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Abltnct

We model synchronws circuits in tenns of Jrapba, lopc functioos and dOlI" car~ cooditioos ind~ by
die Qtcmal and intcmal intcr1:cx!--cti~. We tbea caJIider the pobiau of cbaracteIiziDB die de~ «
freed(XD in ~KinS loca11ogic functions, as dOlX for example by Boolean ~,!,jz~oo procedures. We show
baw syncbttXXlUs dOlI', car~ .. C8D be u8ed fw d1is pupo8. We d)en pR8aI1 an IlJOlidlm to CCXDpu1e die
oblervabllity dOlI', car~ let of synchrUIous ciJCui1L

Introduction1
Most circuits of interest in digital ~gn ale synchronous multiple-Jevellogic circuits, that ale intercoonections
of logic gates and registeIS widt syncbronous clocking. Feedback conneCtions ale restricted to be throogb
syndlrooous registeIS. to guarmtee ra~.free design. We ~der in the sequel this class of circuits and fOQJS
in particular on single-phase circuits widt positive edge-triggered (or master-slave) clocked registers.

Tedmjques for sequential logic syndlesis traditiooally ~ ~havioral circuit desai~oos (in tenns of state
diagrams or equivalent representations) [1] [2]. In d1is paper we attack dte problems of synchronous logic
syndleSis by considering a strllCtJlral approach. i.e. we coosider ciICuit specifications IS interconnection of
combinational gates and registers. Such a representation can support iterative improvement of a design. For
example, a designer provides a synchronous circuit implementation in tenns of a sdlematic and a tool suite
optimiz.es the ciICuit while preserving its 00 behaviOL

Do,,', care conditions playa central role in the specification and optimization of logic circuits. In!L~
they represent d)e degrees of freedcxn of transfonning a network into an equivalent ODe. Do,,', care cooditions
provide important information for Boolean transformatiom, such IS Boolean division and ~cy removal
They are also related to the ciICuit testability properties.

A characterizatioo of synchronous networks by do,,', care sets was presented in [3]. We show here how
the do,,', care cooditions represent the degrees of freedcxn in optimi:rJng a synchronous cin:uit by successive
replacement of local logic functions. We present d1eD an algorithm for complting the observabiJity do,,', can
set of synchronous ~twolks.

Basic concepts and definitions2
We consider synd1roDous multiple-level logic cimrlts. We assume thai dlese cimrlts coosist of an intelConnectioo
of multiple-input single-ouq>ut C<XDbinational logic gates and syncluooous delay-type edge-triggered Jegisters.
Single-phase clocking is assumed for the sake of simplicity. No diJeCt C<XDtXnabonal feedback is allowed.

These ciJaJits ale modeled by synchronous BoWean oetworkJ. A synchronous Boolean network is de--
scribed by its directed weighted graph G = (V, E, W). The elements of the venex set V = \'1 U VG U \,'0 =
{ v} are in COrIespondence with primary inpns. logic gates. and primary outputs, respectively. Each gate in the
ciJaJit may fan out to one or more other gates. In the latter case. for notational convenience. we IepJeseDt the
gate by a venex pair joined by ~ edge. The first vertex models the logic fimction aM the seCOIM1. called
fanout vertex. the multiple fanout connection.

The edge and weight set is defined as follows. An edge e from a vertex JJ to a vertex 1/ with weight w
models a connection between dle coneSpc.1ding gates through a casr~ of (possibly ~ro) u: Jegistcrs. Zero
weights ale not leplesented for dle sake of simplicity.

In oor netwmk model. a variable is ass<x:iated to eadl edge. and it is denoted by a string (e.g. z:, sample).
The comsponding edge is indicated by a subsaipt (e.g. er, e.ample). A variable .1' is ~ to be a fanout (fanin)
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variable of a vertex II if ( r is an edge whose tail (head) end-point is II. The set of fanout (fanin) variables of a
vertex ,'is indicated by FO(I') (F/(v)). The weight of an edge tr is indicated by U'r.

In general. a synchronous Boolean netWork may have cyclic dependencies. i ,f, its corresponding graph may
be cyclic. We assume d1at ead1 cycle has strictly positive weight. to model the restrictioo of breaking loops of
combinational logic widl at least one register. A netwolk is called definite when dle corresponding grapb is
acyclic.

In die case of combinational circuits. the graph is acyclic and all the weights are zero (and therefore not
shown). Note that this model difIe~ from the Boolean network model described in [4]. because variables are
associated to edges. as in [6]. radler than to vertices.

Example 1. A synchronous Boolean network and its associated graph are shown in Fig. 1. It is a portioo
of the phase decoder of the Digital Audio Input-Output Chip [7], that processes an input data stream with a
biphase encoding (as generated by a a> player) and converts it to a stream of decoded BooI~ samples or
detects biphase e~g violations O. viol

Figure 1: Syncbror.ous Boolean Network and associated graph- Vertices labeled f; ~nt fanout points.
Veltices labeled i; and 0; represent primary inputs and outputs, lespectively-

We ISSUIne a disaetization of time into integer time-points Z = {.." -I . 0, 1, . . .}. A SyochroDOUS literal
function is a logic variable or its complement as a function of time. i.e. it is a function Z - B. where
B = {O, I}. The value a literal function 1: takes at time n is called literal value. or literal for short. and it
is den~ by 1:(n). A syncbrooous aabe or synchronous product or shortly a albe is a Boolean product of
values of syncbronOUS literals (e.g. .1'( 1 )y(3 ». A SynchroOOUS apressiOD is a Boolean expIession in tenns
of syncluonous literaJs. In particular. it can be cast as a sum of synchrooous cubes. The retiming 'R. k ( y( n) )
of a literal y( n) by k is the literal y( n + .to:). The retiming n k (e.1'pr) of a synchronous expression e.1'pr is d1e

retiming of all its literals by k.
The logic values of the DCtWn outputs at time n can be regarded as a function En of all the network:

literals at time points n I S n. With d1is definition. En is a function of an infinite number of arguments. The
network: structure. however, ~des implicitly an expressioo of En in tenns of a finite nwnber of arguments.
Indeed. each vertex II E ~)'G is associated to a Boolean function over d1e same domain as En. This last
function is described by In expIesSion Iv" of past values of the fanin variables Yt, ..', Yt of II, i.e. Iv" =
Iv" (Yl (n - WWI)' .. '. Yt( n - ww-)). Since ead1 gate is modeled by a time-invariant logic function

I'.:+t = 'Rt <I'.:) v ft,}; E Z (1)

The expressioo f>v, denoted hereafter by I", is sufficient to derive all expressions Iv". Note that I" reduces to
an identity function in me case of fanout vertices.

The network model described above implicitly assumes that die content of every register is always me result
of me operatioo performed by its driving gate, j.~. mat the network is always started in a readlable state. Preset
signals therefore need to be ~ted explicitly.
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3 Don't care conditions in synchronous networks

Don', car~ conditio~ are introduced by the network interconnection. As in the combinational case [5], they
can be classified as extemal/intemal satisfiability/ObservabiJity don', car~ conditi~. The external satisfiamlity
don', car~ set represents input sequences that calmot occur at the netWork inputs. This set has also been called
controllability don', car~ set in [3]. Here it is denoted by S DC -..,. SinlilarIy, external observability don', care
sets represent conditioos for which some of the output values are not observed, at some time 11. The following
examples illustrate some contexts in whim sum don', care seq~n~ arise.

Example 2. Consider dle ci~t of Fig.(2), representing the cascade interconnectioo of two simple synchronous
netWorks, and ass. that the registcn of ,YI are initially reset to O. d1en the sum =1(0)+ =2(0) + ';'3(0) C8IUlot
occm at the inputs of M2. Therefore, 5'DC~rt:2 :.](0)+:'2(0)+=,(0). At time n = I, :.](1) = I isim~ble,
so dlat SDC~rt :2 ;;](1). Note then d1at the cube z](n + 1):2(n)=3(n); n ?: I is. doo'tCale condition for
the network M2, i of 0 this condition C8JUlot occur when n ?: I. This can be shown by lo<*:ing at netwolk.
/lfl and noocing d18t when, at SOOle time n ?: I, :,(n) = 0, d1eIJ ~~riJy r](n)z.2(n) + "il(n -I) = O.
Similarly, :2(n) = 0, togetMr with the j.-t derived cooditioo %](n - I) = 0, implies %2(n - I) = O. Ha1~,
:](n + I) = X'](n + l)x2(n-l) = 0 and the cube =](n + 1):2(n):3(n) cann~ be an inplt to dle ~twolt. ,\12,
for n ?: I. It is easy to verify, however, d1at Z](I)=2(0):3(0) is, in ge~ra1, a ca~ coodition for .",12 be~
the oo esponding inplts to M2 can occur, depending 00 the initial cooditioos of die registers in M 1. Ha1~,

D
=

SDC.., 2 %1(0) + Z2(O) + :,(0) + zl(l) + L %I(n + 1)Y2(nT!l(n)
...1

Figme 2: C-_~ SyncbJOnOUS Boolean NerwoD:s

External observability do,,', car~ conditions are repesented here by vecton. Mole specifically, the jth
component of the observability don't care vector QQC.rt(n) represents the conditions under whim the i1h
primary ou~t of the netwOlk is not observed at time n.

Example 3. Widl ICferen~ to Fig. (2), let US consider the situation at d1e outplts of M 1. The interconoeCtioo
of dJe two ~twolks limits the obrervlbility of the primary 00tplts of M 1. In particular. a val~ = I ( n) is n~
observable at d1e output of M2 when Z2( n + 1) + Z3 (n + 2) is satisfied, 'v'n ~ O.

The observability oftbe value 1;2(0), however, depends on the initial conditions in M2: =2(0) is not observable
if YI ( -1) + =3 (1) is satisfied. If. for exmDpie, M2 starts in a reset State, then 'PI (-1) = 1 aM =2(0) is ~nainly
not observed. The val~ =2 ( n ). n ~ 1 are not observed wbeo Z I (n - 1) + :, (n + 1) is satisfied. Again,
asswning all registeIS initia1Jy reset. dJe variables =3(0), z3(1) ue always obselvable, while :3(n). n ~ 2 is
observable only if =2 (n - 1) + Z I (n - 2) is satisfied. TherefoIC, the external ODC let for M I is completely
described by

( :,(2) + 1'2(1» ) ( %,(3) + %2(2» )Q.l2Q.61(0) = ~ ;~61(1) = ;1(0): %J(I)

( ZI(n + 2» + :2(n + 1)
TI(n - 1) + :s(n + 1)
T2(n - 1) + 'fl(n - 2)

~z,(n)tn ~ 2 = D

The internal satisfiability don', cart set is induced by the internal network interconnection, defined by the
equations y( n) = Iv". TheJefore

+~
SDC = L L J,l(n) $ r:

~cV
(2)



Note in particular that
'R,k(SDC) = SDC.

For ease of ~tment. satisfiahility dOlI', can ~ts ale represented in d1C ~ by vectors :2Q.c and ~~c
widt d1e same dimensions IS L. i.e. 1\.'°1. Mid whC* elements ale SDC and SDC'rf respectively.

(3)

3.1 Synchronous logic optimization using don't care sets
Boolean ~timizatioo tectmiques of combinational ciJCUitS [11) [8) [6) refine a netWork by replacing iteratively
the expressions I II by more convenient ones. The replacement of an expression III widt 9 II can be achieved
when

(III ~gll)l ~ Q12£., +~%I +S.Q£.., +~Zl ~ I!.!:..., (4)

(Here, 1 denotes a vector of all 1'5). In cKher wolds, die only requirement on 9 II is that dte input values for
which III differs from gll (i.e. lltisfying III if 911 ) must be contained in all d}e components of some vector
Q.c." that can be constructed from dte intemal netWolk: structure and/or extemal specifications. Once L?.{2., is
computed. any Boolean optimizer can be used to ~ize I II using die intel$eCtion of dte components of Qc.,
is don't care set

The synchronoos case is more compleL In paI1icuiar, the expressions gll that can replace I II cannot always
be desaibed by an equation of the type of Eq. (4). 'Ibis can be shown by the foDowing simple example:

Example 4. Coosider d!e ciICuit in Fig. (3). It Iea1i7a ~ function ::(n) = ':f(n) $':f(n -1). It can easily
be recognized that Ute inverter can be replaced by . simple wire, i.e. the function I" ="1 can be replaced by
g" = z. In dIis ~, I" of, g" = 1. If Eq. (4) were applicable, dlen we should cooclude d1at DC" = I, i.e. dlat
the vertex is redundant, which is clearly faJse O.

!~.{>o[: ~::~ D..!

Figuze 3: aIalit example

It is possible. however, to obtain descriptions of do,,', care sets for a ~x in a syncbrooous netWork.
Aldlougb dI~ expressions do not capture all the degrees of fIeedom for circuit optimization, d1ey can advan-
tageously be used in a Standard logic optimization framework..

Let us coosider d1e effect of modifying die expression associated to a vertex 1/ on d1e network fimctionality.
11rls m~~cation can be desaibed by coosidering . cut .-work N", obtained from N by altting d1e fanout
edge of 1/ and adding the corresponding variable to die primary inputs. The fimctionality of die alt network is
described by . function En". aearl y, the f1D1ctiooality of the original netWork can be secovered from that of the
alt network. Let y denote the variable conesponding to die cut edge. Then:

1:." = £Vly(m)=J:,:m~n (5)

and d1e functiooality of any other network 00tained by replacing f" widl some other f1D1ctioo g" is desaibed
bvJ E', l,tm)=I;,:mSn (6)

The sarimahility don't care set associated to ~ art Detwolt is

+~
SDCr = L L y(n) III r: (7)

n=-~ liE V.,.~r

Definition 3.1 Consider a network N', obtaiMdfrom N by mIKlifying an expression I~ The expression g" t.r

said to be equivalent to I" at time n, and denoted by 9 r ~ I", if the equality

r" lyCm'=I~;m~" = E:;1.cm)=J:,;mSn (8)

holds for all the observable ccwnponenlS of Eft alld for all combillatimlS of literal values tlwzt are possible in
D

the cut network. We say that g" t.r eqllivaJenl to I", aIId we den«e it by gr ~ I", if gr ~ I", Vn ~ O.

From die definition. g" ~ I" if and only if

E',1.Cm'=I;';m~n~E:I,Cm)=J:':mSn +~n(n)+~ +~Zl =1 (9)

holds for every n.
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Definition 3.2 Consider a network .Yy, obtainedfrom ,\- by CIIlIing (y. We call observabilitydon't care jIInction
of a value y( m) the jIInction

(10)Q.l2C,trn,(n) = L;1,'rn,..:;::Z;I'lm'=1

The quantity QQCy( m ,( ») specifies the conditions for whim y( In) does n~ affect the netwolk OUqJUts at
time n. It repleseDts the complement of the Boolean diffeleDce [9] of E" w.r.L y(m). In genel8l, QQ(,(m,(JI)
may depend on Y(Jn'); In' ¥ ,no From the time-invariance ~rties of dJC circuit, Q.Q(:,lm+t,(n +!o) =

'Rt(QJ2.c~('J1)('I)).

DefinitioD 3.3 GWen a F of opnssions f", g", w~ dLnot~ 1M k ~ 0

~-t = (l:;;IY(ml=J:-:m~n-.~I:::,lrcml=I;';m~n-. )lrtml=J:-:m>n-.. (11)

Note dlat .J.~ is precisely d1e first term in d1e l.h.s. of Eq. (9).
By adding twice l:.;1J/lml=I:,;m<n-t;Ylm)=J:-;m?;n-t inEq. (11) we have dlat

~~-k =~-k-l:;(Erly(m)=,:.:m<n-l'oYlm)=I:-;m=n-.TE,lr(m,=g::m~n-It )1'lm)=I:o;n,>n-.. (12)

Gi~ an albitnr-)' Boole81 fimction 1t of 8&~tI ,to 0, . . . . Z n. Y - a Boolean variable :;,

fn{
1t(xo,.,..xn.y)-t1t(Xo...,.zn,=)= (Y+:;)b;. (13)

By complementing both tenns of this identity and applying it to die temI in parentheses in Eq. (12), we obtain
the following IeCwsive expression:

..1:.-t =A':-t-I';:«I:-t+g:-t)1+~(n-t)(7~)) (14)

whele~(n-tl(n) = QQLI/(n-t)(n)ll/lml=,;,;m<n-t;8J:-;m>tt-t. It is now possible to prove the following
Lemma:

Lemma 3.1 Let Y dellOle the jaMIIt \Grlable of a vena II. If

(I'.: ~ g:)1 ~ ~ + SDC... +!J.I!f:.(nl(n) + ~Zf(n) (15)

and
(16)~~-1 +~ +~&'t +QQC.zt(n) =1

D
theft g" ~ I"

Proof. By contradiction. F'1Jst note that, fnxn Eq. (9) and Definitioo 3.3, 9 II ~ /11 if and only if

~ +~ +~Z, +QQQ.z,(n) =1. (17)
By using identity (14), Eq. (17) is tJanSf~ed into

~-1 '=F«r.:",l';g~)1 + Qllf:::.(n,(n» +!iO..(;:.., + ~r1 + ~2't(n) = 1. (18)

The ooly conditioo for which Eq. (18) could not hold is when at least one entry, say i, of '~r/ + S.l2Cv +
Q12,.Ct../(n) is 0 and ~-J diffm from U1e expJession in palend)Cses in its ith entry. But in this~, by Eq.
(15) and (16), d)C ith entry Ofz,-l is 1 and, fmenny i, (/: ~g~)1 ~ ~(n)(n) bokls. Therefore, b i,h
entry of the expression in parentheses in (18) must be 1, and equals d)C couesponding entry of ~:-1. Hen~,
U1e i1h entry of the Lb.s. of Eq. (18) cannot be 0 O.

Note at this point that Eq. (16) ~ the same structUle IS Eq. (17). lemma 3.1 can thus be used iteratively,
to obtain the following result.

Lemma 3.1 If

(19):I:-i l' g:-i)1 ~ SJl!:." + SDC.~a + Q.IJs::.Cn-i,(n) +~za(n); JOt' j = 0 i-I

and
(20)&.-k + S.JJ.Q." + §.ll!:..~, + ~rf(n) = 1

D
tMn .f" ~ f. C



'I': 4- g=)l ~ S1!!:." + Ii (j=O
(21'R.j(:ll2c.~1 +QQC.~I(n)) + W-C',cn ,(n +j)

and ..r:.-t +~ +~Z, +@C.z,(n) =1
D

hold at t~ n. then g" ~ I".

Proof. It is sufficient to observe that I,:-j {£. g~-j ~ expr if and only if I': + g~ ~ 'Rj (exp") and to apply
this p~ny to d)e Sq. (19) o.

In the foRowing section, we coosider d1e application of Theorem 1 to the important case of definite networks.
Note that any cyclic network can be decomposed in an acyclic network. and feedback wires [3). Hen~. any
optimizer that preserves the input/output fWlctiooality of d1e acyclic portion also insW'eS the final correctness of
the complete ciraliL

3.2 Definite networks
Let P" denote the longest padl from v to the primary outputs in the netWork graph. Then, E~ depends on at
most P" past values of g", and therefore .,;J::,-k = 1 for A. > P". Thus, Eq. (22) certainly holds for k > P" and
therefore

(23)'Rj(:51).C".~c +QQC.,,(n» +~(nl(n +i
p~

.QC(n) =~ +II
-",

)~v

1ep~C5 a do,,', can set for d1e vertex v at lime n. Any function g" sud1 that

(g: \1:0 r:)l~ .Qc.,(n) Vn ~ 0 (24)

is dleIefore equivalent to f" This cooditioo is equivalent to

00 I

)(g" $ 1,,)1 ~ II 1?-n .D.c,,(n) ~.l2C"
"=0 '

(25)

~ Eq. (23). t8king into acxomt Eq. (3).

QC., =~ + ft fi(~(.,(j)+'R.J-"~ +~rt(n)1
n=Oj=-G

=

~n 1?-"(~" + Ql2C.,,(n)
"=0 '.

of die external don't can conditions. The following section presents an algorithm for computing the internal
observability don't can explessioos.

3.3 Observability don't cares in definite networks
Given a network. it is possible in principle to ccxnpute ~(O)(j) for any internal variable y by Battening
the ~tWork .~', 81d applying Eq. (10). Alternatively, die chain ",Ie [10] may be used, but it requires an
exponential number of higher-order derivatives in presence of Ie(:onvergent fanout. We show here that it is
possible to avoid die Battening operation on the network and CCX11plte exact and approximate versions of the
observability functi<X1S with a single ~tWork b'aversal.

60

The above equation shows dlat in o*r to conSbUct the don', car~ set associated to the vertex II, d1e following
vectors ale needed:

1) fi12£.,; 2) QQC,IO,U); j = 0 P,,; 3) the time-;mlariant compooent
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If QQC"fO,(j) is known for the fanout variable !J of a vertex tI, then it is easy to obtain the conesponding
expiessioo for III the fanin variabl~ 11; of tI frcxn

(28)~.IOI(j) =

A problem occurs in presence of a reconvergent fanout vertex, as die observability do,,', car~ function of its
input d~ not necessarily ooincide with any of its outputs. In this ~, however, the observability do,,', can
function can be C<XDplted as follows. We present here the method for two fanout variables only, the extensioo
to larger fanout being straightforward. Let y and :: 1 . ::2 denote the input and output variables of a fanout vertex.
respectively, and <etsider the netwOlt. ;\12 obtained by cutting J\. in con-espoodenre of (' 'I' l :2. It realizes a
function L~2. Then, frcxn the definition.

(29)Ql2!::,IO,(j) = Z{11;11".I=~I". ,...:t:'Z{ZIZI(W:.'."fW.'.'

By adding twice die term Ehl~lf.'.)=l.~II"'.I=O we obtain

(30)1:11...1=0';'( Z{21~1("-.I=o-;Z{2Iral".I=1 ) 1:1, 1:1QQc:.,o,U) = (Z::{slzl,...,..';:;Z{sllll.,.'=l

The tenDS in parentheses conespoOO to ~lla'.I(j)l:s(".I=O = ~"'.(QQ.c.,I(OI(j - U~r)l:sIOI=O) and

~s("'.I(j)lz1(a.)=1 = ~"'.(@C:sIO)(j- U',)I:IIOl=l),.especDvely.1b...

(31)QIl!::."o,U) = R.'. (QQ.C."O'U - tI:.)I'2'OI=O';'~2'O,(j - w. ,,(01=1

Eq. (31) shows how to ccmplte the o~ability in presence of ~vergent fanout A more detailed analysis
of exact and simplified expressions of observability don't care sets is given in [12] for d)e combinational case.
The analysis can easily be extended, however, to the synchronous case. The following backwaro traversal
algoridJrn can be used for detennining the observability don't care sets of all ~twolk variables. In the algorithm
G denotes the graph, aIk1 P its longest path.

OBSERVABn.rrY(G);
S := {prifnary output vertict.s};
while (S ~ l" ) {

~Ject lie l! - S SUa. m. FO(II) ~ s;
foram flnoot variable:; i of II {

II = htad - end - vertez(t.~,)
for (j = O,j < P,j + +) ~,IO,(j) = 81:0, /8:;i(O)1+~"o'(QQ.c..IO)(j - ai,,»)

if(lIisa~~)
y = fanin - tlariable(lI)
for (j = 0, j S P, j + +)

OnrD ( .) - -nUl ~FO(~)lrlnr ( . -
)1 )~fOI 1 - '" .\'%1:"=1 ~.IO} J W, %1(O}="'='.-I(O)=O;%.+I(OJ='=%I"OI~'I(OI=I

S:=SU{II};

The co~ctness of the above algorithm stems directly from the conectness of Eq. (28) IDd (31) and frOO1
the order in whid1 the vertices are visited. We illustrate bele the algorithm on d)e circuit of Fig. 4.

Example 5. The algorithm begins by computing QK",o,(O) 8»d ~'ol(l) to ~ ~ Eq. (31).

The algorithm then computes ~.(o)(l) and Ql2C,.(Oj(O) to obtain

'YI(O)' ( 1
z.(I) + 1,9(2)

QQC,.lo,(l) = ;~'OJ(2)=

YI is me fanin variable of a reconvergent fanout vertex. ~



~(1) + %1(0)
1

~IO)(O) = ~Io)(l) =1
V5(-I) + ZI(O)

(~(1) + z.1(O»I"lol=O~y.(I)lh(o)=1
1

;QQQ,.co»(l) = =
are computed, and then from Sq. (31)

~lfO)(O) = (Y.5(-I)I+ %1(0).

%1(0) $ !.-(I) .nDr" (2) - 11 I'~~IIOJ - .%4(1)+~(2).

The algorithm terminates after ~ computatioo of ~ observability don't car~ fmtctioos of the primary inputs.
These are ~ external obselVability don't care ~tioos for the circuit driving the inplts or i O.

4 Summary
We have ~ an extension of d1e coo~tiooaI don't care theory of ~binational ~twoIks to the syn-
d1ronous case. We have shown that. differently from Ute combinational case, the functions that can mplace a
combinational gate in . network cannot be expressed by a simple don't care ~ Expressions for don't care ~ts,
however, are derived, d1at can advantageously be used in a logic optimization framewolk.. These expressions
show die key role played by don't care coOOitioos and in particular by the intemal observabillty don't can ~ts.

References
[1] S.Dev.l.., T.M., A. Newtoa. A.S-IWv~V~i, "A S~ Opt""~~ ~~ for "By Baily T.atabIc

Seq~1ial M~hu-"IEEE TnIJU&"tiolUOII CADI/CAS, Vol. CAD-a No. 10, pp. 1100-1109~ 1989.

[2] o. s-i8r, M. c de P8akt P. SM:8d, "ASYL: A RU-B~ System for Co.-oD... Syndleais", IEEE T/'IIIIofjICfiou 011
CADIICAS, VoL CAD-6 No. 6, lIP. 1~8-1097No_ba' 1987.

[3] M. D8ni8i ..s G. ~ ~ "ST~- LoJic SJIIII..ic ~t Specific.aOM 0pIiIII~~ AlJOriduDa", Proc. /SCAS
1990, lIP. 1566-1570.

[4] L A. B8tIea. R. L Brayt-. G. D. Ha81, R. M. J-tIt, R. R.-II, A. s-p.,8mi- ~Di, A. W8II" .. MalliJem LoJic
MinimizaIi- U,ml Implicit Don't c...", IEEE Tr8UGCtioILr 011 CADlICAS, vol. CAD- 7, No. 6, W. 723- 739, J~ 1988.

[5] o. D. H8eaJ - M. R. ~, .. T~ Syad818 of MakipIe ftl LoIic Networb" Proc. /CCAD 1987, pp. 316-319, S.
aar., Nov. 1987.

[6] S. M~.. Y.x-b8ym. Ill.8i J.OiDi." "'J'1Ie Tr8I8dIM:tiOIi ~ - Deaip of LoJic ~ Bucd ~ PcnDiII1"b1e

Amcti- ",IEEE Tr8IU. CD, voL 38, No. 10, pp. 1404-142A, 1989. '.

(7] M. UadI8to A. ~ O. ~ ~ A. EI 0-.1. "Deaiga at . DiIita1 A8dio ~ o..,.t Clip", P~...,." of III.
C~ I_""" C~ Colf-Ik:8, San Dielo. w. 15.1.1-15.1.6, May 1989.

[I] D. ~ O. D. H8d81. R. M. J--" M. R. LiJhllla', P. M_y-.. c. R. MorriIOII. - D. Ra~ .. 'nEO B~ 0pIima1
LoIic Deaip Syn=m", Proc./CCAD 1987, w. 62-65, S. a.n. Nov. 1987.

[9] H. "P-a.l.oric Dai,.. 8M Dui,.. fo" TUfGlx"s", Mrr P.-. C8DbridF, 1985.

[10] A. c. I- 0 L s. R8C1. A. V. B-. "Pe s-iti8~ P8tia1 Book8D ~ - Aa~ FuJt Di8,.-8", IEEE
T---~ ':~I.n, CO2l. lIP. 189 - 194, Rb. 1972.

[11] R. BI8)'IAm. R. R.-II, A. 5-.io¥8Di- V-.-11i. A. Wma, "MIS: A Multiple-Levd LoJic 0pI8ftizm- Syatam", IEEE T~-
-- - CADlICAS. Val ~ No. 6, lIP. 1062-1~l. NOvaIIbcr 1987.

[12] M. D..i.u - O. ~ MM:heIi," O'-rv8bi1ity ~'I mr8 MtI - &-Iean R&~", PrwIC-/CCAD 1990, S. a.., Now. 1~.

62


