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1 Introduction and Background
We consider the synthesiS of synchronous digital systems from behavioral descriptions that include the specification
of timing constIaints [1]. Significant progress has been made in the area of data-path and register-ttansfer level
synthesis. We address the problem of finding a minimal-area control implementation, such that the overall hardware
is a valid implementation of its behavioral model. Conb'Ol optimization can be performed either at the logic level,
by using a finite-state machine model l7, 9], or at a higher level, by using a hardware model described in terms of
constIaints on the sequencing and timing of me operations [10]. The former case includes sequential logic synthesis
and microcode compaction techniques where operations are bound to conb'Ol states [8, 2]. Since the cycle-per-cycle
behavior of the conb'Ol cannot change, mese approaches ochieve only limited conb'Ol cost reduction in many designs.
In contrast, the latter apJX'O8Ch takes advantage of ~ration mobility in optimizing control, i.e. operations are not
bound to conb'Ol states. The only requirement is to satisfy the sequencing dependencies and the timing constIaints
in the specification. The wider latitude in choosing among a set of possible implementations can lead to a more
efficient conb'Ol implementation in tenDS of area. We present in this summary a conb'Ol optimization approach
based on delayed execution of operations that supports detailed timing constIaints and unbounded delay operations,
implemented in the Hercules/Hebe high-level synthesis system [5]. A full description of this technique is reported
in [3].

Hardware Model We model hardware timing behavior as a polar directed weighted constraint graph G(V, E);
the vertices V represent the operations, and the edges E capture the timing relationships (sequencing and minimax
consb'aints) among the operations. The model suPlX>rts unbounded delay operations such as synchronization mech-
anisms and data-dependent loops, concurrency, hierarchy, and detailed timing consU'aints. We refer the interested
reader to [6] for details of the constraint graph model.

The execution delay of a vertex tJ is denoted by 6(tJ), which can be either fixed or unbounded A weight
Wi. ass<x:iated with ~h edge tij = (tJi, tJj) E E rep-esents the requirement that the stan time of tJ j (denoted by
T( tJj» must cx;cur later than Wij after the stan time of tJi, i.e. T( tJj) ~ T( tJi) + Wij. The edges are categorized
into forward (E J) and backward edges (E.). The forward ~kward) edges have positive (negative) weights and
represent minimum (maximum) timing requirements among the operations. Both forward and backward edges may
have unbounded weights. The graph model captures the essential timing relationships among the operations, and
it serves to determine the extent to which operations can be delayed in optimizing the control implementation. We
assume that the mapping of operations to resources has been perfonned, and the resource conflicts resolved prior
to conb'Ol synthesis.

Control ModeL To define the objective of the conb'Ol optimization, we describe the mapping from a consttaint
graph to a conb'Ol implementation. The mapping involves two tasks - scheduling and conb'Ol generation. Scheduling
finds the stan times of the operations satisfying the timing consb"aints, which are then used by control generation
to derive an FSM specification of the conb'OL

. Scheduling the operations - The presence of WIbounded delay operations in our hardware model invalidates
Ute b'aditional scheduling fonnulation since an absolute schedule satisfying timing constraints no longer exists.
We use a fonnulation called relative scheduling to schedule an operation with respect to the completion of a set
of WlboWlded delay operations. called anchors; we refer to [6] for further details. The anchor set A( v) of a
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veJ'tex v is the subset of anchors that are in the ttansitive fan-in of v. The start time T( v) is defined as offsets
D'o(v) from each anchor in the anchor set a e A(v), i.e. T(v) = m8XoEA(v){T(a) + 6(a) + D'o(v)}. In the
presense of unbounded delays, a timing constraint is characterized as wen-poSed (iU-p~ed) if its satisfiability
does not (does) depend on unbounded delays. For well-posed constIaint graphs. a relative schedule exists
if and only if there are no JX)sitive cycles in the constIaint graph. A constraint graph is valid if it is both
well-posed and contains no positive cycles.

. Generating the Control - Given a schedule, we absb'aCt the task of conb'Ol generation as generating en-
able/done signals for each verte.x v such that its execution is initiated by the assertion of enable v. We model
the conb"Ol in tenDS of a modular interconnection of synchronous FSMs: the FSM abstraction decouples the
conb"Ol generation from a particular style of logic-level4implementatioo. Note that our conb'Ol abstraction
considers only the synchronization of an operatioo with respect to the completioo of its anchors: the support
for conditional branching and looping is desaibed in [4].

The conb'Ol is divided into offset control fcx ~h ancha', and synchronization control fcx each vertex. The
offset conb'Ol for an anchor a indicates the time offsets with respect to the completion of a. It is abstracted as
an FSM that is activated by the assertion of doneo. The FSM generates a set of signals Co(i),l :$ i :$ D':o~
where Co (i) is asserted when at least i cycles have elapsed after the completioo of a. The synchronization
conb'Ol for a vertex v synchronizes the ~tivation of v, denoted by enable v , to offsets from the completion
of its anchors. Specifically, me enable signal is defined as enahlev = nVoEA(V) Co(D'o(v». Figure 1 shows
the block diagram of the offset conb'Ol. Note that the number of states in the offset conb'Ol for a is equal to
the maximum value of offsets w.r.L a (i.e. D':'G~) in the schedule.
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Figure 1: Offset conb'Ol for an anchor a: (a) block diagram, where done a denotes completion of the anchor a, (b)
FSM model, where the offset signal Co(i) is asserted when the FSM is in the states covered by the cOlTesponding
interval.

Given a specification of control logic in tenns of FSMs. well-known logic synthesis teclmiques can be applied
to genel3te a minimal area sequential logic implementation [7.9]. However. a ~t relationship between the FSM
model and the final sequential logic implementation is difficult to IK:curately obtain because of the complexity of
sequential logic optimizations. including the state assignment phase. We therefore estimate the tOtal control cost
COSTa,.co of the FSM implementation of control as:



COSTor.o = L: COSToll(a) + L: COST"nc(v)
VoeA VweV

= a. L: 1011(0":0.) + {J. L: 1.,nc(IA(v)l)
VoeA VweV

The first term COSTol1 is related to me cost due to me length of me schedule, and is a function loll of me maximum
offset values that yields the number of registers implementing the offset FSM. The second term COST 'yne is related
to the cost of the synchronization logic, and is a function I.,ne of the size of the anchor sets. The values a and .B
represent appropriate weight ~tors related to the actual cost of me logic implementation.

Alternative Sb"ategies to describe the conb'Ollogic exist, e.g. we can implement me offset control as a counter and
the synchronization as a set of comparisons between the counter values and appropriate offsets, or we can implement
the offset control as a shift register and the syochronization conb'Ol as logic conjunctions of the appropriate shift
register entries. The two alternate implementation styles are shown in Figure 2. Let a be the cost of a register, and
let .B be the cost of a literal. In the counter-based implementation of Figme 2(a), we see that the complexity of
the offset control is a logarithmic function of the maximum offset values, i.e. loll(n) = rlog2(n)1 represents me
number of registers. Likewise, the complexity of the synchronization conb'Ol is a linear function of the number of
comparators, i.e. '"nc(n) = n reJX'eseDts the number of li~ in the required comparatttS. In the shift-register
based implementation of Figure 2(b), loll is now a linear function of the maximum offset values, i.e. loll(n) = n.
However, since comparisons are no longer n~ in the synchronization, I.ync( n) representS the number of literals
in a n-input AND gate. We see that in all mese formulations, the control complexity can be reduced by eimer
minimizing the maximum offsets and/or by reducing the size of the anchor sets.

~~
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Figure 2: Alternate implementation styles for control generation: (a) counter-based, where offset control is imple-
mented as countezs and synchronization control is implemented as comparatm, and (b) shift-register based, where
offset control is implemented as shift registers and synchronization control is implemented as AND gates.

2 Control Optimization Formulation
The task of control optimization can be fonnulated as the task of minimizing the conb'Ol cost COST 0"'0 by
delaying the execution of operations, where we consider any modification to be acceptable as long as it satisfies all
the consttainrs of the original specification. In other words, control optimization reduces the cona-ol cost by altering
the schedule to take advantage of the degrees of freedom in assigning operations to conb'Ol states. We describe next
how operations can be delayed by lengthening or serializing to reduce the conb'Ol cost by ina-oducing redundancy
into the anchc.- setS.
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Redundancy arises due to the cascading effect of anchors. Specifically, it is oflen the case that some anchors
in the anchor set of a venex v are not needed in the computation of the start time. i.e. T( v ) is unchanged if
offsets from these anchors are not used in its computation. We call these anchors redundant, and the remaining
anchors irredundant. An example of redundancy is shown in Figure 3. We state without proof that the start
time computed with only imdWldant anchors is identical to the start time computed widt the full anchor set,
for well-posed consttaints and minimum offsets [6]. By using only irredundant anchors in computing the start
time, the conttol cost can be reduced significantly by (I) reducing the size of the anchor sets, translating to lower
synchronization costs, and by (2) reducing me values of maximum offsets, b'anslating 10 fewer number of states in
the corresponding FSM. Returning to the example in Figure 3(b), me sum of maximum offsets is decreased from
10(c-~S) + S(c-t"°C) = 15 to S(c-':GS) + S(c-FS) = 10, and the cardinality of the anchor set of v is decreased
from 210 1. Therefore, it is possible 10 reduce the cost of me conttol implementation without affecting the schedule
by using me concept of redundarx:y. We show now how anchors can be made redundant, and we analyze me extent
to which redundancy can be introduced to the graph.

Figure 3: Examples of redundant anchor a with respect 10 the vertex v. In roth cases, note that the longest path
from a 10 v passes through an anchor~.

2.1 Making Anchors Redundant
It is possible in some cases to make an otherwise irredundant anchor redundant by either lengtheNng or serializing
a consb'aint graph G(V, E). An anchor lengthening of G delays the activation of a vutex v with respect to an
anchor Q E A(v) by increasing the length of a ~th from Q to v. An anchor serializing of G serializes a vertex v
with respect to an anchor Q ~ A(v) by inb"oducing a sequencing edge from Q to v, so that the activation of v now
depends on the completion of the anchor. Figure 4 and Figure S illustrate how the anchor Q can be made redundant
with respect to vertex v by the two techniques.

The lengthening and seriali1ing must be caJried out with care to avoid violating the consb'aint graph, i.e. make
the resulting graph ill-posed or inb"oduce positive cycles. We state the following theorem that determines the extent
to which anchor lengthening and serializing can be applied before consb'aints are violated. The proofs. which can
be found in [3], are not presented here for brevity~

Theorem 2.1 Consider a valid constraint graph G(V, E) in which 0 is an anchor and v is a vertex. If a forward
edge eo" = (0, v) with unbounded weight Wow = 6(0) + cr, cr ~ 0 is introducedfrom 0 to v such thai (1) no cycles
are formed by the forward edges of G. and (2) no positive cycles are formed in G. assuming all unbounded delays
are set to zero, then the res~ting graph G is valid.

2.2 Prime Versus Non-prime Anchors
In anchor lengthening, the anchor sets of the venices remain unchanged because no new dependencies are inuoduced.
We now analyze the structure of the graph to identify the subset of anchors which can be made redundant by anchor
lengthening alone, i.e. without inuoducing new serializations. For example, if there exists no other anchors on any



0
+10

=>-

0
G is irredundant W.f.t. tI 4 is redundant w.r.L v

Figure 4: Making the anchor a redundant with respect to v by anchor lengthening the edge e 06. Before lengthening,
a is not redmtdant because for the case 6(6) < 4, the offset of 10 from a is necessary to satisfy the minimum
consttainL

e
~

0
G is irredundant w.r.L v II is redundant w.r.L v

Figure S: Making the anchor a redundant with respect to v by anchor serializing a and b, inb'oducing the edge e 06
Note that before serializing, a and b are prime anchors of v. After serializing, only b is a prime anchor of v.

path from an anchor a to a vertex tI, then a can not be made redundant by lengthening any existing edges. We
fonnalize this observation with the following definition.

Definition 2.1 An anchor p E A(v) of a vertex v is prime if and only if no unbounded delays other than 6(p) are
encountered on all paths of forward edges from p to v. Otherwise. the anchor is non-prime. The set of prime
(non-prime) anchors of a vertex v is the prime (non-prime) anchor set of v.

Theorem 2.2 A prime anchor p of a vertex v is always irredundanl with respect to v.

The prime anchors constiblte dIe minimal set of reference pointS dIat affect dIe activation of a given operation.
We observe that an irredundant non-prime anchor can be made redundant by lengthing the path from the non-prime
anchor to another anchor on d1e path, provided that no timing consb'aintS are violated. Let us consider the example in
Figure 6 widI two maximum timing constraintS. Irredundant anchor a can be made redundant by eidIer lengdIening
b-to-v or lengdIening c-to-v. However. dIe path from a to b cannot be lengthened beyond dIe maximum constraint
of 5. and dIe padI from a 10 c cannot be lengthened beyond the maximum constraint of 3. An important question is
whether an anchor lengthening existS to make atl non-prime anchors redundanL We state the following key theorem
that demonsb'ates the existence of a solution to redoce to a minimum the irredundant anchor setS.
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Making a redundant w.t.L v

Figure 6: Example to make anchor a redundant with respect to velteX v by anchor lengthening only. Two backward
edges with unbounded weight corresponding to maximum timing consb'aints between a and b, and between a and
c. Note that the graph is valid since no unoounded length cycle exists.

Theorem 2.3 Given a valid constraint graph G(V, E). there always aists an anchor lengthening of G such that
all non-prime anchors of every vertex 1/ are redulJdant with respect to 1/.

Control Optimization Algorithms3
The objective of control optimization is to reduce the cost of conb'Ol implementation for a given consU'aint graph.
The two f~tors in the conb'Ol cost - synchronization and offset costs - are tightly related. The reduction of one
may result in an increase of the other. Simultaneous minimization of both factors requires casting the problem as a
combinatorial optimization, which is computationally hard to solve ex~dy. Our Sb'ategy is to instead use a heuristic
approach that exploits the Sb'Uctwe of the consb'aint graph in minimizing conuol COSL The idea is to partition the
vertices into groups, each of which depends on a minimal set of arx:hoo. It consists of the following steps.

1. Identify anchor clusters. The anchors are first panitioned intO anchor clusters where ~h cluster consists of
a subset of anchors that are saungly connected by a cycle in G. It can be shown that a partial order exists
among the clusten and that anchors within a cluster cannot be serialized with respect to each other.

2. Order clusters to form a chain. The ancha- clusters are ordered in a manner compatible with the partial order,
forming a chain of clusters. The ordering is obtained by sa'ting the anchors according to their longest path
lengths from the source vertex; this ranking determines the a-dering among the clusters. Anchor serialization
is then used to impose the complete ordering among the clusten by adding edges between the clusters. This
ordering, being only one of many possible orderings, is used because it is easily computed and it leads to a
minimum control cost for constraint graphs with no maximal constraints.

3. Assign vertices to clusters. The non-anchor vertices are then grouped and distributed among the segments
of the cluster chain. Vertices are assigned to the latest possible cluster such that maximal offsets are not
increased. A vertex v assigned to a cluster a is serialized with respect to a to minimize the size of its prime
anchor seL Every prime anchor set is a subset of an anchor cluster because of the complete ordering imposed
in the previous step.

4. Lengthen graph. From Theorem 2.3, lengthening insures that all non-prime anchors for each vertex are made
redundant This reduces synchrooization costs because redundant anchors are not needed to compute the stan



times of the vertices. Lengthening is also used to delay operations as long as possible under the restriction
that the overall conu-ol cost does not increase. This has the effect of reducing anchor offsetS.

The resulting graph consistS of an alternating sequence of anchor clusters and groups of vertices. where a group
of vertices depends on the anchor cluster that precedes iL The control cost is reduced because the synchronization
cost of a vertex is at most the size of the anchor cluster to which it is assigned to. The sttategy guarantees that
given a consb"aint graph with an associated conb'Ol cost COST old. the control optimization can be perfonned such
that the new cost COST new is always lower than or equal to the old cost, i.e. COSTncw ~ COST old. For the
case of no maximal timing consb"aints in the graph. the resulting graph ~hieves globally minimum control cosL In
particular. both the sum of maximum offsets and the sizes of irredundant anchor sets are reduced to a minimwn.

We illusb'ate the application of the algorithm in Figure 7. The graph contains four anchors {A. B, C, H}. with
A and I as the SO\D'Ce and sink vertices. res~tively. Eoch anchor is an anchor cluster because no two anchors are
connected on a cycle. The algorithm first orders the anchors accm'ding to the longest path from the source; this
resultS in the order A -+ C -+ B -+ H -+ I. The vertex D is assigned to the cluster with anchor A. For the graph
to remain well-posed. the vertex F must also be assigned to the same cluster as D. Since the maximum offset of
anchor A must be at least 10 due to the presence of F. the anchor C can be delayed to 6(A)+ 10 without increasing
the maximal offset of A. The rest of the vertices are similarly placed so that the resulting graph consistS of an
alternating sequence of anchors and vertices. The offset cost is reduced from 49 to 23. and the synchronization cost
is reduced from 16 to 8.

4 Implementation and Results
The control optimization appro~h has been implemented in the framework of the Hercules/Hebe High-level syn-
thesis system. The constraint graph model is derived from a high-level specification of hardware behavior, which
is then used as the basis for scheduling and conb'ol synlhesis. We present in Figure 8 the results of applying the
technique on some benchmark examples, including diffeq, elliptk digital filter, error-correcting encoder and de-
coder, and the greatest common divisor. For each example, the fable gives the number of anchors IAI, the number
of vertices lVI, the sum of the maximum offsets and the sum of the anchor sets for (1) the full anchor set, (2)
the irredundant anchor set, and (3) after control optimization has been performed. The mapped control logic cost
in terms of Actel cells is also given. For control-dominated designs, such as the ECC encoder and decoder, the
reduction in control is significant in terms of the overall reduction in area. Note that in these examples some of
the anchors are introduced by arithmetic operations, such as multiply and divide, that are implemented using data
dependent algorithms.
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Figure 7: Consb'aint graph example to illustrate the algorithm. There are four anchors A, B I C I H. denoted by
double-circled vertices. The solid (dotted) arcs represent forward (backward) edges.

Figure 8: Summary of results. The conb'Ol costs are given for the full, irredundant, and optimized anchor sets. The
logic cost is the # of Actel cells for the controlJX)nion and the total area.


