8
Synthesis of ASICs with Hercules and Hebe

David C. Ku - Giovanni De Micheli

Center for Integrated Systems

Stanford University
Stanford, CA 94305

1 Introduction

Computer-aided synthesis of digital circuits from behavioral specifications offers
an effective means of dealing with the increasing complexity of digital hardware
design. The benefits of such a methodology include shortened design time
to reduce design cost, ease of modification of the hardware specifications to
enhance design reusability, and the ability to more effectively and completely
explore the different design tradeoffs between area of the resulting hardware and
its processing time.

Most of the previous work in high-level synthesis addressed processor and
digital signal processing designs, as documented by the other chapters of this
book. They are effective in using domain-specific knowledge in synthesizing
designs with certain architectures. One area that we believe to be particu-
larly suited for high-level synthesis is Application Specific Integrated Circuits
(ASICs). ASICs are typified by control-dominated interface and communication
circuits, such as for bus arbitration or communication line interfaces. For ASICs,
reducing the design time and cost is often more important than minimizing area
or improving performance.

While logic synthesis techniques have been established as standard steps
in the design methodology for digital circuits, high-level synthesis techniques
have been lagging behind for several reasons. One of the most difficult issue
is that as designs increase in size and complexity, system integration issues,
such as coordinating and interfacing between the components, often dominate
a design. In particular, hardware interfacing and design constraings on timing
and area need to be addressed at both the design specification level, by pro-
viding more powerful hardware models that supports external synchronization

177

178

and timing constraints, and at the design synthesis level, by providing powerful
synthesis algorithms that can either guarantee the resulting implementation sat-
isfy the given constraints, or indicate when no such implementation exists. In
addition, although effective logic synthesis techniques are available, they have
not been adequately incorporated by many systems to complement and enhance
the high-level optimizations. This can result in inflexible design styles, lack of
integration between different synthesis domains, and an inability to use lower
level synthesis information to guide the high-level design tradeoffs. Finally,
given the diversity of the approaches to digital circuit design, it is difficult to
encode all implementation decisions in terms of algorithms or rules that can
be universally applied. Practical high-level synthesis techniques therefore need
to support both automatic and user-driven synthesis modes to leverage off the
designer’s knowledge and experience.

Existing synthesis approaches and algorithms are limited in their ability to
synthesize interface and communication designs, with few exceptions [1, 13,
4]. In particular, most input languages of synthesis systems do not support
interfacing and synchronization with external signals and events. Furthermore,
the synthesis paradigm of most systems is to design hardware that performs a set
of computations within a given amount of time. Being able to specify a global
timing constraint to limit the overall latency of a design is clearly inadequate for
interface and communication circuits that require complex handshaking protocols
with other hardware modules. For example, a specification for a bus interface
may require that a ready signal be detected before putting some data on the data
lines, with the stipulation that there be at least 5 cycles separating the detection
of the ready signal and the outputting of data. Therefore, two of the most
important issues in the synthesis of ASIC designs are external interfacing and
synchronization with input signals and events, and the support for local timing
constraints that specify bounds on the timing of input and output events.

System Overview. With the motivation described in the previous section, we
have developed a system for the high-level synthesis of general-purpose syn-
chronous digital circuits, with specific attention to the requirements of ASIC
designs. The system is divided into two parts: Hercules that performs the
front-end parsing and behavioral optimizations, and Hebe that synthesizes one
or more structural implementations that realize the given behavior. In addition,
we have developed as input to the system a synthesis-oriented hardware de-
scription language (HDL) called HardwareC. HardwareC serves as a platform
for experimenting with different constructs in specifying hardware for synthesis.

R

179

Hercules
Behavioral Synthesis

SIF
Sequencing graph

Hebe
Structural Synthesis

Resource Binding

X

Scheduling
i)
SLIF Logic synthesis
Logic-level i tools

Figure 1: Block diagram of the Hercules and Hebe system.

Hercules and Hebe transform a behavioral description of hardware in Hard-
wareC, through a series of translations and optimizations, to a synchronous logic
implementation that satisfies the timing and resource constraints that are imposed
on the design. Hercules performs the front-end parsing and behavioral optimiza-
tions, with the objective of identifying the parallelism in the input specification.
It generates an implementation-independent description of the hardware behav-
ior in a graph-based representation, called the Sequencing Intermediate Form
(SIF). Hebe binds operations to resources and control steps, and generates a
logic-level implementation consisting of data-path and control, described in the
Structural/Logic Intermediate Form (SLIF). A block diagram of the system is
shown in Figure 1. Note that logic synthesis tools are used to optimize the
combinational logic portions of the design, and they provide feedback on area
and delay that is used to drive Hebe.

q

180

We would like to emphasize the support of the system for the following
features.

e External interfacing and synchronization. The ability to wait for the oc-
currence of a particular input event, i.e. assertion of a ready signal, is
necessary to coordinate the actions between a set of concurrently exe-
cution modules. This interfacing is specified as either synchronization
mechanisms or data-dependent loops in the input description, and it is
modeled as unbounded delay operations in the synthesis formulation.

e Detailed timing constraints. Detailed timing corfstraints specify upper and
lower bounds on the activation of pairs of operations. The bounds can
either be specified directly in terms of number of cycles, or they can be
derived given a cycle time. They permit the specification and synthesis of
designs with complex protocols and strict timing requirements. We have
developed a technique called relative scheduling that permits the analysis
of timing constraints in the presence of unbounded delay operations.

e Partial binding of operations to resources. Often the designer may wish '

to share resources by manually binding certain operations to resources
in order to meet some high level objectives. It is important to capture
this partial structure in the specification to guide the synthesis algorithms;
for example, the partial structure is used to limit the number of different
design implementations.

e Synthesis algorithms with provable properties. Timing and resource con-
straints are used to drive the synthesis optimizations, to ensure that either
the resulting implementation satisfy the required constraints, or that no
such implementation exists.

o Logic synthesis techniques. To meet the area requirements, resource shar-
ing is a necessary part of the synthesis system. Since resources correspond
to models that are described and invoked in the high level description, the
characterization of resources to evaluate sharing feasibility is carried out
using logic synthesis techniques to provide estimates on timing and area.
This methodology is particularly suited for ASIC designs that tend to
rely on application-specific logic functions. The use of logic synthesis
for estimates improves the quality of the synthesized designs, and avoids
erroneous high-level decisions due to insufficient data or inappropriate
assumptions.

181

The synthesis flow can be fully automated, transforming an input HardwareC
description directly to a logic-level implementation. The system also supports
user-driven synthesis, where a designer can intervene and drive high-level deci-
sions based on an evaluation of the possible design tradeoffs.

2 Hardware Modeling

The input to the synthesis system is a description of hardware behavior in a high-
level hardware description language called HardwareC [6]. The motivation for
choosing HardwareC over other hardware description languages is because we
would like, in addition to developing synthesis algorithms and techniques, to
experiment with different language constructs for synthesis. The interaction
between specification and synthesis provides an effective framework for testing
new synthesis approaches and algorithms.

As its name suggests, HardwareC has a C-like syntax. However, the lan-
guage has its own hardware semantics, and it differs from the C programming
language in many respects. HardwareC supports both declarative semantic (e.g.
interconnection of modules) and procedural semantic (e.g. set of operations or-
dered in time) in the modeling of hardware. There are four fundamental design
abstractions, corresponding to block, process, procedure, and function models.
At the topmost level, a design is described in terms of a block, which con-
tains an interconnection of logic and instances of other blocks and processes.
A process consists of a hierarchy of procedures and functions, and represents a
functionality that executes repeatedly, restarting itself upon completion. Since a
process executes concurrently and independently with respect to the other pro-
cesses in the system, it allows the modeling of coarse-grain parallelism at the
functional level. A procedure or function is an encapsulation of operations, and
may contain calls to other procedures and functions.

HardwareC supports the usual iterative and branching constructs, includ-
ing both fixed-iteration and data-dependent looping constructs. Data-dependent
loops can be used to detect signal transitions, which are important in describ-
ing external interfaces. For example, the construct while (data==0); will
wait until the rising transition of the signal data. In addition, there are several
features of HardwareC that support hardware specification and synthesis:

e Interprocess communication — To support communication and synchro-
nization among the concurrent processes, HardwareC supports both pa-
rameter passing and message passing. The former assumes the existence

w

182

of a shared medium (e.g. shared bus or memory) that interconnects the
hardware modules implementing processes. The handshaking protocols
are described in the HardwareC description. The latter uses a synchronous
send/receive mechanism that can be used for synchronization or data trans-
fer. The corresponding hardware for communication, as well as its proto-
col, are automatically synthesized.

Explicit instantiation of models — Hierarchical designs are supported
through the use of model calls. A call to a model can be either generic ot
instantiated: a generic call invokes a model without specifying the par-
ticular instance that is used to implement the call, whereas an instantiated
call identifies also a specific instance of the model which will implement
the call. Through explicit instantiation of model calls, HardwareC sup-
ports resource constraints and partial bindings of operations to resources.
The designer can constrain the synthesis system to explore a subset of
the possible structures corresponding to a behavioral model to satisfy a
particular architectural requirement.

Template models — A template model is a single description that describes

a class of behaviors. As an example, a single template can be used to
describe a family of adders of different size. Templates are similar to
high-level module generation, and are therefore very useful in describing
libraries of hardware operators at a high level.

Degree of parallelism — For procedural semantic models, HardwareC of-
fers the designer the ability to adjust the degree of parallelism in a given
design through the use of sequential ([]), data-parallel ({ }), or parailel
(< >) groupings of operations. In the first case, operations are executed
sequentially. In the second one, all operations are executed in parallel,
unless data dependency requires serialization. In the last case, all oper-
ations execute in parallel unconditionally. Parallel grouping is used, for
example, to describe the swapping of two variables without the use of a
temporary variable, i.e. < a=bb=a>.

Constraint specification — Timing constraints are supported through tag-
ging of operations, where lower and upper bounds are imposed on the
time separation between the tags. Timing constraints are useful in inter-
face specification by constraining the time separation between 1/O opera-
tions. Resource constraints limit the number of resources and the binding
of operations to resources in the final implementation.

process gcd (xin, yin, restart, result)

in port xin(8], yin[8], restart;
out port result(8];

boolean x[8], y[8];
tag a, b;

[+ set output to zero during computation +/
write result =0;

[+ wait for restart to go low */
while (restart)

/* sample inputs */

<
constraint mintime from a to b = 1 cycles;
constraint maxtime from a to b = 1 cycles;
a: x = read(xin);
b: y = read(yin);

>

/* Euclid’s algorithm x/
F(x!1=0&(y!=0)){
repeat {
while (x >=y)
X=X-Y;
[+ swap values x|
<y=Xxx=y; >

} until (y == 0);
} else
x=0;

[+ write result to output */
write result =x;

..

Qi

183

Figure 2: Example of a HardwareC description to find the greatest common
divisor of two values.

184 185

An example of a HardwareC description that computes the greatest common transformations are carried out without human intervention, and include the fol-

divisor of two numbers is given in Figure 2. The model gcd waits until the | lowing:

restart signal is low, samples the inputs, then performs Euclid’s algorithm

iteratively. The read operations are tagged, and timing constraints are applied e For-loop unrolling, where fixed-iteration loops are unrolled to increase
on the tags to ensure that the reading of yi occurs exactly 1 cycles after the ‘ the scope of the optimizations.

reading of xi. Note that any statement in the description can be tagged. o Constant and variable propagation, where the reference to a variable is

replaced by its last assigned value.

3 Hercules — Behavioral Sy nthesis ® Reference stack resolution, where multiple and conditional assignments to
variables are resolved and eliminated by creating multiplexed values that

. . .. - h eli)
The objective of behavioral synthesis is to identify as much parallelism as pos can subsequently be referenced.

sible in the input description. This gives an indication of the fastest design that
the system can produce, assuming that in the design implementation each opera- o Common sub-expression elimination, where redundant operations that pro-
tion is implemented by a dedicated hardware component. While this assumption duce the same results are removed.

may not be realistic in some cases due to area and interconnection costs, it is

important to compute the related performance as a limiting bound for a given- e Dead-code elimination, where operations whose effects are not visible
behavior. outside the model are removed.

The input HardwareC description is parsed and translated first into an abstract e Conditional elimination, where conditionals with branches containing only

syntax tree representation, which provides the underlying model for semantic combinational logic are collapsed to increase the scope in which logic
analysis and behavioral ransformations. The transformations are categorized synthesis can be applied.
into user-driven and automatic transformations. User-driven transformations are

optional, and allow the designer the capability of modifying the model calls and Upon completion of the automatic transformations, the behavior is optimized
hierarchy of the input description. They include the following: with respect to the data-dependencies that exist among the operations. At this
point, combinational coalescing is performed to group together combinational

o Selective in-line expansion of model calls, where a call to a model is logic operations into expression blocks. The expression blocks define the largest
replaced by the functionality of the called model. Once expanded, the scope (without crossing control step boundaries) in which logic synthesis can be
optimization algorithms can be applied across the call hierarchy. applied, where a control step is a fundamental unit of sequencing in synchronous

systems and corresponds to a clock cycle. The expression blocks are used to
identify the critical combinational logic delays through the design. They are
directly passed to logic synthesis for minimization and technology mapping, the
results of which are fed-back as estimates on area and timing that are used to
refine the design. Operation chaining, where multiple operations are packed
within a single control step, is supported through coalescing. Combinational
coalescing is important particularly for ASIC designs because of their extensive
use of logic expressions in the hardware specification.

o Selective operator to library mapping, where operators, such as “+” or
“~”, in the input description are mapped into calls to specific library
template models. Although an operator can be synthesized in a variety
of different implementation styles, the designer is often constrained to
elements of a particular library. With such mapping, the designer has
the flexibility to select the specific implementation for the operators. If
no mapping is given, then by default the operators are implemented as
combinational logic expressions.

Automatic transformations optimize the behavior by performing transforma- Sequencing Graph Model. The optimized behavior resulting from behavioral
tions similar to those found in optimizing compilers [17, 16, 15). The automatic synthesis is translated into a sequencing graph abstraction called the sequencing
intermediate form (SIF). The sequencing graph is a concise way of capturing

186
gcd example
write result -
read x loop body loop body
® ©
write result () 100px>=y O x=x-y
@ ®

Figure 3: The SIF representation for the gcd example. Note the hierarchical
nature of the model.

the partial order among a set of operations, and it is modeled as a polar (single
source-vertex and single sink-vertex), directed acyclic graph. The source vertex
represents the start of computation, and the sink vertex represents the completion
of all computations. The vertices represent the operations to be performed, and
the edges represent the dependencies that are either explicit in the hardware
specification, or represent dependencies due to data-flow restrictions (i.e. a
value must be written before it can be referenced) or hardware resource-sharing
considerations (i.e. two operations sharing the same hardware resource must be
serialized to avoid simultaneously activating the resource). A vertex is enabled
when all its predecessors have completed execution. Since a vertex may have
multiple predecessors and successors, the model supports muliiple threads of
concurrent execution flow.

The vertices are categorized as either simple or complex vertices. Simple
vertices include primitive computations in the language, such as arithmetic or
logic expressions and message passing commands. Complex vertice‘s. allow
groups of operations to be performed, and include model calls, conditionals,
and loops. The complex vertices induce a hierarchical relationship among the
graphs. A call vertex invokes the sequencing graph corresponding to the call.ed
model. A conditional vertex selects among a number of branches, each of which
is modeled by a sequencing graph. A loop vertex iterates its body until the exit
condition is satisfied; the body of the loop is also a sequencing graph. The
sequencing graph is acyclic because only structured control-flow constructs are
assumed (no goto), and loops are broken through the use of hierarchy. An

187

example of the sequencing graph for the gcd example of Figure 2 is shown in
Figure 3.

Hardware Resources In contrast to micro-architectural synthesis systems that
use a predefined set of library elements as building blocks, Hercules and Hebe
treat each model in the input description as a resource that can be allocated and
shared among the calls to the models (either procedures or functions). Each
different implementation of the called model represents a specific resource type
with its own area and performance characteristics. For example, two calls to a
model A can be implemented either by a single resource comresponding to the
hardware implementation of A, where both calls share the use of the resource;
or by two resources, where each call is implemented by a different resource.
Operators such as + or — can either be converted into calls to the appropriate
library models, or by default be implemented in terms of logic expressions.

There are several motivations for adopting this view of models and resources.
First, many complex ASIC designs use application specific logic functions in
describing hardware behavior; the delay and area attributes of these modules
are not known @ priori since they depend on the particular details of the logic
functionality. Having the ability to synthesize in a bottom-up manner each
model according to its distinct needs allows the calling models to more accurately
estimate their resource requirements. Second, the granularity of resource sharing
can be controlled by the designer in the high level specification, which increases
the flexibility of the system. Finally, instead of relying on parameterized and
predefined modules, logic synthesis techniques applied hierarchically to each
model can significantly improve the quality of the resulting design.

4 Hebe - Structural Synthesis

The input to the structural synthesis phase consists of a sequencing graph model
of the hardware behavior to synthesize, along with the following constraints,
which can either be specified in the input hardware description, or entered in-
teractively by the designer.

o Timing constraints — that specify upper and lower bounds on the time
separation between pairs of operations.

® Resource constraints ~ that both limit the number of instances allocated
for each resource type, and partially bind operations to specific instances
of the resource pool.

s

R

188

'
graph
Hebe -
¥

Allocate
resources

Y
el | (D) (@)
constraints

)

Select Resource
Binding

0

- Resolve
Timing Conflicts
constraints ohie

Scheduling

Logic-level
Implementation

Figure 4: Block diagram of the Hebe structural synthesis system.

e Cycle time — for the final synchronous logic implementation.

The constraints are not mandatory; they serve to guide the synthesis system in
obtaining an acceptable solution. For example, if the cycle time is not given,
then the cycle time is by default equal to the critical combinational logic delay
in the final implementation. An important characteristic of Hebe is its support
for detailed timing and resource constraints at both the design specification and
synthesis levels.

The objective of Hebe is to explore the design tradeoffs by sharing hardware
resources (o obtain a suitable implementation that satisfies the user constraints
on resource and timing. Although we consider an implementation to be ac-
ceptable as long as both the resource and timing constraints are satisfied, Hebe
provides a framework in which the designer can experiment with different de-
sign goals that indicate the emphasis of the final implementation with respect
to area and/or performance. Hebe performs a number of distinct but interde-
pendent subtasks. The subtasks include data-path optimization and generation,
such as resource allocation and binding 10 bind operations to specific resources,

189

as well as scheduling to bind operations to control steps. In addition, control
optimization and generation is performed to synthesize and minimize the corre-
sponding control logic. The interaction among these various tasks is critical in
determining how effectively or completely the space of design alternatives can
be explored.

An effective strategy is to perform resource binding before scheduling, as
in Caddy [2] and BUD [11]. This strategy has the advantage of being able to
provide the scheduling phase with detailed interconnection delays, because the
interconnect structure is known once a binding of operations to resources has
been made. This basic approach is extended in Hebe to provide closer interaction
and guidance to the designer, and is shown in Figure 4. The flow of structural
synthesis in Hebe is described as follows.

® Perform resource allocation and binding. For a resource allocation that
satisfies the resource constraints, operations are bound to specific re-
sources. The allocation and binding are guided by the desired design
goals, i.e. minimum area or maximal performance.

® Resolve resource conflicts. A binding implies a certain degree of resource
sharing, and in general resource conflicts may arise when more than one
operation simultaneously attempt to activate the same resource., The re-
source conflicts can be resolved by serializing operations bound to the
same resource that can otherwise execute in parallel. Different bindings
may have different 1/O behavior because of this serialization, and timing
constraints are used to determine whether a given I/O behavior meets the
imposed timing requirements.

e Perform scheduling. After the conflicts have been resolved, scheduling is
performed to bind operations to control steps, subject again to the required
timing constraints. Scheduling is necessary for control generation.

The synthesis algorithm explores the different possible resource binding alterna-
tives by iterating these three tasks. We describe now Hebe’s formulation of the
design space, and how it is explored in obtaining a desired implementation.

Formulating the Design Space. More specifically, a resource pool is a set
of hardware resources (e.g. implementations of models) with an upper-bound
on the number of instances of each type of hardware resources that the user
allows in the final implementation. A resource binding is a matching of the
operations (i.e. the vertices of the sequencing graph) to specific resources in the

190

& @ ‘
@) 49
1 Rz:urca

@) @)

2 Resources 2 Resources

©) @

Figure S: Examples of resource binding, where operations within a group are

bound to the same resource instance.

resource pool. The design space is the entire set of resource bindings that are
compatible with the partial binding of operations to resources that is specified
as a form of resource constraint in the input description. A resource binding is
considered valid if its resource conflicts can be resolved and a scheduling exists
that satisfies the timing constraints. Therefore, Hebe’s goal is to find the “best”
valid resource binding, subject to a particular design goal.

Examples of resource bindings for a sequencing graph containing four calls
to model A are shown in Figure 5. All operations that are grouped together
share the same resource instance in the final implementation, e.g. the resource
binding of Figure 5(a) utilizes one resource instance, the resource binding of
Figure 5(b) utilizes four resource instances, etc. In the case of allocating two
resource instances, (c) is favored over (d) if the design goal is to minimize
the latency of the graph. The reason is because it is necessary 1o resolve two
resource conflicts in (d), i.e. between A; and A, and between A3 and A4. The
conflict resolution may increase the latency of the graph, as described later.

An important aspect of the design space formulation is that it is a com- -

191

plete characterization of the entire set of possible design tradeoffs for a given
allocation of resources, and offers two important advantages:

o Uniformly incorporates partial binding information. In some circuits the
designer may wish to bind certain operations to resources in order to
achieve high-level design goals. This information can be used to limit
the design space such that the synthesis system focus on the remaining
unbound operations. At the extreme, if all operations are bound, then the
design space trivially reduces to a single point.

o Supports exact and heuristic algorithms. With exact algorithms, Hebe
guarantees that given a binding configuration, it is possible to find a reso-
lution of the resource conflicts that satisfies the timing constraints, if one
exists. Otherwise, the system can detect the inconsistency and inform
the designer accordingly. Since exact algorithms may not be practical for
some designs, they are complemented by heuristic algorithms that try to
find a resolution of the resource conflicts, but they are not guaranteed to
find a solution when one exists. As a result, the exact algorithms may
be necessary if the heuristic fails, when an optimum implementation is
sought.

The exploration of the binding alternatives is guided by the principle of finding
a conflict resolution satisfying the given constraints for points of the design
space of increasing cost. The search stops when a valid design point is found.
Therefore, when exact algorithms are used, an optimum solution is found, while
near-optimal implementations are otherwise achieved.

Exploring the Design Space. The size of the design space may be large, be-
cause it grows exponentially with the number of shareable resources. However,
it is often the case in ASIC designs that the number of shareable resources is
sufficiently smail to make systematic exploration of all resource bindings practi-
cal and meaningful. For these cases, exact pruning techniques are used to limit
the search for a valid binding. In exact pruning, a partial order is imposed on
both the resource allocations and on the bindings such that if a resource alloca-
tion fails to satisfy the timing constraints, then the allocations that follow it in
the partial order are guaranteed to also not satisfy the timing constraints. For
example, if an allocation of 3 adders and 2 multipliers fails to produce a valid
binding, then allocating 2 adders and 1 multiplier will also fail to produce a
valid binding.

£

"9

192

Hebe can compute the exact cost for a given design point. Specifically, the
area cost is obtained through logic synthesis techniques on the corresponding
logic-level implementation for both the control and the data-path; the perfor-
mance cost is obtained after conflict resolution and scheduling. For designs
where the design space is too large, the system supports also heuristic search for
the resource bindings. The search is based on alternative evaluation and rank-
ing of the binding cost using a set of cost criteria. The cost criteria represent
estimates of the effect of a particular binding on the area and delay of the final
implementation, and the bindings with more favorable costs are synthesized first.
The cost criteria include the following. .

o Interconnection cost: The interconnection structure is the steering logic
that guides the appropriate values to their proper destinations in the final
implementation. Since a binding configuration is a complete assignment of
operations to resources, the interconnection structure is completely speci-
fied. The interconnection cost is a function of the interconnect’s area and
delay, computed using a multiplexer-based scheme. Logic synthesis can
be used to optimize the interconnect structure.)

e Area cost: A resource binding implies a certain degree of resource uti-
lization and sharing. The area cost estimates the total area cost of the
final implementation, and includes the area costs due to the resources in
the resource pool, the interconnect structure, the registers, and the control
structure. More sophisticated area estimates that consider also the cost
due to layout and wiring can also be incorporated as this stage, although
they have not been implemented yet in the current version of the system.

o Serialization cost: Resource conflicts may arise due to a binding. De-
termining whether a conflict resolution exists under timing constraints is
computationally expensive. We use the notion of widths of bindings to
estimate the number of threads of parallelism that need to be serialized in
order to resolve the resource conflicts. In particular, all operations bound
to the same resource instance should not execute simultancously, e.g. €i-
ther there exists sequencing dependencies among the operations, or the
operations occur in mutually exclusive branches of a conditional. The se-
rialization cost is a heuristic measure of the effect of the resource binding
on the performance of the design.

The decision of whether one alternative is favorable with respect to another
depends on the relative importance of these criteria, which is determined by the

B et

v

RGN

193

value of a weight associated with each criterion. Through Hebe, the designer can
experiment with different design goals by adjusting the values of the weights,
where the bindings are ranked according to their costs. The designer can focus
the synthesis efforts on the resource bindings with acceptable costs.

For example, if the goal is to minimize the area, then the area and inter-
connection costs can be used to identify the resource bindings with minimal
area. Likewise, if the goal is to maximize performance under area constraints,
then the area and interconnection costs can bound the search to those bindings
that meet the area constraints, while the serialization cost can provide further
pruning of the design space. We emphasize that a resource binding may still be
invalid even if it has favorable costs. The reason is because conflict resolution
and scheduling have not yet been performed at this heuristic ranking stage.

5 Synthesis Algorithms

Given a binding in the design space, it is necessary to resolve the resource
conflicts to determine whether the binding is a valid binding. In most existing
approaches, resolving conflicts is formulated as a scheduling problem to assign
operations to fixed time slots, where two operations in different time slots can
have their resources shared. However, the sequencing graph model supports
operations whose execution delays are unbounded and unknown g priori. Un-
bounded delay operations are useful in modeling interfacing with external signals
and events. For example, waiting for the rising edge of a request signal can be
modeled as an operation whose completion indicates the detection of the rising
edge. Since the rising edge can occur at any time, the execution delay of this
synchronizing operation is data-dependent, and can be represented as having
unbounded execution delay. The support for unbounded delay operations inval-
idates the traditional scheduling formulation because it is no longer possible in
general to statically assign operations to fixed time slots.

To address this difficulty, we have proposed a relative scheduling formulation
in which the activation of operations is specified as time offsets from the set of
unbounded delay operations [7]. An important characteristic of this formulation
is the support for detailed timing constraints. We formulate the conflict resolution
problem as the task of serializing the graph model so that operations bound to
the same resource cannot execute in parallel. The serialization cannot in general
be arbitrarily applied due to the presence of timing constraints. The conflict
resolution approach takes advantage of the relative scheduling formulation to
ensure that the resulting serialized graph satisfies the required timing constraints,

194

- Forward
= Backward

Sequencing graph
and = Constraint graph
Timing constraints

Figure 6: Example of a constraint graph, with a minimum and a maximum
timing constraint. The number inside a vertex represents its execution delay.

if a solution exists. We consider an implementation of a binding to be acceptable
as long as the timing constraints are satisfied. Once the graph is appropriately
serialized, relative scheduling is carried out to determine the time offsets, which
are used to generate the control circuit. It is important to remark that a solution
to the conflict resolution implies that a valid schedule satisfying the timing
constraints exists.

Constraint Graph Model. Before presenting the details of the conflict resolu-
tion and relative scheduling approaches, we describe first our model of hardware
timing behavior in terms of a polar directed edge-weighted constraint graph
G(V,E). The vertices V represent the operations, and the edges E capture
the precedence and timing relationships (sequencing and min/max constraints)
among the operations. Each operation v € V' is synchronous and therefore takes
an integral number of cycles to execute, called it execution delay and is de-
noted by 6(v). The execution delay may not be known a priori, as in the case
of external synchronization and data-dependent loops. In this case, we say the
execution delay is unbounded.

A weight w;; associated with each edge e;; = (vi,vj) € E represents
the requirement that the start time of v; (denoted by T'(v;)) must occur later
than w;; after the start time of v;, i.e. T(v;) > T(v) + wi;. For example, a
sequencing dependency from v; to v; is represented by a forward edge from v; to

195

v; with weight 6(v;). The edges are categorized into forward (E;) and backward
edges (E;). The forward (backward) edges have positive (negative) weights
and represent minimum (maximum) timing requirements among the operations.
Both forward and backward edges may have unbounded weights. Without loss
of generality, we assume the graph induced by the forward edges is acyclic,
and that all cycles in the graph have bounded length. Figure 6 illustrates how
a constraint graph is derived from a sequencing graph with timing constraints.
We refer the interested reader to [7] for details of the constraint graph model.

Resource Conflict Resolution. We call an operation set as consisting of the
subset of operations that are bound to a particular resource. Obviously, if the
elements of an operation set execute in parallel, then resource conflicts will
arise. We formulate the problem of conflict resolution as finding an ordering
of the elements of an operation set, such that the serialized graph satisfies the
imposed timing constraints. For example, in Figure 5(d), the two calls A, and
A, executing in parallel but bound to the same resource must be serialized to
ensure that they cannot execute simultaneously. A straightforward approach,
but computationally prohibitive, is to simply enumerate the possible orderings.
We can however take advantage of the topology of the input sequencing graph
and the set of timing constraints to reduce significantly the complexity of the
ordering search,

We use the constraint graph model as the basis for the formulation. Since
the objective is to find an ordering that satisfies the timing constraints, an impor-
tant observation is that constraint violations will occur only if overconstraint in
the form of inconsistent cyclic timing relationships is introduced. The conflict
resolution approach is as follows, for a given operation set.

o Identify operation clusters — an operation cluster represents a subset of
vertices in the operation set that are connected by a cycle in the constraint
graph, i.e. a cyclic timing requirement is imposed on them.

o Find an ordering among the operation clusters — By definition, a partial
order is induced among the operation clusters with respect to timing re-
quirements. Therefore, we see that the problem of finding an ordering
for an operation set can reduced to the problem of finding an ordering
for the elements of an operation cluster, since any ordering of the clusters
that is compatible with the original partial order will satisfy the timing
constraints. By taking advantage of the topology of the graph, the compu-
tational complexity of the conflict resolution strategy now depends on the

196

size of the operation clusters instead of depending on the size of the oper-
ation sets. For designs with few cyclic timing constraints, this reduction
in complexity is significant.)

e Order operations within the operation clusters — The problem of finding
an ordering of operations within an operation cluster satisfying timing
constraints is NP-complete in the strong sense, since it can be cast as
an instance of “sequencing with release times and deadlines” [3]. Hebe
supports both heuristic and exact branch-and-bound search. The heuristic
search is based on sbning the elements to be ordered by the length of the
longest path from the source. Since we are intefested in finding quickly
one valid ordering, the heuristic search is always performed first; the
branch-and-bound search is used only when the heuristic fails to find a
valid solution.

o Serialize graph according to ordering — Once a valid ordering satisfying
timing constraints is found, the sequencing graph is serialized accordingly.
Scheduling is then performed, as described in the next section.

Given a valid ordering, the sequencing graph is free from resource conflicts.
Furthermore, it is guaranteed that the resulting serialized graph satisfies the
required timing constraints. If a valid ordering for a given binding is not found,
then the binding is discarded and another one is selected.

Relative Schedule. With the resource conflicts resolved, scheduling is still
necessary to assign the operations to control states in order to generate the
control circuit for the final hardware. We use a novel technique called relative
scheduling that uniformly supports operations with fixed and unbounded delays.
We describe briefly the main results in relative scheduling. The interested reader
is referred to [7] for further details.

Given a constraint graph G(V, E), we define a subset of the vertices, called
anchors, that serve as reference points for specifying the start times of the
operations. The anchors consist of the source vertex and the set of unbounded
delay vertices. Offsets are then defined with respect to each anchor of the graph.
In particular, the anchor set of a vertex is the set of anchors that are predecessors
to the vertex, and represents the unknown factors that affect the activation time
of the vertex. The start time of a vertex is then generalized in terms of fixed time
offsets from the completion of each anchor in its anchor set. Specifically, let
A(v;) denote the anchor set of v;, and 0,(v;) as the offset from the completion
of anchor a € A(v;). The start time T'(v;) of v; is given as:

197

T(u) = max (T(a)+ 6(a) + a(vs)}

Note that if there are no unbounded delay vertices in the graph, then the start
times of all operations will be specified in terms of offsets from the source
vertex, which reduces to the traditional scheduling formulation.

An important consideration during scheduling is whether the timing con-
straints can be satisfied for any value of the unbounded delay operations. A
constraint graph is feasible if its constraints can be satisfied when the unbounded
delays are equal to zero. If there are no unbounded delay operations, then the
concept of feasibility is sufficient to guarantee that a schedule exists. With the
presence of unbounded delays, we extend the analysis by introducing the con-
cept of well-posed constraints. Specifically, a timing constraint is well-posed
if it is satisfied for all values of the unbounded delays. We are interested in
well-posed constraints because the final implementation must be able to satisfy
the timing constraints for any values of unbounded delays. Note that if a graph
is well-posed, then it is also feasible; the contra-positive also holds, where an
unfeasible graph is also ill-posed. Since feasibility can easily be checked by de-
tecting positive cycles in the constraint graph, we can assume the constraints to
be feasible in the subsequent analysis. The relative scheduling approach consists
of the following steps.

1. Checking well-posedness — The constraint graph is first checked for well-
posedness. If the constraint graph is ill-posed, it is sometimes possible
to made it well-posed by additionally serializing the graph. An algorithm
is applied that is guaranteed to yield a well-posed constraint graph with
minimum serialization, if one exists. If the graph cannot be made well-
posed, then no schedule exists and scheduling is aborted.

2. Removing redundant anchors - 1t is often the case that not all anchors in
the anchor set are needed to compute the start time of an operation. This
is due to the cascading effect of anchors that make some redundant in
computing the start time. For a well-posed graph, we identify and remove
the redundant anchors. Through redundancy removal, it is possible to
obtain a smaller and faster control implementation because the start time
depends on fewer offsets, and hence fewer synchronizations.

3. Finding the minimum schedule - Finally, the relative schedule can be com-
puted by using an efficient algorithm called iterative incremental schedul-

Wi,
W
-] B

198
doneg doney done, - donep
{ | }
Counter, Countery SRa[1] SRs(1]
SR.[2)}-2e=2 SRy[3]
SR.D) =3 ISRD)
SR.[4] SRy(4)

\‘J

enable,

enable,

Counter-based control Shift-register based control
@ ®)
Figure 7: Alternate implementation styles for control generation: (a) counter-
based and (b) shift-register based.

ing. It is guaranteed to find the minimum relative schedule, or detect the
presence of inconsistent constraints.

The polynomial-time complexity of the above steps allows relative scheduling
to be effectively integrated within the design space exploration.

Control Generation. Once we have computed the relative schedule corre-
sponding to a constraint graph, it is necessary lo generate the control logic that
will activate each operation according to its schedule. In the simple case where
the hardware model does not contain any unbounded delay operations, the task
of control generation reduces to the traditional control synthesis approaches.
For the general case, we use an approach that is based on an extension of the
adaptive control synthesis scheme [9].

Given a schedule, we abstract the task of control generation as generating
enable/done signals for the operation associated to each vertex v such that its
execution is indicated by the assertion of enable,. We model the control in
terms of a modular interconnection of synchronous FSMs; the FSM abstraction
decouples the control generation from a particular style of logic-level imple-
mentation. For the sake of simplicity and without loss of generality, our control
abstraction considers only the synchronization of an operation with respect to

R iRkl ot

199

the completion of its anchors. We assume that the completion of the operation
corresponding to each anchor @ € A is indicated by the assertion of a signal
done,. Details of generating done, and the support for conditional branching
and looping are described in [9]. Two different approaches to generating the
control for a vertex v are shown in Figure 7. The vertex v has two anchors,
a and b, with offsets equal to 2 and 3, respectively. The two approaches are
described below.

e Counter based control — A counter is used to indicate the time offset from
the completion of an anchor. The enable signal is described as comparisons
between the values of the counters with the corresponding offsets.

e Shift-register based control — The comparator cost in the previous approach
can be reduced by using shift registers instead of counters. In this case, the
enable signal is described as the logical-and of the corresponding stages
of the shift register.

Alternative strategies to describe the control logic exists, Figure 7 serves to
illustrate two possible control styles. For example, a finite state machine can be
generated where the control signals correspond to the output of the FSM. The
control can- be further optimized by a technique based on resynchronization of
operations that can be applied to minimize the area of the control implementation,
while still satisfying the timing constraints [8].

6 Implementation and Design Experiences

Hercules and Hebe have been implemented in C, with approximately 140,000
lines of code. They are interfaced to the logic synthesis, simulation and tech-
nology mapping tools of the Olympus synthesis system [12]. Hercules and Hebe
have been tested on the benchmark circuits for high-level synthesis. Although
many of these examples do not take full advantage of Hebe’s ability to support
detailed timing constraints, they serve as comparisons with existing systems. We
would also like to remark that the HardwareC descriptions of these examples
have been fully simulated to verify the functional correctness; the combined
control and data-path have been synthesized and mapped by logic synthesis
techniques.

The results of applying Hebe to some benchmark examples are shown in
Figure 8. The designs include the DAIO receiver (DAIO_rv) and phase de-
coder (DAIO_ph), encoder (ECC_enc) and decoder (ECC_dec) portions of an

200

Example Sequencing graph model Implemensation Resources®

G® | N° [Lp® | Cnd | Expr | Area® | Latency’
DAIO.rv 16 64 7 4 16 1931 | unbound none
DAIO_ph 91 58| "2 3 13 1796 | unbound none
ECC_enc 4 47 1 1 9 1586 . 17 E3(6),E4(3)¢
657 23 E3(1),E4(1)
ECC_dec 4| 53 1 1 14 | 2923 18 E4(9)
940 27 E4(1)
Frisc 26 | 140 1 5 6 | 12583 23 | +16(1),—16(1)
Ged 10 | 37 3 3 7 1111 | unbound none
Traffic 2 7 1 0 1 191 | unbound none
Tseng 1 11 0 0 2| 3101 5 *g(1)./s(1),
+8(1),—s(1)
2901 4 *3(1),/8(1),
+s(3),—s(1)
Diffeq 2 17 1 0 1 401 12 | +s(2),—s(1),
*s(4)
365 8 | +3(2),—s(2),
#3(6)
Elliptic 1 37 0 0 0ol 870 52 | 416(1),416(1)
9023 45 | +16(4)#16(1)
10823 30 | +16(4).%16(2)

@ Multiplier *g (*16) requires 5 cycles, with area cost 2012 (8910).
5@ is the number of sequencing graphs.

€N is the number of vertices in all graphs.

4Lp and Cnd are the number of loops and conditionals.
¢Based on LSI Logic Compacted Array 10K library costs.

S Number of cycles, unbound means unbounded execution delay.
9E3 (E4) is combinational logic function with area cost 60 (90).

Figure 8: Results of applying Hebe to benchmark examples.

201

error-correction module, 16-bit RISC-style microprocessor (Frisc), 8-bit great-
est common divisor (Ged), traffic light controller (Traffic), Tseng’s 8-bit ex-
ample (Tseng), 8-bit differential equation solver (Diffeq), and the elliptic filter
with arbitrary 16-bit coefficients (Elliptic). This table gives for each example
information related to the sequencing graph model: G denotes the number of
sequencing graphs in the model, NV denotes the total number of vertices, Lp/Cnd
denotes the number of data-dependent loops and conditionals, and Expr denotes
the number of logic expression blocks.

Synthesis by Hebe is based on a eycle time of 50ns, where Area is the area
cost of the final implementation in the LSI Logic Compacted Array (LCA) 10K
library, and Latency is the number of cycles to execute the design. The resources
that are used by a design are also shown. For example, combinational 16-bit
adders (+16) and 16-bit multipliers (x¢) requiring 5 cycles to execute are used
in the Elliptic example. Some design points are shown for designs with non-
trivial design space, such as for Diffeq and Elliptic. The control is based on the
shift-register implementation described earlier. Note that in the Tseng example,
the size of the implementation with resource sharing is larger than the size of the
dedicated implementation due to the cost of interconnect. The execution times
of Hercules for most examples range from a few seconds to several minutes,
nunning on a DecStation 5000/200. The execution times of Hebe depends both
on the extent to which the design space is searched and on the time spent on
logic synthesis. Synthesizing one binding configuration requires up to a few
minutes to execute, with most designs requiring several seconds.

In addition, the system has been used to design three ASIC circuits at Stan-
ford University, namely a Bi-dimensional Discrete Cosine Transform (BDCT)
chip [14], a Digital Audio Input Output (DATO) chip [10], and a decoder chip
for the Multi-Anode Microchannel Array (MAMA) detector for the space tele-
scope [5]. The BDCT chip is used for video compression applications. An 8 x 8
BDCT architecture was synthesized and implemented in a compiled macro-cell
design style as a 9 x 9 mm? image in 24 CMOS technology. The DAIO chip
provides an interface, following the Audio Engineering Standard (AES) proto-
col, between a standard 16/32 microprocessor bus with audio devices, such as
compact disk or digital audio tape player. The DAIO specification in HardwareC
was compiled and mapped into a logic netlist suitable for implementation in LSI
Logic 9K-series sea-of-gates technology. The logic specification had about 6000
equivalent gates. The MAMA chip is designed to discriminate the information
generated by a multi-anode detector in a space telescope. Also described in
HardwareC, it was synthesized and fabricated with LSI Logic 9K-series sea-of-

202

gates technology.
Hercules and Hebe are part of the Olympus Synthesis System. For availability
information, please send electronic mail to olympus@chronos.stanford.edu.

7 Acknowledgments

Rajesh Gupta generated and tested the benchmark examples, Dave Filo imple-
mented the register folding and control optimization techniques, Thomas Truong
implemented a graphic display package and simulator for the SIF graph, and
Frederic Mailhot implemented the logic synthesis interfice and technology map-
per Ceres, as used by Hebe to evaluate the cost of a design. Their contribu-
tions and helpful discussions are gratefully acknowledged. This research was
sponsored by NSF/ARPA, under grant No. MIP 8719546, by AT&T and DEC
jointly with NSF, under a PYI Award program, and by a fellowship provided by
Phillips/Signetics.

References

[1] G. Borriello and R. Katz. Synthesis and optimization nof interface trans-
ducer logic. In ICCAD, Proceedings of International Conference on
Computer-Aided Design, pages 56-60, November 1987.

[2] R. Camposano and W. Rosenstiel. Synthesizing circuits from behavioral
descriptions. [EEE Transactions on CAD/ICAS, Vol. 8(No. 2):171-180,
February 1989.

{3] M. Garey and D. Johnson. Computers and Intractability. W. Freeman and
Company, 1979.

{4] S. Hayati, A. Parker, and J. Granacki. Representation of control and timing
behavior with applications to interface synthesis. In /ICCD, Proceedings of
International Conference on Computer Design, pages 382-387, October
1988.

[5] D. B. Kasle. High resolution decoding techniques and single-chip decoders
for multi-anode microchannel arrays. Proceedings of Int'l Society of Optical
Eng., Vol. 1158:311-318, August 1989.

203
f

(6] D. C. Ku and G. De Micheli. Hardwarec - a language for hardware design
(version 2.0). Stanford University CSL Technical Report, CSL-TR-90-419,
April 1990.

[7] D. C. Ku and G. De Micheli. Relative scheduling under timing constraints.
In DAC, Proceedings of Design Automation Conference, pages 5964, June
1990.

[8] D. C. Ku and G. De Micheli. Control optimization based on resynchroniza-
tion of operations. In DAC, Proceedings of Design Automation Conference,
June 1991.

{9] D. C. Ku and G. De Micheli. Optimal synthesis of control logic from
behavioral specifications. Journal of VLSI Integration (To appear), 1991.

[10] M. Ligthart, A. Bechtolsheim, G. De Micheli, and A. El Gamal. Design
of a digital audio input output chip. In CICC, Proceedings of Custom
Integrated Circuits Conference, pages 15.1.1-15.1.6, May 1989.

{11] M. J. McFarland. Using bottom-up design techniques in the synthesis of
digital hardware from abstract behavioral descriptions. In DAC, Proceed-
ings of Design Automation Conference, pages 474-480, June 1986.

[12] G. De Micheli, D. C. Ku, F. Mailhot, and T. Truong. The olympus synthesis
system for digital design. IEEE Design and Test Magazine, pages 37-53,
October 1990.

{13] J. Nestor and D. Thomas. Behavioral synthesis with interfaces. In DAC,
Proceedings of Design Automation Conference, pages 112-115, June 1986.

{14] V. Rampa and G. De Micheli. The bi-dimensional dct chip. In ISCAS,
Proceedings of International Symposium on Circuits and Systems, pages
220-225, May 1989.

[15] E. A. Snow. Automation of module set independent register-transfer level
design. Ph.D, Dissertation, Carnegie Mellon University, April 1978.

[16] H. Trickey. Flamel: A high-level hardware compiler. IEEE Transactions
on CADIICAS, Vol. CAD-6:259-269, March 1987.

f17]1 R. Walker and D. Thomas. Behavioral transformation for algorithmic level
ic design. IEEE Transactions on CAD/ICAS, Vol. 8:1115-1128, October
1989.

¥

	cut:

