
INTERNATIONAL JOURNAL OF CIRctJlT THEORY AND APPLICATIONS, YOLo 16,347-369 (1981)

COMPUTER-AIDED DESIGN AND OPTIMIZATION
OF CONTROL UNITS FOR VLSI PROCESSORS

GIOVANNI DE MICHELI

Computer Systems LDboratory, Stoll/ord University, Stoll/ord CA 9430$, U.S.A.

SUMMARY

This review presents the models. methods and algorithms for synthesis and optimization of control units for VLSI
processors. First. circuit structures used for control in the state,.of-the-art processors are described. The control
synthesis methods are then presented as well as the algorithms for optimizing the control unit representation. Among
these techniques. the symbolic design methodology is described that can be applied to optimize the silicon area taken
by some particular structures of control units.

1. INTRODUCTION

Very large scale integration (VLSI) processors are the heart of computers, signal and image processors and
other systems that elaborate digital information. Their design is critical to the progress of the electronic
industry: more powerful processors are needed every day and their design time has to shrink because of
the competitiveness in the market-place. Computer-aided design (CAD) techniques are necessary
ingredients for the fast design of processors which yield maximal performance with the state-of-the-art
technology. In particular, circuit synthesis and optimization techniques have been effectively used to
synthesize chips (or components) from high-level specifications without (or with limited) human
intervention. The confidence in computer-aided circuit synthesis methods has grown tremendously in
recent years.

VLSI processors are designed with different styles and technologies, according to the criticality of the
performances and the projected production volume. To date, most high-performance general-purpose
processors are still designed in a custom or structured custom design methodology, even though semi-
custom implementations (e.g. standard cells, gate arrays or sea of gates) are being considered as viable
solutions, especially in the case of application-specific integrated circuit (ASIC) processors. Structured
array implementations are commonly used for control, and full custom control im~lementations also
called hard-wired control structures, are rare. The control unit design requires careful attention. First, it
must guarantee maximal performance of the data path. Secondly, it should not require excessive silicon
area nor introduce critical paths. Processors may need a complex control structure that takes a significant
fraction of the available chip area. The optimization of the area taken by the control section is important
for several reasons, such as not to overflow the available silicon area, .to increase the circuit yield, to
decrease fault probability and to avoid the introduction of critical paths along the control structure due
to extensive wiring.

Micro-programming has been extensively used in processor design. With the improvement in the scale
of integration, the role and definition of micro-programming has also changed. We refer ~ow to micro-
programmed machines as those systems that use regularly organized storage arrays (control store) to keep
a large part of the control information that is described in a high-level form by a micro-program. 2 There

are several advantages in using micro-programming. The design of the control unit is flexible, it can be
defined at a later stage of the processor design and it can be easily modified. Micro-programming allows
a processor to emulate the instruction set of other machines. Different implementation strategies of micro-
programmed processors are possible. For example the control store can be located on-chip or off-chip

0098-9886/88/040347-23$11.50
@ 1988 by John Wiley & Sons, Ltd.

Received 30 June 1988

348 G. DE MICHEL:

and/or it can be writable or not. There is a trade-off in these choices. High performance processors take
advantage of the proximity of on-chip control store. However. only processors with writable or off-chip
control store can take full advantage of the micro-programming feature of altering the micro-program
when the processor design is complete. Only in this case is it correct to talk about micro-programmable
processors. For practical reasons. most processors have read-only on-chip control store and therefore
should be called micro-programmed. We will consider this class of processors in the sequel.

Micro-programming can be viewed as a first step towards the achievement of processors that can be
automatically customized to a set of specifications described in a high-level programming language. A
micro-programmed processor is explicitly partitioned into data path and control. The data path is fixed,
whereas the control is programmable. A micro-compiler transforms a micro-program specified in a
programming language into the personality of the control store, that is often implemented by a read only
memory (ROM) or programmed logic array (P.LA). Techniques for micro-code optimization 3 and

simulation are used to develop efficient micro-programmed structures. Since the compilation time is
negligible. it is then possible to customize quickly and automatically a control unit to a given specification.
Unfortunately the data-path model cannot be programmed. or even modified, by a micro-compiler and
this limits the range of applications of micro-programmable processors.

A step further in designing programmed processors is now achieved by means of hardware compilers.
called also silicon compilers or automated synthesis systems. I In this case. the entire processor is described

as a program which is compiled into an interconnection of circuits and eventually described by the
geometries of the masks needed to fabricate the chip. Today fully automatic hardware compilation has
been shown to be feasible4 and has also proved to be a time-effective way of designing ASIC and general-
purpose processors.5 Among the main advantages of hardware compilation. we would like to stress the
possibility of experimenting with architectural trade-offs to match the implementation technology. Indeed.
architectural changes can be performed as quickly as the modification of a program. Hardware
compilation takes several minutes of computing time for a medium-sized processor. Therefore. automatic
hardware compilation opens new frontiers to processor design as well as provoking an evolution in the
techniques for control synthesis. We refer the interested reader in the general aspects of hardware
compilation to References 1 and 4 for further information.

In this paper we address the problem of control-unit design from high-level specifications. We describe
the methods that are amenable for computer implementation and that are used in today's hardware
compiler or components. In Section 2 we review some structures used for control units. Then we describe
in Section 3 the two major control synthesis methodologies: control synthesis from behavioural system
specifications. We review then in Section 4 the techniques used for control optimization. namely state
minimization. state encoding and logic minimization. We show also how control structures can be designed
using optimization techniques on symbolic representations.

2. CONTROL UNITS

The panition of a processor into data path and control is somehow anificial. In general it is assumed that
a processor elaborates data by using some digital hardware operators, or resources (e.g. ALUs, shifters,
etc.) according to specific instructions. The collection of the hardware operators is then called the data
path, whereas the circuits that decode the instructions and control the hardware resources are called the
control unit. The distinction is merely made for the designer's convenience of grouping circuits together
and is not necessarily a sharp distinction. It may not correspond to a physical panition of the circuit. For
example, an overflow/underflow detection circuit that generates an interrupt may be physically
implemented as a pan of the data path even though it performs a control function.

Control units of processors may have various degrees of complexity. A simple model of a control unit
is a single deterministic automaton or deterministic finite-state nlachine (FSM), implementing a sequential
function. Finite-state machines can be represented, using the Huffman model,6 as an interconnection of
a combinational circuit and memory (usually synchronous D-type registers), than holds the state

CONTROL UNITS FOR VLSI PROCESSORS 349

information. The operation of the automaton can be described in terms of a state transition function and
an output function which provides the signals to the control points of the data path.- In the simplest
control realization, both functions may be implemented by a structured array (ROM or PLA) called
control store. Otherwise the two functions may be implemented by two separate arrays, referred to as
sequencing and control store respectively. Since the control store may be large, it is common to see two-
stage control storage structures: a micro-ROM (or micro-PLA) that bears an encoded version of the output
function which is decoded by a nano-ROM (or nano-PLA). When the control function is more elaborate,
as in the case of some microprocessor dcsigns, it is convenient to add additional structures. For example,
when ROMs are used, the transition and output function are the contents of the memory at a given
address. Next-state transitions to consecutive addresses need not be explicitly stored in the memory because
the increment of the ROM address can be easily implemented by a counter. Therefore a control-unit model
may include a loadable counter, which stores the state information and which provides an address to the
sequencing and control store. When the next state has the following address, the counter is incremented.
Otherwise it is loaded with the state information provided by the sequencing store. Sequencing and control
store may be implemented by ROMs as well as by PLAs.7 Other additional circuits may be useful to
achieve an efficient implementation. Multiplexers may be used to implement the next control-state function
following a conditional branch. The control store may be reduced by specifying common subsequences
of control states, for example by using micro-subroutines in the micro-program description. An efficient
implementation may take advantage of a hardware stack, to hold the return state information (micro-
subroutine return address). The structure of the control unit can be therefore generalized to an
interconnection of combinational circuits, whose personality can be programmed, and fixed-structure
circuits, such as registers and other circuits (e.g. counters, multiplexes, stacks, ...), which will be referred
to as auxiliary circuits in the sequel.

The complexity of a control unit depends on the processor architecture. In the case of complex
instruction set computers (CISCs), many instructions require several machine cycles and therefore the
control unit embeds a micro-sequencer as well as appropriate auxiliary circuits. As an example, the IBM
micro-370 processor has a complex control unit including a state machine control circuit that determines
the next control store address, an IS-bit micro ROM and a 7I-bit nano ROM that generate the control
signals to the data path through the local PLAs. The sequencing may be altered by commands from the
bus control, the branch control and the special function unit (Figure 1).8 As another example, the control
section of the DEC CV AX CPU chip is shown in Figure 2. The cOntrol store contains a ROM of 1600
words of 41 bits; 28 bits control the execution and 13 the micro-sequencer. The micro-sequencer selects
the address for the control-store ROM from either the instruction box, current micro-instruction, test logic
or from logic within the micro-sequencer. An eight-entry address stack is used to implement microcode
subroutines and the exception retry mechanism. 9

Much simpler control structures are used by reduced instruction set computers (RISCs), that execute
most (or all) instructions in a single machine cycle. Therefore, the task of the control unit is mainly related
to the decoding of the instructions and to the activation of the appropriate control signals to the required
hardware operators in the data path. In a first approximation the control unit may be thought of as a
combinational instruction decoder. Indeed, most control functions are done by combinational circuits
(usually PLAs). However, complications arise when some instructions (such as memory references) require
more than a single machine cycle or in the case that the processor is pipelined. Therefore global processor
control must sometimes, incorporate sequential functions even in the case of RISC processors. For
example, the.MIPS-X processor ,10 a 20 MIPS peak processor designed at Stanford University, uses mainly
combinational-logic control implemented by PLAs located above the part of the data-path being
controlled. The choice of local control minimizes the wiring of control signals. Global control in MIPS-X
is done with the aid of two sequential circuits that handle exceptions and cache misses. As another
example, the original IBM SOl architecture was thought of in terms of single-cycle execution of all the~

In the limiting caJe that the control function is combinational in nature. the transition function and the rqisters are not
implemented.

G. DE MICHELI350

BUS CONTROLLER

w- ...
~ICRO ROM

~
~
M'.

NANO ROM -OORtSS
, D[COO(
I 1

ADOaUS
D(tOO(

I Ie':1WI ...

NANO 10M OI/fPVT

.[.-
mc rUNCT~

UNIT

.0 II-
sru
C1\.

.(GI$'I(a
(0H'f.0'~

'AU
:C'fL

urcUTION ~.T ~rRS

EXECUTION UNIT-
- .oo-£ss IUS COHT_~

Figure 1. Block diagram of the ,.-370 processor'

instructions and an asynchronous external memory reference mechanism. The control portion of the 801
implementation presented in Reference 5 consisted of combinational circuits, except for a small sequential
circuit used to control the pending memory references. However, the IBM ROMP processor, which is the
engineered version of the 801 architecture for work-station applications, is a RISC processor that s~pports
some multiple-cycle instructions for the sake of improving the processor throughput. Its control unit is

sequential.

TIST
LOGIC

1i8E0UENC!R EXTERNAL
"ADDRESS

L.x\

\+1 INCA~NTERI

--~=~~:7
I"TElT1- L~_~

i1ADORESS IUS ~

Figure 2. Block diagram of the DEC CVAX CPU'

CONTROL UNITS FOR VLSI PROCESSORS 351

3. DESIGN REPRESENTATION AND CONTROL SYNTHESIS
The high-level descriptions of digital systems may have different flavours. II They may be based on

programming languages with imperative or declarative semantics, or use graphical inputs in terms of flow
diagrams, forms or schematics. 4 It is possible to group the high-level descriptions into two main categories:

behavioural and structural specifications. A behavioural specification describes a digital system in terms
of its 110 response. A structural specification defines a system as an interconnection of modules. Each of
these modules may be defined similarly in terms of its behavour or its structure. Hierarchical specifications
are often convenient ways of specifying digital systems. They may be purely behavioural or structural or
a mixture of both.

A structural representation of a control unit defines explicitly the interconnections and the specifications
of its components in terms of a tabular format or equivalent description (e.g. assembly-level micro-code).
A behavioural representation of control, instead, describes the set of control signals to the data path for
each instruction (e.g. a micro-program in a high-level micro-programming language). A behavioural
representation of the entire hardware system may also imply the control information. We call control
synthesis the set of transformations from a behavioural representation to a structural one. The advantages
of automatic control synthesis are the simplification of the input description, the shortening of the design
time and the higher quality of the generated structural description of control (object micro-code), because
of the use of sophisticated optimization algorithms during synthesis.

There are two major cases of control synthesis techniques used for processor design: synthesis from a
micro-program description and synthesis from behavioural specifications of the entire hardware system.
In the first case it is assumed that the system being designed is partitioned into data path and control and
that the micro-program describes the behaviour of the control unit. Several techniques have been used in
the past for the design of commercial processors. 3.12.13 In the second case, the behavioural desc~iption of
the hardware system is expressed in terms of its 1/0 response. Therefore the internal block specification
of the control unit is invisible. The goal of control synthesis is then to extract the control function and
map it into a structural specification.

.1. J. Control synthesis of micro-programmable processors

The control unit behaviour is described by a micro-program and control synthesis is achieved by micro-
compilers. The task of the micro-compiler is to map the micro-program onto the personality of the control
store, usually implemented by a ROM, a PLA or an interconnection of ROMs and PLAs.14,1' In
particular, when the control store is a ROM or a PLA, the target of micro-compilation is a set of minterms
or implicants. Optimization techniques may be used at various levels to reduce the storage requirement.
Methods used in optimizing compilers, such as code motion, dead-code elimination and detection of
possible concurrency of micro-operations are used to minimize the number of control steps, with few or
no assumptions on the storage implementaton model. For this case, data-dependency graphs have been
used as an underlying model for micro-code compaction. 16

Other control optimization techniques rely on the implementation model. For a ROM-based
implementation, the numbers of words and bits are the parameters that affect the storage size. Partitioning
schemes are used when the number of words overflows the ROM capacity. Often, the sequencing and
control store are implemented by separate arrays. The number of words may be further reduced by using
counters and stacks, as shown in Section 2. The number of bits in the ROM can be reduced by encoding
techniques. Consider the implementation of the control store (excluding sequencing) by a single ROM.
There is usually a large number of output control signals.

There are two major approaches to the encoding of the control signals. In the former scheme, one bit
is dedicated to each resource, i.e. n bits are used when n resources have to be controlled. In this case, a
micro-word can activate any subset of the n resources and therefore arbitrary concurrency may be specified
by a single word. Since using n bits results often in a wide-word ROM organization, such an encoding
is called horizontal. In the latter scheme, a minimal number of bits is used to encode the resource controls,
i.e. the ROM has as many bits as the ceiling of log2 n. In this case, a word may not specify simultaneous

352 G. DE MICHELI

ww

resources

Figure 3. ROM with decoder
~

Fi,urc 4. ROM with multiple decoders

controls to a subset of resources. Therefore more words may be needed than in a fully horizontal scheme
and for this reason such an encoding is called vertical. Note that more micro-cycles may be needed to
execute vertical micro-code. resulting in a potential loss of performance. In addition. a vertical encoding
requires a decoding network which may either be distributed along the resources being controlled or
centralized in another decoding array. In this case. the overall control store is said to be a two-stage control
structure. When ROMs are used. they are called micro-ROM and nano-ROM respectively (Figure 3).

Fully horizontal and fully vertical encoding represent two extremes of a wide spectrum of intermediate
solutions. encompassing trade-offs between storage size (in terms of area) and performance (in terms of
micro-cycles). Intermediate encoding schemes can be used to optimize the storage of two-stage control
structures. without affecting maximal concurrency. Therefore they optimize the performance and the
number of words in the micro-ROM. The key is to partition the control signals into fields. such that no
more than one control in each field is active at any given time. Each field is vertically encoded and a code
is reserved to specify that no control is active. A separate decoder is required for each field (Figure 4).
Schwartz 17 proposed a partitioning algorithm that minimizes the number of decoding arrays. under these

assumptions. Unfortunately Schwartz's method does not necessarily minimize the number of bits required
in the micro-ROM. This problem was addressed by Grasselli. 18 who reformulated the method under the

same assumptions in terms of switching theory. and presented an algorithm for partitioning and encoding
that minimizes the number of bits in the micro-ROM. Therefore a two-stage control structure.
implemented by using this partitioning scheme. is comparable to a one-stage fully horizontal encoded array
in terms of number of words in the micro-ROM and in the performance. The advantage is that the two-
stage control structure uses fewer bits in the micro-ROM. The saving in size in the micro-ROM is
compensated for by the additional decoders required (nano-ROMs). It is important to remark that multi-
stage control schemes are also possible. In some control unit implementations. for example the IBM p.-370.
the control store is implemented as a three-stage control structure. with a micro-ROM feeding a nano-
ROM that drives several decoding arrays. implemented by PLAs (Figure I).

For PLA-based implementations of the control store. similar techniques may be used for synthesizing
the control structure. because there is always a trivial PLA implementation of any logic function stored
in a ROM. Moreover. there are often PLA representations whose number of implicants is significantly
smaller than the number of words in a corresponding ROM implementation. Therefore other techniques.
such as logic minimization. can be used to reduce the storage requirement. In addition. the encoding of
the control signals has an impact on the number of implicants in a minimized representation. Symbolic
minimization techniques may be used to determine optimal encoding of the signals in a multi-stage control
structure. Since these techniques (logic and symbolic minimization) are related to the control optimization.
they are described in Section 4.

3.2. Control synthesis from behavioural system specifications

We consider now the control synthesis from behavioural specifications of the entire hardware system

353CONTROL UNITS FOR VLSI PROCESSORS

Although behavioural representations differ widely in syntax and semantics, they bear similar underlying
hardware models. For this reason, these representations may be abstracted by graphs, that represent data
flow (e.g. Milner's data-flow algebra), 19 sequencing (e.g. SIf}, 20 both sequencing and data flow (e.g. the

value trace,21.22 the YIF23.24 and dacon2s), or by Petri nets.26 These graphical abstractions, called
intermediateforms, capture in a concise form the data flow and/or the sequencing information. Therefore
they have been used as starting point for hardware synthesis.

In general, a behavioural representation may be seen as a collection of concurrent processes. Each
process is a sequence of operations, and it is described by a procedure with calls to subprocedures.* The
control-flow statements in the behavioural representation and the data dependencies induce a precedence
relation among the operations, that can be represented by a directed graph, called a sequencing graph.
Each operation is identified by an operator and input/output variables. Data-path synthesis determines an
appropriate interconnection of hardware resources that implement the operations according to the data-
flow representation. Control synthesis identifies the function that controls the resources according to the
original sequencing specifications along with a set of area/timing constraints. Control synthesis includes
two major tasks: sequencing control definition, i.e. implementing the precedence relations represented by
the sequencing graph, and scheduling, i.e. the assignment of the resource controls to the states of the
control unit.

We make here some simplifying assumptions on the hardware model that are common to several
hardware synthesis systems.4 Synthesis is based on a synchronous control model. When the behaviour of
the hardware system is described by a single procedure, the corresponding control is a synchronous finite-
state machine. When procedure calls are used in the hardware specification, a hierarchy is induced by the
procedure call mechanism. Often this hierachy is modified through the synthesis process to improve the
circuit area and/or timing. We assume here that each node of the hierarchy is implemented by a data path
and local control, as done by several hardware compilers, such as the YSC.23 Therefore control is
implemented by a hierarchical interconnection of synchronous finite-state machines. Eventually, coarse-
grain hardware concurrency may be modelled at the behaviourallevel by multiple processes, as in the case
of the HardwareC description.20 In this case, the control for each process implementation is a hierarchy
of finite-state machines. Process synchronization and control of interprocess communication may be
achieved by hand-shaking mechanisms, as shown in Example 3.3a.

We show now the principles that are used to synthesize a synchronous controller from a sequencing
graph that captures the hardware behaviour. To be specific, we refer here to the control synthesis model
of the Hercules program.20 Similar techniques have also been used by other synthesis approaches. We
assume here that the sequencing graph is derived from well-structured code, supporting nested branching
and looping constructs (e.g. no unrestricted gotos), for the sake of simplicity and elegance of
representation. Each node of the graph, corresponding to an operation, can be in an active (executing)
or in a waiting state. A node may be active as soon as all its predecessors have completed execution. This
provides a simple synchronization mechanism for parallel operations. Alternative (sequences of)
operations, arising from branching constructs in the specifications, are controlled according to the
evaluation of the corresponding conditional. In the sequencing graph, alternative paths are encapsulated
by fork-join node pairs, that do not correspond to actual operations, but that are used to ease control
synthesis. In a conditional structure, the join node can be executed after any predecessor has completed
execution, because only one of the alternative paths may be active for a given conditional.

Procedure calls define a hierarchy in the system specification. The control unit corresponding to each
node in the hierarchy is a finite-state machine with an enable signal and a done signal. On a procedure
call, the calling procedure enters a wait state and transfers control to the called procedure by the enable
signal. The transitions from the wait state in the calling procedure are controlled by the done signal of
the called procedure, which toggles at its termination.

Looping constructs in the high-level description may cause cycles in the sequencing graph. In particular,
they either have exit conditions that are known at hardware compile time or the exit condition may be

Some hardware synthesis systems support single process and/or single procedure descriptions only.

G. DE MICHELI354

data dependent. For example, a looping construct may specify a fixed number of operations on some data
or a repetition of an operation until some data-dependent condition is satisfied. Handling the first set of
loops is simple, and loop unrolling techniques may be used to remove the cycle in the graph by repeating
the operations in the loop body. Therefore such loops do not necessarily require a sequential control
structure. The second set of loops cannot be unrolled, but their body can still be encapsulated by a
fork-join pair. A control state is associated with the execution of the operations inside the loop body.
The loop exit condition defines the transition from the state. Note that processing data-dependent loops
can be seen as extracting (from the sequencing graph) a subgraph corresponding to the loop body and
providing an appropriate linkage mechanism between the two graphs, so that the 'operations in the
subgraph are iterated until the loop exit condition is met. Therefore, after having processed all the looping
constructs, sequencing can be represented by a hierarchy of directed acylic graphs.

Inter-proc~ss communication can be described by different mechanisms. For example, HardwareC2o
supports a simple send-reply message-passing mechanism between any pair of processes. When executing
a send instruction, the sending process enters a wait state and sends a ready signal to the receiving process.
When executing a receive instruction, the receiving process enters a wait state if the ready signal is not
asserted. Otherwise it reads the message and sends an acknowledgement signal to the sending process,
which exits the wait state.

Example J. Consider the segment of program in HardwareC2O describing a portion of the 1-8251 chip,
shown in Figure 5(a). The chip is modelled as four concurrent processes: a main process, a transmitter
and two receivers. The main process decodes a command. This is done by a call to the procedure decode.
A conditional switch statement selects one out of three alternative paths. On an xmit command, the main
process sends a message to the transmitter. Otherwise the main process waits for one of the receivers to
send it a message. The corresponding sequencing graph for the main process is shown in Figure 5(b). The

Main Process

Serial Interlace

Figure 5(a). Model of the 18251 in HardwareC

3SSCONTROL UNITS FOR VLSI PROCESSORS

...
Figure S(c). State diagram of main process

O. DE MICHELI356

topmost node represents the can to procedure decode, that can be described by another sequencing graph,
not shown in the Figure. The fork-join pair encapsulates the alternative paths corresponding to the
conditional statement. The control corresponding to the main process is shown in Figure S(c) by a state-
transition graph. Note that no state needs to be associated with the fork-join nodes. The topmost node
issues an enable signal to the control unit corresponding to the procedure decode. The procedure decode
returns the signal decode~one. The transition to the send and receive nodes depends on the conditional
switch statement. In the state corresponding to send, the control of the main process sends a ready message
to the control unit of the process Xmit. It stays in this state until it gets the reply Xmit~one, issued by
the Xmit process, when the latter reaches the corresponding receive made. Similarly: in the states
corresponding to receive, the control of the main process waits for a done signal from one of the two other
processes.

Let us consider now the scheduling problems. Scheduling may be seen as a refinement. of the sequencing
control, which results in an assignment of the operations (and the corresponding resource controls) to the
control states. Scheduling problems deal with: (i) the interaction between control and data path and
in particular the possibility of sharing hardware resources; (ii) the delays of each operation and the
timing requirements on the hardware I/O signals. Note that most scheduling algorithms consider only
deterministic delays, i.e. each node of the sequencing graph must be labelled with a known delay.
Therefore sequencing graphs with nodes corresponding to data-dependent conditions and inter-process
communication primitives cannot be scheduled as a whole and require appropriate partitioning.

The design of the data path and control are strongly related, and in some hardware design systems the
synthesis algorithms are interwoven. Consider, for example, a data path consisting of n identical
operations on dift'erent variables. A maximally parallel implementation requires n identical hardware
resources that can be scheduled in the same control state. Alternatively, a single resource can be used in
n control states. Intermediate solutions are also possible. Since the silicon area grows with the number of
resources being used, and the completion time of a sequence of operations depends on the number of
control states as well as on the cycle time, area-timing trade-oft's may be achieved by an appropriate
resource allocation and scheduling scheme. The most straightforward approach is to decide on the resource
allocation first and then on their scheduling. There is, however, a drawback in scheduling after allocating
the resources: the system performance (related to scheduling) is bound to be a consequence of the decisions
taken to optimize circuit area (in the allocation step). Therefore, the most appropriate formulation for
this problem is to perform scheduling and resource allocation at the same time.

Most of. the approaches used in recent synthesis systems are based on either scheduling under resource
constraints or concurrent scheduling/allocation. Both are difficult problems, and no polynomial-time
algorithm is known to solve them.27 Scheduling under resource constraints was addressed by several
researchers, because it is crucial not only for hardware synthesis but also for computer design and
operation research.28.29 Several heuristics have been proposed to solve this problem. We would like to
mention here some recent approaches, relevant to hardware synthesis. A simple scheme is the earliest
possible scheduling, where operations are scheduled as early as possible, under the constraint that the delay
between two adjacent timing cuts is bounded from above by the required cycle time. When the number
of resources is bounded, it may be necessary to delay the scheduling of some operations to a later state.
The Emeraid/Facet30 system, the Design Automation Assistant,31 MIMOLA32 and Flamel2' use this
scheduling approach with some minor variations. Another scheduling method, called list scheduling, is
used in References 33-35. It is based on a topological sort of operations by using the precedence relations
implied by the data and control dependencies. The sorted operations are then iteratively assigned to control
states in an order determined by a heuristic priority function.

Concurrent scheduling and allocation was used first by the MAHA program, 36 that computes instead

an estimate of the critical path through the data path and then schedules the operations along the
critical path by assigning them to control states. Then non-critical operations are scheduled. Paulin
proposed and implemented in the HAL system 37 a force-dirccted method. Operations are assigned to states

by an urgency scheduling method which blends earliest possible and lotest possible scheduling, to

CONTROL UNITS FOR VLSI PROCESSORS 357

determine the possible time-frames for each operation. Then an iterative force-directed scheduling
algorithm attempts to balance the distribution of operations that make use of the same hardware
resources. Concurrent allocation and scheduling were also proposed by Devadas,38 who modelled these
problems as a multi-dimensional placement problem and used an algorithm based on simulated annealing
to solve it.

In control synthesis it is im'portant to account for propagation delay through the hardware resources.
Delays may vary according to the implementation style and determine the processor cycle time. Since
performance is related to both the cycle-time and the number of cycles for instruction, it is then crucial
to distribute the operations over a set of machine cycles on the basis of delay information. The scheduling
algorithms can take operation delays into account by annotating the sequencing graph. In the limiting case
that no resource bounds are specified (e.g. no area limitations are likely to be violated by a maximally
parallel design), scheduling techniques simplify to the levelling of the sequencing graph that is made acyclic
by loop removal and that is weighted by the delays at each node.

Hardware designers consider it very important to be able to specify 1/0 timing requirements along with
the beliavioural specification. Thus timing specifications on the hardware 110 signals may introduce
bounds on the delay through a chain of operations.39 These constraints must be taken into account for
control unit design and resource scheduling. Similarly, defining the interface protocol for a processor in
terms of timing constraints on the 1/0 signals is very important. Boriello40 developed algorithms for
synthesizing processor interfaces and their controls.

4. CONTROL OPTIMIZATION

Control synthesis constructs a structure consisting of an interconnection of sequential, combinational and
auxiliary circuits. Without loss of generality, we may assume that the representation of the sequential and
combinational circuits is given by tables, i.e. state tables for sequential circuits and logic covers, or truth
tables for combinational ones. Although a general theory for control optimization does not exist yet,
several techniques have been proposed in switching theory to optimize the representation of sequential and
combinational circuits. Such techniques aim primarily at the reduction of the complexity of the logic,
which correlates positively with the reduction of the gate count or silicon area. Note that the correlation
has been observed in many instances, but only in a limited number of cases (such as the state encoding
problem for PLA-based sequential circuits) it is possible to go beyond statistical correlation and prove
relations between model minimality and area optimality.

Optimization techniques for sequential circuits include the minimization of control states and their
optimal encoding. These are classical problems of switching theory4! and they are often referred to as state
minimization and state encodir.g. Optimization of combinational circuits, including the combinational
component of sequential circuits, depends on the logic representation model. For two-level logic
representation, the optimization problem is the classical two-level logic minimization problem.
Topological optimization techniques, such as folding and partitioning,42 can be applied to reduce further
the silicon area of PLA-based two-level implementations after logic minimization. Recently, efficient
multiple-level logic optimization techniques43-46 have been introduced. Their appeal is related to the ease
of mapping some logic function into multiple-level structures and to the correspondence between multiple-
level models and semi-custom implementations such as standard cells or gate arrays. The multiple-level
model has opened new problems: indeed the state encoding problem and the logic optimization problems
had to be cast in a different formulation. The search for optimal algorithms with this model is still an area
of active research.

4.1. State minimization

The state minimization problem is an important task for the optimization of any sequential circuit. It
is independent of the hardware model used for the circuit implementation. State minimization is the search
for a representation of the control function using a minimal number of states. Rcducing thc number of

358 G. DE MICHELI

states corresponds to reducing the number of transitions in the sequencing function and eventually to the
reduction of the logic circuits required. Moreover, a reduction of the number of states corresponds to a
reduction of the number of bits needed to represent the states, and therefore the size of the state register.

State minimization has been the object of extensive research. We refer the reader to Reference 41 for
the basic formalism and to Reference 47 for some recent results and an updated set of references. For state
minimization, it is important whether the sequential circuit representation is completely specified or not.
In the former case, the transition function and the output function have specified ~alues for each pair of
input condition and state. In the latter case, some don't care conditions are allowed.

In the case of completely specified sequential functions. it is possible to partition" the state set into
equivalence classes. such that for each state in a class and any input the next state belongs to the same
equivalence class and the output is the same. Therefore the state minimization problem reduces to the
problem of identifying the classes of equivalent states and merging together the states in each class. It was
shown in Reference 48 that the reduction of completely specified finite automata with n states to a
minimum representation can be achieved in 0 (n log n) steps.

Unfortunately. most sequential circuits representing control units are incompletely specified. The lack
of a complete specification is due to the need for controlling only a fraction of the total resources in any
given state. For example. if a shifter is not used in a control state (e.g. an ADD instruction) then the
shifting length is a don't care condition. It is obvious that don't care conditions can be used fruitfully
to minimize the states and the corresponding logic. However, this makes the problem intrinsically harder
to solve. It has been shown that the minimization of incompletely specified automata is a NP-complete
problem.49 Therefore heuristic techniques are used. We refer the reader to Reference 47 for a set of
references on the problem.

4.2. State encoding

The state encoding, or state assignment problem, applies to sequential functions and corresponds to
choosing a Boolean representation for each control state. Control synthesis may use I-hot encoding for
the states, i.e. one bit is spent for each state. Such a representation is convenient for synthesis, owing to
its simplicity, but it is not optimal for ROM or PLA implementations. The optimal state encoding problem
corresponds to finding an encoding that optimizes the size of the logic representation with a given hardware
model. In particular, when ROMs are used for the sequencing and control store, it is just convenient to
reduce maximally the number of bits in the state representation, to minimize the bits required in the ROM
and in the state register. In the case of a two-level logic implementation, the state encoding affects the
number of implicants in a minimal Boolean cover. If a PLA is used to implement the Boolean function,.
we may assume that each PLA row implements an implicant and each column is related to an I/O signal
(primary input/outputs and the encoding of the present/next states). The PLA area is proportional to the
product of the number of rows and the number of columns. Both row and column cardinality depend on
state encoding. The (minimum) number of rows is the cardinality of the (minimum) cover of the FSM
combinational component according to a given encoding. The encoding length is related to the number
of PLA columns. Therefore the PLA area has a .complex functional dependence on state encoding. For
this reason two simpler optimal state encoding problems are considered: (i) given the family of encodings
that minimize the number of implicants, find an encoding of minimum code length; (ii) given the family
of encodings of a given (possibly minimum) length, find an encoding that minimizes the number of
implicants. In both problems, the search for an optimum encoding is broken down into two tasks to be
performed sequentially: each task optimizes one parameter affecting the PLA area. In this perspective,
they can be considered approximation strategies to the search for an optimum solution. Note that the
above problems are still computationally difficult and to date no method (other than exhaustive search)
is known that solves them exactly. Therefore heuristic strategies are used to approximate their solution.Most of the classical state encoding techniques 50 - 52 attempted to solve problem (ii) with minimum code

It is assumed that the PlA is not folded or partitioned for the sake of simplicity.

CONTROL UNITS FOR VLSI PROCESSORS 359

length. The relevance of problem (ii) was related to minimizing the number of feedback latches in discrete
component implementations of finite state machines. Today, optimizing the total usage of silicon area
(related only weakly to the number of storage elements) is the major goal in integrated circuit
implementations of PLA-based finite state machines. For this reason some recent techniques for optimal
state assignment do not requjre minimal encoding length. It is important to remember that most of the
classical algorithms for state encoding have no practical implementation, since their complexity grows
exponentially with the problem size and they can be applied effectively only to sequential circuits with few
states. The selection of the type of registers used to store the machine state affects also the size of the
implementation. This problem was addressed by Curts S3,54 in connection with the state encoding problem.

We refer the reader to Reference 55 for an extended set of references and a critical survey of most of the
previous techniques for the state encoding problem.

Recently, efficient heuristic methods for state encoding have been proposed for the PLA-based
model.7.ss-s7 An approach to concurrent state minimization and encoding was presented in Reference 58.
The symbolic design method proposed in Reference 56 is dealt with in Section 4.4, because its scope goes
beyond the state encoding problem. Amann 7 proposed a control structure based on an implementation
of the sequencing and control store by two PLAs and on a loadable binary counter to hold the state
information. A clever encoding scheme combines the approach used in Reference 56 with an assignment
of consecutive binary codes to appropriate state chains. The transition among states in the chain is
achieved by stepping the counter, whereas the other transitions are achieved by loading the next-state code
into the counter.

Multiple-level logic circuits can be used for the control store. Automatic synthesis of multiple-level
macro-cells have been successfully used. S Logic design of multiple-level sequential circuits was derived in

the past from the two-level counterparts. Unfortunately, the optimality achieved for two-level circuits may
no longer hold for multiple-level circuits. State encoding techniques for multiple-level circuits have not
reached maturity yet. Heuristic approaches have been tried in References 59 and 60.

4.3. Logic minimization

Logic minimization techniques for control circuits are no different to those used for other classes of
circuits. For the two-level model, heuristic minimizers such as ESPRESSO6! and MINI,62 and exact
minimizers such as ESPRESSO-EXACT63 and McBOOLE64 have been shown to be effective and reliable
tools.. Exact minimizers can be used on several medium-scale problems.

Logic optimization of multiple-level logic circuits is based on new Boolean techniques, as well as on
simplified algebraic models. 43-46 Even though these techniques are rather new and the optjmality properties

are not yet guaranteed in most cases, they have been used successfully for processor design.

4.4. Symbolic design

We consider in this section a recent approach to the optimization of control structures consisting of
interconnections of two-level logic circuits (which may be implemented by PLAs), registers and auxiliary
units. In particular, this method may be applied to the state encoding problem. The approach is called
symbolic design methodology. As a starting point, it is assumed that each logic circuit is described by a
table. Each entry in the table is a mnemonic (i.e. a string of characters). Tables are called symbolic covers
and may have multiple input and output fields. They can be seen as symbolic sum of product
representations, where each row, called a symbolic implicant, specifies one or more output conditions in
conjunction with the conditions expressed in each corresponding input field. Note that Boolean vectors

The optimality of a Boolean cover is measured by its cardinality, i.e. by the number of its implicants. A Boolean cover of a functjon
is minimum, if there exists no cover of that function having a smaller cardinality. A Boolean cover of a function is minimal if
its cardinality is minimum with reaard to some local criterion, usually if no proper subset is a cover of the same function.61 Exact
minimizers yield minimum covers wherm heuristic ones guarantee only minimality.

360 G. DE MICHELI

of Os and Is can be viewed as mnemonics and therefore Boolean covers, or truth tables, can be seen as
symbolic covers as well.

Example 2. For the circuit structure shown in Figure 6(a), consider the table shown in Figure 6(b). The
table specifies a combinational circuit: in particular an instruction decoder. There are three fields: the first
is related to the addressing-mode, the second to the operation"Code and the third one to the corresponding
control signal. The circuit has two inputs and one output. Each row specifies a symbolic output for any
given combination of symbolic inputs.

INSTRUCTION

DECODER

ADDRESSING OPERATION CONTROL
MOD! COD!

Figure 6(a). Combinational logic circuit: instruction decoder

INDEX AND CNTA
INDEX OR CNTA
INDEX JMP CNTA
INDEX ADD CNTA
DIR AND CNTB
DIR OR CNTB
DIR JMP CNTC
DIR ADD CNTC
IND AND CNTB
IND OR CNTD
IND JMP CNTD
IND ADD CNTC

Figure 6(b). Symbolic representation of an instruction decoder. There are three addressinl modes: DIR (direct), IND (indirect) and
INDEX (indexed); four instructions: ADD, OR, JMP and ADD; four controls: CNTA, CNTB, CNTC and CNTD. Each row of the table shows

a control signal to the data-path in conjunction with a liven addressinl mode and instruction

Example 3. Consider a simple sequential circuit implementation, as shown in Figure 7(a). The table of
Figure 7(b) describes its function. In particular, it has four fields: primary inputs, present-states, next-
states and primary outputs. The first and last fields are binary, the second and third are symbolic. Another
example is given in Figure 7(c), showing a finite-state machine controller, that implements the control unit
of the micro-processor described by Langdon. 6$

In the standard approach to synthesis, Boolean representations of switching functions are obtained by
representing each mnemonic entry in a table by Boolean variables. The optimization of logic functions,
and in particular two-level logic minimization, is performed on the Boolean representation. The result of
logic optimization is heavily dependent on the representation of the mnemonics. As an example, the
complexity (in particular the minimal cardinality of a two-level implementation) of the combinational

CONTROL UNITS FOR "VLSI PROCESSORS 361

51
52
53
54
55
51
52
53
54
55

S3
S3
s",
S2
S2
S3
sa
S4
S3
S-'

0
0
0
I
I
0
I
I
0
0

0
0
0
0
0

I
I
I
I

Figure 7(b). Symbolic representation of a sequential circuit implementing a finite-state machine. There is one primary Boolean input
and one primary Boolean output. There are five symbolic states, namely: 51, 52, 53, 54, SS

component of a finite-state machine depends on the encoding of the states. that can be represented by
mnemonics at the symbolic level.

The symbolic design method avoids the dependence on the variable representation in the optimization
process and consists of two steps: (i) determine an optimal representation of a switching function
independently of the encoding of its inputs and outputs; (ii) encode the inputs and outputs so that they
are compatible with the optimal representation. This technique can be applied to find a Boolean
representation of all (or some of) the inputs and/or outputs of a two-level combinational circuit that
minimizes its complexity. In particular the method can be applied to combinational circuits with feedback
(FSMs) to solve the state encoding problem. when this is formulated as problem (i) of Section 4.2. It can
also be applied to arbitrary circuit interconnections with two-level combinational logic circuits (Figure 8).

We assume PLA-based implementations of the logic blocks. Since the area of the physical
implementation has a complex functional dependence on the function representation, we consider a
simplified optimization technique that leads to quasi-minimal areas. In particular we attempt to find first
a representation that is minimal in the number of implicants by means of a technique called symbolic
minimization. and then a representation of the input/outputs that is minimal in the number of Boolean
variables by solving some constrained encoding problems. The method is presented by elaborating on the
combinational circuit of Example 2. We refer the interested reader to Reference S6 for the details about
the symbolic minimization and the encoding problems and algorithms.

Symbolic minimization reduces the size of the table by merging rows. or implicants. as in the case of
Boolean minimization. Two mechanisms are used: (i) symbolic implicants with the same outputs are
merged when their corresponding inputs can be expressed by a disjunctive relation, (ii) symbolic implicant5

G. DE MICHELI362

CO.~ROL-SIC.AL8O.-CODK)lODK .zx~ S~A~ZSTATZ

- -
11 12 00000000000000111
- - - - - - -- --
12 Al 00000000111011000
- -

A1 JXP DIR8C~ 11 00000100000100100
A1 SRJ DIR8C~ A3 00000000001000001
A1 SAC DIR.C~ AC 00000010000000000
Al ISZ DIR8C~ AC 00000000000000000
A1 LAC DIR.C~ AC 0000000000"0000000
A1 A.D DIR.C~ AC 00000000000000000
A1 ADD DIR&C~ AC 00000000000000000

&.2

&.2

&.2

&.2

&.2

&.2

&.2

00000000000000000
00000000001000001
00000000000000000
00000000000000000
00000000000000000
00000000000000000
00000000000000000

JIC.
SRJ
SAC
ISI
LAC
A8D
ADD

I.DI"EC~
I.DI"EC~
I.DI"EC~
I.DI"EC~
I.DI"EC~
I.DI"EC~
I.DI"EC~

A1.
A1.
A1.
A1.
A1.
A1.
A1.

Al JHP 18DEXED 11 00001101000100100
Al SRJ IBDEXED A2 00000000001000001
Al SAC 18DEXED A3 00001101000100000
Al 18Z 18DEXED A3 00001101000100000
Al LAC 18DEXED A3 00001101000100000
Al A.D I.DEXED A3 00001101000100000
Al ADD I.DEXED A3 00001101000100000
- -

A2 DIREC~ A3 00000001010001000
A2 I.DIREC~ A3 00000001010001000
A2 IBDEXED A3 00001101000100100

A3 JHP Il 00010101000000100
A3 SRJ DIREC~ AC 00010110000000110
A3 SRJ 18DIREC~ AC 00010110000000110
A3 SRJ IBDEXED AC 00000010000000111
A3 SAC AC 00000100000000000
A3 ISZ AC 00000000000000000
A3 LAC AC 00000000000000000
A3 A.D AC 00000000000000000
A3 ADD AC 00000000000000000
- - - - - - - - - - - - - -- -. - - - - - - - - - - - - - - - - --
AC JMP 81 00000001010000001
AC SRJ 11 00000001000000001
AC SAC 11 00000001000000001
AC ISZ 81 00000000010000000
AC LAC 81 00000001010000001
AC A.D 81 00000001010000001
AC ADD 81 00000001010000001
- - - - - - - - - - - - - - . -
81 LAC 11 00110100000000000
81 A.D 11 01000100000000000
81 ADD 11 00100100000000000
81 IS. 82 00010100001000010
- - - - - - - - -.. - - - - - ~ - - - - - - - - - - - - -- - - --
E2 IS. 83 10010110000000010
- - - - - - - - - - - -. - - - - - - - -. - - - - - - - -- - - --
83 11 00000001000000101

Figure 7(c). Symbolic representation of a sequential circuit implementing a control unit. There are five fields: two correspond to the
present and next control states, two fields correspond to the primary inputs (i.e. the .operation code and the addressing mode) the
last field to the controls. There are nine states, corresponding to instruction-fetch, operand-address evaluation and instruction
executioft. The states are labelled by mnemonic strings, namely: II, 12, AI, A2, A3, A4, EI, E2, E3. Seven instructions are
considered, namely: JMP (jump), SRJ (subroutine jump), SAC (store accumulator), ISZ (increase and skip on 0), LAC (load
accumulator), AND (and), ADD (add). Three modes of memory addressing are considered: DIRECT, INDIRECT and INDEXED.
The operation and addressing mode are specified by two instruction fields. Each row of the table shows the next state and the Boolean

control signals to the data path in conjunction with a given addressing mode, instruction and present state

363CONTROL UNITS FOR VLSI PROCESSORS

ADDRESSING OPERATION CONTROL SELECT DECODED
MODE CODE CONTROL

Figure 8(a). Interconnection of two combinational circuits: two-stage decoder

0 CNTA 100
0 CNTB 100
0 CNTC 010
0 CNTD 010
I CNTA 100
I CNTB 001
I CNTC 001
I CNTD 001

Figure 8(b). Symbolic representation of the second-stage combinational decoder

o. DE MICHELI364

are merged if appropriate covering relations are maintained to preserve the meaning of the table. The first
mechanism is a technique borrowed from multiple-valued logic minimization: 66 the second is unique to

symbolic minimization

Example 4. From the table of Example 2 (Figure 6(b». we can see that the addressing mode INDEX and
any operation-codes AND OR ADD IMP correspond to the control CNTA. Similarly either one of the
following conditions:

(i) addressing mode DIR and operation-codes AND or OR
(ii) addressing mode IND and operation-code AND

correspond to control CNTB. The entire table can be expressed by six implicants (instead of twelve) by
using the first mechanism:

INDEX AND OR ADD JMP CNTA
DIR AND OR CNTB
IND AND CNTB
IND OR JMP CNTD
DIR IND ADD CNTC
DIR JMP CNTC

Note that now one or more mnemonics may appear in a field of an implicant (e.g. DIR IND in the first
field). Such grouping of mnemonics is important for the encoding, as shown later. By using the second
mechanism, the table can be further reduced to

INDEX AND OR ADD IMP CNTA
DIR IND AND OR CNTB
DIR IND ADD IMP CNTC
IND IMP OR CNTD

Here, a covering relation is assumed that allows control CNTD to override control CNTB and CNTC when
both are specified. For example, the second and fourth implicant state apparently contradicting outputs
for the input condition IND OR. Such conflicts must be resolved to preserve the integrity of the
representation. Fortunately, no additional circuit is needed to implement the covering relations when
conflicting outputs are specified. Indeed covering relations are implemented by the choice of an
appropriate encoding, as shown below.

Symbolic tables are processed by a symbolic minimizer, such as CAPPUCCINO,'6 to minimize the
number of symbolic implicants. Then mnemonics are encoded by considering each field one at a time.
There are two sufficient conditions that guarantee that the encoded cover can be expressed with at most
as many Boolean implicants as the symbolic cover cardinality. Namely, each literal or group of literals
in a field must be encoded by a Boolean cube and the covering relations in the minimal symbolic cover
must be preserved in the Boolean one. Therefore the encoding of the mnemonics is driven by two different
mechanisms. For the input fields, we require that each group of mnemonics is encoded by one Boolean
cube that contains the encoding of all and only the corresponding mnemonics. For the output field, each
covering relation among mnemonics requires a bitwise Boolean covering relation among the corresponding
encodings.

Example 5. Consider this Boolean encodina of the mnemonics:

INDEX = 00 AND = 00 CNTA = 00
DIR = 01 OR = 01 CNTB = 01
IND = II ADD = 10 CNTC = 10

JMP = 11 CNTD = 11

Note that the mnemonic groups I AND OR). I.ADD IMP) and [JMP OR) can be expressed by one-

365CONTROL UNITS FOR VLSI PROCESSORS

dimensional cubes, namely 0., I. and *1 (where * is a don't care condition on a variable). Note also that

the encoding of CNTD covers bit-wise the encodings of CNTB and CNTC. Then the function can be

represented by a Boolean cover as

.1

.1
11

0*
.*
*.

01
10
11

Note that one Boolean implicant has been dropped, because its output field has only Os.

The problem of finding Boolean codes that are compatible with a minimal symbolic cover always has
a solution. However, the length of the encoding (i.e. the number of binary variables) needed to encode
each symbol may have to be larger than the minimum length required to distinguish all the symbols in
each field. Therefore an optimal constrained encoding problem addresses the search for minimal-length
encodings compatible with a (minimal) symbolic representation. An analysis of some encoding problems
is reported in Reference 67. Heuristic algorithms have been reported in References 55 and 56, and have

been successfully implemented.
Let us now consider the sequential circuit of Example 3. The finite state machine is implemented by

feeding back some of the outputs of a combinational circuit to its inputs, possibly through a register.
Optimal state assignment can be solved by symbolic design by minimizing the state table using symbolic
minimization and by computing a state encoding compatible with the minimal table. S6 The feedback path

makes this problem slightly more difficult, because the state symbols appear in both an input and an output
column of the state table and must be encoded consistently: the set of state symbols must be encoded while
satisfying the group and the covering constraints simultaneously. For this case, necessary and sufficient
conditions for the existence of a consistent encoding are given in Reference 56.

Example 6. Consider the finite-state machine of Example 3. The symbolic table can be minimized down

to four symbolic implicants, namely
. 81 S2 54 S3 0

1 S2 81 1
0 54 8S S2 1
183 54 1

under the constraints that 81 and S2 cover 83 and that 8S is the default state, i.e. 85 is encoded by 000
and therefore covered by all other states. There are also two group constraints, namely: (81, S2, 84) and
(54, 55). An encoding that satisfies both sets of constraints for the same set of symbols is

51 111
S2 101
S3 001
54 100
85 000

Note that the two groups are encoded by the cubes 1.. and .00 respectively, and that the encodings of
51, 111, and of S2, 101, cover bit-wise the encoding of S3, namely 001. The corresponding Boolean cover is

. ..1 001 0

1 101 111 1
0.00 101 1
1 001 100 1

Symbolic design can be applied to interconnected logic circuits. Consider first two cascaded
combinational circuits, to be implemented by two-level logic macros, that communicate through a bus.
For example, a micro-PLA and a nano-PLA can be used for instruction decoding, as explained in Section
2. Since the representation of the information transmitted from the micro-PLA to the nano-PLA is often

366 G. DE MICHELI

irrelevant to the design, then symbolic optimization can be used as follows. The former circuit can be
represented by a table with a symbolic output field and the latter by another table with a symbolic input
field. The tables corresponding to both circuits are optimized independently by symbolic minimizaton and
the set of symbols, representing the communication signals, are encoded as in the previous case, under
the constraint that a consistent encoding is assigned to the symbols in both tables.

Example 7. Consider the cascade interconnection of two PLAs, as shown in Figure 8(a). Assume that
the first circuit is the instruction decoder described in Example 2 and in Figure 6, and that the second
circuit is described by the symbolic table of Figure 8(b). Assume that the first tab.1e c.an be minimized as
in Example 3 and that the symbolic minimization of the second yields

0 CNTA CNTB 100
0 CNTC CNTD 010
. CNTA 100

1 CNTB C.NTC CNTD 001

We need now to find an encoding of CNTA, CNTB,'CNTC and CNTD, subject to the constraints that CNTD
covers CNTB and CNTC, and the group constraints: (CNT A, CNTB), (CNTC, CNTD) and (CNTB, CNTC, CNTD) ,
The former constraints (covering) are due to the symbolic minimization of the first table (see Example 4)
and the latter are related to the minimization of the second table, There is no two-bit encoding that satisfies
all constraints, because of the last group constraint that requires a two-dimensional cube containing the
encoding of CNTB, CNTC and CNTD and not containing the encoding of CNTA, The three-bit encoding

CNTA (XX)
CNTB 101
CNTC 110
CNTD 111

satisfies all covering and group constraints, and therefore allows one to implement both PLAs with the
minimal number of implicants. Unfortunately, we need an extra bit in the communication bus between
the circuits. Note that a two-bit encoding would be possible if we split the last product-term into two,

namely:

1

1

001
001

C;NTB
CNTC CNTD

In this case the group constraints can be easily satisfied by the two-bit encoding of Example 5, at the
expense of one extra product-term.

Needless to say, this method can be generalized to the design of arbitrary interconnections of sequential
and/or combinational units, as depicted for example in Figure 8(c). In particular it may be applied to any
multi-stage control structure, where the stages, or some of them, are implemented by PLAs.

5. CONCLUSIONS AND PERSPECTIVES

We have reviewed some relevant problems in the area of computer-aided synthesis of circuits for control
units of VLSI processors. Several algorithms and CAD programs have been developed for structural, logic
and physical synthesis and optimization. Control synthesis has evolved from the methods used for micro-
programmable processors to new techniques that allow hardware compilation of a behavioural description
of a processor. Although micro-programming allows the designer to customize a control unit using a high-
level specification, now with hardware compilation the entire processor can be automatically synthesized.
New design techniques may be explored. Since the partition of a processor into data-path and control fades
when both are synthesized automatically and possibly using the same implementation style, methods for
fine tuning the control unit to a given data-path become possible and they are key to achieving the ultimate
performance with a state-of-the-art technology. Nevertheless control synthesis techniques (from

G. DE MICHELI 367

behavioural specifications) still use simple structures for control and to date do not use (or use to a very
limited extent) auxiliary structures, such as stacks, that have proved to be effective in control structures.
For this reason, the structural synthesis of control units for processors still needs wide investigation.

The problems arising from optimizing the logic representation are mostly computationally intractable.
Heuristic methods have been developed, but they still lack the capability of handling large designs
efficiently. Combinational-logic optimization techniques have reached some maturity, but only for the
two-level logic model. In this case, representations with some thousands of implicants have been optimized
efficiently. However, even with the two-level model, optimization of sequential logic circuits is still in its
infancy. State minimization and state encoding techniques have shown to be effective for sequential
structures with no more than one hundred states. The symbolic design method has been used successfully
to optimize a control unit of a 32-bit processor with more than three thousand symbolic implicants and
about one hundred states. However, this has been the largest example that has been optimized with such
a method.

Exploratory work in the field of logic design of control circuits needs to address many unresolved
problems. First, today's optimization methods must be extended to multiple-level logic representations and
a theoretical framework for multiple-level synthesis must be defined. Even though some efficient programs
have been recently developed for combinational multiple-level logic synthesis, a comprehensive theory of
multiple-level logic optimization is still lacking. Moreover, techniques for sequential design based on
multiple-level circuits, such as state assignment, are still in their infancy. In addition, the relations among
different tasks of logic design must be understood and exploited, with particular emphasis on: (i) the
partitioning problem of a control unit into functional blocks; (ii) the state minimization problem; (iii) the
selection of the type of registers to store the control-state information; (iv) the optimal encoding and
minimization of two-level and multiple-level switching functions. Eventually, an efficient design system
must allow the exploration of circuit structures and their trade-offs, to find the best match between circuit
architecture and implementation technology.

ACKNOWLEDGEMENTS

This work has been supported under NSF grant no. MIP-8710748 and by a seed grant of the Center for
Integrated Systems at Stanford.

REFERENCES

I. Q. De Micheli, A. Sangiovanni- Vincentelli and P. Antognetti (eds), /)esi,n Systems for VLSI Circuits: Logic Synthesis Qnd
Silicon Compilation, Martinus Nijhoff, 1987.

2. P. Davies, 'Readinas in microprogramminl', IBM J. Res. Qnd Dev., II, (I), 16-40 (1972).
3. T. Lewis and B. Shriver, 'Special Issue on Microprolrammina', IEEE Trans. Comput., C-JO, (July) (1981).
4. D. Qajsti, Silicon Compilation, Addison Wesley, 1988.
,. R. Brayton, C. Chen, Q. De Micheli, J. Katzenelson, C. McMullen, R. Otten and R. Rudell, 'A microprocessor design usinl

the Yorktown silicon compiler', Proc. Int. Colif. on Circuit Qnd Comput. Des., Rye, N.Y., pp. 225-230, Oct 198'.
6. F. HUI and Q. Peterson, Introduction to Switchin, Theory Qnd LogiCtlI Design, Wiley, 1981.
7. R. Amann and U. Baitinaer, 'New state assignment algorithms for finite state machines usina counters and multiple PLA/ROM

structures', Proc. Int. Coni. on Compo Aid. Des., Santa Clara, November 1987, pp. 20-23.
8. R. Hadsell, 'Micro/370' in MicroDrrhit«ture8 of VLSI Comput~n, Proceedinas NATO ASI Series E, No. 96, Martinus Nijhoff,

The Netherlands, 1985.
9. P. Rubinfeld, D. Archer, D. Deverell, F. Fox, P. Qronowski, A. Jain, M. Leary, A. Olesin, S. Peraels and B. Supnik, 'The

CVAC CPU: a CMOS VAX microprocessor chip', Pr«. Int. Colif. on Comput~ l)rsi,n, Rye, N.Y., October 1987, pp.
148-1'2.

10. M. Horowitz, P. Chow, D. Stark, R. Simoni, A. Saltz, S. Przybylski, J. Hennessy, Q. Qulak, A. Agarwal and J. Acken, 'MIPS-
X: A 2O-MIPS peak, 32-bit microprocessor with on-chipcache', IEEE J. Solid State Ci1'Cllits, SC-U, ('), 790-799 (1987).

II. A. Goldberg, S. Hirshhorn and K. Lieberherr, 'Approaches toward silicon compilation', IEEE Circuits Qnd Devlcu, I, (3),
29-39 (1985).

12. T. Aaerwala, 'Microprogram optimization: a survey', IEEE TraIlS Comput.. C-25. 962-973 (1976).
13. T. RaUKhcr and P. Adams, 'Microprogramming: a tutorial and survey of recent developments', IEEE Trans. Comput., C-29.

(I), 2-19 (1980).

368 CONTROL UNITS FOR VLSI PROCESSORS

14. C. Papechristou, 'A ~ for implementiDi microproaram addressina with proarammable JoIic: arrays', Digital p.-oc~, Vol.5,
(3-4), 23.5-2.56 (1979).

1.5. C. Papachr1stOU, R. Rashid aDd S. Gambhir, 'VLSI desian of PLA-bascd microcontrol scheme', hoc. lilt. COlt/'. Oil Comp.
Da.. Rye, N.Y., October 1984, pp. 771-77.5.

16. S. lsoda, Y. Kobayashi and T. Ishida, 'Global compaction of horizontal mlcro-proaraJDs based on the aeneralized data
dependency graphs', IEEE TraIlS. Computers, C-1, (10), 922-932 (1983).

17. S. Schwartz, 'An algorithm for minimiziDi read-only memories for machine control', hoc. IEEE Symp. Oil Switch. alld Autom.
Theory, 1968, pp. 28-33.

18. A. Oruselli and U. Montanari, 'On the minimization of read-only memories in microprogrammed diaital computers' IEEE
Trans. COmplll. 1111-1114 (1970).

19. R. Milner, 'Flow graphs and flow algebras', J. ACM, 26, (4), 794-818 (1979). "

20. o. De Micheli aDd D. Ku, 'HERCULES: a system for high level synthesis', hoc. Desigll Automatioll ColI/enll~, Los Angeles,
June 1988.

21. M. McFarland, 'The VT: a database for automated diaital design', T«hllical Reprot, CMU, 1978.
22. D. Thomas, C. Hitchcock, T. Kowalski, S. Rajan and R. Walker, 'Automatic datapath synthesis', Computer 16, (12), 74-82

(1983).
23. R. Brayton, R. Camposano, O. De Micheli, R. Otten and J. van Eijndhoven, 'The Yorktown silicon compiler system' in D.

Oaiskj (ed.), Silkon Compilatioll, Addison Wesley, 1988 and IBM Report R.C. 12500.
24. W. Rosenstiel and R. Camposano, 'Synthesizina circuits from behaviorallevd specifications', hoc. 7th lilt. Symp. Oil CHDL,

Tokyo, August 198.5.
2.5. H. Trickey, 'Flamel: a high level hardware compiler', IEEE TraIlS. CADIICAS, CAD-6, (2), 2.59-269 (1987).
26. R. Brueck, B. Kleinjohann, T. Kathoefer and F. Rammig, 'Synthesis of concurrent modular controllen for alaorithmic

descriptions', Pr«. Desi,II Automatioll ColI/entIce, Las Vegas, July 1986, pp. 28.5-291.
27. M. R. Garey and D. S. Johnson, Computers and Illtractability, W. H. Freeman and Company, San Francisco, 1978.
28. T. C. Hu, 'ParalJeJ sequencina and assembly line problems', Oper. Ra., (9), 841-848 (1961).
29. C. V. Ramamoorthy, K. M. Chandyand M. J. Gonzales, 'Optimal schedulina stratqies in a multi-processor system', IEEE

TraIlS. Comput., C-11, (2), 137-146 (1972).
30. C. Tsena and D. Siewiorek, 'Automated synthesis of datapath in digital systelns', IEEE TraIlS. Compo Aided Desi,II, CAD-5,

(3), 379-39.5 (1986).
31. T. Kowalski and D. Thomas, 'The VLSI desian automation assistant: what's in a knowledge bale', hoc. Des. Autom. Coli/.,

Las Vegas, June 198.5, pp. 2.52-2.58.
32. O. Zimmermann, 'MDS-the miinola design method', Joumal 01 Di,ital Systems, 4, (3), 337-369 (1980).
33. J. Nestor and D. Thomas, 'Behavioral synthesis with Interfaces', hoc. Int. Coli/. Oil Computer Aided Des/,", Santa Clara,

November 1986, pp. 112-11.5.
34. B. Pangrle and D. Qajski, 'State synthesis and connectivity bindina for microarchitecture compilation', hoc. lilt. COlI/. 011

Computer A/ded Des/,", Santa Clara, November 1986, pp. 210-213.
3.5. M. McFarland, 'BUD-bottom-up desian of diaital systems', Pr«. Desi,II Automation ColI/erellce, Las Vegas, July 1986, pp.

474-479.
36. A. Parker, J. Pizarro and M. Mlinar, 'MAHA: a proaram for data-path synthesis', Pr«. Desirll Automat/oil ColI/~, La

Vegas, July 1986, pp. 461-466.
37. P. Paulin and O. Kniiht, 'Force-directed scheduliDi in automatic data-path synthesis', hoc. Desi,II Automat/oil COIt/'~,

Miami Beach, July 1987, pp. 19.5-202.
38. S. Devadas and A. NeWton, 'Alaorithms for hardware anocation in data-path synthesis', hoc. lilt. Coli/. Oil Compo Des., Rye,

N.Y., October 1987, pp. .526-.531.
39. R. Camposano and A. Kunzmann 'Considering timina constraints in synthesis from a behavioral description', Int. Coli/. 011Compo Des., Rye, N.Y., October 1986, pp. 6-10. .

4(). Q. BorieJlo and R. Katz, 'Synthesis and optimization of interface transducer loaic', hoc. lilt. Coli/. Oil Compo Aid. Da., Santa
Clara, November 1987, pp. 274-277.

41. J. Hartmanis and R. E. Stearns, Algebraic Structure Theory 01 Sequential MQchina, Prentice Hall, 1966.
42. O. De MicheJi, M. Hofmaoa, A. Newton and A. L. Sanaiovanni Vincentelli, 'A desian system for PLA-based digital circuits'

in AdYanca ill Compllter-Aided Engill«rJII, Desi,II, Jay Press, 198.5.
43. R. Brayton, R. Ruden, A. Sanaiovanni-VincenteJli and A. Wana, 'MIS: a multiple-level logic optimization system', IEEE TraIlS.

CADIICAS, CAD-6, (6), 1062-1081 (1987).
44. J. Darringer, D. Brand, J. Gerbi, W. Joyner and L. TreviJlyan, 'LSS: a systan for production loaic synthesis', IBM J. Res.

and l:),'\I., 28, (.5), .537-.54.5 (1984).
4.5. R. Brayton and K. McMullen, 'The decomposition and factorization of Boolean Expressions', lilt. Symp. Oil Circ. Qlld Syst.,

Rome 1982, pp. 49-.54.
46. K. Bartlett, W. Cohen, A. De Oeus and O. HachteJ, 'Synthesis and optimization of multilevel logic under timiDi constraints',

IEEE Trans. CADIICAS, CAD-S (4),582-.596 (1986).
47. B. Reusch and W. Merzenich, 'Minimal coverings for incompletely specified sequential machines', ActQ IlI/ormQtica, (22),

663-678 (1986).
48. J. Hopcroft, 'An II loa II algorithm for minimiziDi states in a finite automaton'" in Z. Kohavi (ed".), theory 01 Machina alld

Comptltation, Academic Press, 1971, pp. 189-196.
49. C. Pleeaer, 'State reduction of incompletely specified finite state machines', iEEP. TraIlS. Comput. 1099-1102 (1973).
.50. J. Hartmanis, 'On the state assignment problem for sequential machines I', IRE TraIlS. Elect. Camp., £C..I0 1.57-16.5 (1961).
.51. D. B. Armstrona, 'A programmed alaorithm for assianinl internal codes to sequential machines', IRE Trans. El«t. Comp.,

EC-l1, 466-472 (1962).

369o. DE MICHELI

52. T. A. Dolo«a and E. J. Mcauskey, 'The codina of internal states of sequential machines', IEEE Trans. EI«t. Comp., EC-13,
549-562 (1964).

53. H. A. Curtis, 'Systematic procedures for realizina synchronous sequential machines using flip-flop memory: part I', IEEE Trans
Comptlt., Coli, 1121-1127 (1969).

54. H. A. Curtis, 'Systematic procedures for realizing synchronous sequential machines using flip-flop memory: pan 2' IEEE TrQIIS
Comput., COI', 66-73 (1970).

55. G. De Micheli, R. Brayton and A,. L. Sanliovanni-Vincentelli, 'Optimal state assianment for finite state machines', IEEE TrQIIS.
CADIICAS, CA~, (3), 269-284 (1985).

56. G. De Micheli, 'Symbolic desian of combinational and sequential logic circuiu implemented by two-levelloaic macros', IEEE
Trans. CADIICAS, CAD-5, (4), 597-616 (1986) and IBM ReseGrch Report RC /1672.

57. L. Philipson, private communication.
58. M. Perkowski and B. Lee, 'Concurrent minimization and state assignment for finite state machines', Proc. IEEE Colif. Oil

Systems, Man and Cybernetks, Nova Scotia, October 1984.
59. S. Devadu, H. T. Ma, A. Newton and A. Sangiovanni-Vincentelli, 'MUSTANG: state assianment algorithms of 6nite state

macrnnes for optimal multi-levelloaic implementation', Proc. Int. ColC!. on Compo Aid. Des., Santa Clara, November 1987,
pp. 16-19.

60. W. Wolf, K. Kreutzer and J. Akella, 'A kernel-6ndina state assignment alaorithm for multi-level 101~, Proc. Desigll
Automation Con,/ennce, Annaheim, 1988.

61. R. Brayton, G.' D. Hachtel, C. McMullen and A. L. Sangiovanni-Vincentelli, Logic Minimiut/on Algorithms lor YLSI
Synthesis, Kluwer Academic Publishers, 1984.

62. S. J. Hona, R. G. Cain and D. L. Ostapko, 'MINI: a heuristic approach for 10Iic minimization', /BM J. Res. and DeY., 18,
443-458 (1974).

63. R. Rudell andA. Sangiovanni-Vincentelli, 'Multiple-valued minimization for PLA optimization', /EEE Trans. CADI/CAS,
CAD-6, (5), 727-7SO (1987).

64. M. Daaenais, V. Aprwal and N. Rumin, 'McBoole: a new procedure for exact 10lic minimization, IEEE TrQIIS. CADIICAS,
CAD-5, 229-238 (1986).

65. G. Langdon, Computer Des/In, Computech Press, 1982.
66. D. Rine, Computer Science and Multipie-Yahled LOlk, Nonh Holland, 1977.
67. T. Villa 'Constrained encodina in hypercubes: alaorithms and applications to lolical synthesis', UCBIERL Memorandum

M87137, May 1987.
68. D. Thomas, E. Dirkes, R. Walker and V. Rajan, 'The system architect's workbench', Proc. Desiln Automat/on ColC!eren~,

Los Angeles, June 1988.

