Derivation of Don’t care Conditions
by Perturbation Analysis of
Combinational Multiple-Level Logic Circuits

Maurizio Damiani Giovanni De Micheli

Center for Integrated Systems
Stanford University

Abstract

In this paper we present a framework for the derivation of don't care conditions by perturbation analysis
of combinational multiple-level digital circuits.

The contribution of the paper is two-fold. First, different approximations of observability don’t care sets
are compared quantitatively. Second, the perturbation analysis is used to derive new compatible observability
don't care sets, that are larger than those previously derived.

1 Introduction

Multiple-level logic optimization strategies (9, 10, 12, 4] are based on circuit transformations that preserve
the circuit behavior and improve its quality. Different flavors of circuit transformations have been proposed.
Optimization algorithms based on Boolean transformations, such as those used in (9] [4] and [12], have shown
to be very effective in reducing the circuit area and delay as well as improving its testability properties.

Don't care conditions play a central role in the specification and optimization of logic circuits. Indeed, they
represent the degrees of freedom of transforming a network into an equivalent one. The computation of exact and
approximate don't care sets has been object of extensive investigation. Several algorithms have been proposed
(7, 10, 13, 16, 12, 15] for the calculation of observability don’t care sets by backward network traversal. It has
been observed that the optimization of a gate changes the don't care of other gates in the network. For this
reason, the concept of compatible don’t care sets has been introduced [12, 15].

The contribution of this paper is two-fold. First we review the analysis of don't care conditions in combi-
national multiple-level circuits, and present a quantitative comparative analysis of approximate don’t care set.
Second, we analyze the problem of computing compatible and maximally compatible don’t care sets, and show
in particular that it is indeed possible to compute compatible don't care sets that are larger than those previously
believed maximal [15].

2 Basic concepts and definitions

We consider in this paper combinational multiple-level logic circuits. We assume that these circuits consist
of an interconnection of multiple-input single-output combinational logic gates. Fanout points are modeled by
single-input multiple-output copy gates, as shown in Fig. (1).

We model these circuits by Boolean netwarks. A Boolean network is described by a directed acyclic graph
G = (V, E). The elements of the vertex set V correspond to logic gates (including copy gates), while edges

u5 = y4 ORy6
u4 = y3 AND Y5
yS =y6 = u3

y4 = y3 = U2

u3 = y2 OR x4
u2 = y1 OR x1
Yyl =ay2 = ul

ul = x2 EXOR x3

Figure 1: Combinational Boolean Network and corresponding graph

correspond to interconnections. In our network model, each variable is associated to an edge, and it is denoted
by a string (e.g. z, sample). The edge is indicated by a subscript (¢.8. €:,,ampic). A variable z is said to be a
fanout (fanin) variable of a vertex v if e . is an edge whose tail (head) end-point is v. The head and tail vertices
of an edge e are denoted by head(e) and tail(e), respectively. The set of fanout (fanin) edges of a vertex v is
indicated by FO(v) (FI(v)). To represent primary input and output variables, a source and a sink vertex are
added. An edge e joins the source 10 a vertex v if z is a primary input variable feeding the gate corresponding
to v. Similarly, an edge e, joins a vertex 4 to the sink vertex if z is a primary output variable computed by the
gate corresponding to v. Note in particular that F'I(source) = FO(sink) = ¢. The number of primary inputs
and outputs are n; = |FO(source)| and n, = |FI(sink)|, respectively. The number of variables is n, = |E|.

Vertices represent the computational elements of the network. In particular, each fanout variable y of a
vertex v is associated to a function f, of the fanin variables of v. For copy gates, the function reduces to
identity.

Example 1. A combinational Boolean network and its graph are shown in Fig. (1).

3 Don’'t care conditions in combinational networks

It is customary to view a Boolean network as realizing a function £ : B"+ — B"+ of the network variables,
where B denotes the Boolean set {0,1}. F therefore associates a n,-dimensional Boolean vector to each point
of B™+. Similarly, each expression f, is thought of representing a scalar Boolean function over the same domain.

The embedding of the network in a larger digital system is modeled by introducing external don't care
conditions. Two types of external don't cares are typically considered: controllability and observability don't
cares, respectively. In [10] they are defined as primary input assignments that are impossible or such that a
primary output is not observed, respectively.

It is worth noting that in practice observability don’t care conditions are available in terms of primary
output variables. During logic optimization, the mapping of these conditions in terms of primary inputs is
subject to change. The definition provided in [10) is therefore not suited for these cases,

We definc as observability don't care condition of an output any assignment of the network variables,
including in particular in particular primary inputs and outputs, such that the output is not observed.

Controllability don’t cares are here indicated by an expression CDC ... of the primary input variables, while
observability don’t cares are indicated by a n,-dimensional vector QDC, ... The #*» component (i = 1,---,n,)
of ODC,., is an expression in terms of network variables, representing the set of conditions for which the i t»
output is not observed.

The set of intemally impossible variable assignments is usually termed satisfiability don't care set and is
denoted by SDC#:

SDCr=) ydf, 16}

e, €E
We define an auxiliary n,-dimensional vector 1 = (1,1,---,1). For ease of treatment, satisfiability and
controllability don't care sets are represented in the sequel by vectors SDC = SDCland CDC,., = CDC,z].

4 Don’t care conditions for single-vertex optimization

Logic optimization algorithms refine an original network iteratively by replacing local functions f , by others that
improve some property of the network, typically area occupation or timing performance. This is accomplished
by first determining the set of functions g, that can replace a given function f,.

The change of a function f, into g, affects the network functionality by perturbing the value of the variable

y, corresponding to those assignments for which f, # g,. This effect can be modeled by means of the following
definitions.

Definition 4.1 Let y denote the owtput variable of a logic gate in a Boolean Network N. We call perturbed
network Ny the network obtained by replacing the function f, with the function f, & 8, where § is an added
primary input.

The functionality of the perturbed network N is described by a function £, (§) : B*<*! — B"+, In particular
Z,(0) = Z and the functionality of any network N’ obtained by replacing f, with an arbitrary function g, is
described by F, (f, @ gy) -

The perturbed gate contributes to the satisfiability don’t care set of the perturbed network with a term
SDC;s = y & (fy @ 6), while the remainder of the network contributes with

SDCy = E z2® f, , ()]
e, €EE—{ey}

so that the satisfiability don’t care of the network is expressed by SDC s, = SDC, + SDC;.
Definition 4.2 Given a cut network Ny, the quantity

0DC, = F,(6 =)BE, (5 = 0))

is termed observability don’t care vector for the variable y. Its i** component (i =1, ,n,) describes the
set of network assignments for which y does not affect the i** network output.

The complement of the observability don't care vector is the ordinary Boolean difference 8F /8y of F with
respect 10 y.

Definition 4.3 Consider a network N', obtained from N by replacing a function f, with g,. N’ is functionally
equivalent to N if the vector equality

Zy(fv @g,):L(O) @

is satisfied for all the observable components of F, for all the feasible variable assignments of N,

We are interested in determining the set of functions g, that are equivalent to f,, and then choose the one of
minimum cost. To this end, we introduce the function

EQV(6) ¥ Z,(5BZ,(0) . ©)
A function g, is equivalent to f, as long as the introduced perturbation is such that '
EQV +ODC 0y + CDC..y + SDC5, = 1. ©

When 6§ =0, from Eq. 5, EQV(0) is identically 1, and therefore Eq. 6 is a tautology. For 6 =1, Eq. 6
holds as long as

EQV(1)+QDC...+CDC,..+ SDCy + (y®7,)1=1 m
By observing that EQV (1) = QDC, ., it follows that the perturbation é must satisfy the inequality
1€ QDC, +QDC.. +SDC, +CDC... + yoT,)1 ¥ DC, ®

The expression 8 for the don't care se1 of y differs from the ones usually considered and presented, for
example, in (10), because of the last term y & f,.

5 Don’t care computation

Computing the satisfiability don't care set is straight-forward. In contrast, the computation of observability don't
care sets has been recognized as a problem of its own. Several methods for approximating the observability
don't care sets have been proposed in the past [9, 3, 8, 16], by using backward network traversal. Except for
the chain rule [7], all these methods either abandon the network traversal approach in presence of reconvergent
fanout or resort to some approximations.

We present first an exact method for computing the ODCs. We then compare the method to other previous
approximations to the ODC computation. We comment then on another new ODC approximation.

§.1 Exact ODC computation

In [13] the authors presented a method for computing exact observability don't cares. We summarize it briefly
here.

The computation is based on a backward network traversal and on the following steps:
1) In presence of a logic gate, with output variable y and input variables y,,-- -, y,, we compute ‘the
observability of the variables y; by

QDC,, = QDC, + (%{h—”); ©

2) In presence of a fanout point, with output variables y; and i, and input variable y, the observability
don't care of y is computed according to the rule

QpC, =90DC,, In:O@QQQ,, lys=1- (10)

or

QDC, = QDC,, ly=1®QDC,, |y, =0-

These equations can be rewritten in a more compact form as:

opC, = QDC, BQDC,, |y\=3-
Table(1) shows the CPU time and average number of literals spent for the exact and approximate computation
of unminimized QDC scts.

[Circuit Exact Simplified
formula (10) formula (20)
CPU time | # literals || CPU time | # literals
| c17 0 2 0 2
| ca32 105 1990 68 2017
| ca99 12 75 6 88
| csso 11 70 6 60
C1908 . . 175 273
C6288 . . 4295 689
apex6 40 38 28 43
apex7 26 9 18 11
| cM138 0 2 0 2

Table 1: CPU time and average number of literals for the ODC sets of some benchmark circuits. (* denotes
out of memory.)

m——Q_fDL'
1

A z
%2 ye 22
x1
1 z1 . z=21 OR 22
CGOC, OX® inNkn
y2 22 = y2 AND x2
X2 yi=y
of

Figure 2: Multiplexer model of a circuit with reconvergent fanout.

5.2 Comparative analysis of different ODC approximations

We use here Eq. 10 first for examining the quality of previous approximations, and then for proposing a novel
solution.

For the sake of simplicity, let us restrict our attention to single-output networks (so that the ODC vectors
have only one component) and to a copy vertex with only two output variables, as shown in Fig. (2).
We define the auxiliary quantities

a0 = ODCy,ly=0, @1 = ODCy,ly=1, bo = ODCy,ly=0, b = ODCy,ly=1
so that

ODCy, =ao§+ aiy: ODC,, = boy + biy.
By substituting these expressions in Eq. 10 and 11 the following identity must hold:

ODC,y = (a7 + a1y)&(boy + 17) = (aoy + a17)D (5T + b1y).

b0 b1 b0 b1

a0 at a0 af

- l1]-1]o -1]-1o0

- lo |- |1 - lo |- |1
\o-”ﬁ- o |- (1)

Figure 3: Map of ODC, in terms of the variables ao, a1, bo, b1, for y = 0 and y = 1 respectively. Circles
represent the approximation given by Eq. (16)

Any assignment 0 ao, a1, bo, b) violating identity 14 must therefore be contained in the satisfiability don't care
of the network. Namely:

a®adbdb CSDC, . @15

The Kamaugh map of ODC,, in terms of ag, a;, bg, by and y is shown in Fig. (3), where 1’s denote the
observability don'’t care , 0's the observability care, and — denotes the impossible assignments given by Eq.
15, i.e. the satisfiability don't cares.

All "local” approaches attempt approximate O DC,, by some other function of aq, a;, bo, b and, possibly, y.
We denote an approximation to ODC,, by OT)'C,. The quality of any such approximation can thus be measured
by the number of covered 1's in the Karnaugh map.

The most "conservative™ simplification is taken in the program MIS-II, as reported in [9). There, ODC,
is computed by assuming that the variables zy, z; are fully observable. The observability ODCM'S of each
variable y,, 3, is thus obtained from Eq. 9 by neglecting the first term of the sum. In our case, each OAD-'C,,i
is independent from any other variable y;, i.e. ODCy, C aoa; and ODC,, C boby. ODCy is computed as the
product of ODCy, and ODCy,; therefore, ODCy ~ C aoa bobr.

In [16], the following approximation is proposed:

ODC,, = Cy(ODC,,) = aca ;
ODCy, = C,,(0DC,,) = bob; ;
ODC, = ODC,,0DC,, = agaybob, (16)

According to this approximation, first the portions of ODC,; independent from y;, j # i are computed,
i.e. the observability don't care vectors of the fanout variables are decoupled. It is then possible to form
their product o obtain a correct approximation. Note that, with this approach, it is necessary to have explicitly
ODCy; in terms of all variables y;. These approximations capture at most the circled minterms in the map of
Fig. (3), i.e. onlytwo 1°s out of the 8 possible.

Muroga proposes in [3] an apparently better approximation. It consists in computing only O’I‘)—C,, =
C,,(0DC,,) = boby, and to compute ODC, according to

ODC, = ODCy,0DC,, = (a7 + a1y)bobs. an

(1
cd cd

ab ab

T SOAE
o-/1\- 0-\1/-
-1\-/0 -1]-1|o

Figure 4: Approximation of ODC, for y = 0 and y = 1 respectively provided by Eq. (17)

The portion of ODC,, covered with this second approach is shown in Fig.(4). Interestingly, the accuracy
is not greater than that of Eq. 16. Note, however, that Eq. 17 requires fewer computations: only ODC,,
needs to be decoupled from y,. To realize this decoupling, a further simplification is proposed. It occurs at the
vertex where the actual reconvergence occurs. For example, in Fig. (2), it occurs at vertex C and consists in
computing the portion of ODC,, that is independent from zy (i.e. a compatible don’t care subset for z2). The
approximation of ODC), that can be obtained in this way is thus automatically independent from y,, and can
be used directly in Eq. 17.

Finally, Savoj et al. propose in [15] a yet conceptually better approximation. In the case of two fanout
variables it reduces to computing first a subset of

ODC,, = ODCy,|y=00DCy,ly=1 + ODC,,0DC,,

Although this represents a larger subset of ODC),, than provided by bob, still when the product ODCy, O‘I)'Cy,
is formed, we obtain Eq. 17 again.

From the above analysis it turns out that all the methods proposed so far capture essentially the same portion
of the ODC sets, although with different degrees of computational efficiency.
5.3 A new approximation
We present here new approximation methods that result in a substantially larger coverage of the O DCy map.
This approximation can readily be obtained by expanding the EXORs appearing in Eq. 10:
ODCy = ODC,,0DCy,|y, =5 +m¥| ODCy, |y =5+

If subsets of ODC,, and ODC),, are available, then Eq. 19 automatically provides a subset of the true ODC,.
This approximation was first described in [14] and requires the explicit knowledge of subsets of ODCy; and
0Cy..

Eq. 19 also shows that

ODCy = ODCy,0DCy,ly,=5 + ODC;,0DCy, |y=5

b0 b1 b0 b1

a0 ai a0 af

N
.
. .
. N
L
- e
"’ .~§
'\ N R .
.
O - *. 1 - ’ O L - 1 . -
. o 4 “
.~ .

Figure 5: Approximation for the ODC sets for y = 0 and y = respectively. Solid circles: coverage provided
by Eq. (20); douted circles: coverage provided by Eq. 21.

is also a subset of ODC,. In order to compare this latter approximation with the previous ones, we rewrite it
in terms of ag, ay, bo, b :

ODC, = (a7 + a1y)(boy + 17) + (a0y + a1 7)(F + bry)

The maximum coverage provided by Eq. 21 is shown in Fig. (5). Solid circles correspond to the maximum
coverage provided by the first product term in Eq. 20, while dashed circles correspond to the second one. Notice
that each of them can cover half of the actual ODC),, and that their sum covers up to 75% of the actual ODC,,
a substantial improvement with respect to all previous local approximations.

6 Multiple-vertex optimization and compatible don’t care sets

It is known that the optimization of a function f, alters, in general, the don't care set associated to the functions
in its transitive fanin. Consequently, either the vertices are optimized in reverse topological order, or the full
observability don’t care sets have to be iteratively updated. Furthermore, the result of the optimization is
generally dependent on the order with which the vertices are optimized.

To overcome these difficulties, the use of compatible observability don’t cares has been proposed in (12, 15].

6.1 Multiple-vertex optimization

The optimization of n functions f,,, - - -, f,. in the network can be modeled by means of muitiple perturbations
61,--+,6n. Let y denote the vector (y1,--+,yn). We denote by .7-'1 the function realized by the perturbed
network. By introducing the function

EQV(&] ’ » 60) = }-1(61 »’) 6'1)6}-’_(01 y o)
by arguments similar to those presented in Sect. 2, the set of feasible perturbations is represented by the equation
EQV + SDC;I 4+ SDCest + ODCesy =1

Finding the functions g,,,-- -, gy. Of minimum total cost such that the corresponding perturbations satisfy
Egq. 22 is the well known Boolean Relation minimization problem (5). Its solution is usually difficult even for
relatively small values of n because of the underlying binate covering problem.

Eq. 22 can be manipulated to obtain a representation of the possible perturbations in the form é6; C
DCy,; i=1,---,n as follows.
The function EQV can be rewritien as

i

EQV:(}"&(&‘ 5a)BF, (0,62, ,6,,))3‘;(]-'3(0.62, 5a)BF(0, ,0))

(31 + ODCm(éz, MY 5n))§EQV(0,52, °c ':67!)
Given expressions a, b, ¢, we recall that the Boolean equation a®b + ¢ = 1 holds if and only if

a+b+c=

b4+T+c=1.

By setting a = 31 + ODCy, (62, ,64), b= EQV(0,8, ,ba).c= SDC;-l 4+ SDCezt + ODC,.4, Eq.
22 reduces to

3l + ODC!: (623 T 6») +W(°:61' '16'!) + SDC’! + SDCut + ODCe:t =1 (23)

EQV(0,62,- ,6n)+ 60DCy,(52, ,6n)+SDCr, + SDCees + ODCers =1 (24)
The general solution of Eq. 23 is
,6a) + SDCs, + SDCezt + ODC.es & DC,, (25)
while Eq. 24 is certainly satisfied by any perturbation é3, - - -, §,, satisfying
EQV(0,82,---,6n) + SDCyx, + SDCert + ODCez¢ = 1 (26)
Eq. 26 can iteratively be solved by a similar technique, thus leading to a set of sufficient conditions of type
6; € DGy, (0, ,0,8i41, ,6a) i=1 -,n

It is worth noting in particular the dependencies of the r.h.s. of Eq. 25 from the perturbations 63, - - -, én.
They state precisely the intuition that the optimal choice of the function g; replacing f; depends on that of the
other functions g, - - -, gn, i.€. that the optimization problems for the individual gates are coupled.

Compatible don’t care sets.

Compatible don't care sets have been shown to be useful in “decoupling” the optimization problem for the
individual gates. We present here a definition of compatible don’t care sets in terms of perturbation analysis of
combinational networks.

Definition 6.1 A don't care set DC,, independent from &,:--,6,, is termed compatible with respect to
82, -, bn if it represents a don't care set for the variable y,, regardless of the pertwrbations 63, - - -, 6, satisfying

EQV(0,6. ,6,)+ SDCr, + SDCegt + ODCest = 1

Py
b =@ Z

Figure 6: Circuit topology for the analysis of Compatible observability don’t cares.

Thus, the compatible don't care set DC, describes the degrees of freedom for optimizing fy, independently
of the functions g2, - - -, g, replacing f3,---, f.. The dependencies on &, ... ,4, can be removed by performing
an iterated consensus on Eq. 2S. :

In [15] an algorithm is presented that is claimed to compute maximally compatible observability don't care
sets. We analyze here the algorithm with respect to the circuit shown in Fig. (6).

The algorithm begins by selecting a topological ordering of the vertices from the primary outputs. A possible
order is vo > v; > v, and we assume that no external don’t care conditions are given. The observability don't
care set for z is computed according to

ODC, = 9F _o. v1))
0z

Next, in order to compute the don't care set for a, first the compatible don't care sets of r and y are
determined:

ODC, =0; ODC, =0.
and finally their product is formed:
ObC, = 0DC,0DC, =0.

In the above derivation it is implicitly assumed that, in order to derive a compatible don't care set 030,,
first compatible don't care sets for the variables z, y must be obtained. On the other hand, these latter sets need
not be compatible, as they are never used for logic optimization, and only the don’t care set of the variable a
is required to be compatible with those of z and w. In particular, for the circuit of Fig. 6.2,the set DC, =1
is actually compatible with the other don’t care sets.

6.3 Local rules for maximally compatible don'’t care sets

The general rule for computing the maximal compatible don’t care set for the fanout stem z from those of two
fanout variables y; and y; can be derived as follows. Let §;,---,6, denote n arbitrary perturbations of the
network, and let én 41, 6n+2 denote the perturbations for the two fanout variables y, and y,. The equivalence of
the perturbed network to the original one is described by the equivalence function

EQV(& y) 6'!] 6’!+l s 6n+2) = fl(sl ’ ' 6") 6n+l ’ 67.4.2)6}'1(0,) 0) (30)

10

Since for any don’t care set ODC. the variables 11 and i, are subject to the same perturbation, ép41 = én42.
The conditions for the perturbation of the fanout variable z are thus stated by

EQV(81, -+, 6n41,6n41) + SDC}'_,_ 4 SDCest + ODCese =1
By manipulations similar to those leading to Eq. 6.1, we have the conditions:

Fy(bry 16, Sng1, 6,.+1)§.1-'1((61 v 1 6n,0,0)+EQV (4, - - -, 6..)+SDC;-1+SDC¢3:+ODC,,g = 1(31)

and
EQV(8,---,6n) +SDC;=£ 4+SDCuet + ODCozy = 1

Eq. 31 is solved by
6n+l .C_ fl(6l P 6'” 11 1)@’1((6h s van’o’o)"'EaV(&lv Tty 6“)+SDC}'1+SDC¢SI +0DCc:t(32)

The maximally compatible don't care set is thus the iterated consensus of the r.hs. of Eq. 32 w.rt 61, -, 6q.
We now relate this set to the ones of the fanout variables y,, 1. By transforming

f_y.(sl""nalh 111)§fl(6lv 161'”0'0):

(}-1(61, 0 ‘,6,;, 1, l)gfl(sl"' ‘n6n) 1,0))@(}.1(61," '|6nnl'o)§}.1(6h" v6nvovo])

ODCn(&] Y 6n)|y|=?§ODC’| (6] y "y 6n)|”=:
we finally obtain the compatible don't care set of z:

cd;,---.‘. ((ODCv: Im:? + m(él 17 6n) + SDC}'_! + SDCezt + 0DC¢¢()§

(ODCy,lyi== + EQV (61, ,6n)+ SDCr, + SDCest + ODC.,.])

where EXNOR is applied to two terms representing the don't care of the individual stems. It is possible to
verify that this formula yields the maximal compatible ODC for the example of Figure 6.

It is easy to verify that, unfortunately, the consensus operation on the EXNOR of two expression is not equal
1o the EXNOR of the consensus of the two individual expressions, i.e. C is not distributive w.r.t. the EXNOR.
Therefore, the maximally compatible don't care set for z is not in general derivable from those of the fanout
branches.

We can approximate the EXNOR operation by a product, as discussed in Sect. 5.3. Since the consensus
operalion is distributive over the product operation, it is then possible to approximate the maximally compatible
don’t care set of z as a product of compatible ODCs of the individual stems. '

We conclude by observing that the approach just outlined for the extraction of maximally compatible don't
care sets can be extended to the case of arbitrary combinational networks with multiple-way forks of arbitrary
size.

7 Conclusions

In this paper, we presented a comparative analysis of approximations to the observability don't care sets. The
comparison has shown that all "local” current approximations capture (at most) a fraction of the actual don’t
care sels. A new approximation has been proposed, that has been shown to capture a larger portion of the
observability don't care sets than the previous ones. ’

The computation of compatible observability don't care has been advocated for logic optimization. In this
paper we have shown that compatible don't care sets can be derived in an alternative way, that yields larger sets
than those previously computed [15].

1

8 Acknowledgements.

This research was supported by DEC, jointly with NSF, under a PYI award program. We also acknowledge
support from NSF-ARPA under contract # MIP 8719546.

References

{1

2]

3]

(4]

(5]

{6}
7

9l

{10}

]

(12]

(3]

(14]

13

(16)

K. A. Bardet, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, ” Multilevel Logic
Minimization Using Implicit Don’t Cares”, JEEE Transactions on CADIICAS, val. CAD-7, No. 6, pp. 723-739, June 1988.

G. D. Hachtel and M. R. Lightner, " Top-Down Synthesis of Multiple level Logic Networks™ Proc. ICCAD 1987, pp. 316-319, S.
Clara, Nov. 1987.

S. Muroga, Y.Kambayashi, H.Lai and J.Culliney, "The Transduction Method - Design of Logic Networks Based on Permissible
Functions ", IEEE Trans. Comp., vol. 38, No. 10, pp. 1404-1424, 1989,

D. Bostick, G. D. Hachtel, R. M. Jacoby, M. R. Lightner, P. Mocey Moceyunas, C . R. Morrison, and D. Ravenscroft, * The Boulder
Optimal Logic Design System™, Proc. ICCAD 1987, pp- 62-65, S. Clara, Nov. 1987.

R. K. Brayton and F. Somenzi, “Boolcan Relations and the Incomplete Specification of Logic Networks™, Proc. VLSI *89, pp. 231240,
Munich, Aug ust 1989.

H. Fujiwars, Logic Design and Design for Testability, MIT Press, Cambridge, 1985.

A. C. L. Chang, L. S. Reed, A. V. Banes, "Path Sensitization, Pantial Boolean Difference and Automated Fault Diagnosis”, /EEE
Transactions orn Computers, C-21, pp- 189 - 194, Feb. 1972

G. D. Hachtel, R. M. Jacoby, P. H. Moceyunas, ™ On Computing and Approximating the Observability Don't Care Set *, Proceedings
on the International Workshop on Logic Synthesis, Research Triangle Park, May 1989.

R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, A. Wang , "MIS: A Multiple-Level Logic Optimization System”, JEEE Transac-
tions on CADIICAS, Vol. CAD-6, No. 6, pp. 1062-1081, November 1987.

K. A. Barleu, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, " Muhilevel Logic
Minimization Using Implicit Don"t Cares”, IEEE Transactions on CADIICAS, vol. CAD-7, No. 6, pp. 723-739, June 1988.

G. D. Hachtel and M. R. Lightner, ** Top-Down Synthesis of Multiple-level Logic Networks™ Proc. ICCAD 1987, pp. 316-319, S.
Clana, Nov. 1987.

S. Muroga, Y.Kambayashi, H.Lai and J.Culliney, "The Transduction Mecthod - Design of Logic Networks Based on Permissible
Funations ", IEEE Trans. Comp., vol. 38, No. 10, pp. 1404-1424, 1989,

M. Damiani and G. De Micheli, * Observability don't care sets and Boolean Relations ", Proc. ICCAD 1990, S. Clara, Nov. 1990.

M.Damiani and G.De Micheli, “Efficient Computation of the Exact and Approximate Observability Don’t Care Sets in Multiple-Level
Logic Synthesis™ Proceedings of the IFIP working conference on Logic and Architecture Synthesis, Pasis, May 1990, and CSL Report
CSL- TR-90-424.

H.Savoj and R.Brayton, "The use of Observability and Extemal don't care sets for the simplification of multi-level networks’, Proc.
DAC 90, pp. 297-301.

PMc Geer and R.Brayton * The Observability Don’t care set and its Approximations’ Proc ICCD 90, pp. 45-48, Oct 90.

12

