PLEASURE: A COMPUTER PROGRAM FOR
SIMPLE /MULTIPLE CONSTRAINED / UNCONSTRAINED FOLDING OF
PROGRAMMABLE LOGIC ARRAYS

Giovanni De Micheli and Alberto Sangiovanni-Vincentelli
Department of EECS
University of California at Berkeley
Berkeley CA 94720

ABSTRACT

Programmeable Logic Arrays are important building blocks
of VLSI circuits and systems. We address the problem of
optimizing the silicon area and the performances of large
logic arrays. In particular we deseribe a general method for
compacting a logic array defined as multiple row and
column folding and we address the problem of intercon-
necting a PLA to the outside circuitry. We define a con-
strained optimization problem to achieve minimal silicon
area occupation with constrained positions of electrical
inputs and outputs. We present a new computer program,
PLEASURE, which implements several algorithms for multi-
ple and/or constrained PLA folding.

1. INTRODUCTION

Very Large Scale Integrated Circuits and Systems are
so complex that structured design techniques are often
used to ensure electrical correctness while maintaining a
reasonable design time. Array logic has been used exten-
sively in VLSI design and Programmable Logic Arrays have
proved to be an effective means to implement multiple out-
put switching functions [1] [2].

The PLA implementation of a switching function can be
partitioned into three tasks : functional design, topological
design, and physical design. Functional design consists of
translating a set of Boolean equaticns into a set of two-level
sum-of-products logical implicants. In general, this step is
followed by a logic minimization , in order to reduce the
number of implicants and literals. Logic minimizers are
effective tools for this task [3][4]. Topological design
involves the transformation of the set of implicants into a
topological representation of the PLA structure, such as a
symbolic table or a stick diagram. The physical design is the
translation of the topological representation into the mask
layout according to an implementation technology.

In this paper we address the problem of optimizing the
area used by a PLA, by means of row and column folding [5].
Wood presented for the first.time a folded PLA implementa-
tion in [6], and Hachtel et al. an algorithm for PLA folding in
[7]. The technique reported in [Sf and I'7] is referred here
to as simple folding. Simple folding aims at determining a
permutation of the rows (and/or columns) of the array
which permits a maximal set of column pairs (and/or row
pairs ) to be implemented in the same column {row) of the
physical array. Folding comes in two flavors : column fold-
ing and row folding . Since large arrays are usually very
sparse , a considerable area reduction can be achieved by
folding rows and columns,

A generalization of simple folding is multiple folding
[8]. The objective of multiple column (and/or row) folding is
to determine a permutation of the rows {(and/or columns) of
the PLA which allows to implement in each column {and/or
row) of the physical array a set of logic columns {rows).

From the description given above , it is clear that multiple
folding contains simple folding as a special case. Thus, the
area saving achieved by this technique can always be made
better than ( or, in the worst case, equal to ) the one
achieved by simple folding. Note that if simple folding is

used , the area of the PLA can be reduced at most to 25% ,
no matter what the sparsity of the personality of the PLA is.
If multiple folding is used, we are limited only by the spar-
sity structure of the PLA.

Greer proposed for the first time a multiple row folded
PLA implementation in [9] and called it segmented array.
Paillotin and Chuguillanqui et al. presented multiple column
folded arrays in [10] and in [11]. A taxonomy of the folding
techniques for PLA is reported in [12].

All existing folding techniques have a major drawback.
The connection of a folded PLA to the outside circuitry may
involve complex and area-consuming rouling, because the
positions of the inputs and the outputs of a folded array are
permuted by the folding algorithm. In order to use
effectively PLA folding for VLSI design, it is crucial to allow
the positions of inputs and outputs to be constrained.

In this paper we present : i) a new algorithm for con-
strained multiple folding . that allows to compact PLA area
while ensuring easy routing of the folded array ; ii) two PLA
architectures to implement effectively muiltiply-folded PLAs;
iii) a general folding computer program , PLEASURE , which
implements the new folding algorithms to accomplish sim-
ple and multiple , constrained and unconstrained row and
column folding.

2. MULTIPLE FOLDED PLA IMPLEMENTATION

An unfolded PLA has the general structure shown in Fig.
2.1, and can be implemented both in bipolar and MOS tech-
nology. We refer in this paper to the NOR-NOR nMOS imple-
mentation presented in |[13] as the standard PLA architec-
ture. The implementation of simple column {and/or) folded
PLA is straightforward, since at most two columns (rows)
are folded together and connection to the outside circuitry
can be done from the top or the bottom of the array (Fig
2.2) [5] [6]. The implementation of a multiply-folded PLA is
more complex. We deal first with the implementation of
multiply column-folded logic arrays.

The implementation of several logic columns in the
same physical location requires the physical (metal, poly or
diffusion ) columns be split into segments (Fig 2.3). There-
fore a path must be provided to route input and output sig-
nals to/from the split physical columns inside the array.
Thus standard PLA architectures cannot be used to imple-
ment multiply column-folded PLAs. Several authors [8] [9]
[11] [14] have proposed different architectures for
multiply-folded arrays. We consider the following two struec-
tures, which can be implemented in nMOS or ¢cMOS technol-
ogy.

The first architecture is shown in Fig. 2.4. It requires
two levels of metal (polysilicon), in addition to the usual lev-
els of poly (metal) and diffusion. The PLA is implemented
using two arrays (the AND plane and the OR plane) personal-
ized by MOS transistors. Input signals run vertically in the
input columns of the AND plane, product terms run horizon-
tally in the rows of both planes and output columns run
vertically in the OR plane. Two levels of interconnect are
used for these rows and columns, in addition to ground
diffusion rows and columns. The third level of interconnect
{second metal or second poly level) is used to run horizontal
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connection-rows above the product term rows to route the
input and output signals to/from the input and output
column segments to the outside circuitry.

An alternative architecture supports muitiple folding

with oniy one level of metal, poly and diffusion. Input and
output signals are routed inside/outside the array by
connection-rows parallel and alternated to the product term
rows and implemented on the same level. This structure is
simpler than the previous one but the area used by a multi-
ply folded PLA is larger. (Fig. 2.5)

It is important to note that PLAs implemented with
either structure are essentially circuit blocks through which
input and output busses run straight in the connection-rows.
They are therefore excellent building blocks of a regular
and structured VL3I design methodology.

Moreover it is important to point out that column fold-
ing induces a permutation of product terms and
connection-rows. While product term rows provide connec-
tion internal to the PLA only, connection-rows join the array
to the outside circuitry and their ordering is essential to an
optimal routing of the PLA to the other functional blocks of
the circuit.

We therefore define a multiple constrained column fold-
ing problem. The goal of multiple constrained folding is to
compact the PLA area subject to an ordering of the
connection-rows. Constrained multiple folding is necessary,
for example, for an area-effective compaction of PLAs imple-
menting switching functions whose inputs and outputs are
signal data busses inside a VLSI processor.

We address two constrained column folding problems :
column folding with ordered conneclionrow assignment
and column folding with bounded connection-row assign-
ment. In the former problem, each PLA input {and/or out-
put) column is given a position index. Folding is constrained
so that connection-rows can be positioned according to the
sequence of indexes of the connected columns. as shown in
Fig. 2.6. In the latter, each input (and/or output) is given an
upper and a lower bound on the position of the contacted
connectionrow. Folding is constrained so that each
connection-row can be assigned to a position with an index
satisfying the given bounds,

Unconstrained multiply row-folded PLAs can be imple-
mented with a single-poly, single-metal technology [13].
Row folding induces a permutation of input and output
columns,which leads to a segmented array, consisting of a
sequence of AND and OR planes. This may be a technological
drawback, because product terms require area-consuming
connections between adjacent planes, in addition to an
increased complexity of input and output routing.

Simple row folding may be constrained so that the
folded array shows an AND-OR-AND or an OR-AND-OR struc-
ture [12). In this case input or output signals can be routed
to both external planes by connection-rows.

On the other hand multiple row folding leads to a seg-
mentation of the array into more than three planes {9] [15gj.
Since routing of the columns of the internal planes may be
difficult, we introduce a new multiple constrained row fold-
ing problem : row folding with bounded column assign-
ment. BEach column is given a left and right bound and row
folding is constrained so that each column can be assigned
to a position within the bounds.

Multiply row and column folded arrays can be imple-
mented with the described architectures, provided that only
columns in the external planes are multiply folded. To con-
nect a multiply row and column folded array effectively.it is
important to be able to determine which signals are routed
to the external planes through connection-rows and which
are routed from the top and the bottom of the array.

The related constrained multiple row and column fold-
ing problem consists of constraining the fold so that input
and output signal can be routed from the desired (left,
right, top, bottom) direction.
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3. BASIC CONCEPTS AND DEFINITIONS

We concentrate our attention on a topological represen-
tation of a PLA. The foliowing definitions are a generaliza-
tion of those given in [7]. A logic array is described by a
personality matrix. For the sake of generality, we assume
that the {i, j ) entry of the personality matrix is zero if
the (i, j }* location of the physical array is occupied by
interconnect only. Let fc;, i=1,2 -, nci
{4y, i=1,2 ---,nr}) be the set of columns (rows) of
the personality matrix. Each column is labeled input {out-
put), if it carries an input (output) signal in the physical
array. A maximal set of adjacent input {output) columns is
called input array or AND plane (output array or OR plane).
let R{c;)(C(ri)) be the set of rows (columns) with a
nonzero entry in the it column (row) of the personality
matrix. Two columns ¢;, ¢; {rows r;, 7;) are disjoint if
R(ci)NR(c;)= ¢ (C(ri)NC(r;)= ¢ ). An ordered
column (row) folding list is an ordered set of either input or
output disjoint colummns 0; = {¢;, 1. Ci2. " " Cin) {rows
oy ={ri .72 °Tin) ) and an ordered column (row)
folding set is a set of disjoint ordered column (row) folding
lists O =§0,, 02, * - . 0¢}. Let U be the set of unfolded
columns (rows), i.e. U = fc|Bk s.t. ¢ € 0}

(U = {r| Ak s.t. T € 0x}). The column (row) cardinality of
folded PLAis C (0 ) = | 0] + | U]

( R(0)= 1|01+ | U] ) An ordered folding list of
columns (rows) induces a set QR(0) {@C(0)) of ordering
relations among the rows {columns}:

QR(O) = i'rz<ryl'rz < R(Ci,j) 4 Tb € R(ci.j*'l) :
Ci 4, Cij+1 € 0:0; € 3

(QC(D) = !ca.'(cy‘cz € C(T‘l'..j) 1 Cy € C(Ti,j+1) H
Ti§» Ti.j+1 €010, €0

et QR*(0) (QC*(0Q)) be the transitive closure of
QR(0) (QC(0))[16]. A column (row) ordered folding set
is implementable if @?*(0)(QC*(0)) is a partial order of
theset Z*.

The optimal unconstrained column (row) folding problem
can be stated as follows:

Find an implementable ordered folding set that minimizes
the column (row) cardinality of the PLA

4. AN ALGORITHM FOR MULTIPLE P1A FOLDING

The optimal muiltiple PLA folding problem was shown to
be NP-complete in [17]. We presented a heuristic algorithm
for unconstrained multiple folding in [8]. The algorithm is
extended here to constrained multiple folding.

A conceptual description of the algorithm is the following:

MASTER ALGORITHM
Step 0: Initialize the folding procedure

Step 1: If the set of columns which have not been proces-
sed is empty, stop. Else select a pair of unfolded
disjoint columns or an unfolded column and a
column foiding list as folding candidates.

Step 2: If the fold is not implementable, reject it and go
to Step 1.

Step 3: If folding has secondary constraints and constraints
are not satisfied reject the fold and goto Step 1.
{This step is performed by the algorithms described
in Section 5.)

Step 4: Fold the candidates, modify the PLA accordingly.
Go to Step 1.



At each step the algorithmn tries to increase the cardinality
of the folded-column set and verifies the implementability of
the folded array. A graph theoretic interpretation of the
folding problem is used to define a criterion to verify the
folded array implementability [5] and to study heuristics for
the multiple folding candidate selection [8] [18].

5. MULTIPLE CONSTRAINED FOLDING

As stated in Sections 1 and 2 the PLA constrained fold-
ing problems are related to the interconnection of the array
to the outside circuitry. We classify the constraints on fold-
ing into two major categories:

1) Architectural or primary constraints
2) Secondary constraints.

Architectural constraints are related to the structure of the
array and to the positions of input/output busses relative to
the array. Secondary constraints are related to the posi-
tions of input and output lines inside the busses. Examples
of architecture constrained folding problems are:

14) Simple column folding with a subset of inputs
and/or outputs connected to the top (bottom) of the
array.

1B) Simple row folding with AND-OR-AND or OR-AND-OR
architecture.

1C) Segmented arrays: the column set is partitioned
into subsets, each forming a segment of the array.
Columns are folded with columns in the same segment
only and the sequence of segments is preserved.

The following foiding problems involve secondary con-
straints:

24A) Column folding with bounded product-row assign-

ment.

ZBg Row folding with bounded column assignment.

2C) Column folding with bounded connection-row
assignment.

2D) Column folding with ordered connection-row
assignment.

The Master Algorithm presented in Section 4 can handle
both architectural and secondary constraints. Different
strategies are used in the two cases. To satisfy architec-
tural constraints it is sufficient that folding candidates
satisfy the following requirements for the related problems:

1A) Columns connected to I/0 busses on the top (bot-
toam) of the array are folded either on top (bottom) of
an unfolded column or folding list or not falded at all.

1B) AND-CR-AND (OR-AND-OR) architecture. Fows con-
nected to input (output) columns that are connected fo
rows folded on the left or on the right are selected as
candidates to be split on the left or on the right of the
array respectively.

1C) Selected candidates for column folding are con-
strained to be in the same segment. In the case of no

more than three segments and simple row folding, the
selection of candidates for row folding is as follows:
rows connected to columns in the leftmost (rightmost)
segment are folded on the left (right) only or not folded
at all.

Unfortunately we cannot be sure that secondary constraints
are satisfied only on the basis of an appropriate selection of
folding candidates. The reason is that secondary con-
straints are related to the row (column) positions induced
by a column (row) folding. Therefore, we present in this sec-
tion two assignment algorithms that assign positions to rows
and/or columns and check if the secondary constraints are
satisfled. We will present first the assignment algorithm for
problem 2A . From this, an algorithm for problem 2B can be
easily derived by interchanging rows with columns. Prob-
lems 2C and 2D are solved by a double assignment algo-
rithm, based on the assignment algorithm of problem 2A.
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5.1 Column folding with bounded product-row assignment

We consider in this section Lthe problem of constraining
product term row positions only. We therefore refer to pre-
duct term rows as rows throughout this section.

We define lower (upper) row-bound map: a map :

=12 '--,nr}+§1,2 .-

Lpttry; 4 -, nrd
(Ug:bry: ¢ -, nr})

relating each row to a lower {upper) position bound.

We define row assignment
P:ir;i=12 -, nr}-1$1,2 . . mr} a permutation
of the rows and implementable row assignment a perrmuta-
tion compatible with an ordered column folding set O; ie.
P(re )<P(1y ) VT, <1, € GR* (0 ).

An implementable boundedrow assignment is an
implementable row assignment such that

LR(TJ-) = P('r,—) = UR(TJ')

=1,2' "','an-'fl,Z, ..

v ji=12 - ,nr
FEzrample 5.1.1 : For the logic array shown in Fig. 2.1,
the following lower and upper bounds are given:
Ip=1,1,14428 Up;=1,3 386,88

This means that =, is constrained to the first posi-
tion, 7z and rg are constrained between position 1
and 3, and so on. The implementable row assign-
ment ( 7y, 74, T, Ty, T5 Te ) induced by the column
folding shown in Fig. 2.2 does not satisfy the given
bound maps. On the contrary, the folded PLA shown
in Fig. 5.1 has the following implementable row as-
signment: { 74, T3, Ty, Ts, Ty, T ). Note that rows are

numbered from the top to the bottom of the array. -

The optimal bounded-row column folding problem can be
stated as follows:

Find an implementable ordered column folding set and
a relaled implementable bounded-row assignment that
minimizes the column cardinality of the folded PLA.

Let us consider a graph interpretation of the following sub-
problem:

Given an ardered column-folding set and lower and
upper row-bound maps, find an implementable bounded
Tow assignment, if it exisis.

The graph interpretation is useful to understand the under-
lying structure and to develop an algorithm and related
heuristics. We associate to this subproblem a directed
graph G{R, N, A ), with two node sets N and R, and a set of
directed edges A.

The node sets K and N are in one to one correspon-
dence with the row set and the set of the first nr natural
numbers representing the possible row positions. Qur prob-
lem consists in finding a matching between R and W, i.e.
coupling each row-node to a position-node, so that all the
required bounds are satisfled. We represent position bounds
by a set of directed edges:

A=A VAU A3V AL U 4

where : A;={(ny, nj+1); § =1,2, - -, n-1] represents the
order on the sequence of the first nr natural numbers;

Ag={(ny, T N L(ry)=i+1, j=1.2, - - nr] and
As=i(r;, m )| U(r;) =i-1, j=1,2, -,nr} take into
account the lower and upper bound wmaps

Ag={(r;, m5 )l <r; € QR (0 )} represents the order relations
among the rows induced by the column folding.



Ezxample 5.1.2 : Fig. 5.2a shows graph G(R, N, A')
A = A|UARUAgUA, for the PLA of Fig. 2.1, the row
bounds of example 5.1.1 and the ordered folding set:
§(cq co). (ca c4) (c2 c5)3.

Note that an edge from a node in N (R) to a node in R {N)
represents now a strict lower (upper) bound. If a lower
(upper) bound on a row position is 1 {nr) . it can be
represented by appending nodes n, {n,,,,) to set N and by
adding appropriate directed edges to 4.

Moreover note that if a rgw, say 7 , has the position w
as strict upper bound (ie, (7. n, ) € Ay ) and must follow
another row, say 7 (i.e. (v,7 )€ A, ), then row r has as
strict upper bound a position lower or equal to w-~1

Fzample 5.1.3 : Row r; must be above 75 which in
turn must be above r4. Since 74 is required to be as-
signed to a position lower or equal to 6, 7, must be
assigned to a position lower or equal to 4. { In this
case 7, has already the more stringent constraint to
be in position 1. )

.
We therefore define: Ag={{r,,n;.,;)|37; such that
(r;. % )€ Az andl [ +1 distinct nodes in K along the

directed paths in A, from 7 to 7;}. Similar considerations
apply to lower bounds, but the assignment algorithm does
not require that the set of directed edges is further
increased.

Ezample 5.1.4 The edges in subset As are

represented by dashed lines in Fig. 5.2b. =

Our problem is to find an additional set of undirected edges
E matching every node in R to one and only one node i1:1 N
so that the resulting mixed graph G(R, N, E, A) is acyclic.

Remark 5.1 : Column folding with bounded-row as-
signment is equivalent to the sequencing problem
with release times and deadlines where all task
length are egual to one [19][20] and where a partial

order on the tasks is given. =

The following algorithm will either construct a set of
undirected edges such that graph G(R, N, E, A) is acyclic
or will return a flag if no possible edge set exists. We recall
that the in-degree of a node is the number of directed edges
incident to that node and the deletion of a node from a
graph corresponds to remove the node from the node set
and all edges incident to/from it from the edge set.

The algorithm is described in Pidgin C.

ASSIGNMENT ALGORITHM
E=¢;
delete n, from graph G;
for{i=1;i<nr;i=i+1 )}
if ( in-degree (n; )20 ) return ( FALSE ) ;
Q=1{r € R ;indegree (r )= 0};
it (Q= ¢ )return( FAISE ):
1','=

E=Fulin.7;i:

delete m; from graph &;
delete r; from graph &}

}

return ( TRUE ) ;

r € @ such that (r;, m; ) € A and k is minimal;
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The algorithm runs in linear time since it cycles at most nr
times through the main loop. The algorithm uses a greedy
strategy: at each iteration it matches the available position
with lowest index to the most constrained node in R.(ie.
selects the product-row with lowest upper bound). The algo-
rithm finds an implementable bounded row assignment, if
one exists, as proven by the following theorem.

Theorem 5.1 : The Assignment Algorithm returns
TRUE if and only if there exists a matching £ such
that graph G(R. N, E, A)is acyclic.

The prgof is reported in {18].

Ezample 5.1.5 : Consider the column folded logic ar-
ray shown in Fig. 5.1, and the related graph
G(R, N, A) shown in Fig. 5.2. The implementable
bounded-row assignments given by the algorithm is

(7'1. T2 T3, T5 T, Tg ) [ ]

The Assignment Algorithm replaces Step 3 of the Master
Algorithm for column folding with bounded row assignment.
The strategy for folding candidate selection is described in
detail in [18].
Remark 5.2 : The graph interpretation and an algo-
rithm for row-folding with bounded column assign-
ment can be derived "mutatis mutandis" from this
problem.

5.2 Column folding with bounded connectionrow assign-
ment

We refer in this section to a logic array implemented
with connection-rows for routing input and output signals as
described in Section 2. According to these architectures,
there are two sets of connection-rows contacting the
columns of the left and righi array respectively. For the
sake of simplicity, we will consider constrained folding of
one array only.

Both proposed architectures support at most as many
connection-rows as product-rows. Since each column is con-
tacted to a connection row, we require throughout the sec-
tion that the number of columns in the considered array is
at most equal to the number of rows. Most PLAs satisfy this
assumption.

We define connectiontTow assigniment a one-to-one
map: T:ife, 1=1,2, -, ned > MCi1, 2 -, nr] such
that j = T(c;) if column ¢; is contacted to the connection
row in the j** position.

Ezxample 5.2.1 : Consider the OR plane of the PLA
shown in Fig. 2.1, Fig. 5.3 shows the unfolded array
with the connection-row assignment:

T{ce)=1 T{cg)=2 T(cg)=5 T(cy)=6
=

We define physical connection-row set 4 the image of 7. Its
elements are the position of the connection-rows which are
physically implemented. Note that there are A=nr-nc
slack connection-rows which are not implemented and
whose positions are irrelevant to the problem.

We define lower (upper) connectionrow bound map a
map:

Leitey, i ce,ne) 1,2, -, nr

(Ucley, i=1,2, -+, nc}>12 -, ,nr)

relating each column to a lower {upper) position bound on
the position of the contacted connection-row.



Ezample 5.2.2 : For the OR plane of the PLA shown in
Fig. 2.1, the following bounds are given:
Le=1,1,4,8 Us=1,38,8
This means that the first column of the OR plane (c5)
must be connected to a connection-row in position 1
; the second one (cg) to a connection-row whose posi-

tion is bounded between 1 and 3; and so on. -

An implementable connection-row assignment is an assign-
ment compatible with a column ordered folding set, t.e. is
an assignment such that :

max(P(R(ci, j-1))) < T(ci,5) < min(P{R(c; j.:1)))

j=1.2 - ,n ¥ column ¢ ; in folding list o; with car-
dinality n, where by definition:

max(P(R(ci5)))=0 and min(P(E(cine1)))==

Example 5.2.3 : Consider the folded OR plane shown
in Fig. 22 with the ordered folding set
0 = {{cq cg), (o C10 - An implementable
connection-row assignment would be:

T(c,)=1 T(cg)=2 T(cg)=3 T{cyp)=6

The connection-row contacted to ¢y is in position 2,
and therefore is above (has lower index than) the

product rows connected to ¢4 {in positions 4 and 8).
The connection-row contacted to ¢ g is in position 8
and is below (follows) the product rows connected to

¢ (in positions 2 and 3). ™

An jmplementable bounded connection-row assignment is
an implementable connection-row assignment such that :

LC(Cj) T(CJ)S Uc(Cj) j=1,2,

Ezample 5.2.4 : The implementable connection row-
assignment of example 5.2.3 does not satisfy the
bounds given in example 5.2.2. An implementable
bounded connection row-assignment is:

T{c,) =1

=

, ne

T(cg)=2 T{cg)=4 T{cy)=6

Fig. 5.4 shows a folded implementation of the OR
plane compatible with the bounded connection-row

assignment. [

We can now state the column folding with bounded
connection-row assignment problem as follows:

Find an implementable ordered column folding set and
o related dimplementable bounded conneclionrow
assignment which minimizes the column cardinality of
the falded PLA.

As we did for the previous problem, we consider a graph
interpretation of the following subproblem:

Given on ordered column folding set and a lower and
upper connectionrow bound maps, find an implement-
able bounded connection-row assignment, if if exists.

Note that an implementable bounded connection-row assign-
ment requires, by definition, a product row assignment,
because the positions of rows in both sets influence each
other. Hence the problem consists in finding the two row
assignments compatible with the ordered column folding
set, if they exist.
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We associate to this subproblem a directed graph
G(R, N, C, A), with three node sets R, N and C and a
directed set of edges 4. The node sets R, C and N are in
one to one correspondence with the row set, the column set
and the set of the first nr natural numbers respectively.

We represent the bounds on the row positions by a set
of directed edges:
A= A; UAdpy UAg U Ay VA5 UAg UA, UAg
where A, and A4, are defined as
Ae=l(my, ey MLe(e; ) =i+l; j =12 -

As={(c;, 7 )| Ug(c; ) =i-1; j =12, --
account the lower and upper bound maps.

in section 5.1,
, nci and

-,nc) take into

Ezample 525 Fig. 5.5a shows graph
G(R, N,,C,A'), A =AUAUAUA, in the case
that the OR plane of the PLA of Fig. 2.1 is folded and
the ordered column folding set is:
O = {{cy, cg), (ce €19)} and is compatible with the
bounds given in Example 5.2.2.

-

We cconsider the mutual relations among  prodycts apd
conngction-rows by the edge subsets; 4g={{r.c )lr € R{c)
and c is split o top of ¢} and 4,={{c, r)lr € B(c )and c is
split on top of ¢}. In words, if column ¢ is folded on top of
¢ ,.then all the rows { product and connection ) connected
to ¢ must be assigned to positions with index lower than the
positions of all the rows connected to c.

Ezomple 5.2.6 : Fig. 5.5b shows the edges in subsets

Ag and 4y for the problem of exampie 5.2.5. ™

Moreover note that if a columil , say 3. has as itrict upper
boupd the position w { i.e. (¢, ny )€ Ag). (T,¢ ) € Ag and
{r,r )€ Ay, then r has as upper boung the position w-2 .
We therefore define: As={(7..n;.; )| 3r, ( r not necessarily
distinct from 7 ) and Jc such that (7, ¢ ) € Ag, (¢, ™ ) € A3
and 3¢ +1 distinct nodes along the directed paths in A4VAg
from 7, to c]. The edges in this set represent the upper
bounds on the paosition of each product-row induced by fold-
ing. Note that all nedes in # must be assigned to a position
lower than nr +1. Hence we append to Ag the edges
{rc. Nprs1) V7, € R having no explicit upper bound .

FExomple 5.2.7 : Fig. 5.5c shows the edges in subset

As for the problem of example 5.2.5. -

Similarly , upper bounds induced on the column positions
are represented by: Ag={(cg. 7 )| 31 >0 nodes r € R, such
that (¢, 7)€ A7 and {7, n; ) € As).

Ezxample 5.2.8 : Fig. 5.5d shows the edges in subset

Ag for the problem of example 5.2.5. -

In graph terms, this problem is to find a set of
undirected edges £ matching every node in X and in C to
one and only one node in N so that the resulting mixed
graph G(R, N, C, E, A ) is acyclic. Note that in general the
number of columns and hence of physical connection-rows
required is smaller than the number of rows by A and we
take advantage of this in the assignment algorithm.



DOUBLE ASSIGNMENT ALGORITHM
E=¢:

A =nr-nc;
delete n, from graph G;

for(i=1l;i<nrii=i+1)}§
if ( in-degree (n; )#0 ) return ( FALSE );
@ = {r € R yin—degree (r ) = 0};
if{Q@=¢ )return( FAISE ) ;
75 =7 € @ such that (7, np ) € A and k is minimal;
E=FEu(n;, 7; )
H = §c € C: in—degree (¢ ) = 0};
if (H=1¢ )t
A=4A-1;
§f (A<D )return { FAISE );

else §
e, =c €H st fc;,n. )€ A and k is minimal ;
E =Eu(n, ¢, )
delete ¢; from graph G;

}

delete r; from graph G;
delete n; from graph G;

3

return { TRUE ) : -

The double assignment algorithm runs in linear time and
uses a greedy strategy. At each iteration, it tries to match
the available position with lowest index with the most con-
strained product and connecltionrows. Note that a
connection-row need not be assigned at each iteration, but
the total number of slack positions must be lower or at most
equal to A.

Theorem 5.2: The assignment algorithm returns
TRUE if and only if there exists a set of undirected
edges F matching each node in F and in £ to one
and only one node in N such that G(%, N, C, E, A)
is acyclie.

The proof is reported in [ 18].

The double assignment algorithm replaces Step 3 of the
Master Algorithm for column folding with bounded
connection-row assignment The selection of folding candi-
dates is described in [18].

5.3 Column folding with ordered connection-row assign-
ment

We extend to this section the considerations on multi-
ple column folded PLA implementation and the basic
definitions presented in Section 5.2.

We define order map
Sifey; =12, - ,ne}+§1,2 - ncl a one to one
map relating each column to the required relative position
of the contacted connection-row. We define implementable
ordered connectionrow assignment an implementable
connection-row assignment such that :

T(e;) < T(e;) if S(c) < S(c;) Vvi, j=1,2, ---

, ¢
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Example 531 : Consider the OR plane of the PLA
shown in Fig. 2.1 and the following order map:

S(cp)=2 S(cg)=1 S{cg)=3 S{cw)=4

This means that column folding is constrained so
that the connection-row to cgis in the topmost posi-
tion, followed by those cennecting cq, ¢y and ¢, in
the order. Fig. 5.6 shows a folded implementation
with the implementable ordered connection row as-
signment:

T{cp)=2 T(cg)=1 T(cg)=3 Tlcis) =4 n

We state the column folding with ordered connection-
row assignment problem as follows:

Find an implementable ordered column folding sef and

a related implementable ordered connection-row
ignment, which minimizes the column cardinalify
af the folded PLA

This problem is equivalent to column folding with the follow-
ing bounds on connection-row positions:

Lefe; )= S(e;) Yi=1,2 - ,nc

Ug(e;)=S(c; )+A Vvi=12 - -, ne
with the additional constraint on the order of the
connection-rows.

As we did in the previous section, we give a graph
representation for a subproblem:

Given an oraered column folding set and an orde.” map,

find an implementable ordered conneclionrow assign-

ment, if it exists.

The graph representation of this subproblem is given by
graph G?R, N, C. A) introduced in Section 5.2 where an
additional subset of directed edges is added to take care of
the order map:

Ag=f(ci. c; )i =S(ce ) =S(cks1) k=12,

The Double Assignment Algorithm can be used to replace
Step 3 of the Master Algorithm for the column folding with
ordered connection-row assignment problem.

Ezample 5 3.2 : Fig. 5.7 shows graph G(R, N, C, A)
for the order map of example 5.3.1 and the ordered
folding set O = {(cg, cg )}

,nec -1}

-
The selection of folding candidates is described in [18].
6. PLEASURE
PLEASURE is an interactive program for
simple/multiple constrained/unconstrained row and/or

column folding of Programmable Logic Arrays.

The PLA description is given as input to the program in
the form of two-level sum-of-products logical implicants.

The output of the program is a symbolic table
representing the folded array with the positions of the
active devices corresponding to the cares of the logic func-
tion, the locations of the cuts and the contacts between
columns ad connection rows. The symbolic table is suitable
to be processed by a silicon assembler program which gen-
erates the mask layout of the array according to a given
technology. Note that the symbolic table generated by
PLEASURE is technology independent.

The program is a command interpreter: input files can
be read and edited; logic arrays can be folded in a single run
or one fold at a time. This allows the user to monitor PLA
folding step by step, by displaying the partially folded array.



The user can enter column and/or row folding candidates of
his choice and verify the implementability of his selection.
When PLAs are folded in a single run, a soft interrupt capa-
bility allows the user to halt the compaction at any point to
see the partially compacted array before resuming folding
execution. The program can be run in a silent mode (i.e.
with no interaction with the user), so that it can be inter-
faced with other programs in a system for automated syn-
thesis of PLA's.

Folding instructions are entered to the program along
with the PLA description in the input file. PLEASURE allows
column (row) folding only and row and column folding.

Column folding can be simple or multiple, constrained
or unconstrained in either or in both planes. Architectural
constraints can be set on column positions. Colurmns can be
required to be folded on the top (bottom) of the array or not
folded at all. Column folded arrays can be segmented into
three adjacent planes, so that ceolumns in the external
planes, can be multiply folded and contacted by connection
rows. Secondary constraints can be put on product and
connection row positions. In particular column folding with
bounded or order connection-row assignment can be
achieved.

Row folding can be simple or multiple. Simple row
folded arrays can be constrained to have an AND-OR-AND or
OR-AND-OR architecture. Secondary constraints can be put
on the column positions.

Row (column) folding can follow column (row} folding.
Row folds can be alternated with column folds, by allowing
the program to choose the local "best” fold at each step.
This procedure achieves the best results as far as compac-
tion is concerned. Multiple row and column folded PLA can
be constrained by input/output position. An input (cutput)
can be required to be connected to the top, bottom, left or
right of the array.

Program PLEASURE is coded in raffor and consists of
about 5000 lines. Intermediate code in fortran7? is avail-
able. PLEASURE runs in a VAX-UNIX® environment, but is
easily transportable to other machines.

PLEASURE has been tested on a large set of industrial
arrays. To compare results obtained with arrays of different
sizes, the following foldings have been tried: i) uncon-
strained folding; ii) column folding with constrained row
positions: L{r; ) =maz(i-o0 ) Uf{r )=min(it+anr )

a= "ri";—: iii) column folding with constrained connection-row
positions: Le(ey ) = max(i—o,0 )
Ucf c; )=min(i+tonr ) a= 7—1"8—: iv) column folding with
ordered connection-row assignment.:

S(cy)=1,1=1,2, -+, nc. The folding results and execu-
tion time on a VAX 11/780 computer are reported in Table 1.
7. CONCLUSIONS

In this paper we addressed the muiltiple constrained
folding problem of Programmable Logic Arrays. A heuristic
algorithm for multiple folding has been presented as well as
two assignment algorithms for PLA row/column constrained
positioning. A computer program, PLEASURE, has been
described and shown to be an effective tool for interactive
topological design of logic arrays.

We bave presented two PLA structures which support
multiple folded arrays in MOS technology : the former uses
two levels of metal ( poly ) and the latter one level of metal
and poly.

PLEASURE is a part of the integrated system for Pro-
grammable Logic Arrays and Finite State Machines
automated design developed at the University of
California,Berkeley.
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Comparison of PLAs folded by PLEASURE with different constraints.
PLA size Constraints Folding | Folded Area | Time
nr*(ni+no) lists Unfolded {sec)
Area = 100
PLA 1| 30°(8+31) none 7 29 8
30%(B+31) row positions 14 51 14
30%(8+31) conn-row positions 15 53 23
30*(B+31) ordered conn-rows 15 53 18
PLA 2 [ 52%23+20) none kd 37 15
62°(23+20) row positions 12 80 34
52¢(23+20) conn-row positions 13 48 82
52*(23+20) | ordered conn-rows 13 58 53
PLAS B8*(B+83) none ] 56 112
BB‘(B+63; row positions 15 67 257
BE*(B+63, conn-row positions 12 83 305
88*(B+63) ordered conn-rows 15 73 328
PlA 4| 62*(24+14) none 11 58 23
62°(24+14) row positions 10 73 38
62+(24+14) conn-row positions 9 68 45
B2%(24+14) ordered conn-rows : 78 7%
PLAS| 85%°27+ 10} none 14 54 30
85*(27+10 row positions 10 67 56
a85*(27+10 conn-row positions 9 72 87
B5*(27+10, ordered conn-rows 8 70 59
PLA 6 75%(35+29) none 17 53 50
75%(35+28) row positions 15 82 118
75%(35+29) conn-row positions 18 84 199
75%(35+29) | ordered conn-rows 10 73 202
PLA7| 53%(35+20) none 10 49 26
53%(35+29) row positions 18 87 85
53%(35+29) | conn-row positions 17 58 110
653%(35+29) ordered conn-rows 10 BO 147
PLAB | 223%(47+82) none 15 38 1262
223%(47+62) row positions 39 55 3933
223*(47+62) | conmrrow positions 39 57 4722
223%°(47+62) | ordered conn-rows 33 80 4769
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