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Abstract

In this paper we present a framework for the derivation of don', care conditions by permrbaIion analysis

of combinational multiple-level digital cUcuilS.
The contribution of the paper is two-fold. First. different approximations of observability don', care selS

are compared quantitatively. S~d. the perturbation analysis is used to derive new compatible obsa'Vabilily
don', care sets. that are larger than those previously derived.

1 Introd uction

Multiple-level logic optimization Sb'ategies [9, 10, 12. 4] are based on circuit b'ansfonnations that preserve
the circuit behavior and improve its quality. Different flavors of circuit transf<Xmations have been PJOIX>sed.

Optimization algorithms based on Boolean transformations, such as those used in [9] [4] and [12], have shown
to be very effective in reducing the circuit area and delay as wen as improving its testability p~es.

Don't C4re conditions playa central role in the specification and optimization of logic circuits. IOOeed, they
represent the degrees of freedom of transforming a network intO an equivalent one. The computation of exa:t and

approximate don't care sets has been object of extensive investigation. Several algorithms have been proposed
[7, 10, 13, 16, 12. IS] for the calculation of observability don't care sets by backward network IJaversal. It has
been observed that the optimization of a gate changes the don't care of Other gates in die network. For this

reason, the concept of compatible don't care sets has been introduced [12. IS].
The contribution of this paper is two-fold. First we review the analysis of don't care conditioos in combi-

national multiple-level circuits, and present a quantitative comparative analysis of approximate don't care seL
Second, we analyze the problem of computing compatible and maximally compatible don't care sets, and show

in particular that it is indeed possible to compute compatible don't care sets that are larger than those previously

believed maximal [15"].

Basic concepts and definitions2

We consider in this paper combinational multiple-level logic circuits. We assume that mese circuits consist

of an inter<:onnection of multiple-input single-oulput combinational logic gates. Fanout points are modeled by

single-input multiple-output copy gates, as shown in Fig. (1).

We model these circuits by Boolean networks. A Boolean network is described by a directed acyclic graph
G = (V, E). The elements of the vertex set V correspond to logic gates (including copy gares). while edges
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Figure 1: Combinational Boolean Netwm and corresponding graph

correspond to interconnections. In our netWork m<xlel. ea:h variable is ass<x:iated 10 an edge. and it is ~
by a sUing (e.g. z, sample). The edge is indicated by a subscrllX (e.g. e~, e,ompl.)' A variable z is said 10 be a
fanout (fanin) variable of a venex II if e ~ is an edge whose tail (head) end-point is II. The hc.I and tail vertkes
of an edge e are denoICd by head( e) and tail( e). respectively. The set of fanout (fanin) edges of a vertcx II is
indicated by FO(II) (F 1(11». To reP'Csent primary input and output variables. a source and a sink venex are
added. An edge e~ joins the source 10 a vertex II if z is a primary input variable feeding the gate corresponding
10 II. Similarly. an edge e. joins a vertex JJ 10 the sink vertex if z is a pimary output variable computed by the
gate CaTesponding 10 II. NOte in particular that F [(source) = FO(sink) = ~. The nwnber of primary inputs
and outputs are ni = IFO(source)1 and no = IF [(sink)l. respectively. The nwnber of variables is n. = lEI.

Venices repesent the ccxnpulational elements of the network. In particular. each fanout variable" of a
vertex II is associated 10 a function III of the fanin variables of II. For copy gates, the function reduces to

identity.

Example 1. A combinational Boolean netwcxk and its graph are shown in Fig. (1).

3 Don't care conditions in combinational networks

It is customary to view a Boolean network as realizing a fwx:tion l: : 8'" - 8"- of the network. variables,

where 8 denotes the Boolean set {O, I}. 1:. therefore associates a no-dimensional Boolean v~tor 10 e-=h point

of 8"'. Similarly, e-=h exp-ession f. is dlought of representing a scalar Boolean function over the same domain.

The embCdding of Ute netWork in a larger digital system is modeled by inlrodlx:ing external don't care

conditions. Two types of external don't cares are typically considered: controllability and observability don't

cares, respectively. In [10] they are defined as primary input assignments that are impossible or such that a

primary output is not observed, respectively.

It is worth noting that in pactice observability don't care cooditions are available in tenDs of primary

output variables. During logic optimization, the mapping of dlese conditions in tenns of primary inputs is

subject to change. The definition JX'Ovided in [10] is therefore not suited for dlese cases.

W~ define as obKrvability don', care condition of an output any assignment of the network variables,

including in particular in panicular I:I'imary inputs and outpUts, such that the output is nOt observed.
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Controllability don't cares are here indicated by an expression CDC e%C of the primary input variables. while
observability don't cares are indicated by a no.dimensional vector ~%,. The ",Ia component (i = 1" . . I no)
of ~%C is an expression in tenDS of netWork variables. representing the set of conditions for which the i cia

output is not observed.
The set of inaernally impossible variable assignments is usually tenDed salisfiability don't care set and is

denoted by SDC".:

SDC,.. = Lye I,
c.EB

(1)

We define an auxiliary no-dimensional vector 1 = (1, I, . . . , 1). For ease of treaunent. satisfiability aJK1

conuollability don't care sets are represented in the sequel by vecuxs ~ = SDCl and .QQ.Q.~. = C DCeztl.

4 Don't care conditions for single-vertex optimization

Logic optimization algorithms refine an original network iteratively by replacing local functions f, by others that
improve some property of the network, typically area occupation or timing performance. This is ~mplished
by first determining the set of functions g, that can replace a given function I,.

The change of a function f, into g, affects the network functionality by perturbing the value of d1e variable

y, corresponding to those assignments for which f, # g,. This effect can be modeled by means of the following

definitions.

Definition 4.1 Let y denote the output variable of a logic gate in a Boolean Network. N. We call perturbed
network N" the network obtained by replacing the function f" with the function f" $ 6, where 6 is an added

primary input.

The functionality of the perturbed network Ny is described by a function Ly(6) : 8"-+1 - 8"-. In particular
z., (0) = L and the functionality of any network N I obtained by replocing I.. with an arbiuary function 9 y is

described by z.,(/.. $ gy) .
The perturbed gate conUibutes to the satisfiability don't care set of the perturbed network with a tenn

SDC6 = y $ (/1/ $ 6). while the remainder of the network conUibutes with

SDC.. = L Z $ Iz . (2)

e.EE-{e.}

so that the satisfiability don't care of the network is expressOO by SDCF. = SOC, + SOC..

Definition 4.2 Given a cut ne~rk Ny. the quantity

(3)~ = l:y(6 = 1)$1:..;(6 = 0)

is termed observability don't care vector for the variable y. Its i'li component (i = 1,
set of netWork assignments for which y does not affect the i ," network output.

,no) describes the

The complement of the observability don't care vector is the ordinary Boolean difference oE/ By of z. with
respect to y.

Definition 4.3 Consider a network N', obtained/rom N by replacing a/unction f, with g~. N'isfunctionally
equivalent to N if the vector equality

1:.,(/, $ g,) = 1:.,(0) (4)

is satisfied for aillhe observable components of E,. for aillhe feasible variable assignments of N,

3



We are interested in determining the set of functions g. that are equivalent 10 f.. and then ch~e the 000 of

minimum COSL To d1is end. we inb'oduce the furx:tion

~(6) ~ z. (6)el:g (0) . (S)

A furx:tion g. is equivalent 10 f. as long as the inboduced perturbatioo is such that

EQV+~.c+~zc+~ = I. (6)
- .

When 6 = O. fnxn Eq. s. f::.9x.(0) is identically L and therefore Eq. 6 is a taulOlogy. For 6 = 1. Eq. 6

holds as long as

.§..9Y-(I)+~zc +~zc + SDC. + (ye7.)1= 1 (7)

By observing that ~(1) = QD.k,. it folkJws that the perturbation 6 must satisfy the ~uality
- dd'

61 ~ QD£;,. + ~.c + ~ + ~zc + (y e f.)l = OCr (8)

The expessioo 8 fO" the don', care set of y differs from the ones usually coosidered and presented. for

example. in [10]. because of the last term ye7..

Don't care computation5

ComiXlting the satisfiability don't care set is sttaight-forward. In contrast. the computation of observability don't
care sets has been recognized as a problem of its own, Several medx>ds for aPlX'Oximating the observability
don't care sets have been proJX>Sed in the past [9, 3, 8, 16), by using bak:kward network. traversal. Exce~ frx

the chain rule [7], all these methods either abandon the network traversal approoch in presence of ~nvergent

fanout or resort to some approximations,
We p-esent first an exact method for computing the DOCs. We then compare the method to ocher previous

approximations to the DOC computation. We comment then on anodlcr new DOC approximation.

Exact ODC computation5.1

In [13] the authors presented a method for computing ~t observability don't cares. We summarize it briefly

here.
The computatioo is based on a b.:kward ootwork b'aversal and 00 the following steps:
1) In presence of a logic gate, with output variable y and input variables YI, 0 0 0, Yn, we compute the

observability of the variables Yi by

QIl£,. = QQQ, + 001; (9)
2) In p-eselx:e of a faoout point. with output variables Yl and Yl, and inlXlt variable y, the observability

don't care of y is computed according to the rule

~ = Ql2Q,llft=o$Q.l2Qft I,. =1. (10)

or

QQQ, = ~,I"=I'i'~I,,=o.
These equations can be rewritten in a more compact fonn as:

.QQC, = ~,e~I"=i'
Table( 1) shows the CPU time and average nwnber of literals s~t for the exact and approximate CClnlXltation

of W1minimizcd ODC ~IS.
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Table 1: CPU time and average number of literals for the ODC sets of some benchmark circuits. (* denotes
out of memory.)

z - z1 OR z2
z1 - x1 AND y1'
z2 - y2 AND x2
y1 - Y
y2-y

Figure 2: Multiplexer model of a circuit with reconvergent fanouL

5.2 Comparative analysis of different ODC approximations

We use here Eq. 10 first for examining the quality of previous approximations. and then for JX'Oposing a novel
solution.

For the sake of simplicity, let us restrict our attention to single-output networks (so that the ODC vectm'S
have only one comJX>nent) and to a copy vertex with only two output variables. as shown in Fig. (2).

We define the auxiliary quantities

ao = 0 DC,. 1,=0, at = ODC,.I,=t, bo = ODC~ly=o, bt = ODC~I,=t

so that

ODC,. =-aoY+ °1Y; ODCn = boy + ~y.

By substituting these expressions in Eq. 10 and 11 the following identity must hold:

ODCy = (aoY+ Oty)e(boY+ btY) = (aoy+ oty)e(boY+ b1y)
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Figure 3: Map of ODCy in terms of the variables ao.a..bo.b.. for y = 0 and y = I respoclively. Circles
represent the approximation given by Eq. (16)

Any assignment to ao. al. bot b1 violating identity 14 must therefore be contained in the satisfiabilily don't care
of the network. Namely:

ao e al e bo e b} ~ SDC. . (15)

The Kamaugh map of ODCy in tenDS of ao,al.bo.b1 and y is shown in Fig. (3), where l's denote d)e
observability don't care , O's the observability care, and - denotes the imlX>Ssible assignments given by Eq.

15, i.e. the satisfiability don't cares.

All "oca1" approaches attempt approximate 0 DCy by some other function of ao. all boo bl and, possibly, y.
We denote an approximation to ODCy by ODCy. The quality of any such approximation can thus be measured
by the number of covered l's in the Kamaugh map.

The most "conservative" simplification is taken in the program MIS-II, as felX>rted in [9]. There, ODCy
is computed by assuming that the variables %1. %2 are fully observable. The observability ODC:,tIS o!- ea:h

variable Y1. 1/2 is thus obtained from Eq. 9 by neglecting the first term of the sum. In our case, e-=h ODCYi
is independent from any other variable Yj, i.e. ODCYI ~ aoal and ODCI/1 ~ bob1. ODCy is computed as the- - - MIS
product of ODCYI and ODCI/1: therefore, ODC. ~ aoalbob1.

In [16], the foUowing approximation is proposed:

ooc,. = ~(ODC,.) = Goal;

ODcra = Cr. (ODCn) = bo61 ;

ODC, = OOC,.ODCrz = aoOlbob1 (16)

According to this approximation, first the portions of 0 DC Yo independent from Yj, j # i are computed,
i.e. the observability don't care vectors of the fanout variables are decoupled. It is then possible to fonn
their product to obtain a correct approximation. Note that. with this awroach, it is necessary to have explicitly
ODCyo in tenus of all variables Yj. These approximations capture at most the circled mintenns in the map of

Fig. (3), i.e. onlY'two l's out of the 8 possible.
Muroga proposes in [3] an apparently better approximation. It consists in computing only ODCn =

C,.(ODCn) = bob., and to compute ODCy according to

ODC, = ODCy.ODCn = (aoY+ OtY)bobt. (17)
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Figure 4: Approximation of ODC 1/ for y = 0 and y = 1 res~tively provided by Eq. (17)

The ponion of ODCy covered with this second approach is shown in Fig.(4). Interestingly, the accuracy
is not greater than that of Eq. 16. Note, however, that Eq. 17 requires fewer computatioos: only ODCn
needs to be decoupled from Y1. To realize this decoupling, a further simplification is proposed. It OCCUJS at the
venex where the acbJal reconvergence ocCUJS. For example, in Fig. (2), it OCCUJS at vertex C and consists in
computing the ponion of ODC Z2 that is independent from %1 (i.e. a compatible don't care subset for %v. The

approximation of ODCn that can be obtained in this way is thus automatically independent from Y1, and can
be used directly in Eq. 17.

Finally, Savoj et al. propose in [15] a yet conceptually better approximatioo. In the case of two fanout
variables it reduces to computing first a subset of

ODcft = ODCnl,=oODCftl,=1 + ODCftODC,.

Although this represents a larger subset of ODCr, than provided by bob!. still when the product ODCr,ODCt'2
is formed. we obtain Eq. 17 again.

From the above analysis it wms out that all the methods proposed so far capbJre essentially the same portion
of the ODC sets. although with different degrees of computational efficiency.

S.3 A new approximation

We present here new approximation methods that result in a substantially larger coverage of the 0 DC y map.
This approximation can readily be obtained by ex~ding the EXORs appearing in Eq. 10:

ODC, = ODC,.ODCrzl,.=J+ODC,.ODGJ2I,.=J+

+ODCrzODC'llrz=J +OOCrzODC,.lrz=J (19)

If subsets of ODC,. and ODG,. are available, then Eq. 19 automatically provides a subset of the true ODC,.
This approximation was first described in [14] and requires die explicit knowledge of subsets of ODCy. and

OCy..
Eq. 19 also shows dlat

OOC, = ODC,. ODC" I,.=i + ODC"ODC,.IW2=i'

7



respectively. Solid circles: coverage providedFigure S: Awroximar.ion for the DOC sets for y = 0 and y =
by Eq. (20); ooued circles: coverage provided by Eq. 21.

is also a subset of ODC,. In order to compare this latter approximation with the previous ones, we rewrite it
in terms of ao. a., bo, 6. :

DOC, = (00'+ GI'I)(~Y + 6.y) + (OOY + GIY)(~Y+ 6.'1)

The maximum coverage JX'Ovided by Eq. 21 is shown in Fig. (5). Solid circles correspond 10 the maximum
coverage provided by the first product lenD in Eq. 20, while dashed circles con'eSpond to the second one. Nooce
that each of them can cover half of the ~tual ODCv' and that their sum covers up 10 75% of the actual ODCv'
a substantial improvement with respect 10 all p-evious local approximations.

6 Multiple-vertex optimization and compatible don't care sets

It is known that the optimization of a furx:tion f, alters. in general. the don't care set associated to the furx:tions

in its U'ansitive fanin. Consequently. either the venices are optimized in reverse topological order. or the full

observability don't care sets have to be ileratively Upti~~. Furthennore, the result of the ~ization is

generally dependent on the order with which the vertices are optimized.

To overcome these difficulties. the use of compatible observability don't cares has been proposed in [12. IS).

6.1 Multiple-vertex optimization
The ~tirnization of n fuoctions f." . . . , f.. in the netw<X'k can be modeled by means of multiple penurbations
61, .. . I 6n. Let M denote the vect« (Y1,..., Yn). We denote by .1"1. the function realized by the perturbed

netwa-k.. By intrOOucing the fuoction

.6n)e.rz.(o.EQV(6). .6..) = .1"1,(6t, ,0)

by argumen~ similar 10 lOOse pesented in SecL 2. the set of feasible pe~tions is repesented by the equation

EQV + SDC",... + SDC..c + DDC.sa = 1

Finding the functions g,., . . . I g,. of minimum total cost such that the corresponding pertwbatioos satisfy

Eq. 22 is the weD known Boolean Relation ~inimization problem [5]. Its solution is usually difficult even for

relatively small values of n ~~\L~ of the underlying binale covering poblem.
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Eq. 22 can be manipulated to obtain a representation of the possible perturbations in the fonn 6" i ~
DCy;; i = 1"", n as follows.

The function EQV can be rewritten as

.6n)'eF.!.(O.6z.. . 6n)~.r!.(O.

(bl + ODCy,(6z, - - -,6n) )eEQV(O,h"2,.. .,6n}

Given expressions a, b, c. we recall that the Boolean equatioo aeb + c = 1 holds if and only if

a+6+c=

6+0+ c = 1.

By selting a = "&1 + ODC,.(6I.
22 reduces lO

,6n), 6= EQV(O.6J. ,6n}, c = SDC"z. + SDC... + ODC.~., Eq.

61 +ODC,.(6z.,...,6n)+'l'QVCO,6z., -,6ft) + SDC"z. + SDCe~. + ODCe~. = 1 (23)

,6") + 6\OOC...(cSz,EQV(Ot~t' (24)I 6n) + SDC",z' + SDC.~, + ODC.~, E 1

The general solution of Eq. 23 is

,6n} + "l'OV(O,~,61 ~ ODC,.(6z. (2S)
dd'. On} + SDCF.!, + SDCert + ODCer' = DC"

while Eq. 24 is certainly satisfied by any penurbation 02, .. " On satisfying

EQV(O,c52,,"', 6n) + SDCF,I + SDCezt + ODCezt = I (26)

Eq. 26 can iteratively be solved by a similar technique. thus leading to a set of sufficient conditions of type

6i ~ DC,. (0, ,0, 6i+l, . 6"); i = 1 "In

It is wonh noting in panicular the dependencies of the r.h.s. of Eq. 2S from the pemJrbalions 62, . . " 6n.

They state precisely the intuition that the optimal choice of the function 9 i replacing f i depends on that of the
other functions 92, . . " 9n, i.e. that the optimization problems for the individual gates are coupled.

Compatible don't care sets.

Corn~tible don't care sets have been shown to be useful in "decoupling" the optimization JX'Oblem for the
individual gates. We present here a definition of corn~tible don't care sets in terms of perturbation analysis of

combinational networks.

Definition 6.1 A don't care set DCYt' independent from cSz,'" 1 6n, is tenned compatible with respect to
~I . . " 6n ifit represents a don't care setfor the variable YI, regardless of the perturbations 62,' . '. 6n, satisfying

EQV(O,~ . 6ft) + SDCF!, + SDC.~, + ODCe~, = 1

9
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Figure 6: Circuit topology for the analysis of Compatible observability don', cares.

Thus. the compatible don', care set DC,. describes the degrees of freedom for optimizing f'll independently

of the functions 92, . . . , 9" replacing h, . . . , f". The dependencies on ~, . . . ,6" can re removed by performing

an iterated consensus on Eq. 25.
In [15] an algorithm is presented that is claimed to compute maximally compatible observability don', care

sets. We analyze here the algorithm with respect to the circuit shown in Fig. (6).
The algorithm regins by selecting a topologK:al ordering of the vertices from the primary outputs. A possible

order is Vo > VI > V2. and we assume that no external don', care conditions are given. The observability don't
care set foc z is computed ~cording to

- WODC~ = a; = O. (27)

Next. in order to compute the don', care set for a. first the compatible don', care sets of x and y are
determined:

OOC~ = 0: ODC, = O.

and finally their prOOuct is fonned:

ODC. = ODC,ODC~ = o.

In the aoove derivation it is implicitlyasswned that. in order to derive a compatible don't care set ODCa.
first compatible don't care sets for the variables x. y must be obtained. On the other hand. these latter sets need
not be compatible. as they are never used for logic optimization. and only the don't care set of the variable a
is required to be compatible with those of z and w. In particular. for the circuit of Fig. 6.2. the set DC a = 1

is actually compatible with the other don't care sets.

6.3 Local rules for maximally compatible don't care sets

The general rule for computing the maximal compatible don't care set for the fanout stem x from th~ of two
fanout variables Yl and Y2 can be derived as follows. Let 61, . . . ,6" denote n arbitrary perturOOtions of the

network. and let 6"+1,6"+2 denote the perturmtions for the two fanout variables Yl and Y2. The equivalence of
the perturbed network to the original one is described by the equivalence function

EQV(6t. .6n.6n+l.6n+2> = ;-1,(61. . 6n. 6n+l. 6n+2)eF!.(O. ,0) (30)
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Since for any don', care set ODC~ the variables YI and Yl are subject to the same perturbeJion, 6"+1 = 6"+2,

The conditiom for the perttJrbation of the fanout variable z are thus stated by

EQV(61... .,6n+1.6n+1) + SDCF,!. + SDCe~c + ODCe~c = 1

By manipulations similar to th~ leading to Eq. 6.1. we have the conditions:

. 6n. 6n+l. 6n+l)e.1"l,«61.. 0 o. 6n.O.O)+"E"QV(6t I" '16n)+SDC"".!. +SDC.~t+ODC = 1(31)F!.(6J .

and
EQV(6}." '.6"> + SDC,,!. + SDC... + ODC... = 1

Eq. 31 is solved by

6n+l ~ FI,(611'.' 1 6nl 1, 1)eFI,«611'" ,6nIOIO)+EQV(6t,'" 1 6n)+SDC",z. +SDC.ct+ODC.ct(32)

F!.(61,...,6n,1,1)~F!.(61' ,6n,0,0) =

000, 6n, I, 1)$F1,(61 , 0 0 o. 6n ,I. 0) )"$'( .1"1,(61,000. 6n.l,O)"$'.1"1,(61, 0 0

ODCn(61 I 0 0 o,6n)ly.=7$ODC" (61,

we finally obtain the compatible don't cart set of z:

C, ,. (ODCnl,,=~ +~(61. 000

,6",0,0)( F1,(61 ,

. .,b"n)lh-

,6ft) + SDCF,l + SDC.., + ODC..,)e

(ODC'II~=z + 'EW(6t. ,6,,) + SDC"".I. + SDC + ODC...,)

where EXNOR is applied to two terms representing the don', care of the individual stems. It is possible to
verify that this formula yields the maximal compatible ODC for the example of Figwe 6.

It is easy to verify that, unfortunately, the consensus operation on the EXNOR of two expression is not equal
to the EXNOR of the consensus of the two individual expressions, i.e. C is not distributive w.r.L the EXNOR.
Therefore, the maximally compatible don', care set for 1: is not in general derivable from those of the fanout

branches.
We can approximate the EXNOR operation by a product, as discussed in SecL 5.3. Since the consensus

operation is disbibutive over the product o~ration, it is then possible to approximate the maximally compatible

don', care set of 1: as a product of compatible ODCs of the individual stems.
We conclude by observing that the approach just outlined fm- the extractioo of maximally c<Xnpatible don',

care sets can be extended to the case of arbitrary combinational networks with multiple-way forks of arbitrary

size.

7 Conclusions

In this ~per, we presented a comparative analysis of approximations 10 the observability don't care setS. The
comparison has shown that all "local" current approximations captW'e (at most) a fraction of the ~bJa1 don't
care sets. A ne~ app-oximation has been pro~sed, that has been shown to captW'e a larger ~nion of the

observability don't care sets than the previous ones.

The computation of compatible observability don't cart has been advocated for logic optimi2ation. In this
paper we have shown that compatible don't care sets can be derived in an alternative way, that yields larger sets

than those previously computed [15].

11

The maximally compatible don't care set is thus the iterated consensus of the f.b.s. of Eq. 32 w.f.L 61,..., 6n.

We now relate this set to the ones of the fanout variables VI, Vl. By b"ansforrning
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