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Optimal synthesis of control logic
from behavioral specifications
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Abstract. This paper presents a method of synthesizing control for synchronous digital
circuits starting from a behavioral description of the hardware. The input to the control
synthesis task is an abstraction of hardware behavior based on sequencing graphs. The model
is a concise way of specifying both control and data dependencies, and support hierarchy,
unbounded delay operations such as data-dependent loops and external synchronizations,
and multiple threads of concurrent execution flow. We show how the sequencing graph can
be mapped directly to a modular interconnection of finite state machines. The approach,
called adaptive control, is different from other control schemes in that it takes into account
the dynamic variations in the execution delay of operations due to the changing inputs. It is
optimal by guaranteeing the minimum number of cycles in the execution of a hardware
behavior for all input sequences., Specifically, there are no performance penalties for the
arbitrary nesting of procedure calls, conditionals, or loops. The adaptive control model and
implementation are used within the framework of the HERCULES/HEBE High-Level
Synthesis system.

Keywords. Automated control synthesis, high-level synthesis, control generation

1. Introduction

High-level synthesis systems have been shown to be effective in supporting the
design of Very Large Scale Integration (VLSI) digital circuits [1,5,8,14,16,17,18,21].
Numerous advantages can be achieved by designing a circuit starting from a
self-documented high-level specification. In particular, the design is more porta-
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ble, incremental changes in the specification are easier to incorporate, the
specification is independent of the target technology, and the design life cycle is
likely to increase. Powerful synthesis techniques can optimize the circuit at the
behavioral, structural, and logic levels. This results in faster design turnaround
time, and increases the quality and profitability of a given design.

We have developed a high-level synthesis sytem at Stanford University called
HERCULES/HEBE [7], that transforms a behavioral hardware description in
the HardwareC language [10] into an implementation in terms of synchronous
logic circuits. This paper deals with a specific task of high-level synthesis: the
synthesis of synchronous control logic. Control synthesis is important because it
affects the control flow of operations, and hence directly impacts the overall
performance of the resulting hardware.
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Numerous control styles have been used in high-level synthesis systems,
ranging from read-only memory (ROM) based microprogrammed controllers [21]
to distributed control [1]. Although these control approaches are part of powerful
synthesis systems, the issue of minimizing the execution time of the hardware
behavior is not adequately explored. We present here a control synthesis ap-
proach which addresses the following three issues:

® Support both fixed and unbounded delay operations — Realistic hardware
designs consist of operations with fixed delays, such as addition and multiplica-
tion, as well as operations with unbounded delays, such as synchronization
primitives and loops with data-dependent completion. The unbounded delay
operations have delays that are not known a priori.

® Supports multiple threads of execution flow — The power of a synthesis system
lies in its ability to explore tradeoffs between serial and parallel designs, related
to the tradeoffs between area and performance. For such exploration to be
possible, the control model should support multiple threads of concurrent execu-
tion flow.

® Guarantees performance optimality — For efficient hardware design, it is
important to generate a control that yields the minimum number of cycles in
executing the hardware behavior for all input data sequences.

In the restrictive case where all operations have fixed and known delays,
scheduling can be used to assign operations to specific time slots, with the control
implemented accordingly [8]. In the general case, however, the synthesis of
control is more complex. We present here an approach, called adaptive control,
that directly maps an abstract hardware model in terms of sequencing graphs into
a synchronous control unit consisting of a modular interconnection of interacting
finite-state machines. As its name indicates, the adaptive control is able to take
into account the variations in the execution times of the operations caused by the
changing input data. It is optimal by guaranteeing execution of the hardware
behavior in a minimum number of cycles for all input sequences. In particular,
the hardware model derived from a procedural hardware description language
incurs no performance penalties for the arbitrary nesting of procedure calls,
conditionals, and loops.

The adaptive control synthesis has been implemented in the
HERCULES/HEBE High-level Synthesis system and tested on many hardware
design benchmarks. Since our model of hardware behavior is fairly general, this
method has wide applicability to the synthesis of digital circuits. We therefore
present it here as a control synthesis method based on an abstract hardware
representation. This paper is organized as follows. We review first related
research in the field and contrast it to our approach. We then formalize the
problem in terms of a hierarchical graph representation and present two control
implementations. The former is a simplified scheme that supports unbounded
delays and multiple execution flows, but it does not yield optimal performance.
We extend the approach in the latter control scheme to satisfy also the optimality
requirement, as we prove formally. We conclude by commenting on the software
implementation of this technique and on the experimental results.
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2. Related research

In this section we briefly contrast our work with the related research in the
area of automated control synthesis. A widely applied control style in many
existing automated synthesis systems is the ROM-based microprogrammed con-
troller model. Examples include the control allocator for the CMU-DA [15], the
MCS system for AUDES [20], and the ATOMICS system for Cathedral-II [9,18].
The CMU-DA system is representative of a large number of data-path synthesis
systems, including Chippe [2], Design Automation Assistant [11], Architect’s
Workbench [21], ADAM/MAHA [16], and HAL [17]. It assumes a canonical
microprogrammed model, and performs optimizations based on the microcode
format constraints. The MCS system is similar, but tailors the general micropro-
grammed controller model for a specific design. It performs compaction on the
parallel operations and minimizes the width of the microwords using heuristic
approaches. The ATOMICS system takes an RT-level description as input, and
performs microprogram scheduling in order to minimize the global machine cycle
count. A common assumption in these systems is that all operations have fixed
delays. Namely, data-dependent loops and synchronization primitives such as
message passing are not supported by the behavioral model.

Some systems relax the assumption on fixed delay. Among these, an effective
approach is to directly map the control-data flow graph representing the hard-
ware behavior into a corresponding state transition graph, which can be imple-
mented by either a ROM or PLA. For example, the Yorktown Silicon compiler
[1] implements control as a hierarchy of finite state machines, where a FSM is
associated with each routine. Control state splitting allows tradeoffs to be made
on the delay through the combinational part of the data-path. In the Karlsruhe
synthesis system [5], a state transition graph is generated from the imperative
portion of a description in the DSL language. The state transition graph is then
optimized by merging states and physically realized. However, both systems
assume a single thread of execution flow in the hardware behavior, which limits
the flexibility of the synthesis system to explore architectural tradeoffs between
serial and parallel design.

A novel formulation that addresses the issue of concurrency is the system
proposed by Clarke [6]. A high-level specification of the control flow in a
language called CSML is transformed into a state transition graph. To deal with
the combinatorial state explosion encountered when dealing with concurrency of
unbounded delay operations, interface modules are created for each pair of
interacting state machines using a technique called compositional model check-
ing. Unfortunately, the specification does not support data-path operation, and
the state explosion problem impacts the efficiency of the resulting control
implementation.

Finally, an alternate formulation of graph-based control is the system by Bruck
[3]. Hardware behavior is specified using a CSP-like language called CAP/DSDL,
which is mapped to a modified Petri-net model. Partitioning is performed to
identify the strongly connected state machines, which can be mapped to different
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implementation styles. Although it is modular and can support concurrency and
external synchronization, the state explosion problem along with the duplication
of subgraphs in the partitioning of Petri-nets are issues that need to be addressed.

Although the systems mentioned above are part of powerful synthesis systems,
and effective in synthesizing a large class of designs, they address only part, not
all, of our objectives — to support unbounded delay operations, concurrency, and
to guarantee minimum execution time for all input sequences.

3. Hardware model and problem formulation

We formulate the control synthesis problem on an abstract hardware model.
To justify the model, we describe first the hardware description language (HDL)
from which our model originates. It is important to remark that most of the
language features are common to other HDLs. We abstract these features in the
sequencing graph model as the basis for control synthesis.

3.1. HardwareC

HardwareC is a procedural HDL with features to support interprocess com-
munication [7]. The language models hardware as a set of concurrent and
interacting processes. Each process represents a specific functionality that ex-
ecutes repeatedly. To support communication and synchronization among the
concurrent processes, HardwareC has two mechanisms of process communica-
tion: parameter passing and message passing. The former model assumes the
existence of a shared medium that interconnects the hardware blocks implement-
ing the processes. Reading and writing to this medium is achieved by synchro-
nous read/write operations. The latter model uses a point-wise synchronous
send/ receive message passing mechanism.

HardwareC supports the computation of arithmetic, Boolean, and relational
expressions. It supports arbitrary nested procedure calls, conditional branches and
iterative loops. Goto statements are not allowed. There are two variants of loops,
depending on whether the iteration bound is fixed or data-dependent. Fixed
iteration loops can be selectively unrolled during behavioral synthesis. Data-de-
pendent loops include the while=-do and repeat=-until constructs. They

if (expr) {
while ( expr) regf:;y.{
body; } until (! expr );
}

Fig. 1. Transformation of while loop to repeat-until loop.
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differ in that the body of a repeat-until loop is always executed at least
once. On the contrary, while=do loops may not even be entered depending on
the initial value of the loop exit condition. Note that data-dependent loops may
not be unrolled at compile time due to the data-dependent loop exit conditions. A
while=do loop can be transformed into a conditional repeat=-until loop by
the transformation shown in Fig. 1. Therefore, without loss of generality we
consider only repeat=—until loops in latter discussions.

3.2. Sequencing graph abstraction

Hardware behavior described in procedureal HDL can be modeled as a set of
operations and a partial order among the operations. This is represented as a
polar directed graph, called the sequencing graph. The vertices represent the
operations to be performed, and the edges represent the dependencies that are
either explicit in the hardware specification, or represent dependencies due to
data-flow restrictions or hardware module sharing considerations. The graph
model can capture the hardware primitives of most procedural HDLs, in particu-
lar HardwareC. Variations of this model were used in [1] and [5]. The sequencing
graph model differs from the Value Trace [21] in that it is primarily control-ori-
ented.

The vertices of the sequencing graph are classified into different types accord-
ing to the operations they perform. For example, the types listed in Fig. 2 are
sufficient to model HardwareC descriptions [10]. The vertices are further cate-
gorized as simple or complex. The simple vertices are operations that do not
involve other operations. For example, computations such as addition or Boolean
expressions and message passing primitives are simple vertices. On the other
hand, complex vertices allow groups of operations to be performed, and include
procedure calls, conditionals, and loops. They are analogous to structured control
flow constructs in most programming languages. No-op vertices are used as the
source and sink vertices of the sequencing graph.

The semantic interpretation of the sequencing graph model is as follows. A
vertex is executed by performing the task described by the vertex. For example,
to execute a computation vertex, the task to be performed is the evaluation of the

Category Type Operation represented
simple no-op No operation
computation Arithmetic, Boolean, or
relational expressions
load register Load internal register
input/output I/0 port access
send /receive Interprocess message passing
complex call Invoke a procedure
conditional Select among several branches
loop Fixed or data-dependent iterations

Fig. 2. Types of vertices to capture HardwareC descriptions.
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corresponding expression; to execute a conditional vertex, the operations within
the selected branch are executed. In the case of a call vertex, the control flow is
temporarily transferred to the called graph. When the called graph completes
execution, the control flow returns to the calling vertex. The execution of a
sequencing graph is the execution of its vertices according to the dependencies of
the graph. A vertex begins execution when all its predecessors have completed
execution. Since a vertex may have multiple predecessors and successors, the
model supports multiple threads of concurrent execution flow.

The complex vertices — call, conditional, and loop - induce a hierarchical
relationship among the graphs. A call vertex invokes the sequencing graph
corresponding to the called procedure. A conditional vertex selects among a
number of branches, each of which is modeled by a sequencing graph. A loop
vertex iterates its body until the exit condition is satisfied; the body of the loop is
also a sequencing graph. The sequencing graph is therefore acyclic because only
structured control-flow constructs are assumed (no goto), and loops are broken
through the use of hierarchy.

3.3. Execution delay

We assume in this paper a synchronous implementation of the operations and
their control. Therefore we associate with each operation an execution delay in
terms of the number of cycles required to complete its execution. For fixed delay
operations, the execution delay is computed by the synthesis techniques used for
the operations themselves, e.g. apply logic synthesis for delay estimates. We do
not address in this paper the specification of the execution delays: we assume
only that it is an integer value greater than or equal to zero. The control is
synthesized based on the values of these execution delays. We can now formally
define the sequencing graph model:

Definition 1. A sequencing graph G(V, A, W) is a hierarchical polar weighted
directed acyclic graph, where the vertices v; € V correspond to the operations to
be performed, and the directed edges a € A represent the sequencing dependen-
cies between the operations. Each vertex v, € V is labeled by an integer weight
w; € W, w, > 0, representing the execution delay of v,.

A problem arises when we try to define the delay for a conditional or loop that
depends on some external signal or event not known statically. To address this
point, the vertices of the graph are categorized into bounded and unbounded
vertices. A vertex is bounded if the time required to execute its operation is fixed
for all input data sequences; the delay depends solely on the nature of the
operation. Examples include addition and register loading. On the other hand, a
vertex is unbounded if the time required to execute its operation is data-depen-
dent. Loops whose exit condition depends on some signal value, or message
passing primitives that synchronize between two concurrent processes are exam-
ples of unbounded vertices. The categorization is hierarchical. A sequencing
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graph whose vertices are bounded is called a bounded sequencing graph. A call to
a bounded sequencing graph is bounded, a conditional whose branches are all
bounded is bounded, and a fixed iteration loop whose body is bounded is
bounded.

The presence of unbounded vertices makes it necessary to relate the execution
delay of a vertex to a particular input sequence because the time to achieve
synchronization, and the number of times a loop iterates are known for a given
input sequence. The execution delay of a hierarchical graph is computed bottom
up, according to the following definition:

Definition 2. For a particular input sequence, the execution delay of a sequencing

graph is equal to the length of the longest weighted path from source to sink,

where:

(1) The execution delay of a call vertex is exactly equal to the execution delay of
the called graph.

(2) The execution delay of a conditional vertex is equal to the execution delay of
the selected branch.

(3) The execution delay of a loop vertex is equal to the number of iterations
multipled by the execution delay of the loop body.

We further classify a vertex according to the value of its execution delay. A
vertex whose operation requires one or more cycles to execute (execution delay
> 0) is called a state vertex. Otherwise, it is called a stateless vertex (execution
delay = 0). A sequencing graph where all the vertices are stateless is a stateless
sequencing graph. !

The property of stateless /state is independent of the classification into
bounded / unbounded vertices. Whereas the determination of whether a vertex is
bounded or not can be made statically by considering the type of operation it
represents, the property of stateless/state may change dynamically as different
input sequences are applied to the hardware model. The stateless/state property
for bounded vertices is fixed; e.g. a no-op vertex is always stateless and a
load-register (takes one cycle) is always a state vertex. For unbounded vertices,
however, the property depends on the value of the execution delay for a
particular input sequence. Consider for example a conditional vertex with two

Category Type Bounded /Unbounded Stateless/State
simple " no-op Bounded Stateless
computation Bounded Stateless or State
load register Bounded State
input/output Bounded State
send-receive Unbounded State
complex call Bounded or Unbounded Stateless or State
conditional Bounded or Unbounded Stateless or State . -
Y% HEESHL loop o5 Bounded or Unbounded Stateless or State jrish

Fig. 3. Categorization of vertices according to their properties.
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branches, one state and one stateless. If for a particular input sequence the
selected branch is stateless, then the conditional vertex is stateless for that input
sequence. Likewise, if a new input sequence is applied to the conditional causing
the other branch to be selected, then the conditional vertex becomes a state
vertex. The same analysis applies to call and loop vertices. The properties are
summarized in Fig. 3.

Example. To illustrate the sequencing graph model, consider the example de-
scribed below in HardwareC that finds the length of a pulse (in terms of cycles).
Process Length continuously samples the input data stream, data, and calculates
an 8-bit vector result as the length of the pulse. It calls the combinational
procedure Increment, which increments its input by one. The sequencing graph
for the process is given in Fig. 4. Obviously the procedure can be expanded
in-line. The example serves to illustrate the use of procedures and calls.

process length (data, result)
in port data;
out port result [4];

{
boolean counter [4];
if (data = 0){ J*v */
repeat( /x5 /
} until (data = 1);
}
repeat { JxV, %/
Increment(counter, counter); / * vg * /
} until (data = 0);
write result = counter; J*Vvy * /
counter = 0; J ¥V, * /
}

Increment(data, output)
in boolean data[4];
out boolean output[4];

{

}

The execution delay for both the I/O write (v;) and register loading (v,) is 1
cycle, therefore they are state vertices. Since Increment consists of combina-
tional logic, it is a stateless procedure.

output = data +1;

4. Control synthesis

Given a hardware description in terms of the sequencing graph model, the task
of control synthesis is to generate a control that activates the operations accord-
ing to the sequencing dependencies of the graph. Our objective is to in addition
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T TRUE FALSE
Null
| Gt
--------------- :: Branches for vy
§ 0
ey Increment
Loop body for vy
process
length

Fig. 4. Sequencing graph example for process length.

guarantee a minimum number of cycles in executing the hardware behavior for all
input sequences.

To define a criterion for optimality, we need to model the control implementa-
tion of a sequencing graph. As in the case of the operations, we assume a
synchronous implementation of control that can be modeled on the whole as a
synchronous finite state machine (FSM), where transitions occur by the assertion
of a clock signal at very cycle !. The FSM is characterized by a set of states called
control states. For a sequencing graph, the FSM corresponding to its control
implementation is assumed to be initially in the reset state, and returns to the
reset state when all the operations of the graph have been executed. For a given
input sequence, the control delay of the control implementation for a sequencing
graph is the number of cycles to go from the reset state back to itself

The sequencing graph constrains the assignment of the operations to the FSM
control states. Namely, no two states vertices connected by a path in the
sequencing graph can be assigned to the same control state. Therefore the
execution delay of a sequencing graph is always a lower bound for the control
delay of the corresponding control implementation. We define the criterion for
optimality as follows:

Definition 3. A control implementation for a sequencing graph G is optimal if its
control delay is exactly equal to the execution delay of G for all input sequences.

! The model of synchronous control as a FSM serves as an abstraction to reason about its
properties and it does not imply its physical realization in hardware, i.e. the control circuit may be
physically implemented either as a single FSM or as a network of FSMs.
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Intuitively, the time to execute an optimal control implementation of hardware
behavior depends solely on the execution of the operations and not on the
transfer of control. For example, if a cycle is needed to transfer control to a called
procedure (as in the microcode-based implementation of [21]), then the control
implementation is not optimal by the above definition. On the other hand, an
optimal control implementation incurs no delay penalty in the use of control flow
constructs such as procedure calls, conditionals, and loops in the HDL.

4.1. Adaptive control

We present an approach to control implementation called adaptive control that
supports multiple threads of concurrent execution flow and the presence of
unbounded delay operations. Before describing the details of adaptive control, we
contrast it briefly with other control schemes that address the simplified para-
digms of either fixed delay operations, or a single thread of execution flow.

In the case where all operations have fixed delays, scheduling techniques can
be used to assign all operations to the states of a microcode sequence, as in
[8,16,15]. Scheduling can be applied hierarchically to support fixed-iteration
looping and conditional branching. In the case where there is a single thread of
execution flow [1], a control automaton can be derived by assigning a state to each
vertex of the sequence graph. Transitions among the states depend on the
completion of the corresponding operation. The presence of multiple threads of
execution flow complicates the situation. In particular, the completion of an
operation is not a sufficient condition to trigger the execution of its successor
because the successor may have multiple predecessors. The activation of an
operator depends on the completion of execution of all its predecessors, and
hence in the general case it is necessary to store the information related to the
completion of an operation.

enableg

ct
emby
done; -
el CE3[ tmby
done, -, dones
act
emba

doneg

enable;
|

Controll— activate;
IEletpenﬁ
i

l— complete;

done;

Control Element Sequencing graph G Control network
@ (b) ©

Fig. 5. Direct mapping of the sequencing graph model to the control for (a) a single vertex; (b)
sequencing graph; and (c) the corresponding control network.
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To support both multiple threads of execution flow and unbounded delay
operations, the adaptive control is implemented as a modular interconnection of
control elements. There is one control element per vertex of the sequencing graph,
with the interconnection of the control elements having the same topology as the
sequencing graph. Since there is a one-to-one correspondence between vertices
and control elements, a vertex and its control element are referred to inter-
changeably.

To communicate among the control elements, the control element of a vertex v;
has two handshaking signals: enable;, and done,. The enable / done handshaking
signals indicate when a control element is enabled and when it is finished. The
control element of a vertex v; initiates its operation in the data-path using the
activate; signal, and acknowledge completion from the operation using the
complete; signal. Figure 5 illustrates the direct mapping from the graph to the
control.

Control elements

The implementation of a control element is dependent on whether the corre-
sponding vertex is stateless or state. If a vertex v, is stateless for all input
sequences (e.g., no-op or a combinatorial logic operation), then its control
element asserts the done signal as soon as it is enabled. No state information is
needed in this case, and the control element degenerates to the combinational
logic, done; = enable,.

On the other hand, if a vertex requires one or more cycles of execution delay
for some input sequences, then the control element is implemented as a synchro-
nous FSM. The FSM has two states — ready (S;) and wait (S;”), which can be
implemented using a single bit register. The initial state for a control element is
the ready state. The reset state for an entire control network is defined to be when
all the control elements are in their ready states. In the ready state, a control
element begins executing its operation whenever it is enabled. It remains in S/
until the completion of execution — signified by the assertion of the complete;
signal — whereupon it makes a transition to the wait state. Once in the wait state,
the control element cannot be activated even if it is enabled. The wait state
indicates that execution has completed, and the control element is waiting to be
reset.

The requirement that a control element can initiate execution only in the ready
state is necessary to ensure that no race condition arises as we execute a sequence
of operations. For the sake of visualizing the control mechanisms consider the
situation when the control network is reset. Execution ripples from the source to
the sink. A control element upon completion makes a transition to the wait state.
When the entire sequencing graph completes execution, the network resets by
having all the control elements make a uniform transition back to the ready state.
Note that each control element can be activated only once for each execution of
the sequencing graph.

The adaptive control adapts to the changing execution times of the operations,
and has several advantages, including modularity, distribution of control, uniform
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handling of both bounded and unbounded delay operations, and support of
multiple concurrent execution flows. We describe now a simple adaptive control
implementation that satisfies these requirements. Although it may not be optimal
in terms of execution time, we use this simple model to justify a more elaborate
adaptive control scheme that is presented in the next section which satisfies the
optimality requirement.

4.2. A simple adaptive control implementation

In the sequel we use the following terminology. Let pred(v;) and succ(v;)
denote the set of predecessors and successors of a vertex v, in the sequencing
graph, respectively. We associate to vertex v, the handshake signals for the
corresponding control element: enable;,, done;, activate,, and complete;,. The
handshake signals are defined below, where complete; is generated by the
corresponding operation in the data-path.

enable,= [] done, (1)

k €pred(v)
: S/ - enable; v, state
activate, = (2)
0 v; stateless

S/ - enable, - complete; + S;* v, state

done, = (3)
enable; v; stateless

A vertex is enabled when all predecessors have completed execution, whereupon
the corresponding operation is activated until its completion. The enable of a
sequencing graph G is the enable of its source vertex, denoted by enableg?,
likewise, the done of a sequencing graph G is the done of its sink vertex, denoted
by doneg.

If a vertex v, is stateless for all input sequences, then it asserts its done signal
as soon as it is enabled. Otherwise, the control element is implemented as a
two-state FSM, as shown in Fig. 6. The FSM remains in the ready state S/ until
it has completed execution, after which it enters the wait state. The transition
back from S;” occurs when the entire graph G has completed execution, signaled
by the assertion of done;. The transition conditions for the FSM are given below:

From S to §;*: enable, - complete, - doneg
From S to §: doneg

Note that upon completion, the vertex remains in the ready state if done; is
asserted, corresponding to the case when the completion of the vertex results in
the completion of the entire sequencing graph. Figure 7 shows the progression of
state transitions, where the numbers in the vertices denote the execution delays
for a particular input sequence.

% The enable signal of the root graph (process) of a sequencing graph hierarchy is a constant logic
“1”, to allow the corresponding process to restart execution upon completion.



284 D.C. Ku, G. De Micheli / Optimal synthesis of control logic

ready
St
enable;-

doneg complete;-

doneg

State Transition Diagram

Fig. 6. State transition diagram for the simple control element.

The control element model is applicable to any type of vertices. The personali-
zation is determined by how the control elements interconnect their activate and
complete signals. For simple vertices, these signals are connected directly to the
data-path components implementing the operations. For instance, the activate/
complete signals for I /O read and write vertices are connected to the I/0 ports.
For load-register vertices, they are connected to the registers being loaded. For
message passing send /receive vertices, the activate/complete signals are mutu-
ally coupled. Specifically, the activate of the send is connected to the complete of
the corresponding receive, and the activate of the receive is connected to the
complete of the send.

Additional control circuitry is needed for complex vertices. They are illustrated
in Fig. 8, and described below:

® Call vertex — A network of control elements implementing a sequencing
graph can be treated as a single abstract control element, where the enable /done
of this abstract control element is connected to the enable/done of the given
graph. This formulation supports hierarchy, and allows for a consistent view of
the control for both a single operation and a group of operations. The activate (or

during during during during
cycle 0 cycle 1 cycle 2 cycle 3

Fig. 7. The progression of state transitions in the execution of a sequencing graph. The double-circled
vertices denote currently executing vertices (in S'), shaded vertices denote vertices that have
finished execution (in S*), and unshaded single-circled vertices denote unexecuted vertices.
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Fig. 8. Generating control for complex vertices: (a) call; (b) conditional; and (c) loop.

complete) signal of the call is connected to the enable (or done) of called
sequencing graph, as shown below.

enable, = activate, (4)

complete; = done,, (5)
where enable; and done, are the enable and done of the called graph H,
respectively.

® Conditional vertex — Since each branch of a conditional is a separate

sequencing graph, a conditional is analogous to a multi-way procedure call that
depends on the value of the conditional expression. For a conditional with k
branches, the handshake signals are defined as follows:

enable;, ;) = activate; - (cond = jth branchvalue) (6)

3
complete; = 3 doneg,, (7)
j=1
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where enable; ;) and doneg ;) represent the enable and done of the sequencing
graph G(j) corresponding to the jth branch, and activate; and complete; repre-
sent the activate and complete signals of the conditional vertex. One and only one
branch is selected at any particular time, hence the completion of a conditional
can be computed as the disjunction of the done signals of the branches 3.

® Loop vertex — A loop executes its body until the exit condition (exit_cond)
becomes true. The generation of the exit condition depends on whether the loop
bounds are fixed or data-dependent. For fixed iteration loops, a straightforward
approach is to use a counter that steps through each iteration of the bounded
loop. For the more general case of data-dependent loops, exit_cond is an
expression whose value may change dynamically. In particular, exit from a
repeat-until loop takes place when both exit_cond is true and the loop body
has finished execution, as shown below.

enable, = activate; (8)
complete, = exit_cond - done, 9)

where enable;, and doney are the enable and done of the loop body B, and
activate; and complete; correspond to the loop vertex.

5. Optimal adaptive control

A limitation of the simple control implementation described in the previous
section is that it may not be optimal in terms of execution time. An inherent
difficulty lies in the fact that resetting of the control network occurs too late in
time. There is a conflict between trying to reset the network in preparation for the
next activation, and actually knowing when to reset.

To illustrate the difficulty, consider a sequencing graph G representing either a
process or a loop body that we wish to execute repeatedly. At a particular cycle n,
G is in its final cycle of execution, and done; is asserted at the start of the next
cycle n + 1. Ideally, the control of G should be ready to restart execution during
cycle n + 1. However, this is not possible in the simple control implementation
because the resetting of the control network occurs one cycle after the assertion of
done;. Consider the example in Figure 7. The control network detects the
completion of the entire graph during cycle 3, and resets one cycle later in cycle 4.
Therefore, the periodicity of execution is 4 cycles instead of the critical path delay
of 3 cycles. This is clearly suboptimal.

When all operations have fixed delays, the restarting periodicity can be
hard-coded into the control because the total delay through the graph is fixed. We

? We assume here that the branch condition remains unchanged for the entire duration of execution
of the conditional vertex. If this assumption is not valid, then either the value of the conditional
expression or the activate signals enableg ;) must be stored to ensure that the branch condition
remains unchanged during execution of the conditional.
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say in this case that the control equations can be statically derived. Conversely,
when unbounded delay operations are present, the control equations have to
consider dynamically the variations of the input signals. Since the total delay
through the graph may change, the hard-coded control approach cannot be used.
To resolve this difficulty, two mechanisms are used to achieve optimality. The
first is to use lookahead to ensure proper resetting of the control for all input
sequences. The second is to dynamically identify stateless operations.

5.1. Look-ahead for resetting

To ensure proper and timely reset of the control elements, it is necessary to
know when a given graph is in the last cycle of its execution. If the detection of
completion occurs during the last cycle, then the control can reset during the last
cycle and restart execution in the following cycle. This guarantees the control of a
sequencing graph can repeatedly execute without losing a cycle to reset, which is
crucial to ensure no wasted time for restarting loops and processes.

This look-ahead requirement can be achieved by defining the complete signal
of a vertex to be asserted during the last cycle of execution of the corresponding
operation. For example, if an operation takes only one cycle, then the correspond-
ing complete signal is asserted as soon as it is enabled. In general, if an operation
takes n cycles to execute, the corresponding complete signal will be asserted
during the nth cycle 4.

The redefinition of the complete signals needs to be applied consistently
throughout the sequencing graph model. For simple vertices, the complete signals
are generated by the synthesis system and hence pose no difficulty. However, for
complex vertices that invoke other sequencing graphs, we need to detect the
completion of an entire graph during the final cycle of execution, denoted by the
assertion of done;. Since a sequencing graph may have multiple threads of
concurrent execution flow, we identify the set of vertices, called direct-sink
vertices, whose combined completion results in the completion of the entire
graph.

Definition 4. A vertex v of a sequencing graph G(V, A, W) is a direct-sink
vertex if the longest weighted path from v to the sink vertex, excluding the weight
of v, is zero. Otherwise, the vertex is an indirect-sink vertex.

As an illustration, consider the sequencing graph of Fig. 9, where the numbers
in the vertices represent the execution delay for a particular input sequence. The
double-circled vertices are the direct-sink vertices. The completion of execution of

4 Itis straightforward to implement a control scheme that uses this look-ahead technique. The only
complication is the necessity to determine whether the loop exit condition is satisfied during the
final cycle of a loop’s execution. Since the exit condition may depend on values of variables that
are stored in registers and updated at the end of each iteration, the exit condition is computed
with the values of variables before they are updated into the registers.
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Fig. 9. Illustrating direct sink vertices. The double-circled vertices are direct sink for a given input
sequence.

all direct-sink vertices results in the completion of the execution of the entire
graph. Note that if the source vertex is direct-sink for a particular input sequence,
then by definition the sequencing graph is stateless for that input sequence.

A complication arises since the execution delay of an unbounded vertex may
change for different input sequences; in particular it may become zero, making
the vertex stateless. Therefore, it is in general not possible to statically identify
the set of direct-sink vertices. To address this issue, a direct-sink signal (dsink) is
defined for each control element of the network. The dsink signal is asserted
when the corresponding vertex is currently direct-sink. Specifically, the dsink,
signal for a vertex v; is computed as follows:

dsink,= T[] dsink,- stateless, (10)
s€succ(v)
where stateless, is asserted if the corresponding vertex s is stateless. Note that
dsink of the sink vertex is a constant logic “1”.

With this formulation, the control can track the variations in the execution
delay of a graph because the dsink signals are evaluated dynamically during
hardware execution. Note that if the direct-sink vertices are all bounded vertices,
then the dsink signals can be evaluated statically, not adding to the complexity of
the resulting implementation.

5.2. Dynamically identify stateless computation

Computations that do not take any time to execute, such as stateless branches
of conditionals, should immediately activate their successor operations without
taking a cycle to transfer control. It is therefore important to know when a given
operation is stateless; i.e., execution delay is zero for a particular input sequence.
Furthermore, since our model supports unbounded delay operations, it is neces-
sary to dynamically determine whether a particular operation is stateless.

We define a stateless signal for each control element which is asserted
whenever the corresponding vertex is stateless (has zero execution delay) for a
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particular input sequence. The stateless signals for simple vertices are known
statically, e.g., the stateless signal for load register, synchronous I/0, or synchro-
nous send /receive message passing vertex is always “0”. The stateless signals for
complex vertices are evaluated dynamically, as described below:

® Call — The stateless signal for a call vertex is asserted if the called graph is
stateless: !

stateless; = dsink (11)

where dsink; is the direct-sink signal of the source vertex of the called graph
H, which is asserted if H is stateless.

® Conditional — The stateless signal is asserted whenever the selected branch is
stateless:

k

stateless; = ) dsinkg - (cond = jth branchvalue) (12)
j=1

where dsinkg,;, is the direct-sink signal of the source vertex of the sequencing
graph G(j) corresponding to the jth branch, and cond is the conditional
expression.

® Loop — The stateless; signal for a repeat-until loop is always “0”
because the loop body executes at least once.

The use of stateless signals extends the flexibility and power of the control to
adapt to the input variations. Most systems deal with loops and procedure calls in
a static manner. For example, a loop in many systems takes at least one control
cycle to execute, even if it is only to discover that the loop should not be entered
(assuming data-dependent loops are even allowed). Likewise, a procedure is often
tagged as being either combinational or sequential at compile time, corresponding
to whether it requires zero or more cycles to execute, respectively. However, the
implementation of a procedure may be at times combinational and at times
sequential, depending on the inputs that are applied. Consider the simple descrip-
tion of an ALU below.

ALU (a, b, result, opcode)
in boolean a [8], b [8], opcode [3];
out boolean result [8];
{
if (opcode = = OP_DIV) {
/ * division requiring more than one cycle * /
result = a/b;
}
else
if (opcode = = OP_AND) {
/ * simple logic operation * /
result = a&b;

}
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else {
/ * invalid opcode - do nothing * /
}
}

When the hardware modeled by ALU is executing, the null branch of the
conditional is selected if the opcode is OP_AND, whereupon ALU becomes a
combinational procedure. Otherwise, it is a sequential procedure if the opcode
selects an operation requiring one or more cycles to execute, such as OP_DIV. By
using the stateless signal, we can now take into consideration the dynamic
variations in the time required to call a procedure, and not waste a cycle in calling
stateless (combinational) procedures.

5.3. Optimal control implementation

The optimal control implementation extends the approach described in the
previous section by incorporating the mechanisms of look-ahead resetting and
dynamically identifying stateless computations. The control element for a state
vertex v;, shown in Fig. 10, has two states as in the previous model — ready (S[)
and wait (S;"). The transition conditions are now described as follows:

From S to §*: enable - (complete; + stateless;) - done;
From S to S: done;

The operation begins executing in the ready state. Upon completion or
detection of statelessness, the FSM makes a transition to the wait state. When the
entire graph is done (signified by done;), the control element makes an uniform
transition back to the ready state.

The enable signal enable; remains the same as in the simple control implemen-
tation, equal to the conjunction of the predecessor’s done signal (eqn. (1)).

enable;
ready
S:."
stateless; —s gﬁﬁum‘;: | activate; el
Element d (complete;+
. i oneg stateless;) -
dsink; -+—— l—— complete; e
done;
Optimal Control Element Optimal State Transition Diagram
@ (b)

Fig. 10. Optimal control element and its state transition diagram.
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However, the activate; and done; are modified as follows:

activate; = {

S;" - enable; - stateless;

v; state

291

(13)

0 v, stateless
dde. = {Si’ - enable; - (stateless, + complete, - dsink,) + S v, state
" | enable, v; stateless
(14)
# Type Original Reduced FSM State
v, cond enable, =1 enable, =1 S;e Sy
on stateless; = ¢;-0+c; - stateless; stateless; =c;
1 dsink, = stateless,-dsink, dsink, =0
activate, = Sy-enable; - stateless; activate, = Sy ¢;
complete, = activate - ¢; + dones complete; = dones
Equation 14 done, = ST-¢;+ 8
vy loop enable, = done,; enable, = done, S; = 8"
on stateless, = 0 stateless, = 0
Xy dsink , = stateless,- dsink 4 dsink, =0
activate, = S enable,- stateless, activate, = S-enable,
complete, = doneg - x, same
Equation 14 done, = S,"
U3 write enable; = done, enable, = done, AHE A
1 stateless; = 0 stateless; = 0
cycle dsink; =1 dsink; =1
activate; = S3- enable;- stateless, activate; = S;-enable,
complete; =1 same
Equation 14 done, = S5-enable,; + S,"
Uy load enable, = done, enable, = done, AR
1 stateless, = 0 stateless, = 0
cycle dsink, =1 dsink, =1
activate, = S;- enable, - stateless, activate, = S;-enable,
complete, =1 same
Equation 14 done, = S;-enable, + S,"
Us loop enables = activate, - ¢; enable; = activate, always
on statelesss = 0 statelesss = 0 S5
X5 dsink s =1 dsink 5 =1 (S5=1)
activates = S5 enable; - stateless activates = enable;
completes = x5 - activates same
Equation 14 dones = enables - x5
Us call enableg = activate, enableg = activate, always
statelessg = dsink ;;crement statelessg =1 Se
dsinkg =1 dsink¢ =1 (S¢=1)
activates = S¢- enableg - stateless, activateg =0
completeg = activate completeg =0

Equation 14

doneg = enableg

Fig. 11. Optimized and unoptimized control for example.
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Fig. 12. Simulation result of the control for process Llength.

The activate; signal is asserted when the FSM is both enabled and in the ready
state S;". To explain the done signal, we note that the main difference between the
implementation presented in Section 4.1 and the one described above lies in the
fact that the complete; signal is asserted during the last cycle of execution.
Therefore, the control element can detect that its operation is currently in the last
cycle and makes a transition to the wait state S;* for the next cycle.

Example. To illustrate the application of adaptive control, consider the example
of process length in Fig. 4. Figure 11 shows both the modular control implemen-
tation before optimization, and the control after variable propagation has been
applied to the logic equations, e.g., a=1 and b=a-c are equal to b=c. The
conditional expression for v, is denoted by c, = (data = =0); the loop exit
conditions for v, and vs are denoted by x, = (data = = 0) and x5 = (data = = 0),
respectively. Note also that the loading of the counter register in the repeat-
until loop takes place after the completion of every iteration. The simulation
result for the generated control is given in Fig. 12. The value of result is delayed
by one cycle because the loading of registers takes effect after the clock edge
arrives.

We see that a significant amount of reduction can be achieved in the control
implementation even with a simple variable propagation optimization.

5.4. Demonstrating optimality

In this section, we will prove that the implementation presented in the previous
section is optimal. We begin by decomposing the definition of optimality into two
criteria, both of which must be satisfied by an optimal control implementation.We
say that a control element executes when it activates the corresponding operation,
i.e. asserts the activate signal, and a control element completes execution when
the corresponding operation completes execution. Let pred ,..(v;) C V denote the
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set of state vertices such that a state vertex v, is in pred . (v;) if there is a path
of stateless vertices from v,-to-v;.

Lemma 1. Given an input data sequence, the control delay of a synchronous
control implementation of a sequencing graph G(V, 4, W) is equal to its
execution delay if the following two criteria are satisfied:

(1) Optimal transition: For every state vertex v; € V, the control element is
enabled in the cycle after the completion of execution of all state vertices in
pI'Cd state( Ui)'

(2) Optimal restarting: For all polar sequencing graphs in the hierarchy induced
by G, the control element of the source vertex of a given graph can be
activated in the cycle following the completion of all its vertices.

Proof. Given an input data sequence, the execution delays for all operations in G
are known. Therefore, the execution delay of G can be computed as the longest
weighted path in G. The optimal transition criterion ensures that transferring
control from any control element to its successors incurs no penalty in terms of
cycles for state vertices. Recall that the done signals of stateless vertices are
immediately asserted upon being enabled, and hence stateless vertices do not
affect the execution delay and control delay.

The optimal restarting criterion ensures that transferring control across the
hierarchy also does not incur penalties. In particular, it ensures that: (1) the
control delay for a call vertex is equal to the control delay of the call graph, (2)
the control delay for a conditional vertex is equal to the control delay of the
graph corresponding to the selected branch, and (3) the control delay for a loop
vertex is equal to the control delay of the graph corresponding to the loop body
times the number of iterations. Therefore, if both criteria are met, then for a given
input data sequence, the control delay for the synchronous control implementa-
tion of G is equal to the execution delay of G. O

By definition, the complete signals for simple vertices are asserted during the
final cycle of execution of the corresponding operations. We show now that this is
true also for the complex vertices — call, conditional, and loop.

Lemma 2. The complete; signal for any complex vertex v, € ¥V in a sequencing
graph G(V, A, W) is asserted during the final cycle of execution of v,.

Proof. From eqn. (5), the complete signal of a call vertex is equal to the done of
the called graph. From eqn. (7), the complete signal of a conditional vertex is the
disjunction of the done signals from each of the conditional branches. From eqn.
(9), the complete signal of a loop vertex is the conjunction of the loop exit
condition and the done of the loop body, where the loop exit condition asserts
during the final cycle of execution of the loop. Therefore, it is sufficient to show
that the done of a sequencing graph G is asserted during the final cycle of
execution of G.
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This can be shown by an inductive argument. Consider first the case where the
graph G consists of only simple vertices. The done signal of G, done, is the
conjunction of the done signals of all direct sink vertices. From the definition of
dsink; (eq. (10)) and done; (eqn. (14)), the done signals for all direct-sink vertices
v; are asserted as soon as their corresponding complete, signals are asserted. Since
all vertices are simple, complete; is asserted during the final cycle in the execution
of v;, and done; is also asserted during the final cycle of execution of G.

Now consider a graph containing complex vertices, where the done signals of
the graphs associated with the complex vertices are asserted during their respec-
tive final cycle of execution. By eqns. (5), (7), and (9), the complete signals of the
complex vertices are asserted during the final cycle of execution. From the above
argument, the done signal of the graph containing the complex vertices is also
asserted in the final cycle of its execution. O

Lemma 3. The adaptive control implementation of G satisfies the optimal transi-
tion criterion.

Proof. The optimal transition criterion states that for the element of a state
vertex v; is enabled in the cycle after all the assertion of done signals from every
control element in pred,.(v;). From eqn. (1), a control element is enabled when
the done signals of all its predecessors are asserted, e.g., enable, =
l'I,, < pred(v,) done,. If v, is a stateless vertex, then is asserts its done signal as soon
as. it- is enabled e.g., done = enable,. Therefore, the enable; signal for v, is
asserted when the done, s1gnals of all U, € pred g, (v;) are asserted i.e., enable
= nu epredstate(v ) done

To prove the optlmal transition criterion, it is sufficient to show that for all
vertices v, € predg,,(v;), the done, signal is asserted in the cycle after the
completlon of v,. This implies that enable is also asserted in the cycle after the
completion of all states vertices v, € pred .. (v,).

Note that since v, is a state vertex any vertex v, € pred g, (v;) is by definition
indirect-sink vertex, e.g. stateless, = dsink , = 0. Therefore eqn. (14) reduces to
done, = S,". Since v, enters the wa1t state S“’ in the cycle after the assertion of
complete and smce by Lemma 2 complete is asserted during the final cycle of
execution of v,, the signal done, is asserted in the cycle after the completion of

. This holds for every v, € predsme(v ), and hence the optimal transition
criterion is satisfied. O

Lemma 4. The adaptive control implementation of G satisfies the optimal restart-
ing criterion.

Proof. From Lemma 2, the done of a graph G is asserted during the final cycle of
its execution, at which time all control elements make an uniform transition back
to the ready states. Since a vertex can begin execution if enabled in the ready
state (Equation 13), during the next cycle the source vertex can immediately begin
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activation if it is enabled. Therefore, the control network is ready to restart
execution in the cycle after the sink completes execution. O

We now state the optimality of the control implementation.

Theorem 1. The adaptive control implementation of a sequencing graph is
optimal.

Proof. For a given input sequence, the adaptive control implementation satisfies
both the optimal transition (Lemma 3) and optimal restarting (Lemma 4) criteria.
By Lemma 1, the control delay is equal to the execution delay of the sequencing
graph for a given input sequence.

The categorization of vertices to stateless verses state and direct-sink verses
indirect-sink is dynamically evaluated through the use of the stateless and dsink
signals for each control element. Therefore, Lemma 3 and Lemma 4 hold for all
input sequences. Since Lemma 1 is satisfied for all input sequences, the adaptive
control implementation is optimal. 0O

6. Implementation and practical issues

The adaptive control synthesis is implemented within the framework of the
HERCULES/HEBE High Level Synthesis System. HERCULES /HEBE trans-
forms a behavioral description of hardware in HardwareC into a synchronous
logic implementation consisting of data-path and control. The data-path and
control are passed to logic synthesis for combined optimizations. Logic synthesis
optimizations such as MislI [1] and Minerva [7] can be applied to the control to
significantly reduce the logic complexity. In this section we consider two im-
portant issues related to the practical application of adaptive control. The first
issue is on reducing the area complexity of the control implementation, and the
second issue is on the extraction of delay information from the combinational
logic.

The direct application of the adaptive control implementation may be ineffi-
cient in terms of area due to the excessive use of registers. Consider for example a
chain of n state vertices with bounded delays. The adaptive control implementa-
tion requires n registers, one for each vertex of the chain. However, if the
execution delay of this chain is m > n, then the control can be implemented as a
counter requiring [log,m] registers. This reduction can be generalized to concur-
rent chains in the graph by using clustering techniques to isolate maximal
connected subgraphs of bounded vertices. The operations within each cluster can
be scheduled, resulting in a reduction in the number of vertices and a correspond-
ing savings in the number of registers. The adaptive control still guarantees
optimality as long as each cluster has a single point of entry and exit.

An important consideration is the evaluation of the combinational logic delays
in both the data-path and the control. These combinational logic delays form the
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Graph Model Control Implementation

Examples # of vertices || Number of Logic literals
total | state || register bits | original | minimized
up-down counter 21 6 11 230 65
traffic 7 2 3 92 24
frisc 198 130 148 1872 894
8251 main 82 18 21 946 205
8251 rcvr_sync 30 9 9 355 179
8251 rcvr_async 61 11 12 641 128
8251 xmit 80 12 14 792 183
Elliptic Filter 66 60 64 592 203
Diff-eq 41 29 33 320 133
Parker86 57 22 26 482 170
DAIO phase_decoder 58 27 35 492 187
DAIO receiver 64 16 31 528 172

Fig. 13. Results of adaptive control for several examples.

basis for the computation of execution delays that is used by the adaptive control
synthesis. In HERCULES/HEBE, the combinational logic operations are first
clustered into blocks, where each block is a maximally connected subgraph of
combinational logic operations. A block represents the largest scope of combina-
tional logic operations. A block represents the largest scope of combinational
logic operations in the data-path within which logic synthesis techniques can be
applied. Once the logic is optimized, logic synthesis extracts the critical path
delay for the block. Given a cycle time 7, the execution delay of a combinational
logic block with critical path delay delay is [delay/a - t] cycles. The factor e,
0 < a <1, reflects the critical combinational delay in the control implementation.
Specifically, the control equations can always be evaluated within the time
(1—a)-T. Note that a=1 if one ignores the time to evaluate the control
equations. Since the control equations are completely defined for a given graph
topology, the factor a can always be found by applying logic synthesis to
compute the critical delays in the control implementation.

The adaptive control approach has been used to synthesize three designs in
addition to the standard benchmarks proposed by the High Level Synthesis
Workshop. The first is a digital audio input output chip (DAIO) [13] that
interfaces between serial data from a-compact disc with the parallel micro-
processor bus. The second is a discriminator circuit for the multi-anode micro-
channel array detector (MAMA) that consists of mainly structural interconnec-
tion of components. The third is a bidimensional discrete cosine transform chip
(BDCT) for imaging applications [19]. The results of the control implementation
for several examples are shown in Fig. 13.

7. Summary

This paper presents a synthesis technique for synchronous control logic. The
starting point for synthesis is a behavioral hardware description that can be



