. Digital Audio input/output (DAIO) ship-controls the transfer of data be-
tween a microprocessor and a compact disc player or a digital audio tape
player. Bit-serial synchronous line transmission is defined by the Audio En-
gineering Standard (AF$) protocol. The design is described in 650 lines of
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HardwareC code. The resulting implementation was mapped into a logic netlist
suitable for- implementation in LSI Logic 9K-series sea-of-gates technology.
The logic specification had about 6000 equivalent gates.

. Bi-dimensional Discrete Cosine Transform (BDCf) chip-performs coding to
remove redundant video information in low bit-rate transmission channels and
video compression for image storage and retrieval. An 8 X 8 BDCf architecture
was synthesized by Hercules and implemented in a compiled macro-cell design
style [20] as a 9 x 9 ~ image in 2p.m CMOS technology.

Each design was described completely in HardwareC and synthesized to a
gate-level implementation. Extensive logic-level simulation demonstrated the cor-
rectness of the specification and implementation. Other ASIC designs include a
Multi-anode Microchannel array (MAMA) detector for the space telescope [21], a
pixel line drawing design, and an error correcting code design [12].

In addition, the system has been applied to the synthesis of benchmark circuits
from the High-Level Synthesis Workshop [22]. Most of these examples have been
rewritten in HardwareC and synthesized to logic-level implementations. Three
widely used and compared examples are the example used in Facet (Tseng) [23],
the differential equation solver (Diffeq) [24], and the 5th-order elliptic waveform
filter (Elliptic) [25]. Although these examples do not contain detailed synchroni-
zation and timing constraints, they serve to demonstrate the use of our approach
on general synchronous designs. The statistics on the SIF models of these three
benchmark designs are given in Table 2. The size of the multiplication is double
the size of the addition in these exampJes. For example, Elliptic requires 32-bit
multiplications and 16-bit additions. To evaluate and compare the reuslts of
resource binding and scheduling in Hebe with existing systems, we make the
following assumptions: additions (both 8-bit and 16-bit) and subtractions take 1
cycle to execute, and multiplications (both 8-bit and 16-bit) and divisors take 2
cycles to execute, multiplications are non-pipelined, and no detailed timing
constraints are present.

For the elliptic filter example, the filter coefficients are arbitrary 16-bit values
and not necessarily powers of two. Therefore, multiplication with these coeffi-
cients are implemented as a full multiplication with a set of 16-bit wide coeffi-
cient registers instead of shift registers. Our results are compared with the
force-directed scheduling (FDS) ad force-directed list scheduling (FDLS) in HAL

Table 2
SIF model statistics Cor the benchmark examples

11
17
37

1
2
1

8/1
8/1

16/3

Tseng
Diffeq
Elliptic

6-bit
6-bit
2-bit
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Table 3
Comparison of schedule latency for the Elliptic filter example

-
18

18
17

-
19

17

-

19

18

-
18

17

-
19

18
17

[26], the CSTEP scheduler (CSTEP) [27], SLICER in Chippe (SLICER) [28],
percolation based scheduling (PBS) [29]. These results are based on the original
Elliptic specification that is distributed in the benchmark suite. Tables 3 sum-
marize the comparison of the schedule latency for different resource allocations
in the Elliptic example. The schedule latency is known because there are no
unbounded delay operations in the design. A dash (-) in the table means that
synthesis result of the corresponding synthesis system is not available in' the

literature.
Tables 4 summarizes the synthesis results for Tseng's example and the Diffeq

example. Comparison with other systems is not available because the published
results are in terms of operator cell area. For example, HAL rises relative
operator "cell area to describe the area cost [24]. The heuristic design space
explotation and conflict resolution strategy was used to obtain these Tesults. Note
that the latency can be improved if expression tree height reduction is performed
during behavioral synthesis. However, this optimization is not implemented in the
current version of Hercules. '

We now present synthesis results of the Tseng. Diff~, and Elliptic examples
for different allocations of resources. where each logic-level implementation is
mapped to LSI LOgic's LCAIOK library using the technology mapper Ceres.
Instead of assuming the availability of a 2 cycle multiplier from a given micro-ar-

Table 4
Summary of schedule results for Tseng and Diffeq examples

Diffeq

I.,
I.,
I.,
1-
1-
I-
I-
1--
1-

1/
1/
1/
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Table 5
Synthesis results for the arithmetic library modulus

Subtract

Multiply

32 bits

chitecture library, we have designed and implemented an efficient multiplier unit
starting from a HardwareC description. Tradeoffs can be performed on this
multiplier just as with other designs. Table 5 gives the statistics on the area and
delay costs for arithmetic library modules. Note that a 32-bit multiplier taking
two 16-bit operands is significantly larger in area than a 16-bit adder. This is
contrary to the assumption made by most synthesis systems that a multiplier is 4
times as large as an adder.

Based on these library resources, the implementation results for different
allocations of Tseng, Diffeq, and Elliptic are presented in Table 6. For Elliptic,
the 4 cycle 32-bit multiplier was used to implement its multiplication. For Tseng
and Diffeq, the 4-cycle 16-bit multiply was used. Therefore, each multiplication
and latch operation requires 5 cycles to execute. Combinational logic optimiza-
tion was not pedormed on the logic-level implementation prior to technology
mapping due to excessive memory usage of Misll [30J.

Table 6
Synthesis results for the benchmark examples, assuming 5 cycle 16-bit and 32-bit multiply (4 cycle
multiply + 1 cycle latch)

Benchmark LSI Implementation

Elliptic (1 . .1 +)
Elliptic (2..1 +)
Elliptic (2 . . 2 +)

Tseng (1 + .1-.1 . .I/)
Tseng (2+.1-.1e .1/)
Tseng (3 +. 1-. 1 e . I/)

Diffeq (1 +.I-.1e >.

Diffeq (1 +.1-.2 e)
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8. Conclusion and future work

Hebe is a system that supports the synthesis of synchronous digital ASIC
designs starting from behavioral level specifications. The underlying hardware
model is a sequencing graph abstraction that supports concurrency, external
synchronizations in the form of unbounded delay operations, and detailed timing
constraints. Algorithms were presented to resolve resource conflicts for a given
resource binding under timing constraints. The algorithms take advantage of
graph properties in pruning the search space. The system has been applied to the

design of benchmarks and some ASIC designs.
Future work includes optimizing control under timing and area constraints.

This is based on the observation that control is often an important component in
the overall hardware cost. Extensions to consider synthesis of multiple processes
are also important in supporting system level designs.
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