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1 Introduction and Background

We consider the synthesis of synchronous digital systems from behavioral descriptions that include the specification
of timing constraints {1]. Significant progress has been made in the area of data-path and register-transfer level
synthesis. We address the problem of finding a minimal-area control implementation, such that the overall hardware
is a valid implementation of its behavioral model. Control optimization can be performed either at the logic level,
by using a finite-state machine model [7, 9], or at a higher level, by using a hardware model described in terms of
constraints on the sequencing and timing of the operations [10]. The former case includes sequential logic synthesis
and microcode compaction techniques where operations are bound to control states (8, 2]. Since the cycle-per-cycle
behavior of the control cannot change, these approaches achieve only limited control cost reduction in many designs.
In contrast, the latter approach takes advantage of operation mobility in optimizing control, i.e. operations are not
bound to control states. The only requirement is to satisfy the sequencing dependencies and the timing constraints
in the specification. The wider latitude in choosing among a set of possible implementations can lead to a more
efficient control implementation in terms of area. We present in this summary a control optimization approach
based on delayed execution of operations that supports detailed timing constraints and unbounded delay operations,
implemented in the Hercules/Hebe high-level synthesis system [5]. A full description of this technique is reported
in (3].

Hardware Model. We model hardware timing behavior as a polar directed weighted constraint graph G(V, E);
the vertices V' represent the operations, and the edges E capture the timing relationships (sequencing and min/max
constraints) among the operations. The model supports unbounded delay operations such as synchronization mech-
anisms and data-dependent loops, concurrency, hierarchy, and detailed timing constraints. We refer the interested
reader to [6] for details of the constraint graph model.

The execution delay of a vertex v is denoted by §(v), which can be either fixed or unbounded. A weight
wi; associated with each edge e;; = (vi, v;) € E represents the requirement that the start time of v; (denoted by
T(v;)) must occur later than wy; after the start time of v, i.e. T(v;) > T(v:) + wi;. The edges ase categorized
into forward (E ;) and backward edges (E,). The forward (backward) edges have positive (negative) weights and
represent minimum (maximum) timing requirements among the operations. Both forward and backward edges may
have unbounded weights. The graph model captures the essential timing relationships among the operations, and
it serves to determine the extent to which operations can be delayed in optimizing the control implementation. We

assume that the mapping of operations to resources has been performed, and the resource conflicts resolved prior
to control synthesis.

Control Model. To define the objective of the control optimization, we describe the mapping from a constraint
graph to a control implementation. The mapping involves two tasks ~ scheduling and control generation. Scheduling
finds the start times of the operations satisfying the timing constraints, which are then used by control generation
to derive an FSM specification of the control.

e Scheduling the operations — The presence of unbounded delay operations in our hardware model invalidates
the traditional scheduling formulation since an absolute schedule satisfying timing constraints no longer exists.
We use a formulation called relative scheduling to schedule an operation with respect to the completion of a set
of unbounded delay operations, called anchors; we refer to [6] for further details. The anchor set A(v) of a
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vertex v is the subset of anchors that are in the transitive fan-in of v. The start time T'(v) is defined as offsets
o4(v) from each anchor in the anchor set a € A(v), i.e. T(v) = maxaea(v){T(a) + 8(a) + oa(v)}. In the
presense of unbounded delays, a timing constraint is characterized as well-posed (ill-posed) if its satisfiability
does not (does) depend on unbounded delays. For well-posed constraint graphs, a relative schedule exists
if and only if there are no positive cycles in the constraint graph. A constraint graph is valid if it is both
well-posed and contains no positive cycles.

e Generating the Control — Given a schedule, we abstract the task of control generation as generating en-
able/done signals for each vertex v such that its execution is initiated by the assertion of enable ,. We model
the control in terms of a modular interconnection of synchronous FSMs; the FSM abstraction decouples the
control generation from a particular style of logic-level implementation. Note that our control abstraction
considers only the synchronization of an operation with x‘espect to the completion of its anchors; the support
for conditional branching and looping is described in [4].

The control is divided into offset control for each anchor, and synchronization control for each vertex. The
offset control for an anchor a indicates the time offsets with respect to the completion of a. It is abstracted as
an FSM that is activated by the assertion of done,. The FSM generates a set of signals C,(i),1 < i < oT%*
where C,(1) is asserted when at least i cycles have elapsed after the completion of a. The synchronization
control for a vertex v synchronizes the activation of v, denoted by enable,, to offsets from the completion
of its anchors. Specifically, the cnable signal is defined as enabley = [vae 4(v) Ca(9a(v)). Figure 1 shows
the block diagram of the offset control. Note that the number of states in the offset control for a is equal to
the maximum value of offsets w.r.t. a (i.e. #9%) in the schedule.
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Figure 1: Offset control for an anchor a: (a) block diagram, where done, denotes completion of the anchor a, (b)

FSM model, where the offset signal C,(3) is asserted when the FSM is in the states covered by the corresponding
interval.

Given a specification of control logic in terms of FSMs, well-known logic synthesis techniques can be applied
to generate a minimal area sequential logic implementation (7, 9). However, a direct relationship between the FSM
model and the final sequential logic implementation is difficult to accurately obtain because of the complexity of

sequential logic optimizations, including the state assignment phase. We therefore estimate the total control cost
COSTgreq of the FSM implementation of control as:
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The first term COST, ;s is related to the cost due to the length of the schedule, and is a function f,,; of the maximum
offset values that yields the number of registers implementing the offset FSM. The second term COST, gy, is related
to the cost of the synchronization logic, and is a function f,yn. Of the size of the anchor sets. The values a and
represent appropriate weight factors related to the actual cost of the logic implementation.

Alternative strategies to describe the control logic exist, e.g. we can implement the offset control as a counter and
the synchronization as a set of comparisons between the counter values and appropriate offsets, or we can implement
the offset control as a shift register and the synchronization control as logic conjunctions of the appropriate shift
register entries. The two alternate implementation styles are shown in Figure 2. Let a be the cost of a register, and
let B be the cost of a literal, In the counter-based implementation of Figure 2(a), we see that the complexity of
the offset control is a logarithmic function of the maximum offset values, i.e. fors(n) = [logy(n)] represents the
number of registers. Likewise, the complexity of the synchronization control is a linear function of the number of
comparators, i.e. fiync(n) = n represents the number of literals in the required comparators. In the shift-register
based implementation of Figure 2(b), f,; is now a linear function of the maximum offset values, i.e. fors(n) = n.
However, since comparisons are no longer needed in the synchronization, f,ync(n) represents the number of literals
in a n-input AND gate. We see that in all these formulations, the control complexity can be reduced by either
minimizing the maximum offsets and/or by reducing the size of the anchor sets.
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Figure 2: Alternate implementation styles for control generation: (a) counter-based, where offset control is imple-
mented as counters and synchronization control is implemented as comparators, and (b) shift-register based, where
offset control is implemented as shift registers and synchronization control is implemented as AND gates.

2 Control Optimization Formulation

The task of control optimization can be formulated as the task of minimizing the control cost COSTarea by
delaying the execution of operations, where we consider any modification to be acceptable as long as it satisfies all
the constraints of the original specification. In other words, control optimization reduces the control cost by altering
the schedule 1o take advantage of the degrees of freedom in assigning operations to control states. We describe next

how operations can be delayed by lengthening or serializing to reduce the control cost by introducing redundancy
into the anchor sets.
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Redundancy arises due to the cascading effect of anchors. Specifically, it is often the case that some anchors
in the anchor set of a vertex v are not needed in the computation of the start time, i.c. T(v) is unchanged if
offsets from these anchors are not used in its computation. We call these anchors redundant, and the remaining
anchors irredundant. An example of redundancy is shown in Figure 3. We state without proof that the start
time computed with only irredundant anchors is identical to the start time computed with the full anchor set,
for well-posed constraints and minimum offsets [6). By using only irredundant anchors in computing the start
time, the control cost can be reduced significantly by (1) reducing the size of the anchor sets, translating to lower
synchronization costs, and by (2) reducing the values of maximum offsets, translating to fewer number of states in
the corresponding FSM. Returning to the example in Figure 3(b), the sum of maximum offsets is decreased from
10(c™e%) + 5(af*%) = 15 0 5(07**%) + 5(07***) = 10, and the cardinality of the anchor set of v is decreased
from 2 to 1. Therefore, it is possible to reduce the cost of the control implementation without affecting the schedule
by using the concept of redundancy. We show now how anchors can be made redundant, and we analyze the extent
to which redundancy can be introduced to the graph.

Figure 3: Examples of redundant anchor a with respect to the veriex v. In both cases, note that the longest path
from a 10 v passes through an anchor b.

2.1 Making Anchors Redundant

It is possible in some cases to make an otherwise irredundant anchor redundant by either lengthening or serializing
a constraint graph G(V, E). An anchor lengthening of G delays the activation of a vertex v with respect to an
anchor a € A(v) by increasing the length of a path from a 0 v. An anchor serializing of G serializes a vertex v
with respect to an anchor a ¢ A(v) by introducing a sequencing edge from a t0 v, 50 that the activation of v now
depends on the completion of the anchor. Figure 4 and Figure S illustrate how the anchor a can be made redundant
with respect to vertex v by the two techniques.

The lengthening and serializing must be carried out with care to avoid violating the constraint graph, i.e. make
the resulting graph ill-posed or introduce positive cycles. We state the following theorem that determines the extent
to which anchor lengthening and serializing can be applied before constraints are violated. The proofs, which can
be found in [3], are not presented here for brevity.

Theorem 2.1 Consider a valid constraint graph G(V, E) in which a is an anchor and v is a vertex. If a forward
edge eq, = (8, v) with unbounded weight wa, = §(a) + a, a > 0 is introduced from a 1o v such that (1) no cycles
are formed by the forward edges of G, arid (2) no positive cycles are formed in G, assuming all unbounded delays
are set to zero, then the resulting graph G is valid.

2.2 Prime Versus Non-prime Anchors

In anchor lengthening, the anchor sets of the vertices remain unchanged because no new dependencies are introduced.
We now analyze the structure of the graph to identify the subset of anchors which can be made redundant by anchor
lengthening alone, i.e. without introducing new serializations. For example, if there exists no other anchors on any
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Figure 4: Making the anchor a redundant with respect to v by anchor lengthening the edge e 45. Before lengthening,
a is not redundant because for the case §(b) < 4, the offset of 10 from a is necessary to satisfy the minimum
constraint.

a is irredundant w.r.t. v a is redundant wr.t. v

Figure 5: Making the anchor a redundant with respect to v by anchor serializing a and b, introducing the edge e 4.
Note that before serializing, a and b are prime anchors of v. After serializing, only b is a prime anchor of v.

path from an anchor a to a vertex v, then a can not be made redundant by lengthening any existing edges. We
formalize this observation with the following definition.

Definition 2.1 An anchor p € A(v) of a vertex v is prime if and only if no unbounded delays other than §(p) are
encountered on all paths of forward edges from p to v. Otherwise, the anchor is non-prime. The set of prime
(non-prime) anchors of a vertex v is the prime (non-prime) anchor set of v.

Theorem 2.2 A prime anchor p of a vertex v is always irredundant with respect to v.

The prime anchors constitute the minimal set of reference points that affect the activation of a given operation.
We observe that an irredundant non-prime anchor can be made redundant by lengthing the path from the non-prime
anchor to another anchor on the path, provided that no timing constraints are violated. Let us consider the example in
Figure 6 with two maximum timing constraints. Irredundant anchor a can be made redundant by either lengthening
b-to-v or lengthening c-to-v. However, the path from a to b cannot be lengthened beyond the maximum constraint
of 5, and the path from a 10 ¢ cannot be lengthened beyond the maximum constraint of 3. An important question is
whether an anchor lengthening exists to make all non-prime anchors redundant. We state the following key theorem
that demonstrates the existence of a solution to reduce to a minimum the irredundant anchor sets.
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Figure 6: Example to make anchor a redundant with respect to vertex v by anchor lengthening only. Two backward
edges with unbounded weight corresponding to maximum timing constraints between a and b, and between o and
¢. Note that the graph is valid since no unbounded length cycle exists.

Theorem 2.3 Given a valid constraint graph G(V, E), there always exists an anchor lengthening of G such that
all non-prime anchors of every vertex v are redundant with respect to v.

3 Control Optimization Algorithms

The objective of control optimization is to reduce the cost of control implementation for a given constraint graph.
The two factors in the control cost - synchronization and offset costs — are tightly related. The reduction of one
may result in an increase of the other. Simultaneous minimization of both factors requires casting the problem as a
combinatorial optimization, which is computationally hard to solve exactly. Our strategy is to instead use a heuristic
approach that exploits the structure of the constraint graph in minimizing control cost. The idea is to partition the
vertices into groups, each of which depends on a minimal set of anchors. It consists of the following steps.

1. Identify anchor clusters. The anchors are first partitioned into anchor clusters where each cluster consists of
a subset of anchors that are strongly connected by a cycle in G. It can be shown that a partial order exists
among the clusters and that anchors within a cluster cannot be serialized with respect to each other.

2. Order clusters to form a chain. The anchor clusters are ordered in a manner compatible with the partial order,
forming a chain of clusters. The ordering is obtained by sorting the anchors according to their longest path
lengths from the source vertex; this ranking determines the ordering among the clusters. Anchor serialization
is then used to impose the complete ordering among the clusters by adding edges between the clusters. This
ordering, being only one of many possible orderings, is used because it is easily computed and it leads to a
minimum control cost for constraint graphs with no maximal constraints.

3. Assign vertices to clusters. The non-anchor vertices are then grouped and distributed among the scgments
of the cluster chain. Vertices are assigned to the latest possible cluster such that maximal offsets are not
increased. A vertex v assigned 10 a cluster a is serialized with respect to a to minimize the size of its prime
anchor set. Every prime anchor set is a subset of an anchor cluster because of the complete ordering imposed
in the previous step.

4. Lengthen grap.h. From Theorem 2.3, lengthening insures that all non-prime anchors for each vertex are made
redundant. This reduces synchronization costs because redundant anchors are not needed (o compute the start



times of the vertices. Lengthening is also used to delay operations as long as possible under the restriction
that the overall control cost does not increase. This has the effect of reducing anchor offsets,

The resulting graph consists of an alternating sequence of anchor clusters and groups of vertices, where a group
of vertices depends on the anchor cluster that precedes it. The control cost is reduced because the synchronization
cost of a vertex is at most the size of the anchor cluster to which it is assigned to. The strategy guarantees that
given a constraint graph with an associated control cost COST a4, the control optimization can be performed such
that the new cost COSTew is always lower than or equal to the old cost, i.e. COSTnew < COSToq. For the
case of no maximal timing constraints in the graph, the resulting graph achieves globally minimum control cost. In
particular, both the sum of maximum offsets and the sizes of irredundant anchor sets are reduced to a minimum.

We illustrate the application of the algorithm in Figure 7. The graph contains four anchors {4, B, C, H}, with
A and I as the source and sink vertices, respectively. Each anchor is an anchor cluster because no two anchors are
connected on a cycle. The algorithm first orders the anchors according to the longest path from the source; this
results in the order A — C — B — H — I. The vertex D is assigned to the cluster with anchor A. For the graph
to remain well-posed, the vertex F must also be assigned to the same cluster as D. Since the maximum offset of
anchor A must be at least 10 due to the presence of F, the anchor C can be delayed to §( A) + 10 without increasing
the maximal offset of A. The rest of the vertices are similarly placed so that the resulting graph consists of an
alternating sequence of anchors and vertices. The offset cost is reduced from 49 to 23, and the synchronization cost
is reduced from 16 to 8.

4 Implementation and Results

The control optimization approach has been implemented in the framework of the Hercules/Hebe High-level syn-
thesis system. The constraint graph model is derived from a high-level specification of hardware behavior, which
is then used as the basis for scheduling and control synthesis. We present in Figure 8 the results of applying the
technique on some benchmark examples, including diffeq, elliptic digital filter, error-correcting encoder and de-
coder, and the greatest common divisor. For each example, the table gives the number of anchors | A|, the number
of vertices |V|, the sum of the maximum offsets and the sum of the anchor sets for (1) the full anchor set, (2)
the irredundant anchor set, and (3) after control optimization has been performed. The mapped control logic cost
in terms of Actel cells is also given. For control-dominated designs, such as the ECC encoder and decoder, the
reduction in control is significant in terms of the overall reduction in area. Note that in these examples some of
the anchors are introduced by arithmetic operations, such as multiply and divide, that are implemented using data
dependent algorithms.
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Figure 7: Constraint graph example to illustrate the algorithm. There are four anchors A, B,C, H, denoted by
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double-circled vertices. The solid (dotted) arcs represent forward (backward) edges.

Example [Al/1TV] Offset ) om°* Sync ) _JA(v) Mapped logic
graph Full | Irred. [ Opt | Full | Irred. | Opt. Before | After
Diffeq 9741 27 12 8] 106 52 1 36 | 248/2848 | 135/2735
Elliptic 9/66 370 141 95 | 247 73 | 63 | 647/2147 | 525/2025

ECC encoder | 2/47 62 62| 42| 80 63 | 43 | 246/256 | 203/213
ECC decoder | 2/53 59 59| 32| 92 76 | 49 | 316/366 | 251/301
Ged 6/38 15 7 7| 45 28 | 28 | 320/434 | 320/434

Figure 8: Summary of results. The control costs are given for the full, irredundant, and optimized anchor sets. The

logic cost is the # of Actel cells for the control portion and the total area.




