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Abstract

This paper presents a new approach to logic synthesis of digital synchronous sequential circuits. We describe
here algorithms for minimizing i) the area of synchronous combinational and/or sequential circuits under cycle time
constraints and ii) the cycle time under area constraints. Previous approaches attacked this problem by separating
the combinational logic from the registers and by applying circuit transformations 1o the combinational component
only. We show in this paper insiead how to optimize concurrently the circuit equations and the register position.
This method is novel and can achieve results that are ar least as good as those obtained by previous methods. A
computer implementation of the algorithms in program Minerva is described.

1 Introduction

Logic synthesis has shown to be of pivotal imponance in the computer-aided design of integrated circuits. Logic
synthesis systems have been the object of extensive investigation and commercial implementations have shown to
be practical for product-level design of digital circuits.

Most circuits of interest in digital design are synchronous logic circuits, that are interconnections of logic
gates and registers with synchronous clocking. Feedback connections are restricted to be through synchronous
registers, to guarantee race-free design. Semi-custom circuit implementations, such as standard-cells and sea-of-
gates, have motivated the use of multiple-level (or multiple-stage) logic synthesis techniques. In particular, such
implementations have shown to be more flexible and faster than two-level implementations, such as Programmable
Logic Arrays. As a result, several techniques for multiple-level logic synthesis techniques have been investigated
and clever algorithms for combinational logic synthesis have been reported in the literature {1] [2] [3] [4].

However, techniques for synthesizing synchronous logic circuits have been lagging behind, due to the additional
complexity of handling registers and feedback connections. Most logic synthesis systems deal with such circuits
by partitioning them into an interconnection of a combinational logic component and registers. The combinational
portion of the circuit is optimized by combinational logic algorithms. Then registers are added back to the circuit.
Needless to say, such optimization techniques are limited in their scope by this partitioning strategy.

We attempt in this paper to solve the synchronous logic synthesis problem by considering algorithms that
operate on the entire sequential circuit, i.e. that do not separate registers from the combinational component. For
this reason, we introduce the concept of synchronous Boolean network and we study transformations on this network



that preserve 1/O equivalence and that optimize i) the circuit area under cycle time constraints and ii) the cycle time
under area constraints. Some of these transformations are a superset of those used in combinational logic synthesis
and operate within and across the register boundaries. Therefore the potential quality of the optimized circuits is
at least as good as that obtained by the previous techniques that were constrained to operate on the combinational
component only.

The register position is determined as a by-product of these circuit transformations. It is important to remember
that a technique to position the registers in a network, called retiming, was introduced by Leiserson and Saxe [5]
in a different context, where logic synthesis transformations were not considered. This paper presents a model for
synchronous logic synthesis that combines retiming with combinational logic synthesis techniques. Then algorithms
that minimize the circuit area and cycle time are described. The algorithms are implemented in computer program
Minerva, that performs combinational and sequential logic synthesis.

2 Basic concepts and definitions

We consider synchronous circuits that are interconnections of combinational logic gates and single-phase-clock
positive-edge-triggered registers with negligible setp and hold times. We model synchronous circuits by syn-
chronous Boolean networks. A synchronous Boolean network is described in terms of Boolean variables and
Boolean functions. Each Boolean variable corresponds to either a primary input/output of the circuit or to the
output of a combinational logic gate. A positive integer label on a variable (superscript) denotes the synchronous
register delay, if any, of the corresponding signal with respect to the primary input or combinational logic gate
that generates it Zero-valued labels are omitted for the sake of simplicity. Each Boolean function specifies the
value of a variable in terms of other variables, i.e. it is a multiple-input single-output combinational logic function.
It is represented by an equation, whose left term is a variable with zero-valued label and whose right term is an
expression, e.g. the equation at vertex v; is represented by i = Z, where 7 is a Boolean expression in terms of
other (labeled) variables.

The network is modeled by the synchronous network graph, that is a directed weighted multi-graph
G(1.E. 1), whose vertex set 1" = V/ U1 ¢ U1"© = {¢} is in one-to-one correspondence with the vari-
ables corresponding to the set of primary inputs, logic gates and primary outputs respectively. The edge set £ and
the edge weight set 1" are defined as follows. There is an edge between v; and v; with weight k& when variable i
appears in the expression 7 for vertex v; with label k. Zero-valued weights are not indicated by convention. There
is a (weighted) edge to each output vertex in | "€ from the vertex in 1°¢ corresponding to the gate generating that
output signal. For each pair of vertices joined by a path in G(1". E. I1"), the path weight is the sum of the weights
along the path. We assume that each cycle (i.e. closed path) has strictly positive weight, to model the restriction of
breaking combinational logic cycles by at least one register. An example of a synchronous Boolean network and
its representation is shown in Fig. 1.

In general, a synchronous Boolean network may have cyclic dependencies, ie. its corresponding graph
be cyclic. A network is called unidirectional when the graph G(1".E.W") is acyclic. It models a pipelined
combinational circuit. Note that the combinational Boolean network (without synchronous registers) introduced by
Brayton (1] is just a special case of the synchronous Boolean network that is acyclic and whose labels are all zeroes.

The (direct) fanin set of a veriex 1; is the subset of vertices that are tail of an edge (with zero weight) incident
to v; and it is denoted by FI(v;) (DFI(v;)). Similarly the (direct) fanout set of a vertex v, is the subset of vertices
that are head of an edge (with zero weight) incident to v; and it is denoted by FO(r;) (DFO(v;)). Each venex



of the graph - € |' (i.e. corresponding to a gate) has as attributes an area estimate /; in terms of literal count
[1] and a positive gate delay «,, which depends on the logic expression and which is a monotonically increasing
function of /;. Each input and each output veniex has zero delay.

Each vertex ¢, has a data ready time ¢.. that is the time at which the signal generated by the corresponding
gate is ready with respect to the clock edge [{6). We assume the primary inputs to be synchronized to the clock
positive edge and therefore their data ready time is zero. For any other vertex ¢,, the data ready time is the
sum of its propagation delay «. to the largest data ready time of its inputs that are not registers, i.e. 7, =
d. = max. eprr.,) (1j). Since the subgraph representing the direct fanin relation is acyclic, the data ready time
can be computed by topological sort.

Given a cycle time 7, a synchronous network is a timing-feasible implementation if all the data ready times
are bounded from above by the cycle time, i.e. T > max, ¢ (1;). Each vertex t; has a slack s, representing the
additional delay that the vertex can tolerate while preserving timing-feasibility of the network for a given T [6). In
a timing-feasible network a vertex is critical if its slack is null.

The area taken by a network implementation depends on the total number of literals and registers required.
For each variable /, let m; be the maximum of the labels that the variable takes in the network representation. Then
m; represents the number of synchronous registers that are connected in cascade at the output of the corresponding
gale. An area estimate can be computed as: 4 = 03, o li + 33 ¢\ m;, where o and 3 are coefficients
taking into account the relative area cost of a literal and & register Given an area bound 4,,,,, 8 network is
an area-feasible implementation if 4., > .1, and it is a feasible implementation if it is both area-feasible and
timing-feasible.

3 Logic transformations in synchronous logic synthesis

The problem of minimizing the area (cycle time) of a synchronous Boolean network implementation, possibly
under cycle time (area) constraints, is difficult and no efficient exact solution method is known. Most techniques
for multipie-level logic optimization are based on network transformations, that preserve the I/O equivalence of
the network, and achieve area/time optimal solutions with respect to some local criterion. Transformations are
classified as local and global. Transformations are said to be local when they modify the representation of a
Boolean function at a network vertex at a time (e.g. factoring or Boolean simplification). Such transformations
have been presented in [1] [2] for combinational logic synthesis and can be used (without significant extensions)
in synchronous logic synthesis, because they do not depend on the network model. Global transformations target
more than one veriex at a time and attempt to improve the network by restructuring the global interconnections (e.g.
elimination, resubstitution, etc. ). We consider here global transformations extended to synchronous logic synthesis
in relation with network retiming.

Retiming (5] is a technique that determines a register assignment in a network (i.e. a set of weights in
(V. E. 1)) so that it is a feasible implementation for a given cycle time T, if such an assignment exists. In our
context, the reuming of variable / by an integer » corresponds to adding r to its label, and the retimed variable is
denoted by /' *"). Similarly, the retiming of an expression Z by an integer » corresponds to adding » to the labels
of all its operands and it is represented by 7' *+7). The positive (negative) retiming of a gate vertex v; by r; is
the shift of r; register delays from its outputs (inputs) to its inputs (outputs). It corresponds to retiming by r ; the
expression I of v; and to retiming by —7; the variable  in the expressions of the vertices of FO(r;). The retiming



of an input vertex is just the retiming by —»; of the variable / in the expressions of the vertices of FO(v;). The
retiming of an output vertex is just the retiming by r, of the expression 7 of ¢;. An example is shown in Fig. 2.

Since labels cannot be negative by definition, the retiming of a vertex is valid only for some restricted values
of r;. A retiming of the vertices of a Boolean network is feasible for a cycle time T, if the retimed network is a
timing-feasible implementation with non-negative labels and 1/0 equivalent to the original network.

Leiserson and Saxe proposed a search technique that finds the minimum 7 for which such an assignment
exists [S]. The corresponding network is said to be optimal with respect to retiming. If this technique were the
only available to optimize the cycle time, then its result would be a global optimum solution. However retiming
does not change the structure of the network (i.e. the vertex and edge sets in (¢(1" £.117)), and therefore better
results may be achieved by combining it with other ransformations that modify the network structure. For this
reason we consider here the following transformations.

The elimination of a variable with label 4 is the replacement of the variable by its corresponding expression
retimed by k. Given two gate vertices v; and v; € FI(v;), the elimination of v; into v; is the elimination of variable
J in all its occurrences in the expression Z for v; (Fig. 3). The elimination of vertex t; is its elimination into all
the vertices in F O(v;). Note that the elimination of a variable with label zero is equivalent to the elimination used
in combinational logic synthesis [1] [2]. The elimination of a variable with non-zero label corresponds to merging
two logic gates that are separated by a register, by shifting the register to the inputs of the gate corresponding to
the variable being eliminated.

Llet 7..7.Q and R be Boolean expressions. Then .7 is a synchronous divisor of 7 if 3r > 0 such that
I=J"*"'Q+ R and J'+"'Q # 0. Note that the product 7' +"'Q may have the algebraic or Boolean flavor,
as defined in [1]. Given two gate vertices v; and v; such that the expression 7 is a synchronous divisor of Z, the
resubstitution of v; into v; is the factoring of 7 as j' *"'Q + R. Note again that the divisors defined in [1] are
a subset of the synchronous divisors and therefore resubstimtion with null retiming (i.e. r = 0) is equivalent to
resubstitution in combinational logic. The resubstitution of a variable with non-zero retiming corresponds to adding
one (or more) register between two gates to simplify the latter (Fig. 4).

Other global transformations, such as extraction and decomposition, can be defined in a similar way for
synchronous Boolean networks. We defer the analysis of such transformations to a later paper and we concentrate
here on algorithms for synchronous logic synthesis based on elimination and resubstitution that exploit retiming
techniques. An algorithm for retiming a synchronous Boolean network, derived from the one presented by Saxe
[7], is fully detailed in [9].

4 Algorithms for synchronous logic synthesis

We consider here algorithms for optimizing digital networks according to four major strategies: area minimization
without/with cycle time constraints and cycle time minimization without/with area constraints. We concentrate
here on logic transformations that operate across register boundaries, because transformations on combinational
networks have been extensively described [1] [2] [4] [3] [6). Nevertheless the techniques described here apply to
combinational networks and to registers-less portions of synchronous logic networks as well.

While the details of the logic transformations are presented in the following subsections, we would like to
comment here on the general strategy in applying the transformations to achieve a given goal. We conjecture



that the problems of optimal synchronous logic synthesis is at least as difficult as the problem of finding optimal
combinational logic networks. Therefore heuristic optimization is done as in combinational logic synthesis by
iterating an operator on a network (i.e. a set of transformations) until local optimality with respect to this operator
is found. Then a different operator is applied.

We report in this section on two operators for synchronous logic synthesis: elimination and resubstitution.
The algorithms have the general frame described in [1] [2). They differ from those used for combinational logic
synthesis in the cost function evaluation and in the selection criteria for the candidate vertices for a transformation.
Consider for example the problem of unconstrained area minimization. Then, the candidate selection is driven by
the variation of the estimate of the area cost ¢ ; = aéd — 74,,, where ¢ is the variation in the number of literals
and ¢,, is the variation in the number of registers. The computation of é; and ¢,, is specific to a transformation,
and therefore it will be detailed in the sequel.

The problem of minimizing area under timing constraints is approached under the assumption that a timing-
feasible network is given, whose area estimate we want to minimize. We constrain the transformations to preserve
timing-feasibility and therefore we reject candidates whose transformation would lead to a non timing-feasible
configuration. In the case of combinational networks, a necessary and sufficient condition for preserving timing-
feasibility was shown to be that any increase of the data ready time of any veriex be bounded by its slack [6]. While
the sufficiency of this condition still holds in synchronous logic synthesis, its necessity no longer does. Indeed,
a transformation followed by retiming may preserve timing-feasibility and therefore a retiming of a network is
attempted before rejecting a transformation.

Example: Consider the circuit of Fig. 5. Assume that the cycle time is set equal to the propagation delay
through the longest path, say the path (v.v,.v,). Suppose, for example, that we want so reduce the circuit area,
by eliminating v; into v,,,. It may be the case that the increased propagation delay through v, introduces a longer
critical path (v.. v, . tr), Or equivalently that the slack at . becomes negative. If the position of the register storing
r is fixed, then the elimination has to be rejected. Otherwise it may be possible to find a feasible retiming (for
example by trying to retime v, by +1) so that the elimination can be accepted o

The problem of minimizing the cycle time T, is approached by generating a sequence of networks that are
timing feasible for decreasing values of T [6). For each network in this sequence the critical vertices are identified,
and wransformations are applied to such vertices. It is important to detect whether the transformations affect the

optimality with respect to retiming. If this is not the case, then the network cycle time can be further reduced by
retiming.

In addition, when area constraints are enforced, transformations are subject to the additional check that the
area bound A, is not violated. Therefore, an area cost for each transformation (64 = aé + 3én) is computed
and added to the current value of 4. If the resuit is larger that .1,,,, the candidates are rejected.

4.1 Elimination

The elimination algorithm follows the outline of that presented in [1]. We concentrate here on the selection and
acceptance criteria for synchronous networks. Let us consider first the area cost (or value) of an elimination, say of
rj into ;. An elimination changes the total number of literals in a network by é;. This number can be computed
as & = nji(lj — 1) = I;, where nj; is the multiplicity of variable j in expression 7 [1] [2]. When elimination
is performed across a register boundary, then it is important to compare the saving in terms of literals with the



possible increase of registers. This can be computed as follows. Recall that /n; was defined to be the maximum
label of variable / in all expressions. Then, for each vertex v € FI{¢;), let m{.(Z) be the maximum label of
variable / in the expression 7 after the elimination. Then additional registers are needed to delay variable £ if
' (T) > ;. Fewer registers may be needed at the output of v;. In particular, let (1) be the maximum label of
variable ; in the expressions comresponding to £ O(v ;) different from 7. Then the register saving is: m; — ' (7).
The total variation in registers is: ¢, = (3, ¢ryio,) Mmax(0.mi(I) = my)) — (m; — m’(Z)). The area cost of an
elimination is then & 4 = aé; + -3é&,,.

Example: Consider the circuit of Fig. 3. The variation in the number of literals is: é6; = n..(l. ~ 1} = [. =
1(2-1) -2 = -1, i.e. one literal is saved. Assume that variable c is not used in any other expression and that
m, = m, = 0, i.e. no register is present at the output of i, and v,. After the elimination one register is needed
to delay « and U, i.e. m,(.1') = m}(.V') = 1 and no register is needed at the output of t., that is deleted from the
network. Then é,, = (1-0)+ (1 -0)+(0-1)=1and &4 = —a + Je

Then, for unconstrained area minimization, candidates are selected to either to minimize & ,, or to be such that
¢ 4 is less than a threshold usually set to zero. When timing constraints are enforced, the new slack s; is computed.
If this value is positive, the elimination is accepted. Else, its acceptance is conditional to finding a feasible-retimed
network of non superior area cost.

Let us consider now the problem of minimizing the cycle time 7. Let us assume that the network is optimal
with respect to retiming (by using the retime algorithm for decreasing values of T [5] [9]) and with respect to
elimination within register boundaries (as described in [6] and in [2]). We assume that T is the minimum cycle time
achieved by these techniques and we address the problem of reducing it by attempting elimination across register
boundaries.

In particular, we consider as candidates for elimination the critical vertices whose gate is connected to a register,
i.e. at the head of a critical path. Let us assume, for the sake of simplicity that there is only one such candidate,
say v; and that it is critical (i.e. its slack s; = O or equivalently its data ready time ¢; = 7). The elimination of
such a vertex shortens the critical path and it is beneficial if no other longer critical path is introduced in the circuit.
Therefore, to verify the feasibility of the elimination of a candidate vertex v ;, we must consider the increase of data
ready time of each vertex v; € FO(v;). If such increases are all strictly bound by the corresponding slack, then the
elimination is accepted because there is a cycle time T’ < T for which the network is a feasible implementation
after the elimination. If the increase of the data ready time at some vertex is not bound by its slack, then the
elimination is accepted under the condition that a feasible retiming is found.

4.2 Resubstitution

The resubstitution algorithm follows the outline of that presented in [1] and [2). We consider here only algebraic
division [1]. The condition that one expression is a synchronous divisor of another one is checked by routine
synchronous-divisors, that iterates algebraic divisions. Algebraic division of two expression is performed by
procedure alg-div, which is described in [1] [2]).

synchronous-divisors {
QR = §;
II = erpand(I);



orir=0r+ +) {
JT = cxpand( T +7);
1 erittZ. T Yreturn
QR = QR Ualy-dir{II.TT);

Candidate pairs are searched among all possible pairs of gate vertices. Note that an expression .7' +"' may
divide an expression ./ for more than one value of r. Therefore, the algorithm stores all non-trivial quotients ©
and remainders R in QR. If multiple choices are possible, a greedy strategy is used to select the most convenient
resubstitution. To allow maltiple resubstitutions, the algorithm will add to the candidate list the pairs ¢. ; and r. j.
If QR is empty, the candidate pair is rejected.

Algorithm synchronous-divisors operates as follows. Procedure erpand replaces every variable with non
zero label by a new variable. Therefore expressions Z7 and .7.7 are polynomiails that can be divided by algorithm
aly-dic [1] [2). Procedure ¢rit returns true if any variable in 7' *"' has a label larger than the maximum of
the labels that the corresponding variable takes in 7. In this case, no non-trivial divisor can be found, because
expression 7.7 contains a literal not in 77 and therefore 7.7 cannot divide I7 [1] [2]. Clearly this condition is
true for any value of r larger than the one in the loop of the algorithm. Note that when both expressions 7 and

7 have no labels, then 77 = 7 and 7.7 = 7, the algorithm performs just the algebraic division as in [1] [2] and
remumns after one iteration.

To choose among candidate pairs, it is important to evaluate the local change in area due to resubstitution.
When resubstituting v; into v;, the variation in literals can be computed &8s &; = —n;;(; — 1), where n;; is
the multiplicity of variable j in expression 7 [1] [2]. The number of registers in the network is affected only by
resubstitutions across register boundaries (i.e. when r > 0). In this case, resubstitution may increase or decrease the
number of registers according to the circumstances. For example, when resubstituting v into v; as i = j'*+"'Q+R,
we require r register delays for variable j and r fewer register delays on some inputs to ;. The total variation in
register count ¢,,, can be computed from the local variation as follows. First note that additional registers may be
needed at the output of v;, namely maz(0.m}(ZI) — m;). Registers may be spared on the inputs FI(v;), where
the fanin set is computed before the resubstitution. For each venex v, € FI(v;), the register saving is m; — mj.
Then ém = (max(0.m;(I) — mj)) - (Zkerm.)(mk —m})).

Example: Consider the circuit of Fig. 4. The variation in the number of literals is: é; = —n,y (I, — 1) =
-1(2-1) = —1, iLe. one literal is saved. (Note that the original expression for y could be factored as c(a'2' +b'1")).
Assume that m. = 0 and that no additional delayed values of a and b are needed to gates other than those shown
inFig. 4. Then é,, =1~ ((2-1)+(1-0)=-1and 64, = —a = Je

For unconstrained arca minimization, the candidates are selected so that either 6 , = a é; + 36,, is minimized or
it is less than a given threshold. Note that resubstitution reduces the number of literals (ie. §; < 0), whenever the
expression for v, is non trivial, i.e. whenever /; > 1. Therefore, resubstitutions that are within register boundaries
(i.e. &y = 0), are always selected.

Consider now area minimization under cycle time constraints. Note that a resubstitution of vertex t; into
vertex v, decreases the literal count /; and it is likely to decrease its propagation delay d;. However, the data
ready time ¢; may depend now on {1;, if v; € DFI(v;) after the resubstitution. In this case ( v; € DFI(r;)), the
transformation can be accepted if the increase in ¢; is bounded by the slack s;. Otherwise, a feasible retiming must



be searched for. On the other hand, when a register delay is inserted between v, and v; (v; € DFI(¢;)), then 1,
cannot increase and it is likely to decrease. Then the transformation can be accepted without further checks.

The problem of minimizing the cycle time 7 is analyzed under the previous assumptions: i.e. the network
is optimal with respect to retiming and to resubstitution within register boundaries. We also assume that 7 is the
minimum cycle time and we address the problem of reducing it by antempting resubstitution of two vertices, say ! ;
into v; across register boundaries. In this case, the data ready time {; cannot but decrease and ¢ ; Temains constant.
Then candidates for resubstitution are a critical vertex 1;, which is the tail of a critical path and v; € FI(v;).
Candidates are selected to minimize locally the cycle time 7. Since an upper bound on the decrease of T is the
variation in propagation delay «;, this is used as a quick way of choosing a candidate.

5 Minerva

Minerva is a computer program to support logic design and optimization of large scale synchronous digital circuits.
Circuit specifications can be entered to the program by specifying the circuit equations and interconnection in a
hierarchical way. An appropriate format, called SLIF, is used to suppont the circuit description. The SLIF is
format description is reported in the Appendix. Alternatively the circuit can be specified in a Hardware Description
Language, HardwareC, that can be compiled into the SLIF format by program Hercules [8]. The output of Minerva
is an optimized circuit description in the SLIF format. Minerva in a part of the Olympus synthesis system developed
at Stanford University.

A twin program, called Janus, provides an interface between SLIF and other formats, foreign to the Olympus
system. For example, Janus can generate a logic view compatible with the netlist format of the LSI Logic tools
and with the OCT database. Interface to the Thor and Lsim simulators are also supported by Janus. Minerva and
Janus are both interfaced to the MIS-II program (2}, that provides an excellent set of routines for optimizing and
mapping combinational sub-components of the circuit being designed. Minerva can isolate these components and
interface them with MIS-II in a bidirectional way. This feature allowed us to avoid to duplicate the algorithms of
program MIS-II into Minerva and to concentrate on the implementation of algorithms specific to synchronous logic
synthesis. Minerva is programmed in C and consists of approximatively 12000 lines of code.

At present, Minerva is used as a workbench to test algorithms for synchronous logic synthesis. In particular,
algorithms e/imination and resubstitution have been implemented among others as a part of program Minerva.
The algorithm retime presented in [9] has also been implemented in Minerva. Four different optimization goals,
constrained and unconstrained minimization of area and cycle time, correspond to four different strategies of the
algorithms described in the previous sections. Experimental results on the MCNC FSM benchmarks (ex1-ex7) have
shown that the are gain by performing elimination is often larger than the gain by using resubstitution. Timing
improvements by combining elimination, resubstitution and retiming is small, but justified by the fact that the
examples are too small to allow radical changes in the structure of the network. Running times are under one
second on a DEC 3200 workstation.

6 Concluding remarks and future work

This paper has presented a new approach to the optimal logic synthesis of digital synchronous sequential circuits,
based on the concurrent optimization of the circuit logic expressions and the register positions. This method, which



combines retiming techniques with network restructuring operations. can achieve results that are at least as good
as those obtained by other logic synthesis approaches that separate the combinational logic from the registers. The
algorithm for elimination and resubstitution within and across register boundaries. as well as a retiming algorithm
(9], have been studied and implemented in program Minerva.

This research as shown the feasibility of approaching sequential logic design from a global perspective that
considers synchronous register delays and gate propagation delays. At present we are extending Minerva to cope
with other circuit transformation. as well as supporting more general models for synchronous storage elements.
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SLIF (5CAD)

8 Appendix: the SLIF format

NAME

SLIF - Structure and Logic Intermediate Format

DESCRIPTION

SLIF is a concise format used by tools in the Stanford Olympus Synthesis Project 1o describe logic
circuits and their interconnections. It is an hierarchical, non-procedural notation that is described in
ASCI files. It supports the description of combinational logic in terms of Boolean factored forms, as
well as don't care sets. It supports the notion of registers and three-state elements and therefore it is
well suited to describe sequential circuits.

SYNTAX

SLIF is a free-format notation; i.c., statements may begin at any point on a line, and whitespace may
be used freely. Each statement must be terminated by a semicolon. Statements may appear in any
order within the description of a model, with the restriction that inputs, outputs, inouts and types
must be declared before they are used and that the last statement in the model description must be
the .endmodel statement (see the COMMANDS section below for more details).

Identifiers are character strings restricted to alphanumeric characters and the following symbois:
2 DI A

Variables, model names and instance names are all identifiers. There are two constants, "1” and "0",

which represent the logic values TRUE and FALSE, respectively.

Commands in SLIF are command words preceded by a period (c.g., .library). and are sammarized in
the next section. Any declaration that does not begin with a command is a logic statement and has
the form
var = expression ;
where var is an identifier and expression is an expression in Boolean form, consisting of variables
and operators. The operatars +, * and ’ represent Boolean sum, product and inversion (ie., AND,
OR and NOT), respectively; the ‘*’ operator is optional and may be omitied. e.g.,
out = reset’ + clock * (in0’ + (inl * in2)) ;
is equivalent to
out = reset’ + clock (in0' + inl in2) ;
An expression, like a literal, may be complemented using the prime (i.c., apostrophe) symbol; e.g.,
x=(ad+c) +d);
By defanlt, the expression represents the ON SET of the variable war. Two symbols, * and ~ are
appended to var to indicate the expression is its OFF SET or DON'T CARE SET respectively. The °

can aiso be used in the expression to indicate the DON'T CARE SET of a variable. Used alone, ~
means the global DON'T CARE SET of the surrounding model.

There are two built-in functions. The arguments of these functions must be variabies (not expres-
sions). The built-in functons are:
D(a,c,e) A flow-through D-type laich, which has input a, is clocked by ¢, and is optionally enabled
by signal e.
T(a,b) A tristate latch whose output is a when b is true, or high-impedance otherwise.
The use of a built-in function is indicated by the ‘@’ symbol; e.g.,
outl = @ D (sigl, clock’) ;
In product to built-in functions, library functions may be called; these are defined as a separate model
(see library below).

Comments are identified by the symbol ‘#'. This symbol indicates that the remainder of the line is
to be ignored by any program reading the SLIF description.
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COMMANDS
attribute rype_name variable_name parameters ;
Specifies parameters for one variable (or one instance), named variable_name. The parame-
ters consist of a sequence of strings, integers and floats, defined in the type type_name. If
the type used allows for a vanable number of parameters, the corresponding list has to be
enclosed in parentheses "(" and ")".

.call instance_name model_name ( inputs ; inouts ; outputs } ;
Creates an instance instance_name of the SLIF model model_name, which may be
described in the same file or in a file specified by a .search statement. The called model
may be a library element.  Variables are linked according to the parameter listing; inputs,
inouts and owtputs are lists of variables separated by commas, which must agree in number
and order with those in the called model.

.date time_stamp ;
Specify the time of the last modification (optional). The time_stamp format is
YYMMDDHHmmSS where YY is the year, MM the month, DD the day, HH the hour, mm
the minutes, and SS the seconds. Each clement of the time_stamp is a two-digit number.

.endmodel name ;
Terminates the model. Each model has to be terminated by this declaration. There may be
more than one model within the same file.

.global_attribute type_name parameters ;
Specifies parameters valid for an entire model.

.Include file_name ;
Indicates that the information in file_name will be read as if it was part of the current file.

inouts varl var2 ... varn ;
Declares variables var] ... varn as global bidirectional *‘inouts."

Jdnputs var! var2 ... varn ;
Declares variables var/ ... varn as global inputs.

dibrary ;
Identifies the model as a library element.

.model name ;
Indicates the beginning of a new model and assigns it name name. Each model has to be
declared using this declaration. Multiple models may be described in a single file.

.net varl var2 .. varn ;

Lists variables that are connected together. The net will be named after one of the vari-
ables. If there are giobal inputs, outputs or inouts then the net will be inherit one of their
names; otherwise it will be named after var/.

.outputs varl var2 ... varn ;
Declares variables var] ... varn as global outputs.

search file_name ;
Indicates that models included in file_name may be used, if they are needed. Users are
encouraged to use the absolute path to the file.

.type type_name specl spec2 ... specn ;
Declares a type type_name as a sequence of specifications spec/ spec2 ... specn where spec
is any of %d %f %s (integer, float or string). A number may be used in front of a spec, to
tell how many specs are to be used. A spec or set of specs can also be included inside
parentheses, to indicate a variable number of that spec (or set of specs ). A type is used
whenever a attribute or .global_attribute command is used. The type defines all the infor-
mation that follows the type name. For .attribute, a string HAS to be insened between the
type name and the typed information. This string indicates the variable (or instance) to
which the artribute will be artached.
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