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Abstract

This work pre5eJlts new algmthms for the extraction of exact and approximate Observability Don't

Care sets (ODC sets) in a combinational multiple-level logic ~twork. The P'opo8ed algorithms are
efficient because they use local information, i.e. the computation of the ODC for a vertex in the network

requires only the knowledge of the don't care sets at the adjacent vertices.

Two approaches are proposed. The former computes the exact ODC sets. The latter computes ODC

subsets and can be used when partial information on the don't care sets is available. The algorithms

for the simplified computation finds the largest subsets of the acblaI ODC sets, given the information

available at the adjacent vertices.
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Efficient Computation of Exact and Simplified Observability
Don't care Sets for Multiple-Level Combinational Networks

1 Introduction

Over the past few years. the problem of computing efficiently and correctly the Observability Don't Care (ODC)
leta h.. e~rged .. . centtal one in the synthesis of combinational networks [1], [2]. [3]. The knowledge of the
ODC lets is important in leveral respects, namely: 1) local minimization of fuIx:tiODl in a Boolean network, 2)
Iynthesis of 100% testable networks. 3) teat pattern ge~ration [4].

Bartlett IX'Oposed in [1] a computation of the ODC sets ~uirlng the representation of the primary output
expression in terms of the network intermediate variables. Such a representation may be subject to the explosion
in ~ of the relX'e8Cntation. M\D'Oga proposed in [3] exhaustive simulations of the circuit for determining the
observability don't care seta of vertices with reconvergent fanout.

Other authors JX}inted out that it would be desirable and computationally much more efficient to derive the ODC
set of a vertex of a Boolean network from the ODC seta of ita direct fanout vertices [SJ, [7]. They showed. however,
that a straightforward application of this idea could lead to erroneous results, because of the effect of reconvergent
fanouL Therefore only approximate solutions have been proposed to compute the ODC sets [7], [8].

In this paper we show how an exact computation of ODC sets is indeed JX}ssible by using only local information.
We IX'Opose an algorithm for such a computation that traverses die ~twork backward from the primary outputs to
the primary inputs processing each vertex only once.

Unfortunately this method. leading to an exact comlXltation of the ODC sets, involves implicitly Boolean
complementations and it is consequently prone to the well-known phenomenon of "combinational explosion". We
therefore propose two other algorithms for the computation of subsets of the acb1al ODC sets, still based on local
information. The first algorithm computes an ODC subset at each vertex of the Boolean network from the ODC
subsets of its direct faoout vertices. The second one computes both subsets of the acttla1 care and don't care
lets from thOle of its faoouL It will be shown that the subseta computed by the lecond algorithm include those
computed by the first one, thus providing a better aPIX'oximation.

2 Definitions and Notations

Combinational Boolean Networks.2.1

In this paper we model multiple-output combinational circuits by Boolean networks [I]. A Boolean network N
with n input vertices am m OUtlXIt vertices realizes a fuoction l:.: B" - ~ [I], where B is the Boolean set
{O, I}. Underlining is used for denoting vector quantities throughout this paper.

The ~twork is specified by its acyclic network graph G = (V, E). The elements of the vertex set V =
VI U Va U VO = {v} are in o~-to-o~ corresponderx:e with primary in~ts, logic gates, and primary outputs,
respectively. There is a directed edge e from a vertex po to a vertex II if the output of the gate in p.: is connected to
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an input of the gate in II. In conb'ast to [1], am similarly to [3], we associate a network variable Vi to each edge
ei E E. An example of a circuit am of its associated Boolean network is shown in Fig. (1).

A network variable V, is said to be a fanout (faDin) variable of a vertex II E V if e i is an edge whose tail (head)
end-point is II. We associate to each vertex II an expression I" (fll , J/2, . . " fin) of its fanin edge variables. The
expression I", desaibing the functionality of the gate in II, specifies all the fanout variables of II in terms of the
fanin variables.

2.2 Observability don't care sets.

By cutting an edge ei ux1 by considering Yi u a IXimary i~ variable. the MW network Ne Ieallzes a function
z:.e<£, Y) : 8"+1 - Hm, Given a primary input assignment ~, the variable Yi of N is not observable if the vector

equality [6]

Z:C~.O) = Z::~ll). (1)

is satisfied. Recall that the cofactor II" of a fulx:tion I with respect to fl. is the function obtained by assuming
f/i = 1. Similarly, II,., is the function obtained by setting fl. = O. The vector function:

1)T7 ~
, \~).QQQ. = QQQ" + (1, 1, (3)

lNoti~ that Eq. (3) may contain internal ne~rk vlriablea. 1b~, however, may be reIOlved by bact-aubstitution to obtain an exp-ession
of pirrmy inpJt v8iablel only, ~ that 1bere is no real comrast with 1M definition (2).

2

therefore describes the observability of 'Ji. In particular, 'J. will be observable at the k1h network output (k =
1,.,., m) if the k1h compo~nt of QQQ.. is O. The quantity 8lj81li is usually termed Boolean difference [6] of
L with respect to the (possibly internal) variable 'Ji.

The observability can set of iii (QQ..) is defined by the complement of Q12Q.,., i.e. by ~;. Its kfh
component describes the network configurations that make the variable 'Ji observable at the k1h OUtpUL

Given a ~twork, it is possible in priJx:iple to compute Ql2Q. for any internal variable 11 by flattening the
network Nc and applying Eq. (2). We show here that it is possible to avoid the flattening operation on the network
and compute exact and aPlX'Oximate versions of the functions QQQ., with a single traversal of the ~twork.

For example, if the don't care set of a vertex II is known, then it is easy to obtain an expression of QQQ.., for
any fanin variable 'J of )/ from 1:



The vector (1, 1, . . . , 1) T is used to add 8 f" /811 to all the components of the vector QQQ..
If the network has a tree structure, then it is possible to obtain all the ODC sets by traversing backwards the

network and applying iteratively Eq. (3). H a vertex has reconvergent fanout, however, the observability conditions
of the vertex do not coincide with those of its fanout variables. We present here how the observability don't care
of a vertex can be derived from those of its fanout variables.

2.3 Observability don't care sets in presence of reconvergent fanout

Consider a vertex II with reconvergent fanout, and suppose that all the edges e 1, e2, . . ., en. whose tail-em point
is II. are cut. Let E(b Yl, 112..", Yn) be the function realized by the new network Nc, obtained by adding the
variables Yl, . . . , Yn, corresponding to the cut edges, to the primary inputs. Then, the observability don't care set
of II is described by the function

QQQ., = EC(~O, 1),O)eEC~ 1, (4)

or, equivalently, by
QQQ" = LClvl,V2'...'V. ~Lcl.l'.2'...'..' (5)

For the sake of simplicity, we describe first the case in which n = 2, so that there are only two fanout variables,
VI and 111.. We will generalize the result down below.

The observability don't care set is described by the function

QQQ" = l:CIVI,v2~l:Clrl,r2
(6)

By manipulating Eq. (6), ~ can be rewritten as

(1)

(8)
QQQ" = Q!2Q.llv2~Q!2Q.2Ivl

Notice that in Eq. (5), QQQ" can be also rewritten as

QQQ" = (l:cIV1'V2~l:clvl'.2 )~( ~IV1'V2~l:cl.l'h~

from which we obtain the identity

= QQQ.2lvl ~QQQ.l 1.2
(9)

QQQ" = QQQ.,IIVa~~21111 = ~11112~QQQ.,2Ivl
(lOa)

Similarly, for the care set we obtain

~ = QQ"t/V2 $QQ,,2IYt = QQ"t1Y2 $ QQ,,21Vt , (lOb)

These identities will be used in Sect. (3), when deriving awoximations to ~.
The algebraic manipulation above can be extended to the general case of n fanout variables as follows. It can

be easily verified that for n ~ 2 the following identity can be derived from Eq. (5):

"..)~
Ql2Q., = (l:CIVI,V2,...,r. ~l:CI'I.r2:
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~. = (l:CIVI,v2~.l:Clrl.V2 )~( l:clrl"'2~.l:cl.I.h,

where the tenn .l:c Irl,V2 has been "added am subb'acted" in Ea. (6).



.l:CI.I.F2."',v. ~Z:C1P1'.2"""'. )~ e( z:.CI'I,h""".-I'V. ez:.CI'I,h""".-I.,.
This can be rewritten as:

-,,-n

QQQ., = EBi=l:C:CI."...,.;-"V;,...,V. -m-:C:CI."...,tI;,...,v;+"...,v.

From Eq. (2), each term of the sum in Eq. (11) is easily recognized to be Ql2Q,il"'.'.,'.-l"-i+,'.".r.
Eq. (12) can be thus rewritten as

(13)
For the care set, we have:

n
QQ" = $QQ,iIYt, 'i-t,Vi+t,...,V... (14)

i=1

Similarly to the case of 2 fanout variables, changing the order in which the fanout variables are complemented
results in different expressions of Q.Q". For n fanout variables, there are n! possible orderings, hence n! different
possible expressions for QQQ". In particular, let (iI, i2,..., in) denote a permutation of (1,2,... ,n). Then, the
following identities hold:

".'i-I,r'i+1 "Vi..

2.4 An exact algorithm for the ODC sets computation

Given the ODC set of a vertex 1/, it is possible to compute the ODC set of all its fanin edges by means of Eq.
(3). In turn. Eq. (13) allows us to compute a vertex ODC set, given those of its fanout variables. It is thus now
possible to visit the Boolean network backwards from the primary outputs to its inputs and to determine the ODC
sets of each vertex also in presence of reconvergent fanout.

The following algorithm performs the computation of the ODC sets. It uses the subset S of the vertices whose
ODC set is known. Initially S is the set of primary output vertices with empty fanout set.

OBSERVABD..rrY( G)j
S:= {primary output vertice8 with empty lanout 8et}j
while (S#V){

select v E {V - S} such that FO(v) ~ Sj

foreach fanout variable Yi of v {
JJ. = head vertez 01 edge ~
Q12Qy; = QQQ" + (alII/alii) '* compute ODC, by Eq. (3) *'

'* compute QQQ" by Eq. (13) *'

}
Q12Q" = ~ ~i 1.',"."i-t.J'i+..,..
S := S U {V }i

}

4



The algorithm illi~ in the number of edges. We illustrate here its operation on the circuit shown in Fig. (1).
At the beginning. S = {U4' us}. aid

The fust aM second component of the vectoR QQQ descn"be the observability with respect to %1 aM %2. reSpectively.

First the vertices U2. U, are considered. By applying Eqs. (3) and (13)

QQQ.,a = QQQ.61J'1~QQQ.sl'6 =

"
Us

Y4 \ ~ 1 = Y4

.1 ,Y3 .Y3,

Then S = {uz, U3, U4, u,} and Ut is selected. Ita faoout variables arc ,., Yz. aIxi aCC«ding to Eq. (3) :

so that, using Eq. (13),

which is the correct resulL
Finally the algorithm computes the ODC sets of the primary inputs, that may be used as external ODC sets for

the minimization of the logic feeding the cin:uiL
The p-oduct of all the comp>nents of QQQ" gives the conditions for which the gate output at vertex" is not

observable at any output. For example, in the case of the gate in "1, the product of the comp>nents of Q12Q..1

yields %1%4-

Computation of approximate ODC sets3

It is of IX'8ctical interest to consider the case in which the ODC sets are approximated by subsets. because of
their size. Note that excess app-oximations of the ODC sets are of no lX'Bctical value for Boolean minimization.
Therefore it is useful to derive ODC subsets at a vertex from the ODC sets of its fanout vertices. Unfortunately.
Eq. (7) may not yield an ODC subset from subsets of the actual ODC sets of each edge variable.

For example, in the circuit of Fig. (I), if we assume

(actually a subset of the U'Ue Q12Q.1)' we fux1 for QQQ..1 the estimate:

~1 = (~1~4~"'1"'4)

which is no longer a subset of the true QQQ...

s

ODC =(J6+ %1)=( J2'!'.+ %1 )~I p,+ZI !fl+ Z.+ zl

ODC = ('4 + Z4 ) = ( '12'1 + z.
)~ ~+Z~ Y1+Z1+%4



Two different approaches for the computation of ODC subsets are considered here. In particular we show two
formulae that can replace Eq. (13) in the previous algorithm. The first formula computes both subsets of the actual
care and don't care sets of a vertex from those of its fanout variables. The second one. simpler but less accurate,
computes ODC subsets only.

We give first formulae for computing ODC" in the case of two fanout variables. We then {X'esent their
generalization to larger fanout.

3.1 Propagation of care and don't care subsets

Let 111 and 112 denote the variables correSlX>nding to the edges in the fanout of a vertex v. Assume that only subsets

QQQ. i' ~ i of Q12Qg i ' ~ i are available. Then, ~ and .QQ" computed by:

(170)
and by

(176)

QQ" = QQ,IIV2Q~I'1 + QQ"lhQ~Iv, +

+QQQ.IIV2~21'1 + QQQ.11'~llvl
are subsets of the true ~ and QQ", respectively.

To verify Eq. (17), it is sufficient to observe that, by expanding Eq. (lOa) in sum of products form,

Similarly, it can be verified from Eq. (lOb) that

QQ" = QQ"IIV2~21S11 +~IIV2~ISlI +~IVI~IIY2 +~2IvlQQ"IISl2' (18b)

Since we assumed QQ.Q.; ~ ~;; QQ., ~ QQ,,;, i = 1,2, the relations Ql:[Q" ~ QQ.Q" and QQ" ~ ~
are immediately verified.

3.2 Computation of don't care subsets only

If only subset of don't care conditions ~i are available, then, QQQ., can be computed from:

~ =Q1[Q.IIV2Q1[Q.21.1 +~111/2Q1[Q.2Ivl (19)
To verify Eq. (19) it is sufficient to observe that its right member matches the first elements in the sum (17a).

Therefore~, as computed by Eq. (19), is also contained in QQQ.".
Note that the ODC sets computed by Eq. (17a) always include those derived from Eq. (19). Therefore, the

propagation of both care and don't care sets provide a better approximation to the exact ODC sets.
The ODC subsets computed by Eq. (17a), (17b) and (19) have a local maximality property, in the sense that no

other cube of the cofactors QQQ. i IOJ j' ~ ./OJ j appearing in those equations can be p-oved to be always contained
in QQQ.".
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(b) (0)

Figure 2: Multi-way fork decompositions of a fanout tree.

@Q., = @Q.\IV2VS@Q.2131\VS@Q.S 131\312 + @Q.2Iv\Vs@Q.\I3I2Fs@Q.sl3I\h+

@Q"\IV23IS@Q"2131\3IS@Q,,S IV\V2 + Q1[Q,2Iv\Vs@Q.\ly2f'sQ:i[Q,s IV\V2 (20)
If it is decomposed as in Fig. (2c), we instead obtain the following expression, different from the previous one:

QQQ" = ~2Iv'VI~,I'2VI~II,2Y' +~,IV2VI~21,.,yI~II,2Y'+

~2Iv"I~' 1'2YI~IIV2V, +~, IV2VI@Qhl"VI~llv2V,
The largest expression that can be obtained, starting from the variable don't care subsets, is

fi:t[Q" = @Q.IIVzV,Q~h l'lv,@., 1'1'2 + @.llv,V2Mg., 1'IV2@.21'1"+

Mg.2IvIV,Mg.II,2V,Mg.,INI + @.2Iv,VIMg.,I,2VIMg.II,2"+

Mg., IVIV2@Q,11"V2Mg.21"'1 + @Q" IV2VI.@~I"VIMg.II"'2 (22
larger than (or equal to) both estimates (20) am (21).
In dle general case, by expanding Eq. (13) in sum-of-products form, it is immediate to verify that the product

@.Q,IIVz v.@.Q,zlvl.V" V.-l'V. . .. QQQ..IV1.V2"",'_1
is certainly contained in Ql2Q". Let (it, i2, .. " in) denote a permutation of (1,2,. ..
(15) of the exact Ql2Q" associated to that permutation it follows that ,n). From the expression

(24)
,in) of

@Q., lor. ...or. (ilJc... I.. or ...or ...Qj[c... I... ... -'I "2' "'.-'2 ".",,' "'. -'. "."'2' "'.-.
is also always contained in QQQ". Let 'Kn denote the set of alllX>ssible permutations !. = (il.~.
(1,2,...,n).Thesum

QQQ.;.11I;11'~""'.;.-!

3.3 Generalization to larger fanout

A vertex v with fanout n > 2 can always be replaced by a multi-way fork of interconnections, as shown in Fig.
(2). Eqs. (17) (or, more simply, Eq. (19» could be applied iteratively to this fork. In this way a subset of ODC"
can be obtained in an O(n) number of applications of EQs. (17) or (19).



is therefore a subset of QQQ".
Similarly to the case of two fanout variables, it can be shown that IX) other product of the variables appearing

in Eq. (25) can be added, while maintaining the fust member of Eq. (25) an ODC subset. From the expansion of
Eq. (13), all candidate ~ involve in fact the complement of at least one fanout variable ODC subset, i.e. an
OC superset. If such a JX'OOuct is added, it is no longer possible to guarantee QQQ" ~~. Eq. (25) therefore
refjj"'""~nts the largest tX)ssible estimate.

Unfortunately, its computation requires a f~torial amount of time, and is therefore not awlicablc to large
fanouts. Note, however, that for JOOst circuits the number of fanout stems for a node is typically small.

When subsets of the tnJe ~i sets ale also available, then the largest possible subsets of QQQ". QQ" can be
computed as follows. A sum-of products expression of ~. QQ" can be obtained by expalxiing the expressions
(13) am (14). By substituting each ~; and ~ with QQ;i and Q:iiQ." respectively, an exP'Cssion of ODC
and OC subsets is obtained. Different subsets are obtained by repeating the same procedure using a permutation of
the variables 1/11 . . . 1 1/n. The largest possible subset is the sum of these subsets.

Relation to previous works.4

Methods for computing observability don't can sets have been proposed in [8], [3] am [7]. No~ of these methods
maintains separate components for the observability at different outputs, and therefore must either make some form
of appro~JmatioDl in cue of reconvergent fanout, or abandon the network b'avenal method.

The most "conservative" approach is taken in the P-OgraJn MIS [8]. There, the observability don't care of a gate
in a vertex II is computed by assuming the complete observability of ill fanout gates. The observability 0 DC :f IS
of each fanout variable lIt of II is dius obtained from Eq. (3) by neglecting the first term of the sum. MIS computes
the observability don't care set of II as

lJ~
ODOr, = ODC. + j;

n

. = aDO. + :):::: 'Ij (27)
-) j~lJ~i

which corresponds (with a different formalism) to Eq. (3.1) in [3]. The cases of oot-reconvergent aM recon-
vcrgent fanout are U'ea1ed separately. In the case of not reconvergent fanout, the observability of the gate output v
is computed (cfr. Eq. (3.4) in [3]) from those of the fanout variables 'Ii as

n
ODC., = II ODC" (28)

i=1

In the case of reconvergent fanout, since the different components of the observability are not kept separate,
the ~twork traversal I:.radigm must be abandoned. Muroga proposes an approach based upon two exahustive
simulatioM of the circuit, with the reconvergent gate OUtplt stuck-at 0 and stuck-at 1, respectively. The observability
don', care set for the gate is then computed as the set of pimary input configurations that produce the same output
in the two simulations. In other words, Eq. (1) is solved by "brute force".

In [7] ODC subsets are com~ted as follows. Variables are associated to gate outputs rather than edges. Eq.
(3) is used to determine the observability of fanin variables for each vertex. In ~sence of reconvergent faoout
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lines, the obscrvability don't cart sets associated to each variable are considered as estimates of the true ODC
of the vertex. Note that, because of the different definition of variables, in {X'esence of reconvergent fanout the
observability of a vcrtcx seems to depeoo on itself. Consider, for example, die circuit of Fig. I, and assume that
the gate in u. does not exist. The method finds two estimates of the observability of u 1 as

ODC~. = Ul + Zl; ODC::. = Ul + Z4

This apparent dependency is eliminated by invoking the RESTRICT operation on the expressions 0 DC ~1' 0 DC'.:.
which drops all the cubes containing UI or VI. The RESTRICT operation on an exp-ession ezopr with respect to a
variable var can be defined as follows:

RESTRICT(ezpr, !lor) ~ ezprlvarezprlnP'

In the example of Fig. 1.

RESTR1cr(O~ Ut) = ODC~llaIODC~IIU'i= Zt;

RESTRICT(ODC'.:.,uJ = OVC'..'. lu.ODC'.:.IVj = %4. (31)

RESTRICT is therefore similar to the cofactor operation of Eqs. (8) am (17). Eq. (17) shows, however, that
only part of the cubes (containing either Ul or 11'1) acbJally needs to be dro~.

The estimates obtained after the application of RESTRICT are finally ANDed. In the above example, 0 DC". =
%1%4. It baa been proven in [7] that the final result iI a subset of the true ODC set. The exact result ii, in the above
example, ODCu. = %1 + %4 :2 %1%4.

5 Summary
In tbiI paper we have p-elented . novel algorithm fm' the extraction of exxt and approximate OblervabUity Don't
Care sets (ODC sets) in a combimtional multilevel logic network. The proposed algorithms are efficient because
they use local information, i.e. the computation of the ODC fm' a vertex requires only the knowledge of the don',
cares at the vertex immediate fanout. Two approaches have been lX'Oposed. The former computes the exact ODC
sets. The latter computes ODC subsets am can be used when parnal information on the don', cares is available.
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