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Circuit and Architecture Trade-offs
for High-Speed Multiplication

Paul J. Song and Giovanni De Micheli, Senior Member, IEEE

Abstract —We consider VLSI implementations of high-perfor-
mance parallel multipliers. We analyze circuit building blocks
required for partial-product reduction and we propose two new
schemes leading to highly regular layouts. We consider the
circuit implementations related to the first scheme in three
different BICMOS technologies. We compare the die size and
performance for nominal design rule values and we study the
trend in scaling the feature sizes. We consider then the second
scheme and we report on a silicon implementation of a proto-
type slice of an IEEE double-precision floating point multiplier
in a 0.8-um double-metal BICMOS technology.

I. INTRODUCTION

AST arithmetic circuits are key elements of high-per-

formance computers and data-processing systems. We
are investigating the performance limitations of arith-
metic units designed with different circuit technologies. In
particular, we have chosen parallel multipliers as a vehicle
for understanding the requirements of a CMOS or
BiCMOS technology to achieve a desired level of perfor-
mance.

Parallel multipliers are interesting in several respects.
First, they are large circuits, where the effect of circuit
design as well as the properties of the interconnect affect
the circuit performance. Second, they can be imple-
mented by regular structures. Therefore, automatic syn-
thesis techniques can be used. In addition, the intercon-
nect delay can be related directly to the circuit size and
shape. Third, a major portion of a multiplier, the partial-
product reduction tree, has a circuit structure where each
cell has unit fan-out. Therefore, the cell output capaci-
tances are mostly dominated by the length of the inter-
connection wires, whose length can be predicted due to
the circuit regularity.

For these reasons, we have decided to investigate the
partial-product reduction circuits of the multiplier. We
consider floating-point double-precision multiplication, in
conformance to ANSI/IEEE Standard 754 [1]. Such an
operation requires an integer multiplication of two 53-b
significands. This operation determines the overall speed
of the multiplication.
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Several schemes have been used for the multiplication
of the mantissa. In some cases, iterative schemes have
been used [2]. Fully parallel techniques, as proposed by
Wallace [3] and Dadda [4], were implemented only for
shorter mantissa values. Recently, IBM RISC 6000, which
has a full 56-b combinatorial multiplier, was built mostly
with (7,3) counters to simplify the tree wiring [5]. Intel’s
80860 chip uses (4,2) counters to reduce a 27-53-b multi-
plier tree [6].

In this paper, we consider the design of the partial-
product reduction circuit as a way of understanding the
performance limitation of multipliers. We review first the
circuit structures and the basic cell circuit designs. Sec-
ond, we present two novel architectures. We describe
then how we used synthesis techniques to lay out such
circuits in different CMOS/BiCMOS technologies. We
analyze the performance of the synthesized layouts and
point out their limitations. Finally, we comment on a
silicon implementation of one of these structures and on
the experimental results achieved in testing the circuit.

II. ArRcHITECTURES FOR HIGH-SPEED
MULTIPLICATION

We consider fully parallel partial-product reduction in
two stages: a combinational tree circuit followed by a fast
adder. The first stage reduces the partial products to two
rows which are summed by the second stage to yield the
result. We have focused our attention on the first stage,
because adders and rounding algorithms have been widely
investigated [7]-[10].

Integer arithmetic multiplication of two unsigned n-bit
numbers can be envisioned as a summation of partial
products. The partial-product terms are generated by
simply anping multiplicand bits and multiplier bits. For
example, the 8-b multiplication is shown in Fig. 1(a)
where the tree height (i.e., the number of partial-product
rows) is eight and the total number of partial-product bits
is 8X 8 = 64.

It is possible to use some encoding techniques that
reduce the total number of partial products. One com-
monly used scheme, known as the modified Booth’s algo-
rithm, can reduce the partial products nearly by half. For
example, the 8-b multiplication with 2-b modified Booth’s
algorithm is shown in Fig. 1(b), where the tree height is
five and the total number of partial-product bits is 56.
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mult@plicand X7 X¢ X5 X4 X3 X2 X} X0
multiplier Y7 Y6 Y5 Y4 Y3 Y2 Y1 Yo
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z17 216 215 214 213 %12 211 210
227 226 225 224 %23 Z22 221 220
z37 236 235 234 233 232 231 230
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(a)

mult@plicand X7 Xg X5 X4 X3 X2 X1 Xp
multiplier  y7 Y6 ¥5 Y4 ¥3 Y2 Y1 Yo

ng 8o S0 208 207 206 205 204 203 202 201 200

1 ny 21 217 216 215 %14 Z13 Z12 211 210 80
1 np 228 227 226 225 224 %23 222 Z21 220 81
n3 238 237 236 235 %34 %33 232 231 230 82
247 246 245 244 243 242 241 240 83

Wls W14 W13 Wiz W11 W10 W9 W8 W7 VW6 V5 W4 W3 W2 W1 Vo

where zjj = decoding function(bj, xj, X;-1)
b; = encoding function(y2i-1, ¥2i» y2i+1)
(bj is a vector)

(b)

Fig. 1. (a) Two 8-b unsigned integer multiplication. (b) Two 8-b
unsigned integer multiplication with modified Booth’s encoding.

In ANSI/IEEE Standard 754 for binary floating-point
arithmetic, the double-precision format (64-b) has a sig-
nificand of 53 b. In such a case, the number of partial-
product bits is reduced from 5353 = 2809 to 1536 and
the tree height is reduced from 53 to 27 by using the
modified Booth’s algorithm.

After the partial products have been generated, circuits
called counters are used to reduce the tree height from n
to 2. The final result is then computed by using a carry-
lookahead (CLA) adder on the two remaining partial-
product rows. We consider now the strategies for reduc-
ing the partial products.

a) The most common approach is to use carry-save
adders. This is known as the Wallace tree reduction [3].
In general, the number of carry-save adder stages re-
quired to reduce the Wallace tree height from n to 2 is

S=1log,s(n/2)

=[In(n/2)]/[In1.5]

=2.4664*[In(n /2)].

For IEEE Standard 754 without Booth encoding, the
height # =53 and S = 8.083. Therefore, we need at least
nine stages, while for IEEE Standard 754 with Booth
encoding, the height n =27 and S = 6.419. Therefore, we
need at least seven stages. It is important to realize that
the total delay is not only well correlated with the number
of stages S but also depends strongly on the delay associ-
ated with the interconnection wiring capacitance.

b) Other reduction schemes are reported by Waser and
Flynn [11]. The basic building blocks are called counters
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(also called compressors [5] or adders [6D). An (n,m)
counter is a combinational logic circuit with n inputs and
m outputs. The outputs are binary encoding of the sum of
the input bits. A carry-save adder is a (3,2) counter. A
useful counter for multiplication is the (7,3) counter. The
notation of counters can be extended to multiple weighted
input columns, as in the case of the (5,5,4) counter [11].

In some occasions, counter cells with m > log,(n) have
also been used by broadening the notation. One example
is the (4,2) counter. In such cases, the circuit has addi-
tional outputs so that the sum of the input bits can be
represented [2].

III. Circurr AND COMPONENTS FOR MULTIPLIERS

We assume a regular implementation of the partial-
product reduction circuit as an array of vertical slices.
Each slice contains counter cells and the Booth decoder
cells. Both encoders are at the periphery of the array.
Since there are 106 slices in a full [EEE Standard 754
multiplier implementation, the horizontal dimension of
the slice should be as small as possible.

We have considered CMOS /BiCMOS technologies be-
cause they support efficient design of parallel multipliers.
Indeed, the CLA adder [8] and the Booth encoder /drivers
can take advantage of the properties of the bipolar tran-
sistors. In this paper we concentrate on the design of the
partial-product reduction array, where the use of bipolar
transistors is limited to the counter output stages.

We now consider the different circuits.

A. Modified Booth’s Encoding / Decoding Scheme ‘

For modified Booth’s algorithm, the significand of the
multiplier is divided into substrings of 3 b, with adjacent
groups sharing a common bit. Fig. 2 shows two modified
Booth’s encoding schemes, where S, denotes the sign bit,
C, the control bit 1, C, the control bit 0, NZ+ the
nonzero plus, NZ— the nonzero minus, and D the dou-
ble. The first encoding scheme, which encodes S,, C,,
and C,, is a standard one [12). However, the correspond-
ing decoders become the critical horizontal dimension for
the array slice. Therefore, a second encoding scheme,
which encodes NZ+, NZ—, and D, is proposed. Its
corresponding decoder can be implemented as a cascade
of two circuits, where each one has less than three pairs
of inputs as shown in Fig. 3(b). Fig. 3(a) shows the
standard decoder. Since C, and C, are related to both x;
and x,_,, there is no easy way to partition it into blocks
with less than four pairs of inputs. Hence, the Booth
decoder pitch on the horizontal direction is larger than
Fig. 3(b).

It is important to realize that Booth encoding signals
and their complements have to traverse across the whole
partial-product tree array. The capacitive load is high
(typically 5-10 pF). Therefore, bipolar drivers should be
used for the encoders when using BICMOS technology.
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Bit Standard Improved
2 1 0.5 | Operati __Encoding En
Yitl Yi Yi-1 Sb Cl Cco NZ+ | Nz- D
0 0 0 +H 1 0 0 0 0 X (Don't care)
0 0 1 +X 1 0 1 1 0 0
0 1 0 +X 1 0 1 1 0 0
0 1 1 +2X 1 1 0 1 0 1
1 0 0 -2X 0 1 [ 0 1 1
1 0 1 -X 0 0 1 0 1 0
1 1 0 -X 0 0 1 0 1 0
1 1 1 -0 0 0 0 0 0 X (Don't care)

Fig. 2. Standard and improved encoding using modified Booth’s algorithm.
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Fig. 3. (a) Standard decoding circuit for modified Booth’s algorithm. (b) Improved decoding circuit for modified Booth’s
algorithm.
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cross-coupled PMOS load.
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B. (3,2) Counter Cell Design

Since the (3,2) counter is the key macrocell used in
arithmetic multiplication, it is necessary to pay special
attention to its design. We can separate the (3,2) counter
cell design into two parts: the logic part and the output
driver part.

1) The Logic Part: The logic part has three inputs, a,,
a,, and a,, and generates two output, x, (carry-out) and
Xy (sum):

a,
a;
a9
X1 Xo
where
xy (carry) = aa, + a,ay + agya,
Xy (sum) =a, XOR 4; XOR a,
= (a, xOR (a, XOR ay)).

The logic part can be implemented in three ways.

a) Use xor and NAND gates: The conventional way to
construct (3,2) counter is to use EXCLUSIVE-OR (XOR) and
NAND gates. Since we have complementary inputs for the
XOR gate, we also need to produce complementary out-
puts for the next stage. Therefore, we need to generate
both Excrusive-or and its complement (EQUIVALENCE),
which implies an extra inverter delay or double the hard-
ware. Two xOR gates are cascaded to produce the sum
term.

b) Use folded transistor full CMOS implementation: By
observing that each EXCLUSIVE-OR gate has the property
that the output toggles when any single input toggles, we
can then construct the ExcLusIVE-or gate with folded
transistors as shown on Fig. 4(a).

¢) Use folded transistor cross-coupled PMOS load imple-
mentation: The previous approach can be made even
more efficient in terms of transistor usage by observing
that p-channel transistors can be replaced by one cross-
coupled p-channel transistor pair [13]-[15] (Fig. 4(b)). In
this case, we need to lower the voltage at the gate of the
p-channel MOS transistor before the circuit can switch.
The circuit must be designed with ratioed device sizes.
Thus the delay is higher than in the second approach b).

Table I shows that approach c) is very competitive with
approach b) when considering the circuit implementation
of a (3,2) counter at the cell level. It is interesting to
consider, though, the impact of the cell area on the delay
when the cell is embedded in the partial-product reduc-
tion circuit. To be specific, we considered Signetics’
SABRE BiCMOS technology [16], [17], which has 0.8-um
feature design rules, on a full Wallace tree reduction for
that comparison. A counter is designed with approaches
b) and c). A vertical slice involving seven stages of a (3,2)
counter would be 20% larger for approach b). By consid-
ering the added wiring delay of the longer structures,
which is 0.3 ns, the overall difference for the whole
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TABLE 1
CoMpARISON OF (3,2) CounTER CeLL DESIGNS
use xOR & | use folded use folded
NAND gate full cross-coupled
(Note 1) CMOS p-channel
# of p-channel 26 18 4
transistors
# of n-channel 26 18 18
transistors
total # of transistors 52 36 22
input capacitance highest high low
cell area large large compact
built-in complementary no yes yes
ratioless yes yes no
speed (cell level) slow faster fast
single-cell delay 0.45 ns 0.34 ns 0.37 ns
(Note 2)
overall delay 4.4 ns 3.3 ns 3.2ns
(Note 3,4) slow fast faster

Note 1: Assume we use both xorR and EQUIVALENCE gates for
EXCLUSIVE-OR logic.

Note 2: The simulation is done with Signetics SABRE BiCMOS
process under the assumption that one gate’s output drives one
gate’s input with the same size and without any extra capacitance
load. With Vj,, =45 V, the input is assumed to be switching
between 0.5 and 4.0 V in 0.05 ns. The output level is measured at 3.5
and 1.0 V, respectively.

Note 3: The simulation for overall simulation is done for a Booth
decoded array with reduced tree height = 27. Seven stages of (3,2)
counter levels are used. For short interconnection no buffers are
used, while CMOS buffers are used for long interconnection.

Note 4: Delay includes whole tree partial-product reduction only
(seven stages of (3,2) counters).

partial-product reduction between two approaches is 0.1
ns in favor of approach c).

2) The Output Driver Part: The output driver part
buffers the two signals (x; for carry-out and x, for sum)
generated in the logic part to drive the next stage. De-
pending upon the interconnection wiring capacitance, we
can choose one of the following three ways to drive the
next stage:

a) Directly drive the next stage without any buffer. For
two counter stages sitting next to each other, buffer-
ing may be superfluous.

b) Use a CMOS buffer to drive the next stage for
medium-length interconnection (or for the capaci-
tance value between 0.1 and 0.5 pF). This is shown
in Fig. 5(a).

¢) Use a BiCMOS buffer to drive the next stage for
long interconnection wiring (or for capacitive load
more than 0.5 pF). Since our logic stage has a
built-in complementary output pair, it is simple to
implement BiCMOS drivers, as shown in Fig. 5(b)
where we use bipolar transistor to pull up the output
rather than the weak p-channel transistors. One
interesting feature is that our logic stage has differ-
ential input pair and does not require full Vob
swing.

C. Constructing High-Input Counters with (3,2) Counters

By using Wallace’s approach with the modified Booth’s
algorithm to implement a multiplier with the IEEE 754
floating-point standard, seven stages are required. How-
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Fig. 5. (a) CMOS buffer. (b) BiICMOS buffer.
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Fig. 6. Direct implementation of (7,3) counters.
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Fig. 7. Constructing (7,3) counter from (3,2) counters.
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xg X3 stage 1
Xg X4 t3 t2 t1 to
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(3,2) x9 (3,2) x4
stage?2
te ts ts Yo
t1
ty
(3,2) ts
— stage 3
t7 ¥1
t3
te
(3,2) t7
_ stage 4
Y3 Y2

Fig. 8. Constructing (5,5,4) counter from (3,2) counters.

ever, routing may be complicated. That is the reason why
high-order counters, like (7,3) and (5,5,4) counters, are
used. High-input counters can be designed directly by
using folded transistors, as shown in Fig. 6, where we
have drawn the circuitry for output pairs y, and y’, of the
(7,3) counter. This concept can be extended to the other
output pairs in a straightforward way.

Such an approach has the following three disadvan-
tages:

a) increased input capacitance—compared to the (3,2)
counter, the maximum number of input transistors
increases quadratically as the number of inputs in-
creases;

b) more intermediate node capacitance—junction ca-
pacitances and transistor capacitances increase lin-
early as the number of inputs increases;

¢) longer pull-down path—the longer the pull-down
transistor path, the smaller the pull-down current is.

Due to the combination of the above three effects, the
circuit slows down quadratically as the number of inputs
increases.

For these reasons, it is convenient to construct high-
input counters by using (3,2) counters. Throughout the
rest of Section III, we shall evaluate reduction schemes
with different counters by means of the number of equiva-
lent (3,2) stage delays. The goal of this section is to
describe structures that require few stage delays and lead

—
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to highly regular layouts. A more accurate delay evalua-
tion will be considered in Section IV in connection with
layout considerations.

We consider now different counter implementations.

1) Constructing (7,3) Counters with (3,2) Counters: As
shown in Fig. 7, we can group two (3,2) counters first,
which generate four intermediate outputs ¢,, ¢,, t;, and
to. We then use another (3,2) counter taking xg, ¢,, and
t, as inputs, which generates output y, and intermediate
node ¢,. Finally, we use another (3,2) counter taking ¢,,
t;, and ¢, as inputs to generate the output y, and y,.

Therefore, each (7,3) counter has three equivalent (3,2)
counter delay stages. A partial-product reduction scheme
can use (7,3) counters followed by (3,2) counters. By
using modified Booth’s algorithm (tree height is 27), after
applying (7,3) and (3,2) counters at the first two stages,
we reduce the tree height to 8. Then we can apply (3,2)
counters to reduce the tree height to 6, 4, 3, and 2 in
additional stages. Since the (7,3) counter is equivalent to
three (3,2) counter stages, the total number of equivalent
(3,2) counter stages needed is eight, one higher than the
Wallace tree reduction approach. This approach yields a
more regular structure than using (3,2) counters only. As
a result the interconnection wiring is reduced.

2) Constructing (5,5,4) Counters with (3,2) Counters:
Fig. 8 shows how we can construct the (5,5,4) counter
with (3,2) counters. Again, each (5,5,4) counter has four
equivalent (3,2) counter delay stages.

3) Constructing (4, 2) Counters with (3, 2) Counters: The
(4,2) counter has a different structure [2], [18], [19). We
apply one (3,2) counter to three inputs (namely, x,, x;,
and x,) to yield two contemporary outputs, the temporary
carry-out (¢,) and temporary sum (¢y). We pass the tem-
porary carry-out ¢, to the left stage while we take the
temporary carry-in 7, from the right stage. Finally, we
take the remaining input x,, together with ¢, and T, to
generate the final outputs y, and y, as shown in Fig 9.

We count two equivalent (3,2) counter delay stages for
each (4,2) counter. We can use the (4,2) counters to
perform the tree partial-product reduction in the follow-
ing way [2]. If we start with height 27, by applying (4,2)
counters repeatedly, we reduce the tree height to 14, 7, 4,
and 2. Since each (4,2) counter is equivalent to two (3,2)
counter stages, the total number of equivalent (3,2)
counter stages needed is also eight, one higher than in
Wallace’s approach. However, the layout is highly regular
and the routing length is reduced.

D. The (9,2) Counter Family

Santoro and Horowitz have shown how to achieve a
highly regular layout using (4,2) counters [2]. However,
this requires one more stage than in Wallace’s approach.
We propose a new technique here that combines regular
layout with a minimal number of stages.

The new approach uses the (9,2) counter family. The
(9,2) counter family is a set of counters that includes
(3,2), (4,2), (6,2), and (9,2) counters. We have previously
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Fig. 11. (a) Partial-product reduction with (27,5) and (5,5,4) counters.
(b) (27,5) counter.

shown how to construct a (4,2) counter from (3,2) coun-
ters. We extend the technique to construct a (6,2) counter
by using two (3,2) counters and one (4,2) counter, as
shown in Fig. 10(a). We partition the six inputs into two
groups (x5, x4, x5 as group 1 and x,,x;, X, as group 0)
and we apply a (3,2) counter to each group. Thus we have
four temporary signals, two of which have weight 20=1
and two of which have weight 2! = 2. The two signals with
weight 2 are carried out to the left stage while the two
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TABLE 11
Key TECHNOLOGICAL PARAMETERS
Layer Signetics SABRE’ Signetics Qubic Stanford BiCMOS
Poly minimum feature size (xm) 0.8 1.2 2.0
Contact size (um?) 0.8 1.2 2.0
Metal 1 pitch (uwm) 24 3.8 6.0
Metal 2 pitch (um) 2.4 5.0 6.0

signals with weight 1 are carried in from the right stage.
Thus we have total of 2+2 =4 signals of weight 1. We
use one (4,2) counter to get the two final result bits.
Therefore, each (6,2) counter has three equivalent (3,2)
counter delay stages.

In a similar way, we can construct a (9,2) counter by
using three (3,2) counters and one (6,2) counter, as
shown in Fig. 10(b). Each (9,2) counter has four equiva-
lent (3,2) counter delay stages.

The counters of this family can be used as follows for
partial-product reduction. If we start with 27 partial-prod-
uct rows, after applying the (9,2) counters at first stage,
we reduce the tree height to 6, and then we can apply
(6,2) counters to achieve the tree height of 2. Since the
(9,2) counter is equivalent to four (3,2) counter stages
and the (6,2) counter is equivalent to three (3,2) counter
stages, the total number of equivalent (3,2) counter stages
needed is seven, which is the same as in Wallace’s ap-
proach. This structure can lead to highly regular layout,
as shown in Fig. 10(c).

E. The (27,5) Counter

Another modular approach for partial-product reduc-
tion is proposed here. This scheme uses a combination of
(27,5) counters and (5,5,4) counters. The partial-product
reduction can be achieved with this method as shown in
Fig. 11(a), where we assume to have 27 partial-product
rows initially. The (27,5) counter can be seen as a vertical
slice that embeds the local routing.

The (27,5) counter can be constructed as follows. The
inputs are divided into four groups that feed (7,3) coun-
ters. (One (7,3) counter has an unused input.) Then the
reduction is achieved by using (3,2) and (2,2) counters, as
shown in Fig. 11(b). As far as propagation delay is con-
cerned, the (27,5) counter is equivalent to 7.5 stages, if we
count the (2,2) counter as half stage delay.

IV. SyNTHESIS OF MULTIPLIER STRUCTURES

The value of the circuits for partial-product reduction
described before cannot be judged without a full layout
analysis that allows us to take the parasitics into account
and to measure precisely the circuit area and perfor-
mance. Since several technological factors, such as metal
pitch and device switching time, affect the figures of merit
of the final implementation, we have decided to construct
the layouts using module generators, which are portable
across similar technologies.

The module generators are written in a layout lan-
guage, and they encode the relative transistor position as

well as their interconnection. Hierarchy is used to reduce
the amount of code. Therefore, generators for (3,2) coun-
ters are used in those for high-input counters. Most
routing among the cells is achieved by abutment, while
intracell routing is specially designed to exploit the cell
compactness. In this way, a highly regular layout can be
obtained. We have used the L language and the GDT
environment, which are available commercially from
Mentor Graphics.

The module generators use information from a technol-
ogy file that contains the parameters of the technology
being used. Therefore, by changing the technology file we
can achieve layouts in different (but similar) technologies.
As a vehicle to understand the impact of the technologi-
cal parameters over the area and performance of a multi-
plier, we have chosen three different BICMOS technolo-
gies, namely:

1) SABRE, a submicrometer technology developed at
Signetics [16], [17];

2) Qubic 1.5, a production-level technology developed
at Signetics;

3) the Stanford BiCMOS process [20).

Some key parameters of these technologies are shown
in Table IL It is important to remark that our study does
not aim at an evaluation of these technologies as far as
suitability for implementing high-performance arithmetic
functions. These technologies represent three sets of data
points among the existing technologies which have enough
differentiation to significantly impact the implementation
results, and therefore allow us to evaluate the suitability
of the circuits being designed. -

A. Overall Layout Considerations

We are considering here the partial-product reduction
circuitry for a double-precision IEEE standard multiplier.
This circuit is designed as a rectangular array. Its outputs
feed a CLA adder and its inputs come from the Booth
encoders /drivers. The size of the array is very critical in
two respects. First, it must fit into a reasonable bounding
box. Since the full IEEE double-precision standard man-
dates for an array with 106 columns, the width of each
column is critical. In addition, the height of the array
correlates to the wiring propagation delays, and it must be
kept as short as possible. A regular layout approach
reduces the amount of wiring and helps in keeping the
size small. In the two layout styles considered below, the

-]
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(3, 2) counter with SABRE Technology

Delay (ns)
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BiCMOS Driver
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No buffer (32.8 x 84 pm 2)

CMOS buffer (32.8 x 113 um?)

BiCMOS buffer (32.8 x 113 pm2)

(b)

Fig. 12. (a) (3,2) counter performance with no buffer, CMOS driver, and BiCMOS driver. (b) (3,2) counter layouts with
Signetics SABRE BiCMOS technology.

. array consists of a set of vertical abutting slices, each
corresponding to a column. We use two levels of metal for
wiring. One level of metal is used for power buses and for
bringing into the array the multiplier signals encoded by
the Booth’s scheme. The second level is used for local
interconnection in the counter cells in the vertical direc-
tion. The multiplicand is brought into the array by jogging
on the two metal layers. In principle a third level of metal
could be used for this purpose.

As a general remark, the MOS feature sizes and the
MOS and bipolar transistor switching speed affect the
overall performance. The metal pitches affect both the
area of the array and its performance, because of wiring
delays.

B. Counter Layout Design

1) (3,2) Counter: The (3,2) counter is the leaf cell of
the hierarchy. A module generator for this counter uses
parameters such as the device feature dimensions and the
type of buffer desired (e.g., none, CMOS buffer, BICMOS
buffer). Fig. 12(a) shows the performance comparisons for
different buffers and different loads using the SABRE
process corresponding to the layout shown in Fig. 12(b).
The general layout with BICMOS buffers is shown in Fig.
13 for the three technologies under consideration.

2) (9,2) Counter: The (9,2) counter, as well as the (6,2)
counter, can be generated by a hierarchical combination
of (3,2) counters. Layouts are shown in Fig. 14.
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preeeerenmaan-
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Fig. 13. Comparison of (3,2) counter in three BICMOS technologies. (a) Signetics SABRE 0.8-um BiCMOS technology
(32.8x113 pm?). (b) Signetics Quibic 1.2-um BICMOS technology (61.6 X 145 um?). (c) Stanford 2-um BiCMOS technology
(76 X204 pm?).

(a)

(b)

©

Fig. 14. Generated hierarchical counter layout in the SABRE technology. (a) (4,2) counter (37.6X176 um? without
Booth). (b) (6,2) counter (47.2 X372 um? without Booth). (c) (9,2) counter (56.8 X 659 xm? without Booth).
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TABLE III
CompARISON OF CHIP S1zE FOR THREE DIFFERENT TECHNOLOGIES FOR (9,2) COUNTER FAMILY APPROACH

Area (mm?) Signetics SABRE Signetics Qubic Stanford BiCMOS
Booth 8.2x4.2 15.7x5.9 19.0x7.8
No Booth 7.7%x55 152%7.4 18.8%x10.2
ratio 0.81 0.82 0.77

TABLE IV
COMPARISON OF SIMULATED SPEED FOR THREE DIFFERENT TECHNOLOGIES FOR (9,2) COUNTER FAMILY APPROACH

Delay (ns) Signetics SABRE Signetics Qubic Stanford BICMOS
Booth 4.8 9.3 22.4

No Booth 45 9.2 24.1
ratio 1.07 1.01 0.93

Note: Delay includes Booth encoders/decoders and whole tree partial-product reduction.
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TABLE V
VARIATION OF SOME PROCESs PARAMETERS FOR SIGNETICS SABRE TECHNOLOGY

Cell (3,2) counter (4,2) counter (6,2) counter (9,2) counter tree with Booth

size size % change size % change size % change size % change | tree size x% y% %
(em?) | original | 32.8x 838 | 100.0% |37.6x176| 1000% |47.2x372| 100.0% | S6.8X659 | 100.0% | 8203x4149 | 100.0% | 100.0% | 100.0%

poly 0.7 32.0x83.4 97.1% | 36.8X175 97.3% | 46.4%x370 97.8% | 56.0%656 98.1% | 8118x4138 | 99.0% | 99.7% | 98.7%
width 0.9 33.6x84.2| 1029% |384x177( 102.7% |48.0%x374| 102.2% |57.6x662| 101.9% | 8288x4160 | 101.0% | 99.9% | 101.0%
contact 0.7 31.8x83.0 96.0% | 36.6x174 96.2% | 46.2x369 97.1% | 55.8%x653 973% | 8097x4128 | 98.7% | 99.5% | 98.2%

size 0.9 338%x84.6 | 104.0% | 38.6x178 | 103.8% |482x375| 102.9% | 57.8%x665| 102.7% | 8309x4170 | 101.3% | 100.5% | 101.8%
metal 1 23 32.8x83.8| 100.0% |37.6x176| 1000% |47.2x372{ 100.0% |56.8x659| 100.0% | 8203x4149 | 100.0% | 100.0% | 100.0%
pitch 2.5 33.8x83.8 1 103.0% |38.6x176| 102.7% |482x372| 102.1% | 57.8x659| 101.8% | 8309x4149 | 101.3% | 100.0% | 101.3%
metal 2 23 32.8x83.8| 100.0% | 37.4x175 98.9% | 46.6x371 98.5% | 55.8%656 97.8% | 8039x4139 | 98.0% | 99.8% | 97.8%
pitch 2.5 32.8X83.8| 100.0% |37.8x177| 101.1% |47.8x373| 101.5% |57.8x662| 102.2% .| 8367x4159 | 102.0% | 100.2% | 102.2%

3) (27,5) Counter: The (27,5) counter can be generated
using (7,3) and (3,2) counters. In turn, the (7,3) counters
is efficiently designed using (3,2) counters as well.

C. Array Implementation with the (9,2) Counter Family

We have generated layouts of the partial-product re-
duction array using (9,2) and (6,2) counters by the scheme
described in Section III-D. The array consists of 106
adjacent columns. Each column holds three (9,2) counters
and a (6,2) counter, plus Booth decoders. Tables I1I and
IV compare the array area and its performance in the
three selected technologies. It is evident that a small
metal pitch of both metal levels is key to an efficient
implementation.

This approach can be exténded to the case in which no
Booth encoding is used. In this case we have more
partial-product rows (53) but no Booth decoder circuits in
the column slice. It is interesting to notice that the
modified Booth’s scheme is slightly slower than the one
without such encoding for the SABRE technology. The
reasons are the following:

¢ encoding and decoding circuits take significant de-
lays;

* the decoder circuit increases the column slice height
and hence it offsets the effect of having fewer
partial-product terms;

* the total number of wires entering the array from the
Booth’s encoders is higher by about 50%. This is due
to the fact that the 2-b modified Booth’s scheme uses
3b to encode the five different combinations
O, +X,—-X,+2X,-2X) (Fig. 2) for each pair of
bits of the multiplier.

We would like to comment now on the impact of the
individual design rules on the area and performance. For
this reason, we leverage the advantage of having used
module generators for the layout, which allow us to
perturb some key design rule values and evaluate the
effect on the overall layouts that are synthesized automat-
ically.

We have considered four important parameters, namely:
polysilicon width, contact size, metal 1 pitch, and metal 2
pitch. We have perturbed these parameters by 0.1 um
(about 10%) independently.

Let us consider the SABRE technology first. The re-
sults for area are reported in Table V. The major result is
that the area of the basic macrocell (3,2) counter is
affected by changes in contact size and polysilicon width.
The relative variations are 4% and 2.9%, respectively.
When we reduce the metal 1 pitch, the cell size is un-
changed because other design rules prohibit the cell size
from becoming smaller. The metal 2 is used mainly in
routing outside the (3,2) macrocell, therefore, it does not
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TABLE VI
VARIATION OF SOME PROCESS PARAMETERS FOR SIGNETICS QUBIC TECHNOLOGY
Cell (3,2) counter (4,2) counter (6,2) counter (9,2) counter tree with Booth
size size % change size | % change size % change size % change size %
(um?) | original | 61.6X102 | 100.0% | 64.6x227 | 100.0% | 84.6x497| 100.0% | 111.6x885| 100.0% | 15650x 5902 | 100.0%
poly 1.1 60.8 X101 97.7% | 63.8 X226 98.3% | 83.8x495 98.7% | 110.8 X882 98.9% | 15640Xx5817 | 98.5%
width 1.3 62.4x103| 102.3% |654x228 ) 101.7% | 85.4x499( 101.4% | 112.4%x888| 101.1% | 15660x5987 | 101.5%
contact 1.1 60.6 <101 97.4% | 63.6X225 97.6% | 83.6xX494 98.2% | 110.6 X879 98.4% | 15630X5796 | 98.1%
size 13 62.6X103 | 102.6% | 65.6x229| 102.4% | 85.6x500| 101.8% | 112.6x891 | 101.6% | 15670%6008 | 101.9%
metal 1 3.7 61.6x102| 100.0% | 64.6x227 | 100.0% | 84.6x497| 100.0% | 111.6x885| 100.0% | 15650x5902 | 100.0%
pitch 39 62.6x102} 101.6% | 65.6x227| 101.5% | 85.6x497| 101.2% | 112.6x885| 100.9% | 15650x6008 | 101.8%
metal 2 4.9 61.6x102 | 100.0% | 64.4X226 99.3% | 84.0x 496 99.1% | 110.6x882| 98.8% | 15640x5796| 98.1%
pitch 5.1 61.6x102{ 100.0% | 64.8%x228| 100.8% | 85.2x498 ( 100.9% | 112.6x888| 101.2% | 156606008 | 101.9%
TABLE VII
VARIATION OF SOME PROCESs PARAMETERS FOR STANFORD BiCMOS TECHNOLOGY
Cell (3,2) counter (4,2) counter (6,2) counter (9,2) counter tree with Booth
size size % change size % change size % change size % change size %
(p.mz) original | 76 X145 | 100.0% | 89x320| 100.0% | 103x656 | 100.0% | 136x1175| 100.0% | 19072x7781 | 100.0%
poly 1.9 75X 144 98.0% | 88x319 98.6% | 102x654 98.7% | 135x1172 99.0% | 18966x7771 | 99.3%
width 21 77X146 | 1020% |90x321| 101.4% | 104x658 | 101.3% | 137x1178| 101.0% | 19178 %7791 | 100.7%
contact 1.9 75% 144 98.0% | 88x318 98.3% | 102x653 98.6% | 135%x1169 98.8% | 18966x7751 | 99.1%
size 2.1 77x146 | 102.0% |90x322( 101.8% |[104x659 | 101.4% | 137x1181| 101.2% | 19178 x7801 | 100.8%
metal 1 59 76x145| 100.0% | 89%x320( 100.0% | 103x656| 100.0% | 136x1175| 100.0% | 19072x 7781 | 100.0%
pitch 6.1 77X145 | 101.3% |90x320| 101.1% | 104x656 | 101.0% | 137x1175| 100.7% | 191787781 | 100.6%
metal 2 59 76x145 | 100.0% | 89x319 99.7% | 102X 655 98.9% | 135x1172 99.0% | 189667771 | 99.3%
pitch 6.1 76X145 | 100.0% | 89x321| 1003% |104x657| 101.1% | 137x1178 | 101.0% | 191787791 | 100.7%

affect the cell size. However, when considering the full
tree, a 2.2% area variation is due to metal 2.

We simulated the circuits for the perturbed values of
the parameters. Simulations indicate that the impact on
speed is due to the variation in polysilicon width (channel
length) only. We simulated at room temperature with
V..=4.0 V. (We used 4.0 V for our simulation because
the model showed punchthrough characteristic above 4.0
V for 0.7-um channel lenigth.) We found that the speed
variations for the unloaded (3,2) counter are —0.1 ns
(from 0.6 to 0.5 ns) (17%) and +0.2 ns (from 0.6 to 0.8 ns)
(33%). The delay of the whole tree varies from —1.4 ns
(from 4.8 to 3.4 ns) (29%) to +2.3 ns (from 4.8 to 7.1 ns)
(48%).

We show in Tables VI and VII the variation of cell area
when perturbing some process parameters for the other
technologies. Resuilts are qualitatively similar to the previ-
ous case, with poly width and contact size affecting the
area of the (3,2) counter. Metal 2 affects the overall area.
We have also simulated the change of delay caused by
varying the polysilicon width (channel length). The results
are —1.8 and +2.2 ns for Qubic technology and —2.1
and +2.3 ns for Stanford BiCMOS technology.

D. Array Implementation with the (27,5) and the
(5,5,4) Counters

We consider here a partial-product reduction array
using the (27,5) and the (5,5,4) counters, as described in
Section III-E. This array uses the modified Booth’s en-
coding scheme and the decoder circuits described in Sec-
tion III-A. We designed the array with module genera-
tors, but we carried out the comiplete synthesis using the
SABRE technology only.

The array consists of 53 vertical slices. Each slice has
two (27,5) countets that are on top of one (5,5,4) counter
(Fig. 11(a)). The (27,5) circuits embed the Booth decod-
ing circuits. The area of the entire array amounts to
3.5x10 mm?.

We have implemented two vertical slices on silicon on
SABRE technology. A picture of the test chip is shown in
Fig. 15. We have then measured the propagation delay
through the slice related to the slowest input-to-output
path, as shown in Fig. 16. The worst-case delay is about
12 ns (Fig. 16), which reduces to 9 ns when we exclude the
probe and 1/0 delays.
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MULTIPLICATION

Fig. 15. Silicon implementa

Fig. 16. Measured output waveform from the

tion of two slices of a partial-product reduction array in the SABRE technology

silicon implementation in SABRE technology.

TABLE VIII
COMPARISON OF DIFFERENT APPROACHES FOR IEEE STANDARD DoUBLE-PRECISION MULTIPLICATION

Weitek 3364 TI 74ACT8847 Intel i860 1BM 6000 (9,2) family (28,5)+(5,5,4)
cycle (ns) 50 30 20 40 12 (Note 2) 15 (Note 2)
size (mm?2) 95.5 100.6 154.8 161.3 41.9 (Note 3) 48.4 (Note 3)
# of transistors 165000 180000 170000 420000 85000 90000
(total 1000000)
latency (# of cycles) 2 3 3 2 1 (single cycle) 1 (single cycle)
(Note 1)
counter used 3,2) redundant 4,2) (7,3) (9,2) family (28,5)
binary-tree +(5,5,4)

Note 1. IEEE double-precision multiplication.
Note 2. Simulated at room temperature and 4.0-V V,, typical
Note 3. Area and # of transistors are estimated for IEEE dou

V. ANaLysIS AND CONCLUSION

We have analyzed circuits, structures, and physical im-
plementations of the partial-product reduction array por-
tion of a multiplier. We have synthesized layouts for the
array in different BiCMOS technologies by using module
generators with the goal of comparing the results that
stem from different circuit and structure choices when
applied to different sets of layout rules.

The set of design rules and the device characteristics of
the chosen technology determine the area and speed of

process Corner.

ble-precision multipliers implementation only.

the circuit. In our case, the choice of a regular array
structure permits us to directly relate the design rules to
the performance goals. For a parallel multiplier imple-
mentation that does not use iteration, a key issue is the
size of the partial-product array because it affects the
wiring length and its corresponding delay. Limiting fac-
tors are the metal pitch in both layers and the MOS
features. We think that submicrometer CMOS with at
most a 2.5-um metal pitch is required to have an effective
implementation. A third level of metal and/or low-resis-
tivity local interconnect is also highly desirable.

r—
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We have designed and implemented a test slice for a
floating-point double-precision multiplier in an experi-
mental submicrometer BICMOS technology. Based on the
performance measurements on silicon of the reduction
tree, we think that it is possible to design a complete
multiplier using the (27,5) counter approach in that tech-
nology which performs an operation in about 12 ns, while
15 ns would be required to support all the rounding
modes of the IEEE standard [1]. Considering the simula-
tion results, we project that it would be possible to design
an even faster multiplier using the (9,2) counter family.

To appreciate the significance of our results, we com-
pare our implementation and its performance to other
existing commercial multipliers. The comparisons can be
only qualitative, because other approaches use different
technologies, algorithms, and possibly margins (e.g., tem-
perature range, supply range, etc.). We summarize the
results in Table VIII [21]-[23]. We conclude that a dou-
ble-precision IEEE 754 floating-point multiplier having
12-ns delay and requiring no iteration, which can be built
with our schemes, would be highly competitive.
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