
Giovanni De Micheli
Computer Systems Laboratory

Stanford University

Abstract

This paper presents a new approach to logic synthesis of digital synchrooous ~quential circuits. We describe
here algorithms for minimizing i) the area of synchronous combinational and/or ~quential circuits under cycle time
CCX1straints and ii) the cycle time under area constraints. Previous approaches attacked this problem by ~parabng
the combinational logic from the regisrers and by applying cilcuit uansfonnations to the combinational compUlel1t
only. We show in this paper inStead how to ~timize concwrently the cilcuit equations and the register position.
This method is novel and can achieve results that are at least as good as those ot..ained by previous methods. A
computer implementation of the algorithms in program Minerva is described.

1 lntrod uction

Logic synthesis has shown to be of pivotal importance in the computer-aided design of integrated circuits. Logic
synthesis systems have been the object of extensive investigation and commercial implementations have shown to
be practical for product-level design of digital circuits.

Most circuits of interest in digital design are synd1ronous logic circuits, that are interconnections of logic
gates and registers with synchronous clocking. Feedback connections are restricted to be through synchronous
registers, to guarantee race-free design. Semi-custom circuit implementations, such as standard-cells and sea-of-
gates, have motivated the use of multiple-level (or multiple-stage) logic synthesis techniques. In particular, such
implementations have shown to be more flexible and faster than two-level implementations, such as Programmable
Logic Arrays. As a result, several techniques for multiple-level logic synthesis techniques have been investigated
and clever algorithms for combinational logic synthesis have been reported in the literature [1] [2] [3] [4].

However. techniques for synthesizing synchronous logic cirarits have been lagging behind, due to the additional
complexity of handling registers and feedback connections. Most logic synthesis systems deal with such cirarits
by partitioning them into an interconnection of a combinational logic component and registers. The combinational
portion of the circuit is optimized by combinational logic algoriduns. Then regiSters are added back to the ciraril
Needless to say. such optimization techniques are limited in their scope by this partitioning strategy.

We attempt in this paper to solve the synchronous logic synthesis problem by considering algorithms that
operate on the en~ sequential circuit, i.e. that do not separate registers from the combinational component For
this reason. we inttoduce the concept of synchronous Boolean network and we study transfonnations on this network

1

that preserve I/O equivalence and that optimize i) the circuit area under cycle time constraints and ii) the cycle time
under area constraints. Some of these transfoInlations are a superset of those used in combinational logic synthesis
and operate widiin and across the register boundaries. Therefore the potential quality of the optimized circuits is
at least as good as that obtained by the previous techniques that were constrained to operate on the combinational
component only.

The 1eg1ster position is detennined as a by-product of these circuit transfonnations. It is imponant to remember
that a technique to position the registers in a network. called retiming, was introduced by Leiserson and Saxe [5]
in a different context, where logic synthesis transfonnations were not considered. This paper presents a model for
synchronouS logic synthesis that combines retiming with combinational logic synthesis techniques. Then algorithms
that minimize the circuit area and cycle time are described. The algorithms are implemented in computer program
Minerva, that performs combinational and sequential logic synthesis.

2 Basic concepts and definitions

We consider synchronous circuits that are interconnections of combinational logic gates and singie-phase-clock
positive-edge-triggered registers with negligible setup and hold times. We model synchronous ciIaJits by syn-
chronous Boolean networks. A synchronous Boolean netWork. is described in terms of Boolean variables and
Boolean functions. Eacll Boolean variable corresponds to either a primary input/ouq>ut of the ciIaJit or to the
output of a combinational logic gate. A positive integer label on a variable (superscript) denotes the synchronous
register delay, if any, of the corresponding signal with respect to the primary input or combinational logic gate
that generates it Zero-valued labels ale omitted for the sake of simplicity. Each Boolean function specifies the
val~ of a variable in tenns of other variables, ie. it is a multiple-input single-output combinational logic function.
It is represented by an equation, whose left tenD is a variable with ~valued label and whose right tenD is an
expression, e.g. the equation at vertex Vi is represented by i = I, where I is a Boolean expression in terms of
other (labeled) variables.

The netWotX is modeled by die synchronous network graph, dlat is a directed weighted multi-graph
C;('-. Eon-). whose venex set V = \.J U ~'G U ,'0 = {to} is in one-to-one correspondence widl the vari-
ables corresponding to the set of primary inputs. logic gates aDd primary outputs respectively- The edge set E and
the edge weight set {{' are defined as follows. There is an edge betWeen to; and t:j widl weight k when variable i
appears in the expression..1 for venex Vj widl1abel k- Zero-valued weights are not indicated by convention. There
is a (weighted) edge to each output vertex in \..0 from die vertex in \. G corresponding to die gate generating dlat
output signal For each pair of verti~ joined by a path in G(". E. n"). die path weight is die sum of die weights
along die path. We assume dlat ead1 cycle (i.e. closed path) bas Strictly positive weight, to model the restrictioo of
bleaking combinational logic cycles by at least one register. An example of a synchronous Boolean netWoIX and
its representation is shown in Fig- 1.

In general. a synchronous Boolean network. may have cyclic dependencies. i.e. its corresponding graph
be cyclic: A network. is called unidirectional when the graph G(\"" E .I-f") is acyclic. It models a pipelined
combinational circuiL Note that the combinatiooal Boolean network. (without synchronous registers) introduced by
Brayton [1] is just a special case of the synchronous Boolean network. that is acyclic and whose labels are all zeroes.

The (direct) fmiD set of a venex t:j is the subset of vertices that are tail of an edge (with ~ro weight) incident
to 1'; and it is denoted by F I(1'j) (DF I(t'i I). Similarly die (direct) fanout set of a vertex 1'j is die subset of vertices
that are head of an edge (with zero weight) incident to 1,'; and it is denoted by FO(1';) (DFO(t'i). Each venex

2

of me graph '" E \ -(;- (i.e. conespooding to a gale) has as attributes an aIel estimate Ii in tenns of literal count

[I] and a positive gale delay r/,o which depends on the logic expression and which is a monotonically increasing
function of Ii- Each inplt and each output venex has zero delay-

Eadl venex "; bas a data ready time to. that is the time at which the signal generated by the corresponding
gate is ready with respect to the clock edge [6]. We assume the primary inputs to be synchronized to the clock.
positive edge and therefOle dteir data ready time is zero. For any other venex r I. the data ready time is the
sum of its p~aption delay d, to the largest data ready time of its inputs that lIe not regiSters. i.e. f i ::

d - IlIllJ:I)'eDF/t r.1 (f}). Since the subgrapb representing the direct fanin relation is acyclic. the data ready time
can be computed by tq>ological son.

Given a cycle time T, a synchronous netWolk is a timing-feasible implementation if all die data ready times
are bounded from above by the cycle time, i.e. T?: Ina.t'.E'" (tii. Each venex 'i h~ a slack Si rep&~nting the
additional delay that the venex can tolemte while preserving timing-feasibility of the netWoIk for a given T [6]. In
a timing-feasible netWOrk a venex is aitica1 if its slack is null.

The aIea taken by a ootwork. implementatioo depends on the total number of literals and registers required
For cadi variable i. let mi be the maximum of me labels that me variable takes in the netwoIk lepresentation. Then
iii; represents the number of synchronous registers mat &Ie connected in r~ccade at the output of the conesponding
gale. An aIea estimate can be computed as: A = 01:. .E'"G Ii + .3 1:t .E'" mi. where 0 and a are coefficientS
tak:ing into account the relative area COst of a literal and a register. Given an area bound .4 "tar. a netWork is
an area.feasible implementation if Amar :2: ..{. and it is a feasible implementation if it is both area-feasible aJK1
timing-feasible.

3 Logic transformations in synchronous logic synthesis

The problem of minimizing the area (cycle time) of a synchronous Boolean netwolk. implementation, possibly
under cycle time (area) constrain!!, is diffialit and no efficient exact solution method is known. Most tedmiques
for multiple-level logic optimizatioo are based on netwolk. transformations, that pIeserve the I/O equivalence of
the netwolk. and adrleve area/time optimal solutions with respeCt to some local criterion. Transformations are
classified as local a1KI global Transformatioos are said to be local when they modify the lepresentatioo of a
Boolean funaion 11 a netwoIk: venex at a time (e.g. factoring or Boolean simplification). Sum transformations
have been plesented in [1] [2] for combinational logic synthesis and can be used (without significant extensions)
in syndlronous logic synthesis, because they do not depend on the network. model Global transformations target
mOle than one vertex at a time and attempt to improve the netwoIk: by Iestnlcturlng the global interconneCtions (e.g.
elimination. Iesubstibltion. etc.). We consider here global transfolmations extended to synchronous logic synthesis
in relatioo with netwolk. retiming.

Retiwning [5] is a technique that detem1ines a register assignment in a network (Le. a set of weights in
c;(". £. t,-) so mat it is a feasible implementation for a given cycle time T, if such an assigmnent exists. In our
conteXt. the reliming of variable i by an integer r corresponds to adding r to its label, and the retimed variable is
denoted by i(+,. '. Similarly, the reliming of an expressioo I by an integer r corresponds to adding r to the labels
of all its operaIkis tOO it is represented by 11 +,.). The positive (negative) retiming of a gate vertex t'; by r; is
the shift of rj register delays from its outputs (inputs) to its inputs (outputs). It conespoods to retiming by r ; the
expression I of t'j and to ~g by -I'; the variable i in the expressions of the verti~ of FO(t'j). The retiming

3

of an input vertex is just the retiming by - r i of the variable i in the expressions of the vertices of F O(" i i. The
retiming of an °u,lput vertex is just the reQming by r i of the expression I of r j. An example is shown in Fig. 2.

Since labels cannot be negative by definition. the retiming of a vertex is valid only for some restriCtOO values
of 7' i. A retiming of the vertices of a Boolean network is feasible for a cycle time T. if the retimed network is a
timing-feasible implementation with non-negative labels and I/O equivalent to the original network.

Leiserson and Saxe proposed a search technique that finds the minimum T for which such an assignment
exists [5]. The conesponding network. is said to be optimal with respect to retiming. If this technique were the
only available to optimize the cycle time. then its result woold be a global optimum solution. However retiming
does not change the structure of the network (Le. the venex and edge sets in (;(' o. £ ° II"). ~ therefore better
results may be achieved by combining it with other ttansfol1l1ations that modify the network: structure. For this
reason we consider here the following tranSfOl1l1ations.

The ""imi~tion of a variable with label L. is the leplacement of die variable by its corresponding expression
lebmed by k. Given two gate vertices 'i and 'j E F I(I'i). the elimination of 'j into I'i is me eliminaJion of variable
j in all its occurrences in the expression I for 'i (Fig. 3). The elimination of venex 'J is its eliminaJion into all
the verti~ in F O(t' j). Note that the elimination of a variable with label ~ is equivalent to the elimination used
in cc.nbinationallogic synmesis [1] [2]. The elimmaJion of a variable with non-~ label conesponds to merging
two logic gates mat are separated by a legistcr. by shifting the legister to the inputs of the gate conesponding to
the variable being eliminated.

Let I...1. Q IDd ~ be Boolean expressioos. Then..1 is a SyDChroDOUS divisor of I if 3r ~ 0 such mat
I = ..1' +"'Q + 'R. aDd ..11 +,.IQ # O. Note that the prOOuct ..1(+"IQ may have me algebraic or Boolean flavor.
as defined in [1]. Given two gate vertices t'; aDd Vj such that the expIesSioD ..1 is a synchronous divisor of I. the
resubstitutiOD of Vj into t'; is the factoring of I as j(+")Q + 'R.. N~ again that me divisoIS defined in [1] are
a subset of me syncbronoos divisors and thelefore resubstimUoo with null retiming (i.e. r = 0) is equivalent to
resubstitutim in combinational logic. The resubstitution of a variable with noD-zero retiming conesponds to adding
one (or more) register between two gates to simplify the latter (Fig. 4).

Other global transfoDIlaboDS. such as extraction and d~mpositioD, can be defined in a similar way for
synchrooous Boolean DetWolk.s. We defer the analysis of sudl transformalioos to a later paper and we concentrate
here on algorithms for synchrooous logic synthesis based 00 eliminatioo and resubstitutioo that exploit Ietiming
techniques. An algorithm for retiming a synchronous Boolean network. derived from the one presented by Saxe
(7). is fully d~~1M in [9].

4 Algorithms for synchronous logic synthesis

We consider here algorithms for optimizing digital networks according to four major strategies: alea minjrnization
widlout/Widl cycle time consttaints and cycle time minimizaooo widlout/witb Ilea constraints. We concentrate
here on logic uansfonnalions d1a1 operate ~ legister bomldarles. because uansformalions 00 combinalional
networks have been extensively described [1] [2] [4] [3] [6]. Nevertheless dle techniques described here apply to
combinational Mtworks and to legisters-less portions of synd1JOnous logic networks as well.

While the details of the logic ttansformations are presented in the following subsections. we would like to
comment be.e on the general straIegy in applying the transformations to achieve a given goal. We conjectUJe

4

that the problems of optimal synchronous logic synthesis is at least as difficult as the problem of finding optimal
combinational logic networks. Therefore heuristic optimization is done as in combinational logic synthesis by
iterating an operator on a network (i.e. a set of b'ansformations) until local optimality with respect to this operator

. is found. Then a different operator is applied.

We report in this section on two operato~ for synchronous logic syndiesis: elimination and resubstitution.
The algorithms have die general frame described in [1] [2]. They differ from diose used for combinational logic
synthesis in die cost function evaluation and in die selection criteria for die candidate vertices for a transformation.
Consider for example die problem of unconstrained area minimization. Then, the candidate selection is driven by
the variation of die estimate of the area cost <'.4 = (1/1, - 115"" where il, is the variation in the number of literals
and f"" is die variation in the number of registers. The computation of b I and t", is specific to a transformation,
and dierefore it will be detailed in the sequel

The problem of minimizing area under timing constraints is approached under the assumption that a timing-
feasible netWolk. is given. whose area estimate we want to minimize. We constrain the transformations to preserve
timing-feasibility and therefore we rejea candidates whose transformation would lead to a non timing-feasible
conftgwation. In the case of combinational netWorks. a necessary and sufficient condition for preserving timing-
feasibility was shown to be that any increase of the data ready time of any vertex be bounded by its slack [6]. While
the sufficiency of this condition still holds in synchronous logic synthesis. its necessity no longer does. Indeed.
a transformation followed by retiming may preserve timing-feasibility and therefore a retiming of a network is
attempted before rejemng a transformation.

Example: Consider the circuit of Pig. S. Assume that the cycle time is set equal to me propagation delay
through the longest path. say the path (t' f ' 1'n " "I). Suppose, for example, that we want so reduoo me circuit area.
by eliminating t"/ into t'n1. It may be the case that the increased propagation delay through l'm introduoos a longer
critical path (t' e ' 1'm . t: r), or equivalently that the slack at 1',. becomes negative. If the position of die register storing

1: is fixed. men the elimination has to be rejected. Otherwise it may be possible to find a feasible retiming (for

example by trying to retime I'r by + I) so that the elimination can be accepted .

The problem of minimizing die cycle time T, is approached by generating a sequence of netWorks that are
timing feasible for decreasing values of T [6]. For each netWork in this sequence the critical vertices ale identified.
and transformations are applied to such vertices. It is imponant to detect whedier die transformatioos affect die
optimality widi respect to retiming. If this is not die case, then die netWork cycle time can be fmtber reduced by
retiming.

In addition. when area constraints are enforced, transformations are subject to the additimal check. that the
area bo1D1d Amar is not violated. Therefore. an area cost for each transformation ({t.4 = 06, + :3tm) is computed
and added to the current value of .4. If the result is larger that .4mar the candidates are rejeCted.

4.1 Elimination

The elimination algorithm follows the outline of that presented in [1]. We concentrate here on the selection and
acceptance criteria for synchronous netWOIXs. Let us consider first the area cost (or value) of an elimination, say of
1") into toi- An elimination changes the total number of literals in a netWork by ii/. This number can be computed
as 6/ = Jlji(lj - 1) - lj, where 11ji is the multiplicity of variable j in expression I [1] [2]. When elimination
is perfolmed across a register boundary, then it is important to compare the saving in terms of literals with the

5

possible increase of registers. This can be computed as follows. Recall that m l. was defined to be the maximum
label ofvariable~. in all expressions. Then, for each vertex 1.l. E FI(l"j), let mL.(I) be the maximum label of
variable ~. in the. expression I after the elimination. Then additional registers are needed to delay variable l. if

. III~.(I) > Illl. Fewer registers may be needed at the outpUt of I"j. In particular, let Inj(1) be the maximum label of
variable .j in the expressions corresponding to Fa(I"j) different from I. Then the register saving is: III j - I"; (I).
The total variation in registers is: tin! = (La;kEF/lt ,I n~.r(O. m~(I) - Ink)) - (mj - mj(1)). The area coSt of an
elimination is then b.-t = (I ill + Jbnt..

Example: Consider the circuit of Fig. 3, The variation in the nwnber of literals is: b I = //, (1-: - 1) - I,. =
1 (2 - 1) - 2 = -1, Le. one literal is saved. Asswne that variable c is not used in any other expression and that
ma = m" = 0, Le. no register is present at the output of I'a and VI,. After the elimination one register is needed
to delay (I and b, Le. In~(.l') = 111/.(,1') = 1 and no register is needed at the output of {'-:, that is deleted from the
netWork. Then {tnl = (1-0)+ (1-0)+ (0-1) = 1 and b,4 = -0 + 3.

Then, for unconsttained area minimization, candidates are selected to either to minirniu {I A. or to be such that
to A is less than a threshold usually set to zero. When timing constraints are enforced. the new slack S i is computed
If this value is positive. the elimination is accepted. Else. its acceptance is conditional to finding a feasible-retimed
netWork of non superior area cost.

Let us consider now the problem of minimizing the cycle time T. Let us assume that the network is optimal
with respect to retiming (by using dte refime algorithm for decreasing val~s of T [5] [9]) and widt respect to
elimination within regiSter boundaries (as described in [6] and in [2]). We assume that T is the minimum cycle time
achieved by these techniques and we address the problem of reducing it by attempting elimination across register
bOWldaries.

In particular. we consider as candidates for elimination the critical vertices whose gate is connected to a register.
i.e. at the head of a critical path. ~t us assume. for the sake of simplicity that there is only one such candidate.
say t'j and that it is critical (i.e. its slack S j = 0 or equivalently its data ready time t j = T). The elimination of
such a vertex shortens the critical path and it is beneficial if no other longer critical path is inttOOuced in the circuit.
Therefore. to verify the feasibility of the elimination of a candidate venex t' j. we must consider the increase of data
ready time of each vertex t.'j E FO(t'j). If such inaeases are all stridly bound by the conesponding slack, then the
eliminatioo is acce~ because there is a cycle time T' < T for which the netwoIk: is a feasible implementation
after the elimination. If the increase of the data ready time at some vertex is not bound by its slack, then the
eliminatioo is accepted under the conditioo that a feasible retiming is found.

4.2 Resubstitution

The resubstitution algorithm follows the outline of that presented in [1] and [2]. We consider here only algebraic
division [1]. The coodition that one expression is a synchronous divisor of another one is checked by routine
synC'hronous-dit'isors, that iterates algebraic divisions. Algebraic divisioo of two expression is performed by
procedme alg-ditO, which is described in [1] [2].

synC'hronous-di11isors {
Q'R. = 0;
II = e.rl:1and(I);

6

II'. (,. = 0; : r + +} {
,'T ..'T = (J:/KII,d(..'T' +1"):
If((rit(I...'" +I'I»)r,I"r"
Q'R. = Q'R Uulu-dir(II...'T ..'Ti;

Candidate pailS are seard1ed among all possible pairs of gate verti~s. NOte that an eApI~oo .:1 (+,. I may
divide an expIession .:1 for more than o~ value of 7.. Therefore, the algorithm stores all noo-trivial quOtients Q
and remainders 'R. in QR.. If multiple choi~s are possible, a greedy strategy is used to select the most convenient
resubstitutim. To allow multiple resubstitutims, the algorithm will add to the candidate list the pairs II. j and 7.. j.
If QR is empty, die candidate pair is rejeaed.

Algorithm .~.u7lchrono!l,.-diriso"!i operates as follows. Procedure for/KInd Ieplaces every variable with noo
~ro label by a new vuiable. Therefore expressions II and ..1:1 ale polynomials that can be divided by algorithm
a/!I-dir [1] [2]. Procedure (.Tit returns true if any variable in :1' +rl has a label larger than the maximum of

the labels diRt me conespooding variable takes in I. In this case, no non-trivial divisor can be found, because
expression ..1:T contains a literal not in II and dlerefore :1..1 cannot divide II [1] [2]. Oearly this condition is
uue for any val~ of r larger Ulan the one in the loop of the algorithm. Note tha1 when both expressioos I and
..1 have no labels. then II = I and ...T..1 = ..1, me algorithm perf ODDS jUst die algebraic division IS in [1] [2] and

remms after one iteration.

To choose among candidate paiIS. it is important to evaluate the local dlange in Ilea due to IesUbstitution.
When IesubstitUting t. j into t'i. the variation in literals can be computed as b I = - n j ; (I j - I). where n j i is
the multiplicity of variable j in expIession I [1] [2]. The number of registers in the netwotk is affected only by
resubstitUtioos across register boundaries (i.e. when r > 0). In d1is case. resubstitutioo may increa.w. or decrease the
number of registers accoIding to the ciraDDstID=s. For example. when resubstituting t'j into to; IS; = jl.+r IQ+'R..
we Iequire r register delays for variable j aDd r fewer register delays on some inputs to t'i. The total variation in
register cowt Cm. can be ccxnputed from the local variation as follows. rust note that additiooal registeIS may be
needed at d1e ou~t of t'j. namely ma.r(O,mj(I) - mj). Registers may be spued on me inp1tS F1(t,,). where
the fIDiD ~t is computed befme me ~~.!!i~ For each venex. t't E F1(t,,). the register saving is mt - mt.
Then 6m = (maz(O.,nj(I) - mj)) - (LJ:EFl(t,l(n~k - ml')).

Example: Consider me ciralit of Fig. 4. The variation in the number of litcra1s is: t I = - "r, (lr - 1) =
-1(2-1) = -I, i.e. ~ liteDl is saved. (N~ that me originalexplessioo for y couk1 be fact<Xed u c(al2J +bfll».
Assume that m.. = 0 and that no additional delayed values of a and b ale ~~-d to gates other than th~ shown
in Fig. 4. Then 6m = 1 - «(2 - 1) + (1 - 0) = -1 and 6A = -(I - .3.

For \Dlccmstrained ~ minimizatioo, the candi~~es are selected so that either 6 A = 06, +J6m is minimi= or
it is less than a given threshold. Note that resvbstitutiO7l redu~ the number ofJiterals (i.e. C, < 0), whenever the
expression for 1] is non trivial. i.e. whenever I j > 1. Therefore. resubstitutions that are within register boWldaries
(i.e. tm = 0), are always selected.

Coosider now uea minimization wvJer cycle time conSttaints. Note d1at a resubstittlUon of vertex r j into
vertex l:, deaeases the literal count Ii and it is likely to deaease its propagation delay d i. Howe~r. the data
ready time t; may depend now on ij. if t'j E DFI(t'i) after the resubstitution. In d1is case (t'j E DFI(t'j). the
tIansformation can be accepted if dle in~ in t i is bounded by the slack:. S i. Otherwise. a feuible retiming must

7

be searched for. On Ute other hand, when a register delay is insened between I) and r"; (/"j ~ DF I(/"j), then t"
cannot increase and it is likely to decrease. Then Ute transfonnation can be accepted without further checks.

The problem of minimizing the cycle time T is analyzed WIder the previous assumptions: i.e. the network
is optimal with respeCt to retiming and to resubstitution within register boundaries. We also assume that T is the
minimum cycle time and we address the problem of reducing it by attempting resubstiwtion of two vertices, say" j
into t'; across register boundaries. In this case, the data ready time ti cannot but decrease and t) remains constanL
Then candidates for resubstitution are a critical vertex t";, which is the tail of a critical path and t'j E F I(I';).
Candid~!es are seleCted to minimize locally the cycle time T. Since an upper boWld on the decrease of T is the
variation in 'propagation delay d i, this is used as a quick way of choosing a candidate.

5 Minerva

Minerva is a computer program to support logic design and optimization of large scale synchronous digital circuits.
Ciralit specifications can be entered to the program by specifying the circuit equations and interconnection in a
hierarchical way. An appropriate format. called SLIF, is used to support the circuit desaiption. The SLIF is
foDllat description is reported in the Appendix. Alternatively the circuit can be specified in a HaIdware Description
Language, Hardwarec, mat can be compiled into me SLIF format by program Heralles [8]. The output of Minerva
is an optimized circuit description in the SLIF formaL Minerva in a pan of the Olympus synthesis system developed
at Stanford University.

A twin program, called Janus, provides an interface between SLIF and other fOIDlatS, foreign to the Olympus
system. For example, Janus can generate a logic view compatible with the netlist format of the LSI Logic tools
and with the ocr database. Interface to the Thor and Uim simulators are also supported by Janus. Minerva and
Janus are both interfaced to the MIS-ll program [2], that provides an excellent set of routines for optimizing and
mapping combinational sub-componentS of me ciIaJit being designed. Minerva can isolate these componentS and
interface diem with MIS-ll in a bidirectional way. This featUIe allowed us to avoid to duplicate die algorithms of
program MIS-ll into Minerva and to concenttate on me implementation of algorithms specific to synchronous logic
synmesis. Minerva is programmed in C and consists of approximatively 12000 lines of code.

At present. Minerva is used as a workbench to test algorithms for synchronous logic synthesis. In particular.
algorithms eliJnination and rfsubstitvtion have been implemented among othem as a part of program Minerva.
The algorithm retime presented in (9] has also been implemented in Minerva. Four different optimization goals.
constrained and unconstrained minimization of area and cycle time. conespond to four different strategies of the
algorithms desaibed in the previous sections. Experimental results on the MCNC FSM benchmarks (exl-ex7) have
shown that the are gain by perfoDning elimination is often larger than the gain by using resubstibJtion. Timing

improvements by combining elimination. resubstitution and retiming is small, but justified by the fact that the
examples are too small to allow radical changes in the strocture of the network. Running times are under one
second on a DBC 3200 workstation.

6 Concluding remarks and future work

This paper has presented a new approach to the optimal logic syndiesis of digital synchronous sequential circuits.
b~ on the conament optimization of die circuit logic expressioos and the register positions. This method, which

8

combines retiming techniques with networlc restructuring operations. can achieve results that are at least as good
as those obtained by other logic synthesis approaches that separate the combinational logic from the registeIS. The
algorithm for elimination and resubstitution within and across register boundaries. as well as a retiming algorithm
[9], have been sbldied and implemented in program Minerva.

This research as shown the feasibility of approaching sequential logic design from a global perspective that
considers synchronous register delays and gate propagation delays. At present we are extending Minerva to cope
with other circuit tranSfonnation. as well as supporting more general models for synchronous storage elements.

7 Acknowledgements

This research has been sponsored by NSF. under conttacts MIP-8710748 and lvfiP-8719546. We would like to
acknowledge the stimulating discussions with Andrew Fox and Michiel Ligman. Thierry Klein and Roger Yip
provided insight into the algorithms and implemented Minerva. Frederic Mailhot developed me framework of
Minerva, the SUF fonnat and wrote program Janus.

References

[1] R.Braytoo, "Algorithm for Multilevel Synthesis and Optimization" in G.De Micheli, A.Sangiovanni- VmcenteUi
and P .Antognetti., Editors, Design Systems for VLSI Circuits: Logic Synthesis and Silicon Compilation, Martinus
Nijhoff, 1987.

[2] R. Brayton, R. Rudell. A. Sangiovanni- Vmcentelli. A Wang 'OWS: A Multiple-Level Logic Optimization
System", IEEE Transactions on CADIICAS, VoL CAD-6, No.6, November 1987, pp. 1062-1081.

[3] J.Datringer, D.Brand, J.Gem, W.Joyner and L.Trevillyan, "LSS: A System for Production Logic Synthesis",
IBM Journal of Res. and Dev., Vol 28, No 5, pp. 537-545, Sep 1984.

[4] K.Bartlett, W.Coben, A.De Geus and G.Hachtei. "Synthesis and Optimization of Multilevel Logic under Timing
Consttaints" IEEE Transactions on CADIICAS, Vol CAD-5 No.4, pp.582-596, Oct. 1986.

[5] C.Leiserson, F.Rose and J.Saxe "Optimizing Synchronous Circuitty by Retiming", in R.Bryant. Editor Third
Caltech Conference on VL-SI, Computer Science Press, 1983.

[6] G. De Micheli. 'PerfO1'D1ance-oriented synthesis in die Yomown Silicon Compiler', IEEE Trans on CADIICAS,
Vol CAD-6, NO S, Sept 1987, pp.7S1-76S.

[7] J .Saxe "Decomposable Searching Problems and Cirarit Optimj?!Jcbon by Retiming: Two Sbldies in General
Transformations of Computational SUUctUIeS" Ph. D. Dissertation, Department of Computer Science, Carnegie
Mellon University, 1985.

[8] G. De Mid1eli. D. Ku "HERCt.n..ES . A system for Higi1- Level Synthesis", Proceedings of 25th Design
Automation Conference, Anaheim, pp. 483-488, 1988.

[9] G.De Micheli and T.Klem, "Algorithms for Synchronous Logic Synthesis" Proceedings of the International
Symposium on Circuits and Systems, Portland. May 1989.

9

SLIF(SCAD)
8 Appendix: the SLIF format

NAME
SUF - StnJCtUre and Logic Intennediate Fonnat

D~CRIFnON
SUF is a concise fonnat used by tools in the Stanford Oiympus Synth~$is Proj~cr to descn"be logic
circuits and their intcrconnectioos. It is an hie~hic:a1. non-prcx:edural notatioo that is described in
ASCII files. h suppons the description of c~binationa1logic: in tenDS of Boolean factored fo""s. as
well as don'r care s~ts. It SIlpports the notion of r~gist~rs and three-slal~ ~l~m~rs and therefo~ it is
well sUited to descn"be sequential circuits.

SYNTAX
SUF is a free-fonnat notation; i.e., statements may begin at any point 00 a line, and whitespace may
be uled freely. Each statement must be tenninatcd by a semicolon. Statements may appear in any
order within the description of a model, with the ~striction that inputs, outputs. inouts and types
must be declaled befo~ they ~ used and that the last ltatcment in the model description must be
the .enamodelltatement (s= the COMMANDS section below for more details).

Identifia-s ~ character strings ~stricted to alpi1anwneric characters and the following symbols:
:.~[)_.I- .

Variables, model names and instance names ~ all identifiers. TheR ~ tWo constants, "I" and "0".
which repRlent the logic values TRUE and FALSE. respectively.

Commands in SUF ~ command words ~ by a period (e.g., .library). and ~ summarized in
the next lection. Any declaratioo that does not begin with a command is a logic: statement and has
thefODD

va, = exp'~llioll :
where var is an identifier and exp'~lliOll is an exprealimt in Boolean form, consisting of vuiables
and operaton. The operat«l +, . and ' repre8ent Boolean mIn, product and invenioo (i.e., AND,
OR and NOT), leSP=tively; the '.' opeIat« is Optional and may be ~~ e.g.,

out - ~t' + clock. (mO' + (inl . in2» :
is equivllent to

out K re~t' + clock (inO' + inl in2) ;
An expeuion. like a literal. may be complemented using the prime (i.e.. aposttopbe) symbol; e.g.,

x = (a (b + c)' + d)' ;
By default. the upresnoft replelenta the ON SET of the variable \Gr. Two symbol.. ' and - are

appended to \/dr to indicate the upre$non ia its OFF SET or DON'T CARE SET respectively. The-
can al~ be used in the &lpresnOll to indicate d1e DON'T CARE SEt' of a variable. Uled alone. -

means the global DON'T CARE SET of the ~diDg model.

Th~ ~ two bunt-In fuDdioD&. The arguments of thee f1mCbons must be variables (not ~I-
lionl). The built-in functioos are:

D(a,c,e) A ftow-duough D-type larch. which has inplt G. is clocked by c. and is optionally enabled
by lignal ,.

T(a,b) A ttistate larch whose output is G when b is b'ue, or high-impedance otherwise.

The use of a built-in function is indicated by the '@' symbol; e.g.,
outl - @ D (sigl, clock') ;

In product to built-in fuoctioDS, library functions may be called; these are defined as a separate mooel

(see Jibrllry below).

Comments are identified by the symbol "'. This symbol indicates that the remainder of the line is
to be ignored by any program reading the SUF desaiption.

10

COMMANDS
.attribute ry~-IIQ~ voriabl~_r\Qm~ para~'~rs ;

Specifies pararneten for one variable (or ooe instance), named voriabl~_lIQm~. The puame-
ten consist of a sequence of strings, integeR and flails, defined in the type ryp*_nam~. H
the type used allows for a variable number of parameten, the conesponding lilt has to be
enclosed in palenme~s "(" and ")",

.call instanc~_r\Qm~ model_r\Qm~ (inputs.. i1/Outs .. outputs) ;
C~s an insWlce instanc~_IIQ~ of the SUF model model_IIQ~. which may be
described in me same fi.1e or in a fi.1e specified by a .search statemenL The called model
may be a library elemenL Variables are linked according to the parameter listing; inputs.
inouts and outputs are lists of variables leparated by commas, which must agree in number
and order with those in the called model

,date tim~_stamp ;
Specify the time of the last modification (optional). The ~_stamp formll is
YYMMDDHHmmSS where YY is the year, MM the month, DD the day, HH the hour, mm
the minutes, and SS the ~ds. Each element of the t~_stamp is a rwo-digit number.

.endmodel IIQ~ ;
Tem1inates the model Each model has to be tenninated by this declaration. There may be
m~ than me model within the same file,

.global_attrlbute typ*_1IDme param~ters ;
Specifies parameten valid for an en~ model

.include fil~_1IDme ;
Indicates thll the informatim in fil~_1IDme will be read as if it was pan of the ~ file.

.inouts vorl var2 -. vom ;
Declares variables \arl ... \ani as global bidirectional "inouts."

.inputs varl var2 -. vam ;
Declares variables \ar] ... \arll as global inputs.

Jlbrary;
Identifies the mcxiel &I a h"brary element.

.model ~ ;
mdicates the beginning of a new model and assigns it name nam~. Each mcxiel has to be
declared using this declaration. Multiple models may be described in a lingle file.

.Det varl vor2 ... vam ;

llitI variables that ~ connected together. The net wiIJ be named after one of the vari-
ables. If there are global inpzts, outputs or inouu then the net wiIJ be inherit one of their
names; otherwise it will be named after vorl .

.outputs varl var2 ... vam ;
Dedarea variables \Grl ... \GnI as global outputs.

.search fil~_nam~ ;
mdicales that models included in jilI-~ may be used, if they are needed. UIa'I are
encouraged to UK the absolute path to the file.

.type typ~-~ specl spec2 ... sP«" ;
Decl~s a type typ~_nam~ as a sequence of specificatioos sp~cl $p~c2 ... sp~C1I where $~C

is any of lJ1d ~f ~$ (integer, Boat or Itring). A number may be used in front of a .rp~c. to
tell how many .r~C$ are to be used. A $~C or let of .rp~C$ can allO be included inside
parentheses, to indicate a variable number of that sp« (or ~t of .rp~cs). A type is used
whenever a .Qttribut~ or .globdl_alrribut~ command is uaed. The type defines aU the inior-
matioo that follows the type name. For .Qttribut~. a string HAS to be inserted between the
type name and d1e typed infonnatiCX1. Thilstring indicates the variable (or instance) to
which the attribute will be anacbed.

