GIOVANNI DE MICHELI
~ DAVIDKU
FREDERIC MAILHOT
THOMAS TRUONG

Stanford University

Olympus, a synthesis system for
digital design developed at Stanford
University, is a vertically integrated
set of tools for multilevel synthesis,

technology mapping, and simulation.
The system supports the synthesis of
ASICs from behavioral descriptions
written in a hardware description
language called HardwareC. Two
internal models represent the
hardware at different levels of
abstraction and provide a way
to pass design information among
different tools. Olympus has been
used to design three ASIC chips at
Stanford, and it has been tested
against benchmark circuits for
high-level and logic synthesis.

OCTOBER 1990

THE OLYMPUS
SYNTHESIS SYSTEM

s digital hardware systems become bigger and more complex,
engineers need powerful synthesis tools to aid in the design of
digital circuits. Synthesis systems have proved effective in
supporting the design of ICs, in particular ASICs for a number
of reasons. They allow the design of a circuit starting from a self-docu-
mented high-level specification, which can be fairly independent of the
target technology or design style. Another advantage is that the design
is more portable. When the description is at a high-level, we can more
easily incorporate incremental changes. As a result, the design is likely
to adapt more readily to design changes. Capturing and optimizing the
design is a complex process, requiring integrated, computer-aided tools
to do these tasks at different levels of representation. Last but not least
are design turnaround times, which synthesis systems help to shorten.
Olympus is a vertically integrated synthesis system developed at
Stanford University to support both the computer-aided and automatic
design of general-purpose digital circuits, with specific attention to the
requirements of ASIC designs. The system includes behavioral, struc-
tural, and logic synthesis tools and provides technology mapping and
simulation. Since it is targeted for semicustom implementations, its
output is in terms of gate netlists. Instead of supporting placement and
routing tools, Olympus provides an interface to standard physical design
tools. The Olympus system has the following important features:

e HardwareC. A synthesis-oriented hardware description language,
called HardwareC,! is used in specifying hardware for synthesis.
HardwareC supports hardware descriptions with both procedural and
declarative semantics, as well as constraints on the hardware imple-
mentation.

e Constraint-driven structural synthesis. In this approach, the timing
and resource constraints specified in the high-level description are
used to produce a satisfactory implementation. The system supports
the synthesis of partially bound hardware descriptions, in which
certain operations are prebound to specific hardware modules, and it
performs synthesis on the remaining operations. Olympus provides a
flexible framework for the systematic exploration of the possible
series/parallel hardware structures corresponding to area/perfor-
mance trade-offs.

e Combined high-level and logic synthesis. Because logic synthesis
techniques synthesize combined datapath and control, high-level
synthesis does not have to depend on the availability of well-charac-
terized resources in a library. Instead, each resource corresponds to
a model that is synthesized and characterized by logic synthesis.

0740-7475/90/0010-3781.00©1990 IEEE 37

A PRACTICAL SYNTHESIS SYSTEM

Olympus provides an environment in which detailed timing and area
information at the logic level guides high-level synthesis tasks—where
architectural trade-offs and scheduling are done. This methodology is
particularly suitable for ASIC designs, which tend to rely on applica-
tion-specific logic functions. Using logic synthesis for estimates
improves the quality of the synthesized designs and avoids erroneous
high-level decisions based on insufficient data or inappropriate
assumptions.

Technology mapping. The logic-level circuit description is mapped to
a netlist that describes an interconnection of components from a
user-specified library. The technology-mapping algorithm can target
different design goals, from performance to area.

Support of both automatic and user-driven synthesis. The synthesis
flow can be fully automated, transforming a HardwareC description
directly to a logic-level implementation. The system also supports
user-driven synthesis. In user-driven synthesis, designers can inter-
vene and drive the decisions, basing them on an evaluation of the
possible design trade-offs.

At present, Olympus supports only a synchronous-logic implementa-
tion. The synthesis algorithms do not provide for the synthesis of
pipelined structures or multiphase, synchronous logic. However, design-
ers can use appropriate partial structures that describe circuit partitions
and that correspond to pipe stages or phase stages to synthesize circuits

with these features.

OLYMPUS AND OTHER SYSTEMS

How does Olympus relate to other work on synthesis
tools? There are successful synthesis techniques that are
based on high-level description languages such as VHDL. !
Some fully integrated synthesis systems have been used
for chip design, especially for digital signal processing.
Notable examples are the Cathedral systems from the
University of Leuven,? the Parsifal system developed at
General Electric, and the Silcsyn system from Racal
Redac. Other systems support only part of the synthesis
flow, as do Architect’s Workbench® from Carnegie-Mellon,
ADAM from the University of Southern California,* and
VSS from the University of California, Irvine—all of which
specialize in high-level synthesis—and Octtools from the
University of California at Berkeley that supports logic
and physical design. More detailed information on these
models is available elsewhere.>®

There are several differences between these systems and
Olympus, however. First, Olympus is one of the few
existing vertically integrated set of tools, that accepts
hardware behavioral models as an input and that sup-
ports both high-level and logic synthesis. In the Yorktown
Silicon Compiler,6 logic synthesis techniques synthesize
combined datapath and control, but the system does not
feed back information from the logic synthesis stage back
to the high-level structural synthesis algorithms. Olym-
pus does provide this feedback, which also distinguishes
it from Architect's Workbench and ADAM. Even though
ADAM uses estimates of logic-block complexity, neither it
nor Architect's Workbench support logic synthesis and

technology mapping. Olympus differs from Cathedral and
Parsifal by being not restricted to DSP applications. In
addition, Olympus is constructed as an open system, in
which tools communicate through machine-readable and
human-readable interchange formats. This allows the
designer to use the Olympus tools separately and to
interface them easily with other design tools.

REFERENCES

1. S. Lis and D. Gajski, "VHDL Synthesis using Structured
Modeling,” Proc. Design Automation Conf., 1989, pp. 606-
609.

2. J. Rabaey et al., “Cathedral II: A Synthesis System for
Multiprocessor DSP Systems,” in Silicon Compilation, D.
Gajski, ed., Addison Wesley, Reading, Mass., 1988, pp.
311-360.

3. D. Thomas et al., Algorithmic and Register-Transfer Level
Synthesis: The Systems Architect’s Workbench, Kluwer Aca-
demic Press, Boston, 1989.

4. A. Parker, J. Pizarro, and M. Mlinar, “MAHA: A Program for
Data Path Synthesis,” Proc. Design Automation Conf., 1986.
pp. 461-466.

5. Design Systems for VLSI Circuits: Logic Synthesis and Silicon
Compilation, G. De Micheli, A. Sangiovanni-Vincentelli, and
P. Antognetti, eds., Martinus Nijhoff, Dordrecht, The Nether-
lands, 1987.

6. D. Gajski, Silicon Compilation, Addison Wesley, Reading,
Mass., 1988.

38

IEEE DESIGN & TEST OF COMPUTERS

A SYSTEM APPROACH TO SYNTHESIS

Figure 1 is a block diagram of Olympus, which comprises three major
tasks:

1. High-level synthesis translates a behavioral description of hardware
to a register-transfer level implementation.

2. Logic-level synthesis optimizes the area and performance of the logic
representation.

3. Technology mapping maps the logic representation onto predefined
library units.

High-level synthesis in Olympus is performed by two programs, Hercules
and Hebe.2 The two programs transform a behavioral description of
hardware in HardwareC, through a series of translations and optimiza-
tions, to a synchronous logic implementation that satisfies the timing
and resource constraints imposed on the design. Hercules performs the
front-end parsing and behavioral optimizations. It generates an imple-
mentation-independent description of hardware behavior in a graph-
based representation called the Sequencing Intermediate Format, or SIF.

A simulator, called Ariadne, simulates the SIF to provide feedback to
the designer on the functional correctness of the input specification.
Hebe systematically explores the design space, performs scheduling and
resource binding, then maps the SIF into a logic-level implementation,
which is described in the Structural/Logic Intermediate Format, or SLIF.

To provide accurate estimates on area and timing for Hebe to use
during the scheduling phase and to ensure that the resulting implemen-
tation satisfies timing constraints, Olympus uniformly incorporates logic
synthesis in guiding high-level design trade-offs. After high-level synthe-
sis, Olympus passes the circuit representation in SLIF for both the
control and data paths to logic synthesis for optimization.

A logic-synthesis-framework tool, called Mercury, supports some
transformations for multiple-level logic optimization and logic-level sim-
ulation. It also provides an interface to other logic synthesis tools, such
as MISIL,3 and to other netlist formats.

Ceres performs technology mapping, in which the logic description is
changed into a purely structural representation, which is defined in
terms of cell instances of a predefined library for semicustom implemen-
tation.”

HARDWARE MODELING

The input to Olympus is a behavioral level description of digital circuits
in a language called HardwareC.! HardwareC is a high-level hardware
description language with a C-like syntax. The language has its own
hardware semantics, and it differs from the C programming language in
many respects. HardwareC supports both declarative semantics—such
as the interconnection of modules—and procedural semantics—such as
a set of operations ordered in time—in the modeling of hardware.

Four fundamental design abstractions correspond to block, process,
procedure, and function models. At the topmost level, a design is
described in terms of a block, which contains an interconnection of logic
and instances of other blocks and processes. A process consists of a
hierarchy of procedures and functions. It executes repeatedly and
restarts itself upon completion. Since a process executes concurrently
and independently with respect to the other processes in the system,
designers can model coarse-grain parallelism at the functional level.

OCTOBER 1990

HardwareC

{0

Hercules
Behavioral
synthesis

Olympus uniformly
incorporates logic
synthesis in guiding
high-evel design
trade-offs.

Ariadne
Behavioral
simulation
Hebe Theseus
Structural = Waveform
synthesis display
Mercury
Logic synthesis
framework
Ceres
Technology
‘mapping

Netlist

Figure 1. Block diagram of Olympus. SIF is
Sequencing Intermediate Format, and SLIF
is Structural/ Logic Intermediate Format.

39

To support
communication and
synchronization among
concurrent processes,
HardwareC supports
both parameter passing
and message passing.

A s e B

X y z a b c
Process A(x.y,2) Process B(a,b,c)

{ {
P -

Parameter passing

(a)
Process A Process B
{ Send B; Receive A;
" Receive B; "Send A;
1 }
Message passing
(b)

Figure 2. Parameter passing (a) versus
message passing (b).

40

A PRACTICAL SYNTHESIS SYSTEM

A procedure or function is an encapsulation of operations, and it may
contain calls to other procedures and functions. The range of hardware
implementations corresponding to a behavioral model is quite flexible,
and the final implementation depends ultimately on the complexity of
the target hardware. For example, we can describe a multichip system
by associating each process to a chip. Alternatively, a single chip can
implement multiple processes. HardwareC supports the usual iterative
and branching constructs, including both fixed-iteration and data-de-
pendent looping constructs. Data-dependent loops can be used to
describe the detection of signal transitions, which is important in
describing external interfaces. For example, the construct “while
(data==0);” will wait until the rising transition of the signal “data.”

Several features of HardwareC support hardware specification and
synthesis, including interprocess communication, explicit instantiation
of models, template models, parallelism, and constraint specification.

INTERPROCESS COMMUNICATION

To support communication and synchronization among concurrent
processes, HardwareC supports both parameter passing and message
passing. In parameter passing, we must have a shared medium such as
a bus or memory that interconnects the hardware modules that imple-
ment processes. The handshaking protocols are described in the
HardwareC description. In message passing, we use a synchronous
send/receive mechanism to synchronize or transfer data. The corre-
sponding hardware for communication, as well as its protocol, is auto-
matically synthesized. Figure 2a illustrates parameter passing, while
Figure 2b illustrates message passing.

EXPLICIT MODEL INSTANTIATION

HardwareC supports hierarchical designs through the use of model
calls. A call to a model can be either unbound or bound. An unbound
call invokes a model without specifying the particular instance used to
implement the call, while a bound call also identifies a specific instance
of the model that will implement the call. Through explicit instantiation
of model calls, HardwareC supports resource constraints and partial
bindings of operations to resources. The designer can constrain the
synthesis system to explore a subset of possible structures that corre-
sponds to a behavioral model to satisfy a particular architectural
requirement.

TEMPLATE MODELS

Templates are models that take one or more integer arguments. A
single template can, for example, describe a family of adders of different
sizes. Templates also support polymorphism by modeling several behav-
iors with a single description. Because of these qualities, templates are
very useful in describing libraries of hardware operators at a high level.

PARALLELISM

For procedural semantic models, designers can use HardwareC to
adjust the degree of parallelism in a given design by grouping operations
in one of three ways: sequential, data-parallel, or parallel. In a sequential
grouping, operations execute sequentially. In a data-parallel grouping,
all operations execute in parallel unless data dependency requires that
they execute sequentially. In a parallel grouping, all operations execute
in parallel unconditionally.

IEEE DESIGN & TEST OF COMPUTERS

CONSTRAINT SPECIFICATION

Olympus supports timing constraints by tagging operations. This
tagging imposes lower and upper bounds on the time separation between
the tags. In specifying interfaces, designers will find the support of timing
constraints useful because they can constrain the time between I/0
operations. Resource constraints limit the number of operations that
can be bound to resources in the final implementation.

AN EXAMPLE

Figure 3 gives an example of a HardwareC description that computes
the greatest common divisor of two numbers. The model, called gcd,
waits until the restart signal is low, samples the inputs, then computes
the greatest common divisor of the inputs using Euclid’s algorithm. To
illustrate timing constraints, we specified a minimum timing constraint
between the reading of the inputs.

ABSTRACTION LEVELS

Olympus operates on the hardware representation at two levels of
abstraction, corresponding to SIF at the behavioral level and SLIF at the
structural and logic level. Each representation has a corresponding
machine- and human-readable interchange format to pass information
among tools in a consistent way.

At the SIF level, or behavioral level, hardware is modeled as a set of
tasks and dependencies among the tasks. Therefore, a natural repre-
sentation is a directed acyclic graph, or DAG, in which the vertices
represent the operations to be performed and the edges represent certain
dependencies. These dependencies either are explicit in the hardware
specification or represent dependencies from data-flow restrictions or
hardware resource-sharing. The graph model is called a sequencing
graph.

A vertex is enabled when all its predecessors have executed. Since a
vertex may have multiple predecessors and successors, the model
supports multiple threads of concurrent execution flow. Figure 4 illus-
trates this concurrent flow for the process ged.

Vertices can be either simple or complex. Simple vertices include
primitive computations in the language, such as arithmetic or logic
expressions and message-passing commands. Complex vertices allow
Olympus to perform groups of operations, inducing a hierarchical
relationship among the graphs. These vertices include model calls,
conditionals, and loops. A call vertex invokes the sequencing graph
corresponding to the called model. A conditional vertex selects among a
number of branches, each of which is modeled by a sequencing graph.
A loop vertex iterates its body until the exit condition is satisfied; the
body of the loop is also a sequencing graph.

The sequencing graph is acyclic because Olympus uses only struc-
tured control-flow constructs—no “goto.” Loops are broken through the
use of hierarchy. Designers can annotate additional structural informa-
tion, such as resource sharing, in the SIF model.

At the SLIF level, we have a structural interconnection of logic ele-
ments. The model supports the specification of hierarchical netlists,
which provides the structural information needed by the back-end tools
interfacing to Olympus. In addition, SLIF supports the notion of un-
mapped logic equations and synchronous delay elements. Unmapped

Each representation
has a corresponding

machine- and human-

readable interchange

format that helps to
pass information
among tools in a
consistent way.

process ged (xin, yin, restart, result)
in port xin[8], yin[8], restart;
out port result[8];
[
boolean x{8], y[8];
taga,b;
constraint mintime from a to b = 3 cycles;

/*set output to zero during computation™/
write result = 0;

/*wait for restart to go low™/
while (restart)

/*sample inputs in paralle!™/
< bix = read(xiny; a:y = read(yin); >

/*Euclid’s algorithm™/
if((x!=0)&(y!=0)){
repeat {
while (x >=)
X=X—V
/*swap values™/
<y=x;x=y;>
} until (y ==0);
}else
x=0;

[*write result to output™/
write result = x;

]

logic equations are logic specifications that are not committed to a
structure, and they are used by most optimization tools for logic
synthesis.

Figure 3. A HardwareC description of a
process to find the greatest comumon divisor
(process ged) of two values.

OCTOBER 1990 41

All tools share a
common user front-end,
which is modeled after

the Unix shell.

A PRACTICAL SYNTHESIS SYSTEM

SYNTHESIS TOOLS

Olympus consists of an integrated set of tools that optimize at the
behavioral, structural and logic levels of design abstraction. To provide
designers with a consistent interface, all tools share a common user
front-end, which is modeled after the Unix shell. It provides alias and
history capabilities, as well as input/output redirection. We believe that
complex hardware design requires a tight interaction between the
human designer and the tools. Interactive programs free designers to
explore design solutions, knowing that the system will constrain them
to certain requirements when they need it. On the other hand, we think
that eventually designers would like to be relieved from interacting with
the program. For those times, we have created a batch mode in Olympus,
which uses standard or specialized scripts.

Cond body
if x<>0andy<>0

(w9

()

subtracting
y from x

untit x< y

Figure 4. SIF model for process gcd.

IEEE DESIGN & TEST OF COMPUTERS

The user interface provides three levels of interaction for the novice Th o

e objective o
user, the advanced user, and the tool developer. Each level supports a Ob-] f .
set of commands and a help facility, which hides the commands of higher behavioral syntheszs
levels from the user. We think this feature helps users to get acquainted . . .
with the tools without being overwhelmed by the abundance of options. is to identlfv the

As users becomes more familiar with the tool, they can try a higher level maximum parallelism

of interaction. . . .
that exists in the input

HERCULES: BEHAVIORAL SYNTHESIS description.

The objective of behavioral synthesis is to identify the maximum
parallelism that exists in the input description. The result indicates the
fastest design that the system can produce, assuming that a dedicated
hardware component implements each operation in the design imple-
mentation. Because of area and interconnection costs, this assumption
may not be realistic in some cases. The corresponding performance is
important as a limiting bound for a given behavior.

The first task in Hercules is to parse the HardwareC description (input)
and translate it into an abstract syntax-tree representation. This repre-
sentation provides the underlying model for semantic analysis and
behavioral transformations. The transformations are either user-driven
or automatic. User-driven transformations are optional and allow the
designer to modify model calls and the hierarchy of the input description.

There are two types of user-driven transformations. In the first type—
selective in-line expansion of model calls—a call to a model is replaced
by the functionality of the called model. Once we expand these calls, we
can apply optimization algorithms across the call hierarchy. The second
type of user-driven transformation is selective operator-to-library map-
ping. Here, we map operators such as + or >= in the input description
into calls to specific library template models. Although designers can
synthesize an operator in a variety of different implementation styles,
they are often constrained to elements of a particular library. With
selective operator-to-library mapping, designers have the flexibility to
select the specific implementation for the operators. If no mapping is
given, then by default the operators are implemented as combinational
logic expressions.

Automatic transformations optimize behavior by performing transfor-
mations similar to those found in optimizing compilers. The automatic
transformations, which are carried out without human intervention,
include

e Unrolling For loops. Fixed-iteration loops are unrolled to provide more
opportunities for optimization.

e Propagating constants and variables. The reference to a variable is
replaced by its last assigned value.

¢ Resolving reference stacks. Multiple and conditional assignments to
variables are resolved bg creating multiplexed values that can be
referenced and assigned.

Eliminating common subexpressions. Redundant operations that pro-
duce the same results are removed.

Eliminating dead code. Operations whose effects are not visible outside
the model are removed.

e Collapsing conditionals. Conditionals with branches that have only
combinational logic are collapsed to provide more opportunity to apply
logic synthesis.

Analyzing dataflow. Data and control dependencies among operations
are identified.

OCTOBER 1990

Input SIF

l

Manual resource binding
(optional)

!

Partially bound SIF

!

Create design space

l
@@“l-

Select binding configuration

$

l Ordering search J

i |
ﬁ Relative scheduling 4' —;J

Logic-level implementation

Figure 5. Block diagram of the Hebe struc-
tural synthesis system.

44

A PRACTICAL SYNTHESIS SYSTEM

When the automatic transformations are complete, the behavior is
optimized with respect to the data dependencies among operations.
Hercules then performs combinational coalescing to group combina-
tional logic operations into expression blocks. The expression blocks
define the largest scope (without crossing register boundaries) in which
we can apply logic synthesis. The blocks also identify the critical
combinational logic delays through the data path. These expression
blocks are passed directly to logic synthesis, which will try to optimize
the design for area or performance. The results of this process are
estimates on area and timing, which can then be used to refine the design
during structural synthesis. Combinational coalescing is important,
particularly for ASIC designs because such designs use logic expressions
extensively in hardware specification.

HEBE: STRUCTURAL SYNTHESIS

The objective of Hebe is to explore design trade-offs to obtain a suitable
structure that satisfies the user constraints on area and timing. The
constraints can either be specified in the input HardwareC description,
or the designer can enter them interactively. Hebe provides a flexible
underlying representation of the design space that serves as the basis
for both algorithmic exploration and user-driven synthesis. In particu-
lar, designers can either let Hebe explore the design trade-offs automat-
ically, or they can manually guide the direction of synthesis by imposing
constraints on the design.

Unlike microarchitectural synthesis systems, which use a predefined
set of library elements as building blocks, each model in the input
description is treated as a resource that can be allocated and shared
among the calls to the models (either procedures or functions). Each call
is implemented as an activation of a particular resource module. Hebe
applies the synthesis steps bottom-up. It first synthesizes procedures
that do not call other procedures using logic synthesis techniques. When
this task is complete, Hebe propagates the delay and area information
for the synthesized modules up the hierarchy to guide the synthesis of
invoking procedures or processes.

Structural synthesis involves performing two tasks—resource binding,
in which operations are assigned to hardware resources, and scheduling,
in which operations are assigned to control states. An effective strategy
is to perform resource binding before scheduling to provide scheduling
with detailed interconnection delays, as in Caddy? and BUD.® We have
extended this basic approach in Hebe to provide closer interaction and
guidance to the designer.

Figure 5 is a block diagram of Hebe. The flow of structural synthesis
in Hebe is to first bind operations to specific resources, then perform
scheduling to find a schedule that satisfies the timing constraints. T he
process repeats for different binding alternatives. A resource pool is a
set of hardware resources with an upper bound on the number of
instances of each type of hardware resources that the user allows in the
final implementation. A binding configuration matches operations (ver-
tices of the sequencing graph) with specific resources in the resource
pool. The design space is the entire set of binding configurations. T he
design space is also a complete characterization of the entire set of
possible design trade-offs for a given allocation of resources.

Hebe's representation of design space offers two important advantages.
First, it uniformly incorporates partial binding information. In some
circuits, designers may wish to bind certain operations to resources to
achieve high-level design goals. Hebe can use this information to limit

IEEE DESIGN & TEST OF COMPUTERS

the design space so that the focus is on the remaining unbound Th L H .
e 1s

operations. At the extreme, if all operations are bound, then the design € ObJ echw Of . ebe

space trivially reduces to a single point. to explore deszgn
The second advantage of Hebe’s representation of design space is that .

it supports optimum scheduling under timing constraints. Since Hebe trade-ofﬁ to obtain a

decouples resource binding from scheduling, we can solve scheduling suitable structure that

exactly, even under timing constraints, for each binding configuration. . th

Heuristic scheduling is also provided. satzaﬁes e user
The design space may be large because it grows exponentially with the constraints on area

number of shareable resources. However, ASIC designs often have a ..

small enough number of shareable resources to make it practical to and timing.

systematically explore all binding configurations. Furthermore, design-
ers can use bounding techniques based on the evaluation of various cost
criteria to prune the design space and speed the search for a suitable
implementation.

Structural synthesis in Hebe involves the following tasks: select bind-
ing configuration, resolve resource conflict, and do relative scheduling.

Select binding configuration. Given a design space, Hebe supports
both an exact and a heuristic search of the binding configurations. The
selection is based on cost criteria that are used to evaluate the design
space, including the area, interconnections, and delay of the final
implementation. Deciding whether one alternative is more favorable
than another depends on the relative importance of these criteria. That
relative importance is, in turn, determined by the value of a weight
associated with each criterion. Designers can experiment with different
design goals by adjusting the values of these weights. The design goals
indicate whether the emphasis of the final implementation is on area,
performance, or some combination.

Resolve resource conflicts. Once a resource binding is selected by
the designer or automatically by the system, Hebe orders the operations
bound to the same resource component to resolve any possible resource
conflicts. For example, if Hebe is synthesizing three parallel calls to a
model that is bound to the same resource, it must order them serially
to ensure that the calls do not simultaneously activate the resource. The
goal of the ordering search is to find a set of dependencies among the
operations that resolves the resource conflicts. Hebe uses a branch-and-
bound approach to explore the ordering alternatives. Once it finds an
ordering, the ordering is applied to the sequencing graph and scheduling
is performed. If no schedule exists under timing constraints, then it tries
another ordering. If no schedule exists for any valid ordering, it discards
the binding configuration.

Do relative scheduling. When a sequencing graph has an ordering, it
is free of resource conflicts. However, Hebe must now do scheduling to
define the detailed temporal relationships among operations to satisfy
the imposed timing constraints. There is a potential complication here.
Some operations may have unbounded execution delays, which corre-
spond to synchronization primitives and data-dependent loops. The
unbounded delay operations invalidate the traditional scheduling for-
mulation, in which operations are statically assigned to specific time
slots. Hebe uses a novel technique called relative scheduling that
uniformly supports operations with fixed and unbounded delays.®

An important consideration during scheduling is whether the timing
constraints can be satisfied for any value of the unbounded delay
operations. Hebe uses the concept of well-posed versus ill-posed timing
constraints when it encounters unbounded delays.® A timing constraint

OCTOBER 1990

46

Ariadne is a graph
and logic evaluator,
as opposed to an
eventdriven or a

compiled-code
simulator.

A PRACTICAL SYNTHESIS SYSTEM

is well-posed if satisfying it does not depend on any unbounded delays.
Given an ordering of shareable operations to resolve resource conflicts,
Hebe may need to serialize some operations to make the constraints
well-posed. If it cannot impose a consistent serialization, or if it cannot
satisfy the constraints, Hebe rejects the ordering as infeasible. Other-
wise, it computes a minimum relative schedule using an iterative
incremental scheduling algorithm. Both the time complexity of making
constraints well-posed and the scheduling algorithm are polynomial.
Consequently, Hebe can integrate relative scheduling effectively within
the ordering search.

Once it has established a structure that satisfies both resource and
timing constraints, Hebe generates a hardware implementation for the
data-path operations, their interconnection, and the control circuitry to
activate the resource components according to a given schedule. Hebe
generates a combined logic-level description of both the data-path and
the control portion in a SLIF representation. This representation allows
the logic synthesis tools to optimize data-path operations and control
simultaneously. The control structure is distributed, as opposed to a
ROM-based control store, and it uses an interconnection of atomic
control finite-state machines. With this distributed approach, Hebe can
handle hierarchical control structures without penalizing the execution
cycle. This approach also allows Hebe to implement a synchronization
mechanism to cope with data-dependent delays. The generated struc-
ture is a hierarchical interconnection of logic circuits in SLIF.

ARIADNE: BEHAVIORAL SIMULATION

As we mentioned earlier, Olympus supports simulation at both the
behavioral and logic levels. Ariadne is a behavioral-level simulator that
evaluates the SIF hardware models generated by Hercules. Mercury is
a logic-level simulator used to verify the SLIF models. Both simulators
share the same graphic monitor, called Theseus.

Ariadne is used in conjunction with Hercules to verify the correctness
of a behavioral hardware model in HardwareC. Since Hercules preserves
the hardware behavior in transforming HardwareC models into SIF
models and since its execution time is often negligible, the combination
of the two programs provides the means for simulating the original
hardware description.

Ariadne is a graph and logic evaluator, as opposed to an event-driven
or a compiled-code simulator. The semantics of the SIF graph, based on
the HardwareC model, assumes that the vertices in the graph are
executed according to their dependencies and that their execution takes
an integer number of cycles. Ariadne evaluates the SIF graph by
traversing the SIF model. The SIF model already embeds the notion of
partial task ordering because its edges represent the temporal and data
dependencies. Ariadne visits a vertex after it has visited all the vertex’s
predecessors. It then simulates the operation that corresponds to the
visited vertex.

Ariadne traverses the SIF graph hierarchy when it encounters a
complex (conditional, loop, or call) vertex by transferring control to the
linked SIF model. For conditional vertices, it evaluates conditional
clauses on the fly to determine which branch to simulate. For iterative
constructs, it repeats the simulation of the loop body until it evaluates
the exit condition to be true.

Ariadne runs the simulation for a specified number of cycles or until
the end of input test patterns, and it extracts output response vectors
for display. Designers can specify a subset of the primary inputs and

IEEE DESIGN & TEST OF COMPUTERS

outputs, as well as internal signals to monitor. They can also elect to
display graphical output waveforms to facilitate the checking of simula-
tion results in an X window using Theseus. Figure 6 shows the results
of simulating the ged example.

MERCURY: LOGIC-LEVEL INTERFACE

Mercury is a framework for synthesizing and simulating synchronous
multiple-level logic. It supports the hierarchical description of networks
that include combinational functions and registers, as described by
SLIF. Mercury has three main purposes. The first is to optimize the logic
representation. Optimizing transformations include constant propaga-
tion, function elimination, and local logic simplification. Another pur-
pose of Mercury is to directly simulate synchronous circuits in SLIF. It
also provides graphic output waveforms using Theseus. Mercury uses
the same monitor and the same test patterns as Ariadne.

The last purpose of Mercury is to provide an interface to the input
description of some commercial tools for simulation and logic synthesis.
It supports the translation of SLIF to the NDL format used by the LSI
Logic Design System for sea-of-gates implementations and to the ADL
format used by the Actel Logic Design System for electrically program-
mable gate array implementations. It also provides an interactive inter-
face to the University of California, Berkeley’s MISII combinational
synthesis program.® Designers can enter commands for MISII directly
from the Mercury shell. This interface capability opens an entry point to
UC Berkeley’s Octtools design system.

CERES: SEMICUSTOM TECHNOLOGY MAPPING

Ceres is a tool for technology mapping. It addresses the problem of
conforming an arbitrary synchronous logic network to a network that
uses parts from a given library. Ceres tries to achieve the optimal
technology mapping by choosing a coverage of the network from a given
set of library components, which minimizes the area or the cycle time.
It uses algorithms, as MISII® does, as opposed to applying rules, as most
commercial tools do.

xi[0:0]
xil4:4]

pooogooh1111121p2 2222222222222E33333353333SZEBSGSSSBSSBSSEEEHSSZNHZS

P00000000000006000000000000000 000000 00000000000000|

000000111111111‘144A444U¢SGSGGSGGS SSESSBS9999999999999999999939

poooo 0000 0000 0000000000000
poooo 0000p22222222 2 22222222 2&333333333333333

00000006000000000 00000 000000000000000000000000000000000]

4i[0:0}
yil4:4]
rst[0:0]
N
oul0:0)
ould:d]

© W o o o w o o o o

051'01'52212‘53'0354114'552:5‘55'0657075

Figure 6. Simulator output waveform displayed by the Theseus graphics
monitor.

OCTOBER 1990

Mercury supports the
hierarchical description
of networks that include
combinational functions

and registers.

Ceres addresses the
problem of how to
conform an arbitrary
synchronous logic
network to a network
that uses parts from a
given library.

A PRACTICAL SYNTHESIS SYSTEM

EN
Data[0][0]

DQ

- Oor

=

L S

A

| % 1=
—‘: DO—J ;

i

—of

Figure 7. Partitioning example in Ceres.

Ceres differs from other technology-mapping tools because it
exploits Boolean operations to match subsets of the Boolean net-
work to library parts instead of using tree-matching techniques, as
in MISII. Boolean operations allow Ceres to find matches regardless
of the structural representation of the Boolean functions. In addi-
tion, it permits the use of “don’t care” information, and therefore
increases the number of possible matches with the library ele-
ments.” Consequently, the quality of the final implementation is
higher.

Since technology mapping is computationally intractable, Ceres
uses a heuristic strategy, which consists of dividing the mapping
problem into a set of four independent operations: partitioning,
decomposition, covering, and matching.

Partitioning. Partitioning is the task of dividing the logic network
into subnetworks with a single output. The output of each sub-
network is either a primary output, an input to a register, or a
multiple fanout vertex in the original network. Figure 7 shows an
example of such partitioning. Keutzer® first proposed this method
to circumvent the computationally intractable binate covering prob-
lem.

Decomposition. Decomposition consists of breaking all combina-
tional subnetworks into an interconnection on two-input NAND/
NOR/AND/OR gates, as Figure 8 shows. In this step, leaf DAGs

IEEE DESIGN & TEST OF COMPUTERS

Figure 8. An example of decomposition in Ceres, a system for semicustom
technology mapping.

represent the subnetworks with a very fine granularity of gates. In Ceres,
we assume that two-input AND/OR and inverters are always available
as part of the library of cells, thus ensuring that the entire network has
a mapping in terms of these primitives.

Covering. Figure 9 shows an example of covering, the purpose of which
is to find the optimum set of library cells to represent each subnetwork.
Covering is based on a dynamic programming approach, in which the
leaves of a subnetwork are processed first, then their immediate ances-
tors, and so on until the root vertex is reached. For each vertex being
processed, Ceres considers all possible expressions for the vertex. That
is, it considers the expansion of all subexpressions. Suppose, for exam-
ple, we have the following decomposed subnetwork:

J=bx,

b=e+ x,
Xy=c+d
xp=a+c

where the root vertex f has six possible expressions, which are shown
in Figure 10:

€) = bx;

€, =bla+ 0

€3 = (e + X)X

ey =(e+x)a+d
es={e+c+dx
gg=(e+c+dla+ 0

OCTOBER 1990

Ceres divides the
mapping problem
into four independent

operations, called
partitioning,
decomposition,
covering, and

matching.

49

The purpose of covering
is to find the optimum
set of library cells to
represent each
subnetwork.

Figure 10. Subnetwork for a function, f.

50

A PRACTICAL SYNTHESIS SYSTEM

N -

E
Data[0][0] -+

Figure 9. An example of covering in Ceres.

Ceres computes a cost for each of these expressions that has a corre-
sponding element in the library. The cost consists of the cost of the
library element plus the sum of the costs of the mapped subnetworks
that correspond to the literals used in the expression. Ceres maps the
vertex under consideration onto the library cell that corresponds to the
expression that will lead to the best cost. The cost may represent the
area or the propagation delay. Therefore, the best choice relates to the
best implementation in terms of area or delay for the given block of the
partition and the given decomposition.

Ceres uses matching in the covering step to check if a particular
expression has a corresponding element in the library. Matching in Ceres
is based on Boolean operations. It checks a logic function against other
functions that represent the library cells. It does an equivalency check
(modulo the “don’t care” set) using Shannon decomposition recursively.
It considers two functions to be equivalent when, at the end of the
recursion, the two functions have the same value for each pattern not
included in the “don’t care” set.

Ceres considers the problem of phase assignment during matching. It
considers two functions matched if there is an input phase assignment
such that a function, or its complement, is equivalent to the other. By
merging these two steps—matching and phase assignment—Ceres pro-
vides the possibility of a better overall implementation. The potential
drawback of considering the two steps together is the computational
cost.

Ceres uses techniques to reduce the search space to speed up Boolean
matching. The use of symmetries, the main technique to reduce search

IEEE DESIGN & TEST OF COMPUTERS

space, acts as a filter to find possible candidates in the library. It also
limits the number of input permutations considered during matching,.
Two or more variables are symmetrical in a logic function if they can be
exchanged without modifying the original truth table. For example, in
f=a+ bc+de, variables b and care symmetrical, as are variables d and
e. Variables of a logic function can be grouped together because logic
symmetry is an equivalence relation. Then groups are included into
symmetry sets, and each symmetry set includes only groups with the
same size. For example, the previous function fhas two symmetry sets:
S, = (@} and S, = {(b,0).(d.€)}. A necessary condition for two functions to
be logically equivalent, is that they have the same symmetry sets.

Ceres uses other techniques, such as unateness checking, to make
Boolean matching efficient. Indeed, Boolean techniques have proved to
be faster than structural mapping techniques, and they produce com-
petitive results. We can see the advantage of Boolean techniques over
other algorithmic technology-mapping approaches, when we consider
libraries that contain several complex cells.”

DESIGN EXAMPLES

We have tested Olympus against the usual benchmark circuits for
high-level and logic synthesis. In addition, others have used Olympus
to design three application-specific digital circuits at Stanford Univer-
sity: BDCT, a bidimensional discrete cosine transform chip;® DAIO, a
digital/audio input/output chip,© and MAMA, a discriminator chip for
the multianode microchannel array detector used in astronomical ap-
plications.!! The BDCT chipisa typical application for image processing.
Its architecture is defined by a set of equations that can be solved
row-by-row and column-by-column by two simpler monodimensional
DCTs. It was therefore described as two concurrent processes that
communicate via a shared memory array. An 8x8 BDCT architecture
was described in HardwareC. Each process required approximately 500
lines of code and was synthesized and simulated at the logic level. The
physical layout was then synthesized as a macro-cell using programs
called Castor and Pollux.!2 The total chip image was about 9x9 sq. mm
in 2u CMOS technology.

The DAIO chip provides an interface (following the Audio Engineering
Standard protocol) between a standard 16/32 microprocessor bus and
audio devices, such as a compact disc or digital/audio tape player. It
was modeled as a single process in HardwareC, which required about
500 lines of code. This representation was then compiled and simulated
using Olympus. Finally, it was mapped onto a representation suitable
for implementation in LSI Logic LMA9K sea-of-gates. The chip has about
6,000 equivalent gates. The DAIO architecture has also been imple-
mented as two electrically programmable gate arrays.

The MAMA system consists of a photocathode for photon/electron
conversion, a microchannel plate for electron multiplication, and the
multianode array for event detection. The decoder chip is designed to
discriminate the information generated by the multianode detector. The
chip can detect two events occurring within 160 ns (for a 50-MHz clock).
It is scheduled to fly in experiments in the Solar Orbiting Heliospheric
Observatory in 1995 and on board the Hubble space telescope in 1996.

The MAMA decoder chip was modeled in HardwareC, which required
about 2.300 lines of code. It was then synthesized and simulated, and
the description was mapped onto one LSI Logic LCA10K sea-of-gate chip.
The MAMA decoder chip required approximately 24,000 equivalent
gates.

OCTOBER 1990

We have used the
Olympus synthesis
system to design three
application-specific
digital circuits.

51

52

To use Olympus
efficiently, designers
must think in terms of
behavioral abstractions,
which means they must
relinquish full control
of the final design
implementation.

A PRACTICAL SYNTHESIS SYSTEM

lympus is prototype of a vertically integrated synthesis system.

It is operational and has been used to design three research

prototype chips from behavioral specifications in HardwareC.

We conceived Olympus to serve two purposes: to provide a
workbench to experiment with algorithms for computer-aided synthesis,
and to provide a vehicle for fast-turnaround chip design.

As a research project, Olympus is under continuous development. We
are incorporating and testing new ideas and algorithms. The modularity
of the system allows us to replace tools as they become obsolete and to
experiment with alternative synthesis paths.

Our experience with chip design has been fruitful because these design
have prompted new ideas for improving the tools. Designers using
Olympus spent most of their time in chip modeling. In comparison, the
execution time of the tools was negligible.

As is true of all research projects, however, Olympus has some
drawbacks. One is that to use HardwareC and Olympus efficiently,
designers must think in terms of behavioral abstractions. Such an
abstract approach mandates that designers relinquish full control of the
final implementation. Partially bounded structures and the use of block
models in HardwareC alleviate this problem somewhat. Moreover, de-
signers often need to verify that a HardwareC model fits their needs.
Although they can validate the design by simulating the model with
Ariadne, if designers are not sure whether what they have modeled is
what they want, simulation is not much help. We believe that tools for
reasoning about behavioral hardware models would be extremely useful
in reducing the modeling time, which we see as the bottleneck in
speeding up the overall design process.

Future work will address experimenting with other algorithms for
structural and synchronous logic synthesis, as well as exploring the
relations between the two domains. We are investigating partitioning
techniques at the structural level to cope with the generation of parallel
and/or pipelined computing structures. We are also considering logic
synthesis and technology mapping for synchronous logic circuits.

As we mentioned earlier, Olympus is fully operational. Those interested
in the availability of Olympus can contact Mrs. Lilian Betters, Center for
Integrated Systems, Stanford University, Stanford CA 94305, or prefer-
ably use the electronic address olympus@chronos.Stanford.Edu.

ACKNOWLEDGMENTS

We acknowledge the contributions to Olympus by Michiel Ligthart, Roger Yip,
and Jerry Yang who participated in the development of the tools. We thank Larry
Augustin, Rajesh Gupta, Rindert Schutten, and Polly Siegel for their invaluable
comments and criticism. We also thank Vittorio Rampa, Michiel Ligthart, and
David Kasle who, as first users of Olympus, provided feedback about the design
system requirements. .

This research has been supported by DEC and AT&T, jointly with NSF, under a
Presidential Young Investigator Award, by IBM under a Resident Study Fellowship
and by Philips under a CIS Fellowship.

REFERENCES

1. D. Ku and G. De Micheli, HardwareC: A Language for Hardware Design, tech.
rpt. CSL-TR-90-419, Computer System Lab., Stanford Univ., Aug. 1990
(Version 2.0).

2. D. Ku and G. De Micheli, “High Level Synthesis and Optimization Strategies
in Hercules and Hebe,” Proc. European ASIC Conf., 1990, pp. 124-129.

3. R. Brayton et al., “MIS: A Multiple-Level Logic Optimization System,” IEEE
Trans. Computer-Aided Design, Vol. CAD-6, No. 6, Nov. 1987, pp. 1062-1081.

IEEE DESIGN & TEST OF COMPUTERS

4. R. Camposano and W. Rosenstiel, “Synthesizing Circuits from Behavioral
Descriptions,” IEEE Trans. Computer-Aided Design, Vol. CAD-8, No. 1, Feb.
1989, pp. 171-180.

5. M. McFarland, “Using Bottom-Up Design Techniques in the Synthesis of
Digital Hardware from Abstract Behavioral Descriptions,” Proc. Design Auto-
mation Conf., 1986, pp. 474-480.

6. D. Ku and G. De Micheli, Relative Scheduling Under Timing Constraints, tech
rpt. CSL-TR-89-401, Stanford University, Stanford. Calif., Nov. 1989; also in
Proc. Design Automation Conf., 1990, pp. 59-64.

7. F. Mailhot and G. De Micheli, “Technology Mapping Using Boolean Matching
and Don’t Care Sets,” Proc. European Design Automation Conf., Mar. 1990,
pp- 212-216.

8. K. Keutzer, “Technology Binding and Local Optimization by DAG Matching,”
Proc. Design Automation Conf., 1987, pp. 341-347.

9. V. Rampa and G. De Micheli, “Computer-Aided Synthesis of a Discrete Cosine
Transform Chip,” Proc. Int'l Symp. Circuits and Systems, 1989, pp. 220-225.

10. M. Ligthart et al. “Design of a Digital Audio Input Output Chip,” Proc. Custom
Integrated Circuit Conf., 1989, pp. 15.1.1-15.1.6.

11. D. Kasle, “High Resolution Decoding Techniques and Single-Chip Decoders
for Multi-Anode Microchannel Arrays,” Proc. Int'l Soc. for Optical Eng., Vol.
1158, Aug. 1989, pp. 311-318.

12. F. Mailhot and G. De Micheli, “Automatic Layout and Optimization of Static
CMOS Cells,” Proc. Int'l Conf. Computer Design, 1988, pp. 180-185.

Giovanni De Micheli is guest editor of the theme articles on high-level synthesis.
His photo and biography appear on p. 7.

i ¥

Frédéric Mailhot is a PhD candidate in electrical engineering at Stanford
University, where he has been involved in the design and development of Olympus
for the last three years. His research interests include logic synthesis, simulation,
and physical design tools. He holds a BS in physics engineering from Ecole
Polytechnique de Montréal, a DEA in microelectronics from Université de Greno-
ble. and an MSEE from Université de Sherbrooke. His work has been supported
by a NSERC scholarship from the Canadian government and a Fonds FCAR
scholarship from Quebec. He is a member of the IEEE.

David Ku is pursuing a PhD in electrical engineering from Stanford University.
For the last three years, he has been involved in the development of high-level
aspects of Olympus. His research interests include automata theory, sequential
logic synthesis and modeling, control, and high-level synthesis. He holds a BS in
computer science and a BS in electrical engineering from the University of Utah
and an MS in electrical engineering from Stanford. He was awarded an AT&T
fellowship in 1986 and a Stanford Center for Integrated Systems fellowship in
1989 and 1990.

OCTOBER 1990

L]

Thomas Truong is a staff engineer at IBM
Almaden Research Center and is pursuing a
PhD in electrical engineering through an IBM
Resident Study Fellowship. His research in-
terests are in high-level synthesis and optimi-
zation. He holds a BSEECS with high honors
from the University of California, Berkeley.
and an MSEE from Stanford University. He is
a member of the IEEE, Tau Beta Pi, and Eta
Kappa Nu.

Direct questions or comments on this article
to G. De Micheli, Ctr. for Integrated Systems,
Stanford Univ., Stanford, CA 94305.

53

