The Role of Don’t care Conditions
in Synchronous Logic Optimization *

Maurizio Damiani Giovanni De Micheli

Center for Integrated Systems
Stanford University
Stanford, CA 94305

Abstract

We model synchronous circuits in terms of graphs, logic functions and don’t care conditions induced by
the external and intemal interconnections. We then consider the problem of characterizing the degrees of
freedom in replacing local logic functions, as done for example by Boolean optimization procedures. We show
how synchronous don’t care sets can be used for this purpose. We then present an algorithm to compute the
observability don’t care set of synchronous circuits.

1 Introduction

Most circuits of interest in digital design are synchronous multiple-level logic circuits, that are interconnections
of logic gates and registers with synchronous clocking. Feedback connections are restricted to be through
synchronous registers, to guarantee race-free design. We consider in the sequel this class of circuits and focus
in particular on single-phase circuits with positive edge-triggered (or master-slave) clocked registers.

Techniques for sequential logic synthesis traditionally use behavioral circuit descriptions (in terms of state
diagrams or equivalent representations) {1] [2). In this paper we attack the problems of synchronous logic
synthesis by considering a structural approach, i.e. we consider circuit specifications as interconnection of
combinational gates and registers. Such a representation can support iterative improvement of a design. For
example, a designer provides a synchronous circuit implementation in terms of a schematic and & tool suite
optimizes the circuit while preserving its 1/0 behavior.

Don't care conditions play a central role in the specification and optimization of logic circuits. Indeed,
they represent the degrees of freedom of transforming a network into an equivalent one. Don't care conditions
provide important information for Boolean transformations, such as Boolean division and redundancy removal.
They are also related to the circuit testability properties.

A characterization of synchronous networks by don't care sets was presented in (3]. We show here how
the don'’t care conditions represent the degrees of freedom in optimizing a synchronous circuit by successive
replacement of local logic functions. We present then an algorithm for computing the observability don’t care
set of synchronous networks.

2 Basic concepts and definitions

We consider synchronous multiple-level logic circuits. We assume that these circuits consist of an interconnection
of multiple-input single-output combinational logic gates and synchronous delay-type edge-triggered registers.
Single-phase clocking is assumed for the sake of simplicity. No direct combinational feedback is allowed.

These circuits are modeled by synchronous Boolean networks. A synchronous Boolean network is de-
scribed by its directed weighted graph G = (V, E, W). The elements of the vertex set V = V/UVEUVO =
{v) are in correspondence with primary inputs, logic gates, and primary outputs, respectively. Each gate in the
circuit may fan out to one or more other gates. In the latier case, for notational convenience, we represent the
gate by a vertex pair joined by one edge. The first vertex models the logic function and the second, called
fanout vertex, the multiple fanout connection.

The edge and weight set is defined as follows. An edge e from a vertex u to a veriex v with weight w
models a connection between the corresponding gates through a cascade of (possibly zero) w registers. Zero
weights are not represented for the sake of simplicity.

In our network model, a variable is associated to each edge, and it is denoted by a string (e.g. z,sample).
The corresponding edge is indicated by a subscript (€.g. €=, €;amplc). A variable z is said to be a fanout (fanin)

*The suthors acknowledge the support from the Rotary Foundation and NSF, under a PY] sward and grant No. MIP 8719546,

variable of a vertex v if ¢ , is an edge whose tail (head) end-point is v. The set of fanout (fanin) variables of a
vertex v is indicated by FO(v) (F1(r)). The weight of an edge ¢ - is indicated by u'r.

In general, a synchronous Boolean network may have cyclic dependencies, i.¢. its corresponding graph may
be cyclic. We assume that each cycle has strictly positive weight, to model the restriction of breaking loops of
combinational logic with at least one register. A network is called definite when the corresponding graph is
acyclic.

In the case of combinational circuits, the graph is acyclic and all the weights are zero (and therefore not
shown). Note that this model differs from the Boolean network model described in [4], because variables are
associated to edges, as in [6), rather than to vertices.

Example 1. A synchronous Boolean network and its associated graph are shown in Fig. 1. It is a portion
of the phase decoder of the Digital Audio Input-Output Chip [7], that processes an input data stream with a
biphase encoding (as generated by a CD player) and converts it to a stream of decoded Boolean samples or
detects biphase encoding violations O. viol

rsarn;:nle
viol
{01
| y8 _/
1 y1 7~ ¥y5 o LY
;x '-":_1\ :@—-: 14 ¥e @'—" J_SJ

X x3 sample
x2 ¥ y10, 1
1.

Figure 1: Synchronous Boolcan Network and associated graph. Vertices labeled f; represent fanout points.
Vertices labeled i; and o; represent primary inputs and outputs, respectively.

We assume a discretization of time into integer time-points Z = {---,—1,0.1,---}. A synchronous literal
function is a logic variable or its complement as a function of time, i.e. it is a function Z — B, where
B = {0,1}. The value a literal function r takes at time n is called literal value, or literal for short, and it
is denoted by z(n). A synchronous cube or synchronous product or shortly a cube is a Boolean product of
values of synchronous literals (e.g. z(1)%(3)). A synchronous expression is a Boolean expression in terms
of synchronous literals. In particular, it can be cast as a sum of synchronous cubes. The retiming R *(y(n))
of a literal y(n) by k is the literal y(n + k). The retiming R *(expr) of a synchronous expression ezpr is the
retiming of all its literals by k.

The logic values of the network outputs at time n can be regarded as a function £" of all the network
literals at time points n’ < n. With this definition, " is a function of an infinite number of arguments. The
network structure, however, provides implicitly an expression of £ " in terms of a finite number of arguments.
Indeed, each vertex v € V¢ is associated to a Boolean function over the same domain as . This last
function is described by an expression f]' of past values of the fanin variables y;. y B4 of v,ie. fI =
fHn(n —wy),- -, ye(n — wy,). Since each gate is modeled by a time-invariant logic function

otk =RY M) Vnke 2 (1)

The expression f0, denoted hereafter by f,, is sufficient to derive all expressions f7'. Note that f, reduces to
an identity function in the case of fanout vertices.

The network model described above implicitly assumes that the content of every register is always the result
of the operation performed by its driving gate, i.e. that the network is always started in a reachable state. Preset
signals therefore need to be accounted explicitly.

56

M. Damiani, G. De Micheli

3 Don’t care conditions in synchronous networks

Don't care conditions are introduced by the network interconnection. As in the combinational case [5], they
can be classified as extemnal/finternal satisfiability/observability don't care conditions. The extemal satisfiability
don’t care set represents input sequences that cannot occur at the network inputs. This set has also been called
controllability don't care set in [3]. Here it is denoted by SDC ... Similarly, external observability don't care
sets represent conditions for which some of the output values are not observed, at some time n. The following
examples illustrate some contexts in which such don’t care sequences arise.

Example 2. Consider the circuit of Fig.(2), representing the cascade interconnection of two simple synchronous
networks, and assuflie that the registers of A1 are initially reset to 0. then the sum >1(0)+ :2(0) + =3(0) cannot
occur at the inputs of Af2. Therefore, SDC.z¢ D =1(0)+ z2(0)+T5(0). Attime n = 1, 2y(1) = 1 is impossible,
so that SDC.,y D z;(1). Note then that the cube z;(n + 1)T2(n)T3(n); n > 1 is a daa’t care condition for
the network A{2, i.e. this condition cannot occur when n > 1. This can be shown by looking at network
M1 and noticing that when, at some time n > 1, z3(n) = 0, then necessarily r,(n)zz(n) + T)(n-1) = 0.
Similarly, z2(n) = 0, together with the just derived condition T)(n — 1) = 0, implies r2(n — 1) = 0. Hence,
21(n+1) =F(n+1)ra(n~1) = 0 and the cube :;(n + 1J32(n)JZ3(n) cannot be an input to the network A2,
for n > 1. It is easy to verify, however, that z1(1)72(0)73(0) is, in general, a care condition for A/2 because
the corresponding inputs to A72 can occur, depending on the initial conditions of the registers in A/ 1. Hence,

SDClst 2 21(0) + 22(0) + T3(0) + 21(1) + Y _ z1(n + 1)Ta(n)T5(n) o

x1

x2

Figure 2: Cascaded Synchronous Boolean Networks

External observability don’t care conditions are represented here by vectors. More specifically, the i
component of the observability don’t care vector QDC,.,(n) represents the conditions under which the i**
primary output of the network is not observed at time n.

Example 3. With reference to Fig. (2), let us consider the sitnation at the outputs of A 1. The interconnection
of the two networks limits the observability of the primary outputs of M 1. In particular, a value = ,(n) is not
observable at the output of M2 when Za(n + 1) + z3(n + 2) is satisfied, Vn > 0.

The observability of the value 22(0), however, depends on the initial conditions in Mj: :3(0) is not observable
if §,(—1) + za(1) is satisfied. If, for example, M, starts in a reset state, then ,(—1) = 1 and :2(0) is cenainly
not observed. The values z3(n), n > 1 are not observed when Tj(n — 1) + z3(n + 1) is satisfied. Again,
assuming all registers initially reset, the variables :3(0), 23(1) are always observable, while :3(n), n > 2 is
observable only if T2(n — 1) + T;(n — 2) is satisfied. Therefore, the external ODC set for M, is completely

described by
3(2) +7%5(1) 23(3) + F2(2)
QDC,.(0) = ((l’):QQCm(l) = (?1(0)3-13(1))

23(n+2))+5(n+1)
ODC, . (n),n>2= (Tx(ﬂ-l)+:s(n+l))
Tain—-1)4+FH(n-2) '

The internal satisfiability don'’t care set is induced by the internal network interconnection, defined by the
equations y(n) = f7'. Therefore

400
SDC= Y Y vnmafy (2)

AW wnn veV

Note in particular that
R¥SDC) = SDC. (3)

For ease of treatment, satisfisbility don’t care sets are represented in the sequel by vectors SDC’ and SDC., .,
with the same dimensions as F", i.e. |V'©|, and whose elements are SDC and SDC. .« respectively.

3.1 Synchronous logic optimization using don’t care sets

Boolean optimization techniques of combinational circuits [11] (8] 6] refine a network by replacing iteratively
the expressions f, by more convenient ones. The replacement of an expression f. with g, can be achieved

when
(f, 9.1 € ODC, +QDC. ., + SDC, + SDC.., = DC, (4)

(Here, 1 denotes a vector of all 1’s). In other words, the only requircment on g, is that the input values for
which f, differs from g, (i.e. satisfying f, % g,) must be contained in all the components of some vector
DC,, that can be constructed from the intemal network structure and/or extermnal specifications. Once DC, is
computed, any Boolean optimizer can be used to optimize f. using the intersection of the components of DC,
as don’t care set.

The synchronous case is more complex. In particular, the expressions g, that can replace f. cannot always
be described by an equation of the type of Eq. (4). This can be shown by the following simple example:

Example 4. Consider the circuit in Fig. (3). It realizes the function :(n) = F(n) 4 T(n —1). It can easily
be recognized that the inverter can be replaced by a simple wire, i.e. the function f, = F can be replaced by
g, = z. In this case, f, 4 g, = 1. If Eq. (4) were spplicabie, then we should conclude that DC, =1,i.e. that
the vertex is redundant, which is clearly false O.

oD

Figure 3: Circuit example

It is possible, however, to obtain descriptions of don’t care sets for a vertex in a synchronous network.
Although these expressions do not capture all the degrees of freedom for circuit optimization, they can advan-
tageously be used in a standard logic optimization framework.

Let us consider the effect of modifying the expression associated to a vertex v on the network functionality.
This modification can be described by considering a cut network N,, obtained from N by cutting the fanout
edge of v and adding the corresponding variable to the primary inputs. The functionality of the cut network is
described by a function £. Clearly, the functionality of the original network can be recovered from that of the
cut network. Let y denote the variable corresponding to the cut edge. Then:

£ = Ellymy=smimen)
;nd the functionality of any other network obtained by replacing f, with some other function g, is described
DV
’ Ely(m)zﬂ,‘:ms:t (6)
The satisfiability don't care set associated to the cut network is
400
SDC,= Y. Y. vmaf)

n=-00 w€V u#ty

Definition 3.1 Consider a network N', obtained from N by modifying an expression f.! The expression g, is
said to be equivalent to f, at time n, and denoted by g, & f,. if the equality

E Iy(m)=1:,';m5n = Ely(m)-_-j:,-;mgn (8)

holds for all the observable components of " and for all combinations of literal values that are possible in
the cut network. We say that g, is equivalent to f,, and we denote it by g, = f,, if 9o = fu, Yn 0.

From the definition, g, = f, if and only if

E Iy(m)=!:‘;ﬂ1$n%£:|y(m)=]:':m5n + QQQctt(n) + E& + iQQut = l (9)
holds for every n.

58

M. Damiani, G. De Michels

Definition 3.2 Consider a network \',, obtained from N by cutting ¢ ,. We call observability don't care function

of a value y(m) the function -
QDLM»)(") = ElytmbsoTEIy(mml (10)

The quantity QD_('W,, ,(n) specifies the conditions for which y(1m) does not affect the network outputs af
time n. It represents the complement of the Boolean difference [9] of £" w.r.t. y(m). In general, O DC, (., (1)
may depend on y(m'); m' # m. From the time-invariance properties of the circuit, ODC,(pm4r)(n + k) =
RE(QDC,(m)(7)).

Definition 3.3 Given agair of expressions [,.g,, we denote for k > 0

An"-k = (ﬂ |y(ml= :;mSn-l-;EI,(ml:g:;mSn—k) Iy(ml:}:;m)n—k . (ll)

Note that .\ is precisely the first term in the Lh.s. of Eq. (9).
By adding twice E; Iy(ml:,:;m(n-k;ylm)=fmm>n—k in Eq. (ll) we have that

.‘-é:_k '_'.A.::-A-_];(EyIy(m):y:‘;m(n-k,y(m)=]:';m=n—k;£;|y(m):g_'p;m_(_n-—k)Iy(m):]:';m>n-l . (12)
Given an arbitrary Boolean function 7 of arguments 1o, -, Z,,y and 2 Boolean variabie :,
oM
H(zo-~-~-zn.y)%H(zo.-~-.zm:)=(y+:)8—y. (13)

By complementing both terms of this identity and applying it to the term in parentheses in Eq. (12), we obtain
the following recursive expression:

A0y = Ak TS TN+ 0DC k(1)) (14)

where O DCin—i)(n) = QDC, o iy()lyimi=gpim<n - k2 fm >0k 1tis now possible to prove the following
Lemma:

Lemma 3.1 Let y denote the fanout variable of a vertex v. If

(f7 =90 € SDC, + 3DC,.. + QDC) (n) + QDC. . (n) (15)
and
an+8DC, +SDC,. +QDC,(n)=1 (16)

then g, = I
Proof. By contradiction. First note that, from Eq. (9) and Definition 3.3, g, = f, if and only if

An +SDC, + SDC .. + ODC,i(n)=1. (17)
By using identity (14), Eq. (17) is transformed into
An T f7Fg0)L+ QDCn)(n)) + SDC, + SDC, .+ QDC . (n) = 1. (18)

The only condition for which Eq. (18) could not hold is when at least one entry, say i, of SDC ., + SDC, +
ODC,,,(n)is 0 and A" _, differs from the expression in parentheses in its i'* entry. But in this case, by Eq.
(15) and (16), the i** entry of A7 _, is 1 and, for entry i, (f7 & g2)1 € ODC;(,.,(n) holds. Therefore, the i**
entry of the expression in parentheses in (18) must be 1, and equals the comresponding entry of A7 _,. Hence,
the i** entry of the Lh.s. of Eq. (18) cannot be 0 O.

Note at this point that Eq. (16) has the same structure as Eq. (17). Lemma 3.1 can thus be used iteratively,
to obtain the following result.

Lemma 32 If
f2 &g CSDC, + SDC o + QDCoyin-j)(n) + QDC.ro(n); for j=0 k-1 (19)

and
An s +8DC, +SDC, . +0DC..(n)=1 (20)

then g, é f. O

k=1
390 SDC, + J] (R(SDCors +QDCor(m)) + QDCyunyfr+) (21
i=0

and An_4+SDC, +SDC,., + 0DC, . (n) =1
hold at time n, then g, = f.

Proof. It is sufficient to observe that f7~7 & g"=J C ezpr if and only if f & g0 C R’ (ezpr) and to apply
this property to the Eq. (19) O.

In the following section, we consider the application of Theorem 1 to the important case of definite networks.
Note that any cyclic network can be decomposed in an acyclic network and feedback wires [3]. Hence, any
optimizer that preserves the input/output functionality of the acyclic portion also insures the final correctness of
the complete circuit.

3.2 Definite networks
Let P, denote the longest path from v to the primary outputs in the network graph. Then, 7| depends on at

most P, past values of g,, and therefore) _, = 1 for & > P,. Thus, Eq. (22) certainly holds for & > P, and
therefore

P' < %
RC,(m = SpC, +]! Yomin 45| (23)
j=0 >
represents a don’t care set for the vertex v at time n. Any function g, such that
(e SNCDC(n) Y20 (24)

is therefore equivalent to f, This condition is equivalent to

(o fillc]] R'"(Qg(n)) €DC, (25)
n=0 g
From Eq. (23), taking into account Eq. (3),
a~ P, .
pC, = 52C, + T] T (QRCy0d) + RI=(ERC ot + QDC.rin) | =
n=0;j=0
P, o0
spc, +] (oz)(";(o,(j) + R (H R-"(SDC,.. + on(ﬁn(n))» A (26)
J=0 n=0

The above equation shows that in order to construct the don't care set associated to the vertex v, the following
vectors are needed:
1) SDC,: 2) ODC,0)(j)i j=0,---, P,; 3) the time-invariant component

[1 R™™S8DC et + QDCors(m)) »
n=0

of the external don't care conditions. The following section presents an algorithm for computing the internal
observability don't care expressions.

3.3 Observability don’t cares in definite networks

Given a network, it is possible in principle to compute QDC 6,(j) for any intemal variable y by flattening
the network A\, and applying Eq. (10). Altematively, the chain rule [10] may be used, but it requires an
exponential number of higher-order derivatives in presence of reconvergent fanout. We show here that it is
possible to avoid the flattening operation on the network and compute exact and approximate versions of the
observability functions with a single network traversal.

60

M. Damiani, G. De Micheli

If ODC, 0,(J) is known for the fanout variable y of a vertex v, then it is easy to obtain the corresponding
expression for all the fanin variables y; of v~ from

1

¢ ff o o \

QDC, (i) = ml + R%v: (QL’(_ o(J — wy,) ? (28)

A problem occurs in presence of a reconvergent fanout vertex, as the observability don’t care function of its
input does not necessarily coincide with any of its outputs. In this case, however, the observability don't care
function can be computed as follows. We present here the method for two fanout variables only, the extension
to larger fanout being straightforward. Let y and :1. :; denote the input and output variables of a fanout vertex,
respectively, and a@nsider the network N2 obtained by cutting N in comrespondence of ¢,,.¢.,. It realizes a
function F{,. Then, from the definition,

My(ﬂ](i) = .z{zl:.(w,)&'g(w,lalI;z{zl:.(t.):n(w,):l (29}

By adding twice the term Flal:y(x,)=1,120xc, =0 We Obtain

M,m)(j) = (Z{zl:.(w,)-o?i‘-zizlnlw,)zl l:,(u,):li?l:(z':zlzg(t,)ﬂ-;z{zlz,(w,)gl)':.(w,):l (30)

The terms in parentheses correspond to QDC . (v, 1(i)siae,1=0 = R**(QDC. 10)(j — ty)l:3t01=0) and
ODC o,) (i):yixy1=1 = R¥(QDC . 10y(5 — wy)l:yi01=1), respectively. Thus,

Qm,m)(j) = R*» (QDC:,(MU - “’y)lz,wm;QQ(_f'z,(op(j - Wy 0=l ‘ (31)

Eq. (31) shows how to compute the observability in presence of reconvergent fanout. A more detailed analysis
of exact and simplified expressions of observability don’t care sets is given in [12] for the combinational case.
The analysis can easily be extended, however, 10 the synchronous case. The following backward traversal
algorithm can be used for determining the observability don’t care sets of all network variables. In the algorithm
G denotes the graph, and P its longest path.

OBSERVABILITY(G);
S := {primary output vertices};
while (S# V) {
select ¥ € V — S such that FO(v) € S;
foreach fanout variable :; of v {
u = head — end — vertez(e:,)

for j=0,j<Pj++) QDC, i) = of [8::(0)11 + R**(QDC, (0)(J — ws,})
if (v is a fanout vertex)

y = fanin — variable(v)
for (j=0j<Pj++)

S _O;i?w)}(]) = Rw'@‘-‘:‘”"m.m(i - wy)Izl(O)z'--=u-|(0l=0;zh+|(0)=-~~=x|po¢.,|(°)=l)
=S5SU{vh

The correctness of the above algorithm stems directly from the correctness of Eq. (28) and (31) and from
the order in which the vertices are visited. We illustrate here the algorithm on the circuit of Fig. 4.

Example 5. The algorithm begins by computing QDC _0,(0) and ODC',, i0)(1) to obtain, from Eq. (31),

\ A
0DC,,0)(0) = (“5“1_1“)5 ODC, (1) = (”"“ilw; ODC, o)1) = (Ugll\

The algorithm then computes QDC, o,(1) and QDC (4,(0) to obtain
Fm ey \
0DC, 1) = | B0):00C, 0,21 = (:.(1)3”»(2) }

yy is the fanin variable of a reconvergent fanout vertex. First,

x1
V2 f \ Y7 g¥8 71
>

x2 y1 l y3 y6
9
x3 P> T y 22

y4 5
-

Figure 4: Example circuit for the observability.

0DCpy00) = { (1)t 2100y | 22Cmior(1) = (w4 31(0))
are computed, and then from Eq. (31)
1 \
ODC,,0)(0) = (7’(_1) " 21(0).) ()

3

1 1
(..‘:1(0) ‘f m()) ;0DC,0)(2) = (.1:4(1) +(2) \

The algorithm terminates after the computation of the observability don't care functions of the primary inputs.
These are the external observability don't care conditions for the circuit driving the inputs z ; O

4 Summary

We have presented an extension of the conventional don’t care theory of combinational networks to the syn-
chronous case. We have shown that, differently from the combinational case, the functions that can replace a
combinational gate in a network cannot be expressed by a simple don’t care set. Expressions for don’t care sets,
however, are derived, that can advantageously be used in a logic optimization framework. These expressions
show the key role played by don’t care conditions and in particular by the intemal observability don’t care sets.

References

{1] SDevadas, T.Ma, A. Newton, and A.Sangiovanni-Vincenselli, "A Synthesis and Optimization Procedure for Fully and Easily Testable
Sequential Machines™ JEEE Transactions on CAD/ICAS, Vol. CAD-8 No. 10, pp. 1100-1109 October 1989.

[2] G. Seucier , M. Crastes de Paulet and P. Sicard, "ASYL: A Rule-Based System for Controller Synthesis™, JEEE Transactions on
CAD/ICAS, Vol. CAD-6 No. 6, pp. 1088-1097 November 1987.

[3] M. Damisni and G. De Micheli, "Synchronous Logic Synthesis: Circuit Specifications and Optimization Algorithms™, Proc. ISCAS
1990, pp. 1566-1570.

[4] K. A Bartiett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, ™ Multilevel Logic
Minimization Using Implicit Don't Cares”, JEEE Transactions on CAD/ICAS, vol. CAD-7, No. 6, pp. 723-739, Junc 1988.

{5] G. D. Hachee! and M. R. Lightner, " Top-Down Synthesis of Multiple vel Logic Networks™ Proc. ICCAD 1987, pp. 316-319, S.
Clara, Nov. 1987

[6) S. Mwop.‘[xmb-y-h.}l.l.n-dlalhnzy “The Transduction Mcthod - Design of Logic Networks Based on Permissible
Functions ™, IEEE Trans. Comp., vol. 38, No. 10, pp. 1404-1424, 1989. @

[7] M. Ligthart, A. Becholsheim, G. De Micheli and A. El Gamal, "Design of a Digital Audio Input Output Chip”, Proceedings of the
Custom Integrated Circuit Conference, San Diego, pp. 15.1.1-15.1.6, May 1989.

[8] D. Bostick, G. D. Hachtel, R. M. Jacoby, M. R. Lightner, P. Moceyunas, C. R. Morrison, and D. Ravenscroft, * The Boulder Optimal
Logic Design System”, Proc. ICCAD 1987, pp. 62-65, S. Clara, Nov. 1987.

(9] H. Fejiwara, Logic Design and Design for Testability, MIT Press, Cambridge, 198S.

[10] A. C. L. Chang L S. Reed, A. V. Banes, "Path Semsitization, Partial Boolean Difference and Automated Fault Diagnosis”, JEEE
Transactions on Compuiers, C-21, pp. 189 - 194, Feb. 1972

(11] R Brayton, R. Rudell, A. Sangiovanni-Vincentelli, A. Wang , "MIS: A Muhiple-Level Logic Optimization System”, IEEE Transac-
sions on CAD/ICAS, Vol. CAD-6, No. 6, pp. 1062-1081, November 1987.

[12] M. Demisni and G. De Micheli, ” Observability doa't care scts and Boolean Relations *, Proc. ICCAD 1990, S. Clars, Nov. 1990.

62

