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7.1 Introduction
Circuit analyzers, such as ASTAP [7.41] and SPICE[7.23], have proven to be essential tools
for analyzing a variety of circuits. Such programs perform different kinds of analysis, such
as dc, ac and transient analysis, and support a large variety of element models. With the ad-
vent of large scale integrated circuits, there has been an increasing demand for fast and reli-
able circuit analyzers. Since most large scale circuits are digital integrated circuits, there has
been a wider interest in transient analysis. For this reason, several programs have been de-
veloped to perform mainly transient analysis and supporting primarily MaS technology de-
vices.

General purpose circuit analyzers [7.41] [7.23] are based on Sparse Tableau Formulation
[7.4] or the Modified Nodal Analysis [7.19] and on sparse Gaussian elimination. These
techniques have been explained in detail in Part I of this book. It has been shown that the
memory and computing time used by these programs grow super-linearly with the circuit size
and realistically limit the programs to the domai.n of small to medium-sized circuits.

Gate and switch-level simulators [7.38] [7.3] [7.1] can provide first-order timing inforDlation
more than three order of magnitude faster than circuit analyzers. However gate and
switch-level simulators do not solve many problems inherent in integrated circuit design.
Circuit designers are often interested in analyzing electrical waveforDls with higher accuracy.
for example to estimate critical-path delay or the effect of tightly-coupled feedback loops
(e.g. memory sense amplifiers).
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Several approaches have been followed to simulate the transient response of large scale cir-
cuits, while retaining a reasonable computational accuracy. A taxonomy of the major existing
simulation techniques has been presented in [7.18], [7.26] and in [7.42]. We will consider
in this chapter the transient analysis techniques that are based on incremental-time inte-
gration algorithms: Le. the simulated wavefomls are computed by discretizing the analysis
time frame and by determining at each time-point the values of the requested circuit vari-
ables. In this respect, this chapter could be considered as an extension of the integration
methods, described in Chapter 5 of Part I of this book, to the analysis of large scale circuits.

Circuit equations can be formulated as a system of a differential-algebraic equations:

/(x, x, t) - 0 (7.1.1)

x(O) - Xo

X E: R".
,

f( . . . . . ):R" x R" x R - R"

where x is a vector of n circuit variables. The transient analysis problem consists of inte-
grating this set of equations over a time interval. The incremental-time numerical integration
approach consist of diScretizing the time interval into time-points Ik' k - I, 2, ... , K and by
replacing x at each time-point by an integration formula [7.14][7.7]. Here the Backward
Differentiation Formulae [7.4] are used (see Chapter 5.3) , which approximate X(I k + I ) as
a function of x at the previous time-points. In particular:

p

Lap Xk+l-p
p-O

(7.1.2)Xt+l -
h

where xk+ 1 is the computed value of X(I k + 1 ), h = 1 k + 1 - 'k is the integration step-size at
""'1ime 'k and P is the approximation order of the differentiation formula. The integration c0-

efficient ap are chosen so that xk - X(/J Vk ~ 1,2, ... ,K , when the solution X(/J is a
polynomial of degree P . For example the Backward Euler integration formula is obtained
by choosing P - 1; ao = 1; al = 1 and the second order Gear algorithm by setting:
P = 2; ao = 3/2; al = -2; a2 - 1/2 for fixed time steps.

By combining the fonnulae, the circuit equation can be expressed- as:

g(xt, + 1. It, + 1) - 0 (7.1.3)

which is a set of nonlinear algebraic equations. This new set of equations must be solved at
every time-step Ik+ 1 for the computed solution xk+ 1 .

General purpose circuit analyzers solve the nonlinear algebraic system of equation by the
Newton-Raphson algo~thm at each time-point. The Newton-Raphson algorithm constructs
a sequence of vectors xl+ 1 which eventually converges to Xt+ 1 when the related assumptions
are met. The vectors xl+ 1 are the solution of the set of linear equations:

A'+ I xl+ I = ~+I (7 1 A\
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Gaussian Elimination
(Chapter 6)

Linear Gauss-Seidel
(Chapter 7.2)

Figure 7.1.1 Circuit Formulations
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where the coefficient matrix Al+ 1 and the vector ~+ 1 are related to the jth Newton-Raphson
iteration at the time-point t k + 1 [7.27]. Hence, numerical integration and the Newton-
Raphson technique reduces the problem to the solution of a system of linear equations. This
is the fundamental limitation of general purpose analyzers for large scale circuits.

In this chapter we present some techniques that exploit the structure of large scale circuits
and enable time-effective integration of the circuit equations, while retaining considerable
accuracy of the solution. Most of the techniques in this chapter are based on decomposition
. Decomposition techniques are used to partition the circuit equations according to their
structure. Smaller sets of equations are analyzed more efficiently due to their smaller size.
Under appropriate assumptions, the values of the electrical variables of the entire circuit can
be computed with controllable accuracy by knowing the values of the variables in the com-
ponents.

The chapter is organized in a logical perspective, by presenting decomposition techniques at
different levels of the solution of the circuit equations. First decomposition and solution of
linear system of equations are presented. Then, the decomposition of nonlinear system of
equations is described. Eventually decomposition at the level of the integration formulae is
reported. This will help the reader to understand the relations between different techniques
and bridging the gap between these techniques and waveform relaxation (Chapter 8) in
which decomposition is applied directly on the system of differential equations. In fact this
chapter and Chapter 8 are closely related, since they both deal with solving the same prob-
lem. However the logical perspective does not correspond to the chronological order in
which these techniques have been discovered and implemented. Fig. 7.1.1 shows the dif-
ferent levels of the solution of the circuit equations and the use of decomposition and relax-
ation methods at each of these levels.

7.2

In this section we consider the solution of (7.1.4), which is the last level in Fig. 7.1, by de-
composition techniques. For convenience, the superscripts and the subscripts are dropped
and the equations are written as:

bAx = (7.2.1)

The matrix A is sparse for the circuit applications we consider here. Sparse matrix techniques,
as described in Chapter 6 are widely used in solving (7.2.1). For large-scale circuits, how-
ever, sparse matrix techniques alone are not cost-effective and decomposition techniques
become necessary for reducing computation time.

As mentioned above, the solution of circuit equations by decomposition is an approach by
which the circuit is partitioned or tom into an interconnection of subcircuits. The subcircuits
are then solved separately (in parallel, if parallel processing is available) or in a predeter-
mined sequence; their solutions are then combined together to obtain the solution of the
entire circuit.
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From the algebraic point of view, decomposition can be considered as a reordering of the
circuit in a special way. It can be shown that the amount of computation required in solving
linear equations by decomposition is in many cases greater than that needed for sparse matrix
techniques to solve the circuit equations without decomposition. Nevertheless, there are
many situations where decomposition becomes advantageous, if not necessary. This is true,
for example, when a circuit is so large that its equations cannot be stored on an available
computer even though sparse matrix solution techniques are being used. Decomposition and
overlay schemes thus become a necessity. Decomposition techniques can also be employed
in cases where the circuit contains repetitive identical subcircuits so that the equations of
only a few subcircuits need to be stored. Further,.decomposition also allows the application
of parallel processing where the computation time could be reduced, although the amount
of computation may increase. As we shall see below, decomposition becomes more effective
when solving nonlinear circuits, where the concept of latency is used to reduce computation.

There are many ways of reordering or decomposing a system of equations, depending on the
solution method to be used. Here, we will consider two types of matrix decomposition which
have been employed in large-scale integrated circuit simulation. One is the bordered-block
diagonal form (BBD) and the other is the 'nearly' lower-block triangular form (NLBT).
We will also consider two general classes of solution methods: direct methods and indirect
or relaxation methods. As will become clear in the sequel, the BBD form is employed to solve
the circuit equations by direct methods, such as in SLATE [7.44], while the NLBT form is
suitable for relaxation methods.

Bordered-block diagonal form7.2.1

Consider a linear circuit which is to be analyzed by decomposing or partitioning its matrix
into a bordered-block diagonal form. Let the circuit equations be constructed using a general
formulation approach, such as the tableau approach [7.17] or the modified nodal approach
[7.19] (see also Chapter 2 above). As mentioned above, decomposition can be viewed as
ordering the circuit equations in a special way. From the circuit point of view, decomposition
can be accomplished by removing or 'tearing' a set of branches [7.43] or nodes [7.36]. If the
tearing set consists of branches, such that there is no coupling among the tom subcircuits and
between the subcircuits and the tearing branches, and also if the currents in the tearing
branches are declared as circuit variables, while each subcircuit variables are clustered to-
gether, then the partitioned equations will have the following form:
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M. Yl0 ..41 btXl

M2 Y20 ..,42 ~~

(7.2.2)-
M", Y,..o Am b..x.

T

yO] ~T02 y~ Yoo A, 1b .io

A[ A: AT'" A,T -~ i, tit

where x; is an n,-vector containing node-to-global datum voltages of subcircuit N; together
with possibly a subset of su~ircuit branch currents, and hj is the vector of sources in the
subcircuit. The vector "0 is the set of local datum nodes voltages, where each local datum
node is selected from each floating subcircuit that is created by removing the tearing
branches. The reason for ordering "0 last with ~ is to prevent the block-diagonal matrices
corresponding to the floating subcircuit from being singular. More formally, it can be shown

m
that [7.43]: Yoo =.I Y~ Mi-1 Y,o, where M; is an n;xn; nonsingular matrix, and Y,o and
Yo; each contain at'nlost one nonzero column. A; is a topological matrix which contains ex-
actly h,; nonzero columns and n,j nonzero rows, where h,t is the number of tearing branches
incident with subcircuit nj at n,j nodes other than the local datum node.

If the tearing set consists of node voltages only, such that no coupling exists neither among
the torn subcircuits nor between the subcircuits and the tearing nodes, the circuit equations
will have the following form:!

M) Y1c

Y2c.
.
.

Y~

ht
~
.
.
.

bm

Xl

~.
.
.

x,..

M2

(1.2.3)=
M/ft

T
~I }':T

c2 y~ y~ Vc 1"

where Yjc and Yci each now contains exactly nc; nonzero columns; nd is the number of tearing
nodes connected to subcircuits n;; "c is the set of node-to-datum voltages at the tearing
nodes. Note that in (2.3) if the entire circuit equation is nonsingular,

In

Ycc = I Y~ M;-l Yjc will also be nonsingular. For easy reference we denote the parti-
tioned fdlifi in (7.2.2) as branch tearing (BT) and in (7.2.3) as node tearing (NT). Also, the
vertical and horizontal border submatrices in (7.2.2) and (7.2.3) is denoted by P; and Q;.

As long as there is no coupling among the subcircuits themselves, it is possible to have coupling between
the subcircuits and the tearing variables, and (7.2.2) and (7.2.3) would still have Bordered Block Diagonal
fonn. For simplicity, it is assumed that no coupling exists between the subcircuits and the tearing set.
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Yd- TheAj] or Qj =

The partitioning of a circuit matrix into BBD form can be done either manually, such as im-
plied by nested models and subcircuits of input data description [7.44], or automatically. A
heuristic algorithm for automatically decomposing a circuit matrix into BBD form based on
node tearing is described in [7.37]. The algorithm produces blocks of 'nearly' equal sizes
while minimizing the number of variables in the border. The algorithm constructs a de-
pendency matrix which represents the zero-nonzero pattern of the coefficients of A, which
is assumed to be structurally symmetric, and thus is represented by an undirected graph G.
Three disjoint sets of nodes are then formed iteratively: Z is a set of nodes which are candi-
dates to form a block of the decomposition, S is a set of nodes called the separator of Z with
respect to G.; and W is the remainder of the nodes of G. The algorithm ~hen determines a
sequence of nodes of G that are added to Z. For each node in the sequence the 1;ardinality
of Z, I Z I ,is increased by one and the separator S is updated. Let Zj' be the jth candidate
block in the sequence of length k such that I Zk I = ~ax ' where ~ is a preassigned
maximum block size. Then Zj is selected as a block which satisfies ~n S I Zj I s ~ax
such that I Sj I is minimum, where ~ is a pre-assigned minimum block size Zj and Sj are
then both removed from G and the process repeated. A greedy algorithm is used in extending
the sequence at every step, where the node selected to be added to Z is one which causes the
increase in S to be minimum, preferably a negative increase. The success of the algorithm
depends on the initial node chosen. The approach can also be applied to weighted cluster
problems where a set of k nodes can be preassigned to be in one block by collapsing them
into one 'super' node in G with weight equal to k.

Direct solution algorithms for BBD systems7.2.2

This section describes how the sets of linear equations 7.2.2 and 7.2.3 can be solved by direct
methods. Let systems (7.2.2) and (7.2.3) be written in the form:

[:,]
MP
QTM, [~] (7.2.4 )=

System (7.2.4) may be solved using one of three factorization procedures denoted by
FI' F2 and FJ and corresponding substitution procedures 81,82 and 8J, respectively [7.15]
[7.16]. The procedures are described in the algorithms below in the frames.

Note that the difference between the algorithms is in the solving of the subcircuit equations.
A

The step that forms M, is the same in all the factorization algorithms. It represents the sol-
ution of an interconnection circuit formed by collapsing or forming the n-port description of
the subcircuits at the interconnection terminals.
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ALGORITHM Factorization FI :

BEGIN

FOR i := 1 TO m DO

BEGIN

M. p., ,

Q;T 0

Partial LV I.U v;
£.-j, ,

T
W: R.

, ,
Factorization

-1 T T 1where Vi = 4 Pit Wi = Qi VI ' T
R .= -W; v;

" "

END;

Form

Factorize

A m
Mt = Mt+.I Rj

1-1
A

Mt = 4u,

END.

ALGORITHM Substitution Sl :

BEGIN

FOR i := 1 TO m DO

BEGIN
T .a. = b.
£.-j I I
- T
b"= W; a.

I I

END-
,

m-
1., YI = bl - ~ b.

1-1 I

U; Xr =YI

FOR i := 1 TO m DO

BEGIN

u. X. = a. - V;yI I I rr

END;

END.
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ALGORI1HM Factorization F2:

BEGIN

i :- 1 TO m DOFOR

BEGIN

L,.u, ~
T

Q, R,

Partial LU

Factorization

M. p.
, ,

Q ! 0
,

END;

Form

Factorize

A m

Mt- M,+.~Ri
I-I

A
Mt - z.,u,

END.

ALGORITHM Substitution S2:

BEGIN
TO m DOFOR

BEGIN

i := 1

~Dj - bi
Ui z. = a.- , T'
b.- Q.z., "

END;
m-

L,Yt - bt - .I bi
,-I

~x, -Yt

FOR ; :- 1 TO m DO

BEGIN

Xj=Zj- Vjx,

END;

END.
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ALGORnHM Factorization FJ

BEGIN
FOR i := 1 TO m DO

BEGIN

Partial LU L,u, Pi
;;;T
Wi R,

M. p.I I

Q,T 0 Factorization

- ~TUlIL,-

END;

Form
A m

M,'= M,+ I R;
1-1

A
M, = L,~FactoriZe

END.

ALGORITHM Substitution S3

BEGIN

FOR i:- 1 TO m DO

BEGIN
- ;;";T
hi = WI hi

END;
'"-

L,YI - bl - I b,
1-1

~x, -YI

FOR ; := 1 TO m DO

BEGIN

L;Yi - b,- Pix,

U;Xi -Yi
END;

END.
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A
The structure (zero-nonzero pattern) of the matrix M, can be determined Q priori by forming
an interconnection circuit as described in [7.16]. In general. when the number of subcicuits

A

is .large. the matrix M, becomes large but sparse since the number of interconnections be-
tween each subcircuit and the rest of the system is relatively small when compared to the
total number of interconnections. which means that Pi and QiT are sparse. Sparsity consid-
eration in implementing the above solution algorithms are studied in detail in [7.16];
factorization F1 and substitution Sl are implemented in SLATE [7.44]

7.2.3 Indirect solution methods and NLBT systems

In the indirect or relaxation methods the LV factorization is replaCed by an iterative proce-
dure where A is decomposed into a sum of matrices:

A L+D+U (7.2.5)=

where L is a strictly lower triangular matrix and U a strictly upper triangular matrix and D a
point- or block-diagonal matrix. Eq. (7 ~2.5) is then solved iteratively using eithei Gauss-
Jacobi or Gauss-Seidel method. For the Gauss-Jacobi algorithnl, the iteration can be Written
in matrix form:

D k+l b(L + 11\yk.x -- vI-, (7.2.6a)

where xk+l

7.2.6a as
is the approximation of x produced at the kthrelaxation iteration. We write Eq~

k+J.x
(7.2.6b)

- D-1b - D-l(L + U)Xk

- D-lb + MG,iKk

where MaJ' the Gauss-Jacobi companion matrix, is defined as MGJ = - D-l(L + U). Simi-
larly, the Gauss-Seidel algorithtn can be written in matrix fonn:

(L + D)Xk+l - b - UXk; (7.2.?a)

or equivalently

k+1 = (L + D)-lb ..; (L + D)-lUXk

- (L + D)-lb+ MGaXk

x
(7.2.7b)

where MGS = - (L +D)-IU is the companion matrix of the method. In both (7.2.6) and
(7.2.7), D is assumed to be nonsingular, otherwise, the iterations are not defined. H D is
diagonal, then the methods are referred to as point Gauss-Jacobi and point Gauss-Seidel; if
D is block-diagonal, they are referred to as block Gauss-Jacobi and block Gauss-Seidel. The
following theorems state conditions for convergence of the iterations.
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Theorem 7.2.1

The necessary and sufficient condition for the iterates in (7.2.6) and (7.2.7) to converge to
a solution for any initial guess is that the spectral radii of MGJ and Mas are less than one; i.e.,
all the eigenvalues are inside the unit disk in the complex plane. .

Theorem 7.2.2

Sufficient conditions for Gauss-Jacobi and Gauss-Seidel both point and block methods to
converge is that A be strictly diagonally dominant or be an M-matrix [7.40]. .

Gauss-Seidel and Gauss~Jacobi methods can be applied to any system of equations as long
as the matrix D in (7.2.5) is nonsingular and convergence conditions are satisfied. However,
as can be seen from (7.2.6) and (7.2.7), convergence, as well as the speed of convergence,
depends on the ordering of the equations and variables, i.e., on the ordering of the rows and
columns of A. If A has a BBD form, indirect solution methods can be applied by relaxing the
tearing variables. In many cases, for the same row and column ordering, the Gauss-Seidel
method converges faster than the Gauss-Jacobi; but not always. One obvious case where the
Gauss-Seidel method converges faster than the Gauss-Jacobi is when A can be permuted into
a lower triangular matrix so that U is identically zero. In this case the Gauss-Seidel method
converges in one iteration, but not the Gauss-Jacobi. In general, the speed of convergence
of the Gauss-Seidel method improves if A is permuted into a nearly lower triangular or block
triangular form (NLBT). Algorithms for permuting the circuit equations into NLBT form
are essentially the same ones used when applying Gauss-Seidel methods at the nonlinear
solution level, which are discussed in the next section, as well as in the waveform relaxation
techniques described in Chapter 8. These algorithms are referred to as analysis sequencing,
selective-trace or event-driven procedures.

...""

7.3
level

7.3.1 Direct solution methods

A number of different strategies are used to achieve decomposition at the nonlinear equation
level. The first approach we consider is to solve (7.1.3) at each time-point by direct methods
(Newton's method or modifications of Newton's method) and to rely on BBD decomposition
of (7.1.4). Thus the numerical properties of the integration formula used to discretize the
differential equations as well as the quadratic convergence properties of the Newton's
method are retained. Such an approach has been used in SLATE [7.44].

If the entire linearized circuit equations are to be solved at every iteration, then decompos-
ition techniques in general do not provide any reduction in the computational effort as com-
pared to a straight-forward sparse matrix solution technique without decomposition. In
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practice, however, particularly in digital circuits, a large portion of the circuit is inactive or
/alent at any given time. Latency means inactive or 'not changing', which could be numer-
ically not changing during the Newton iterations at each time point (spatial) or over a period
of time (temporal). Latency can be exploited to reduce computation when applying direct
solution methods as well as indirect methods. It can be detected at three levels: device level,
subcircuit level and interconnection level. By using decomposition and by exploiting
latency, only a portion of the circuit equations have to be formulated and solved at an iter-
ation point, thus reducing the computational effort and justifying the additional overhead
required by decomposition methods.

At the device level latency is sometimes referred to as a bypass scheme. This scheme is done
by monitoring the operating point of each nonlinear device. . If the operating point remains
unchanged, to within a prescribed tolerance, from one iteration to the next, the device char-
acteristic equations are not re-evaluated, and the matrix entries at the previous iteration are
used again. This bypass scheme may, of course, be applied when analyzing the circuit with-
out decomposition such as in SPICE [7.23].

Latency at the subcircuit and the interconnection levels depend on the decom~sition.
Without loss of generality. we assume node tearing is being used. As mentioned above in
solving the circuit equations in BBD form. when aJJ the variables of a subcircuit are elimi-
nated. a generalized Norton equivalent of the linearized subcircuit equations is generated.
By combining the equivaJentcircuits of aJ] the subcircuits with the rest of the circuit. the
interconnection circuit is obtained ( Step 2 of the factorization and solution algorithms of the
previous section). If the values of aJ] the subcircuit variables remain unchanged. to within
a prescribed tolerance. the equivalent circuit of the subcircuit as seen by the external nodes
remains unchanged. and the subcircuit is declared Jatent during the NeWton iteration at that
particular time ~int. This condition usually occurs when subcircuits converge before the
others. This latency state remains in effect until a significant change is detected in the values
of the external subcircuit variables.

The latency criteria employed in SLATE [7.44] are as follows. Consider a subcircuit Nk; Let
v,.nIb k; denote the tearing node voltages of NKf Vii its internal node voltages, and ~ Ik. the
voltages across the nonlinear elements of Nk; Subcircuit Nk; is declared latent at the itfl iter-
ation during the Newton-Raphson iteration loop if the following tWo conditions are satisfied:

(1) V"Ik.,(; - 1) - V"Ik.,(; - 2) S ~ Q + ~ r max ( vnik.,(i-l) I V"1k., (; - 2) I )

for m = 1,2,

(2) V,...(/) - v,...(i - 1) S £Q + E, max ( I v, (i) I Vt... (i - 1) )
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for m = 1. 2. ... . s. where E: a and E: r are absolute and relative error constant. rand s re-
spectively the number of nonlinear elements and tearing nodes in Nk. Subcircuit Nk will re-
main latent as long as:

v,..(i + n - v,..(i - 1) S E:a+ E:, max ( V'tm(; + 11 I v,...,(i - 1) I ).

for m = 1, 2, ... ,S , where j is an iteration number increment.

Once a subcircuit is declared latent during the Newton-Raphson iteration, then the
linearization of the equations of the nonlinear element in Nk, the processing of the subcircuit
matrix to obtain the partial contribution to the interconnection matrix, backward substitution
to solve for the internal circuit variables, and convergence tests related to Nk, are all by-
passed. It is only necessary to monitor the tearing node voltages to check when subcircuit
Nk becomes active.

For latency in time, a subcircuit Nk is considered latent at time In if the following conditions
are satisfied:

(1) I V,.",(t,,) - V,.",(t"-l) I S E:Q + E:r max ( I V,.",(t,,) I V,..,(ln-l) I , m = 1,2, ...s

Ik.,(tn) - I..,(tft-t) I S E:c + E:r max (I I..,(tn) I It...(I,,-I) I), m = 1,2, ..., b

£ is a very small constant chosen to be 10-12)provided I Ik~(r.) - Ik.(r.-l) ~ ~ .

for m = 1, 2, ... ,s. Condition (3) is used to avoid declaring a circuit with a slowly varying
response to be latent when it is not. The condition is derived by analyzing linear RC circuit
and relating the response to the circuit time constant and the capacitor current and charge.
The reason for including condition (4) is that in applying a direct solution method all the
subcircuits are solved with the same time step, which is determined by the subcircuit with the
fastest response. An alternative approach would be to let each subcircuit be analyzed with
its own timestep control. But this would require waveform interpolation and extrapolation,
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which in turn would require some form of relaxation techniques, and thus would make the
solution method indirect rather than direct.

7.3.2 Hierarchical Decomposition and Multilevel-Newton Algorithm.

The above decomposition technique can be extended to obtain hierarchical decomposition,
where each subcircuit is further decomposed into an interconnection of smaller subcircuits.
thus producing a hierarchy of decomposition levels. The hierarchy can be specified by the
designer in the input-language specification to the analysis and take advantage of repetitive
units (e.g. generalized logic gates) in a circuit. In general, each subcircuit interacts with the
rest of the circuit at the higher level of hierarchy only at few terminal nodes.

A numerical macromodel of a subcircuit consists of a set of algebraic-differential equations
simulating the input/output behavior of the subcircuit at the terminal nodes:

h(x,y, u) - 0 (7.3.1)

where x represents the variables internal to the macromodel,y and u are the variables related
to the termina] nodes. Note that in (7.3.1) x, y and u represent a partition of the variable
vector x of (7.1.3). We assume here that given u the interaction of the subcircuit is com-
pletely specified by y. If (7.3.1) has one and on]y one solution for each u, we denote the I/O
representation:

y = gy(u) (7.3.2)

an exact macromodel

By using the macromodel representation, a circuit can be described as either a set of circuit
elements or an interconnection of subcircuits and numerical macromodels. Hierarchical
representations have shown to be effective to manage the complexity of large-scale system
analysis [7.31]. Ruehli et al. surveyed macromodelling techniques in [7.32] and [7.29].
Macromodelling techniques have been used in program MACRO [7.30] [7.33] and
MEDUSA [7.12] among others.

We consider now hierarchical decomposition and macromodelling in conjunction with the
solution of (7.1.3). For the sake of simplicity, let us represent (7.1.3) as

g(x) = 0 (7.1.3bis)

and consider a circuit with a 2-level hierarchy and only one macromodel (Figure 7.3.1).

In the hierarchy, there is an "upper" circuit which is represented by:

g(u, y, w) 0 (7.3.3)

where u, y. and. ware blocks of a partition of x of (7.1.3bis) so that u and y represent the
circuit variables that interact with the macromodel and w those that do not interact with it.
Furthermore a "lower" subcircuit is represented by a macromodel (7.3.1).
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Rabbat, Sangiovanni and Hsieh introduced a multi-level Newton algorithm [7.31] for the
solution of (7.3.3) and (7.3.1), that take advantage of the hierarchical representation. This
algorithm is especially suited for large scale circuits.

The main concept of the multilevel Newton algorithm is to use the hierarchical representation
to handle large-scale circuits. There are as many Newton loops as the levels. In our case,
we have two levels and two loops: an "outer" loop to solve (7.3.3) and an "inner" loop to
solve for (7.3.1). The outer Newton loop approximates the solution of g(u, gy(u), w) = 0

by solving:

CJg
(-

au
(7.3.4)~w+g=O

( ; ( ;) ;) A ;+1 ; A ;+1 ; d .. h " ,.
Iwhere g = g U ,gy u ,w; ~U = U - U ; ~W = W - w an I Is. t e outer oop

iteration count. To evaluate (7.3.4) at each iteration i of the "outer" loop, we need to know
dggy(u) and ~ This is done using a second, "inner", Newton loop on the macromodel

equations:
-.
du

u,

~~

u
,,

-
-x, u,

Figure 7.3.1 Hierarchical Circuit Model
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.£!. Ay + h = 0oh-a; 4x + .oy (7.3.5)

where h = h(ui, xk,yk); 4x = xk+l - xk; Ay = yk+l - yk and k is the "inner" loop it-
eration count. The second Newton iteration is termed "inner" because Ui is determined by
(7.3.4) and held fixed in (7.3.5). If (7.3.1) is solved exactly, then (7.3.4) is a true Newton
iteration with local quadratic convergence. However, if the solution of (7.3.1) is approxi-
mated, the question of quadratic convergence is open. Rabbat et al. proved in [7.31] that
by defining an appropriate stopping criterion for the "inner" loop, the multilevel Newton
algorithm retains quadratic convergence rate.

The algorithm is described in detail in the frame. The parameters .,.i and 11 control the inner
and outer loop convergence respectively. In the "inner" loop we solve the nonlinear equation
h(ui, Xi,k, yi,k) = 0 for x and y with Ui as a known vector.

dgIn the "outer" loop gy(u)is approximated to y(u) and the Jacobian -.:!-. is approximated
du

using the implicit function theorem. The approximation arises from the fact that (7.3.1) is

in general not solved exactly. "'-.'"

The convergence of the "outer" loop is driven by parameter 11 usually set to the typical value
of 10-4. If the "outer" loop has converged, the algorithm stops. Else we compute dynam-
ically the "inner" loop convergence tolerance ,,;+1 for the next inner loop iteration. It should
be noted that 'Y is a parameter which affects the convergence property of MLNA and is typ-
ically between 1 and 2. The overall rate of convergence of the algorithm is at least quadratic,
if'Y = 2

Theorem 7.3.1

A A A A A
Let (u, w) be such thatg(u,gy(u), w) = O. Assume that:

1) g is Lipschitz continuously differentiable;

. og dgy ogexists, whereJ(u,w) = AU + -oy.-;j;; , ~
h(x~,u) is Lipschitz continuously differentiable and the Jacooian of h is unifonnly
bounded on the set n = {(x~,u) I h(x~,u) = OJ. The Jacobian with respect to x~ is
nonsingular in n and its inverse is unifonnly bounded in n

agJ(~, ~)-12)

3)

4)

S)

Vi, 3 xty such that h(u', x,y) = 0

Vi, (xi,O, yi.O) are such that the "inner" Newton loop converges.

0 0,. 1\ 1\ 0 .
then: exists delta gtO such that V(u , w ) ~ B«u, w), 8); V1' ~ [0,8] , the multI-level

Newton algorithm converges to (~, ~) with root convergence order greater than or equal to
twO..
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The proof of the theorem is reported in [7.31].

To achieve quadratic convergence, it is crucial to drive.,. to zero as fast as II (~u, ~w) 112. The
convergence rate of MLNA for the case 'Y < 2 has been investigated by Lin [7.22]. In par-
ticular it has been shown that convergence is pairwise quadratic [7.22]. Although 'Y ~ 2 is
crucial to insure a quadratic convergence theoretically, the use of 'Y < 2 does not necessarily
imply a slower convergence rate in practice.

ALGO RlTHM (Multi-level Newton)

0
Parameter: T ; 11; 'Y

BEGIN

Initialization of the upper level Newton algorithm

;=0
o. °Guess u , w .

REPEAT (. outer loop .)

Initialization of the lower level Newton algorithm

k=O

Guess xi,O; yi,O.
REPEAT (. inner loop .)

Compute (Xi, k+ 1 yi,k) = (Xi, k yi, k) + (6.x, ~y) by solving:

8h 8h6.x + ~y + h = O. where h = h(Ui, Xi,k yi,k)-

ax

-
8y

ah(Ui, Xi+l,yi+l)

k=k+l
UNTIL U (dx, Ay) I < .,i

( i+1 i+l ) ( i,k+1 i,k+I )x ,y = x ,y

dgy ~ - Oh(Ui, Xi+1 yi+l) -1

du
Compute (ui+l

og og
-+-
au oy

where g =g(ui+

~Xl .. ou
, W'+ ) = (U', W') + (~U, ~w) by solving

og
~w+g=O

dgy
du

( l
,g" U

I~U +
OW

-I), Wi+l)

;=;+1
;+1'T - min[ ,.O, II (~u, ~w) H Y]

UN11L
END.

~u. ~wl < '1.
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Again, the latency properties of circuits, as described in the first method above, can be ex-
ploited to reduce the computation in the multilevel-Newton method [7.31] . That is, a sub-
circuit, at any level in the decomposition hierarchy, does not have to be processed at a given
time-point unless its internal variables or input signals are changing.

7.3.3 Indirect nonlinear solution methods

1\ second approach for achieving decomposition at the nonlinear level is using iterative
methods such as nonlinear-Gauss-Seidel or nonlinear-Gauss-Jacobi. Let us consider (7.1.3)
and let us drop the subscript related to the time-point for the sake of clarity. In this section,
~uhscripts denote scalar variables and superscripts the iteration count.

N onlinear-Gauss-J acobi

~

I{epeat until convergence:

_J .+1gk(.;tj, ... ,xlS()lve: ~) = 0
(7.3.6)

.+1for ~ . k - 1,2,...n

N ctnlinear-G auss-Seidel

I{cpeat until convergence:

gk(x{+I. ... .xl+1'~+I' ... .~) = 0Solve:

(7.3.7)
for ~+1, k = 1,2,...n

As in the case of liner Gauss-Jacobi and Gauss-Seidel methods, it is important to investigate
t he conditions of convergence of the methods.

.'heorem 7.3.2

I.Cl g' (x) denote the Jacobian of g computed at x. Let g be continuously differentiable in an
. hb h d so f " ." , " .

c)pen nelg or 00 0 x, for which g(x) = O. Let g (x) be split as
" "" A" A

/)(x) + L(x) + U(x), where D(x), L(x )and U(x) are diagonal, strictly lower triangular and

~triclly upper triangular respectively. Let D(;) be nonsingular, and let
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A
MGJ<x) = D;-l(L!x + U;}

and:

A A -1 A- (Dx + Lx) Ux

Let the eigenvalues of Ma}';)and MGs(';) be inside the unit disk. Then there exist an open
ball S~So such that the nonlinear Gauss-Jacobi and Gauss-Seidel iterations are well defined

for each xO E: SO and the sequence generated by the iterations converges to .;. .

The theorem relies on the assumption that (7.3.6) and (7.3.7) can be solved exactly. In
practice, the Newton-Raphson method is used to approximate the solution of these
equations. Note that each equation is solved for a scalar variable.

It is important to compare the nonlinear-Gauss methods in which the internal loop is
Newton-Raphson (described above) to the Newton-Raphson method in which the internal
loop is a linear-Gauss method (described in the previous section). In the nonlinear-Gauss
method only one Newton Raphson iteration on (7.3.6) or (7.3.7) is sufficient to preserve the
convergence properties of the relaxation method [7.27]. The overall rate of convergence of
the nonlinear-Gauss methods is linear. For this reason, one Newton step only is taken at
each iteration, which requires the computation of only one partial derivative and no matrix
inversion. For this reason this scheme is efficient to solve nonlinear equation. If, on the other
hand, the relaxation is carried-out at the linear level as an internal loop of a Newton iteration,
the number of relaxation iterations affects the overall rate of convergence. If only one re-
laxation iteration is performed, the overall rate of convergence is linear. However the rate
of convergence improves to be asymptotically quadratic, as more relaxation iterations are
taken. In this case the entire Jacobian matrix of the system has to be stored.

The advantage of Y§i!!g nonlinear-Gauss methods for circuit simulation relies particularly in
handling each node equation at a time and therefore on the possibility of using event-driven
analysis. The disadvantages, with comparison to the use of direct methods, as in standard
simulators, are in the slower rate of convergence and some (mild) assumptions on the nature
of the circuit required for convergence. For this reason, relaxation-based simulation has
shown to be effective especially for digital MaS circuits, where the quasi-unidirectionality
of the circuits allow an acceptable rate of convergence and event-driven analysis exploits
fully the latency of the circuit.

Iterated timing analysis [7.35] is based on solving (7.1.3) by means of a nonlinear Gauss-
Seidel scheme. One Newton-Raphson iteration is used to approximate the solution of each
nodal equation at each relaxation iteration. However, the relaxation iteration is carried to
convergence. Note that previous simulators, called timing simulators and described in the
next section used only one relaxation iteration. For this reason, simulators that use a non-
linear relaxation technique and carry the relaxation iteration to convergence are called it-
erated timing analyzers.
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Itcrated timing analyzers are not as fast as timing analyzers but are more robust, in the sense
that the computed circuit waveforms converge to the analytical solution under mild assump-
tions for a large class of practical circuits. This is not true in general for timing analyzers that
do not carry the relaxation iteration to convergence, as will be shown in the next section.

'1'0 be more specific, we consider now the numerical properties of iterated timing analysis.
Since in iterated timing analysis the nonlinear circuit equations are solved by an iterative
method until satisfactory convergence, the numerical properties of the integration fonnulae
(7.1.2) are retained. As mentioned in Theorem 7.2.2, a sufficient condition for convergence
or the the relaxation iteration is diagonal-dominance of the Jacobian. If we assume that
.:ircuit equations (7.1.1) are nodal equations and inductive effect are neglected, only the
capacitive elements of the Jacobian are a function of the integration step-size and dominate
when this tends to zero. For circuits having only two-terminal capacitive elements, strictly
positive for any voltage, and having the property that each node has a capacitor to ground,
the Jacobian is diagonally dominant for values of the integration step-size sufficiently small.
Therefore:

l"'heorem 7.3.3

A A
There exists a time-step h > 0, such that V hk ~ h the iterated timing analysis algorithm

converges to the solution of the discretized circuit equation. .

Ileraled liming analysis is used in mixed-mode simulators SPLICE 1.6 [7.35] and in some
version of MOTIS2 [7.6]. In SPLICE 1.6, iterated timing analysis is used in conjunction with
event-driven selective-trace algorithms to exploit latency. The combination of iterated-
timing analysis and event-driven scheduling outperforms general purpose circuit simulators
in the analysis of large scale loosely-coupled circuits as far as computing-time and memory
requirements are considered, while retaining reasonable accuracy of the solution. Event-
driven analysis has been widely used in logic and circuit simulation. We refer the reader to
17.39] [7.38] [7.24] [7.33] [7.34] for further details.

7.4 Decomposition at the discrete-time circuit equation
solu tion level
Timing simulators, introduced in the early seventies, were a major revolution in circuit anal-
ysis. Timing simulators [7.5] [7.13] [7.24] [7.8] [7.1] provide voltage and/or current
waveforms as a function of time, where the accuracy of the solution is compromised to in-
crease computation speed. Timing simulators are based on indirect methods, but relaxation
is used in a innovative way.

MOTIS [7.5] was the first timing simulator and differed from standard simulators in two key
aspects:

i) MOTIS could only simulate MOS circuits with a capacitor to ground at every
node of the circuit. Inductive effects could not be included.
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ii) MOTIS avoided both sparse Gaussian Elimination and the conventional
Newton-Raphson iteration as solution methods.

In MOTIS the Backward Euler Formula is used to discretize the time derivative operator and
a nonlinear Gauss-Jacobi like relaxation technique was adopted to decouple the node
equations at the nonlinear equation level [7.5]. Moreover, the nonlinear relaxation iteration
was not taken to convergence: only one sweep was taken. The accuracy of the computed
solution was controlled by keeping the integration step-size small enough, so that the result
of one-sweep relaxation could reasonably approximate the solution.

Later, two other timing simulators were introduced. Fan [7.13] perfected the MOnS tech-
nique in MOnS-C. The trapezoidal formula was used in conjunction with one-sweep
Gauss-Seidel relaxation. The timing simulator SPLICEI [7.24] used the Backward Euler in-
tegration formula in conjunction with one-sweep Gauss-Seidel relaxation.. A selective-trace
algorithm was used to both order the nodes of the circuit and exploit the 'latency' of large
digital circuits. The selective-trace ordering made the one sweep relaxation faster and more
accurate than in the previous simulators.

Timing simulators have proven successful when applied to simulating circuits from IC design
styles, based on standard cells [7.28] or gate arrays, since they have well-defined circuit
configurations, have not been as successful in the custom design environment [7.26]. Timing
simulators failed to simulate circuits with feedback loops, as in the case of floating capacitors,
with enough accuracy to satisfy designers [7 .24b ][7.10]. Simulators based on Iterated
Timing Analysis provide more reliable solutions, as will be shown in the sequel. However,
when timing simulators can be used, they provide over two order of magnitude speed im-
provement over conventional circuit simulators with reasonable waveform accuracy [7.26].

It is important to stress that timing simulators introduced a novelty by not carrying the re-
laxation iteration to convergence. In particular, the numerical properties of the numeri~al
integration formulae no longer hold and these methods have to be considered as new inte-
gration methods. Hence a complete analysis of their numerical properties has to be carried
out to characterize them. Historically timing simulators were developed and used before
such an analysis was done. This explains why some of the difficulties of these methods were
unexpected and why other techniques, such as Iterated Timing Analysis and Waveform Re-
laxation, were subsequently developed and implemented.

Timing simulation algorithms7.4.1

Timing analysis programs (e.g. MOTIS and the simulation part of the mixed mode simulator
SPLICEl) assemble the differential equations that describe the circuit by using nodal anal-
ysis. Nodal analysis limits the circuits to be analyzed to these that can be modeled by
voltage-controlled current sources, voltage-controlled capacitors, voltage-controlled resis-
tors and independent current sources. In timing simulators it is also assumed that each node
in the circuit has a capacitor to ground or to a fixed voltage rail. These assumptions are
usually satisfied by most practical MOS circuits, where these capacitors are used to model
the time delay of a signal propagating through the circuit. With this formulation, the node
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equations are also state equations of the circuit and voltages are state variables. The circuit
equation can be written as follows:

C(v)v + f(v,t) - 0

.,(0) - (7.4.1)Vo

C( . ):Rft - RftXft f( . , . ):R" x R - R"V E: Rn.,

.1'(V,t)]Tf(v,t) = ifl(V,t),f(v,t), .

where v is a vector of n node voltages, C(v) is the nonlinear nodal capacitance matrix and
fi(V,l) represents the sum of the currents flowing out of the capacitors at the node;

The structure of the nodal capacitance matrix C(v) depends on the modelling of inter-nodal
capacitance. Timing simulator MOTIS and the early version of SPLICEl did not allow
floating capacitors, i.e. capacitors whose nodes are both not connected to a fixed voltage
reference (or ground). Later, models and algorithms for floating capacitors were introduced.

";

The analysis of integration methods which exclude floating capacitors is considered first. In
this case, the nodal capacitance matrix C(v) is a diagonal matrix. Timing simulators assumed
the existence of a non-zero capacitance to ground from each node for any value of v of in-
terests. Therefore the nodal capacitance matrix has an inverse and the circuit equation can
be written as:

V + F(y,,) - 0 (7.4.2)

11(0) - Vo

where:

F(v,t) . C(y)-I/{"t) (7.4.3)

Algorithms used for timing analysis often discretize the derivative operator by the Backward
Euler or Trapezoidal integration formula. For the sake of simplicity, the backward Euler
rormula will be used:

"+1 - ~
II (7.4.4)Yi+l -

where the time-step h ~ t k + 1 - tk and vk is the computed approximation of the nodal volt-
age vector v at time tko The resulting algebraic nonlinear system of equations is:

"1+1 - "1 + hF("1+lt t k + I) - 0 (7.4.5)

This set of nonlinear algebraic equation must be solved at each time-point.
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Example 7.4.1: Consider the circuit shown in Fig. 7.4.1

C1

Figure 7.4.1 Nonlinear Sample Circuit

The circuit has two linear resistors 81,83' two nonlinear capacitors CI(vl), ~(v2)
and a a nonlinear voltage-controlled current source 'Y2(vl). The node equation
for the circuit can be written as:

1CI(v) 0
20 ~(v)

(g. + g3)V. - g3v2
. 2 .

- g.V + g3v - 'Y2(V )
V + =

The nonlinear algebraic system of equation at time-point t k + I is:

h1 1Vt,+l - Vk +
Cl(V~+l)

h 1( - glVk+:2 2Vk+l - Vk + 2 1+ g3Vt+l + 'Y2(Vk+l» = 0
~(V:+l)

The solution of this set of equations are the voltages at time-point t k + 1 .

When the number of nodes n in the circuit is large, solving such a system of equations with
a direct method is expensive in terms of computer time. Moreover the Newton-Raphson it-
eration would require the computation and storage of the Jacobian matrix of the system,
which has n2 elements. Even if sparse matrix techniques are used, the computing-time and
memory requirements make direct methods unattractive for large circuits.

For this reason, timing simulators use indirect methods to approximate the solution of such
a system. By using a nonlinear indirect method, the Jacobian is a diagonal matrix. Moreover
there is no need to compute and store the Jacobian matrix as a whole, because the equations
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are decoupled and only one scalar entry of the Jacobian matrix is needed while solving each
equation. The advantage in computation speed is due mainly to taking only one sweep of the
nonlinear relaxation.

The program MOllS uses a Gauss-Jacobi like technique which yields the following set of
decoupled equations:

; i = 1,2, (7.4.6)= 0 . ,nR. ... . VA;. t k. + I

The solution of the decoupled linear equations is then approximated by taking a single step
of a regula falsi iteration [7.21].

Example 7.4.2: Consider the circuit of Example 7.4.1. The decoupled equations
at time-point tk are:

which can be solved for vl+1 and V:+l Note that the two equations can be solved
in any order. By applying one sweep of the regula falsi iteration:

1 2«81 + 83)Vk - 83 Vk)I IVk+1 = Vk - 1

111(~)

h

Cl(~)

2 2Vk+1 = Vk - 1

~2(.,;)

h

~(v:)

where

approximate the Jacobian of the set of nonlinear algebraic equations.

The MOTIS-C and SPUCEI programs use a Gauss-Seidel like technique. When the
l'ouations are ordered as the flow of the signal through the circuit, one Gauss-Seidel iteration



G. De Micheli. H. ¥. Hsieh and I. Hali

yields a better accuracy than Gauss-Jacobi, because the updated voltages at nodes
1,2, ... , i-I are used to compute the voltage at node i. In SPLICEI this technique yields:

; ; hF' "( I ;-1; ;+1 n ) 0.' 12 (7 4 7)vk+l-vk+ vk+I,...,vk+l,vk+l,vk ,...,vk,tk+1 = ,1= , ,...,n ..

The solution is then approximated by one step of the Newton-Raphson algorithm.

Example 7.4.3: Consider the circuit of Example 7.4.1. The decoupled equations
at time-point tk are:

1 1Vk+l - Vk + 2g3"k) = 011

Cl(~+l)

h 2 1+ g3~+1 + 'Y2(Vk+l» = 0I( - glVk+
2

~(Vt+l)

which can be solved for V~+l and V:+l By applying one sweep of the Newton-

Raphson iteration:

1 2«81 + g3)Vk - g3~)1- VkI
"k+

h

Ct(vl>

1

JJ(~)

I 2 I( - glVt + g3vk + 'Y2(Vt»2 2Vk+l = Vk - h

~(v:)

1

r<v;>
where

(gt + g3)V~Jl = 1 + . <81 + '12) h

c~{~)
h

1 2 1
»gl Vk + g3 Vk + 'Y2( Vk.+ 1rEI

are the diagonal entries of the Jacobian matrix of the set of nonlinear algebraic

equations.

The Gauss-Seidel like approach used in SPLICEI does not take into account the feedbacks
inside the circuit, because of the nature of the Gauss-Seidel method. For example, when two
nodes i andj are tightly coupled and node i (j') is scheduled to be processed before node
j (i) , the voltage at node i (j) is computed by not taking into account the updated voltages
at node j (i). This approximation can cause inaccuracies and even instability of the inte-
gration method [7 .24b] [7.10].

For this reason, a symmetric Gauss-Seidel scheme is considered. A modified symmetric
Gauss-Seidel technique, proposed by W. Kahan for general set of ordinary differential
equations, has been adapted to circuit simulation [7.9] and implemented in an experimental
timing simulator [7.11]. The integration method consists of two half-steps. During the for-
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mer a Gauss-Seidel like sweep is taken in the usual "forward" direction; during the latter the
order of the nodes is reversed and the Gauss-Seidel sweep is taken in a backward direction.
The intermediate result is then discarded. To achieve complete symmetry. the ,ih unknown

; ;
. vk+l/2 + vk

of F' is evaluated at '. The forward step yields:
2

(7.4.80)

for i = 1,2, ... , n and the backward step:

(7.4.8b)

;
"k+l/2 + "k+lh p' ° I ;-1

, (Vt+I/2' ... ,Vt+I/2' 1+1 /I ), ~+ l' ... , Vk+ 1- t k + 1 ;
i iVi, + 1 - Vi,+1/2 + -2 2

for i = n, n - I, ...,1.

"'.~

Example 7 .4.4: Consider the circuit of Example 7.4.1. The time-step is divided into two'
half-steps. First a forward Gauss-Seidel sweep is taken, with time-step tk+l/2 The forward
step is:

1 1
Vk+l/2 + Vkh1 IVk+I/2 - Vk + «81 + 83) 2- g3Vk) = 0

2

h2 2'k+l/2 - Vi + + 'Y2(V~+1/V) = 0
2 2

Vk+l/2 + Vi

~, 2 )

1 d 2which can be solved for vk+l/2 an vk+l/2
The backward step is:

2
~( -

2 2
Vk+ 1 + Vk+ 1/2

+ 'Y2(~+I/V) = 02 2Vk+l - Vk+l/2 + 1( - 81Vk+l/2 + 83
2

Vk+l + Vk+l/2h
«g1 + g3) 2- g3Vk+l) = 0I IVk+1 - ~+1/2 +

2

The solution of the decoupled equations is then approximated by taking one step of the
Newton-Raphson algorithm as in the previous example.
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These methods have been called "time-advancement" algorithms, because time is incre-
mented at each relaxation sweep. The new integration algorithms, obtained by combining
the integration formula with one sweep of Gauss-Jacobi, Gauss-Seidel and modified sym-
metric Gauss-Seidel relaxation, will be referred to as Gauss-Jacobi (GJ), Gauss-Seidel (GS)
and modified symmetric Gauss-Seidel (MSGS) time-advancement integration algorithm re-
spectively.

As a final remark, note that these algorithms can be applied to any circuit whose equation
can be written in normal form. However, since the main issue here is speed of computation,
the assumptions on the nature of the circuit guarantee that the state equations can be as-
sembled in normal form directly from the input description of the circuit. In general, formu-
lating the circuit equations in normal form is a computationally intensive task.

7.4.2 Numerical properties of the time-advancement algorithms.

The numerical properties of an integration method, such as stability and accuracy, are studied
on test problems [7.7] [7.14] which are simple enough to allow a theoretical analysis but still
sufficiently general that some insight can be obtained about how the method will behave in
general. For the widely used multistep methods, the test problem consists of a linear time-
invariant asymptotically stable autonomous differential equation. Unfortunately this simple
test problem cannot be used to evaluate relaxation based time-advancement algorithms. In
fact, each variable of the system of differential equations is treated differently according to
the ordering in which equations are processed. Hence a more complex test problem is
needed. A test problem suitable for studying the numerical properties of the time advance-
ment algorithms is a linear time-invariant asymptotically stable system of autonomous dif-
ferential equations:

v - Av (7.4.9)
v(O) = Vo

where v E: R/I A E: Rnx/l

i.e. o(A) E: C-.
and the spectrum of A, o(A), is in the open left half complex plane,

In circuit theoretic terms, linear circuits whose natural frequences are in the open left-half
plane and which satisfy the assumptions of the previous section are considered as test cir-
cuits. Let A = L + D + U, where L is strictly lower triangular, D is diagonal and U is strictly
upper triangular respectively. The analysis of the algorithms is carried out using a constant
stepsize h. The time-advancement algorithms applied to the test system yield the following
iterative relations:

i) Gauss-Jacobi time-advancement method:

[I - hD]Vk+l [/ + h(L + lJ) ]v1 (7.4.10a)=

which can be written as:

MGJ(h)Vk (7.4.10b)Vk+ -
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MGfth) = [I - hD]-I(/ + h(L + l/)] (7.4.10c)

ii) Gauss-Seidel time-advancement method:

[/ h(D + L)]Vk+l [/ + hl.!]Vk (7.4.11a)

which can be written as:

MGs(h)Vk (7.4.11b)Vk+l

MGs(h) [I - h(D + L)]-l{/ + hl/) (7.4.11c)

iii) Modified symmetric Gauss-Seidel time-advancement method: Let:

- 1
Au= U+-D

2

1AL = L + - D
2 (7.4.120)

Forward half-step:

h h= [I + -;;- AU]vk (7.4.12b) -,;

Backward half-step:

h[I - - AU]Vk+ 1
2 (7.4.12c)- h

[I + -AL]Vk+l/2
2

which can be written as:

Ms(h)Vk (7.4.12d)Vk+l =

Ms(h) = [I + AU]-I[/ + +AL][/ - + AV-I[/ + + AU] (7.4.12e)

The matrices MGJ(h), MGs(h), and Ms(h) are the companion matrices of the methods. If
M(h) denotes the generic companion matrix of a method, then:

Vk+l = M(h)vk

The companion matrices characterize the integration method and the numerical properties
of the algorithms can be studied on the companion matrices. A complete analysis of the
time-advancement algorithms for the equations in normal form is reported in [7.10]. The
major results are summarized here. The numerical properties of the time-advancement in-
tegration algorithms are described following the outline of one-step integration methods ap-
plied to ordinary differential equations [7.14], and are related to the test problem 7.4.9.

Definition 7.4.1.

An integration algorithm is consistent if its companion matrix can be expanded in power se-
ries as a function of the steD-size has:
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M(h) - I + hA + O(h1

Theorem 7.4.1.

The Gauss-Jacobi, Gauss-Seidel and modified symmetric Gauss-Seidel time-advancement
algorithms are consistent..

Definition 7.4.2.

An integration algorithm is stable if 38 > 0, '3N> 0 such that VVo E: R", '3k > 0

I vk I > N Vk ~ k Vh E: [0,8)

where vk is the sequence generated by the algorithm applied to the test problem.

Theorem 7.4.2.

The Gauss-Jacobi, Gauss-Seidel and modified symmetric Gauss-Seidel time-advancement
algorithms are stable..

Definition 7.4.3.

Let v( . ) be the exact solution of the test problem. An integration algorithm is convergent
if the sequence of the computed solutions converges uniformly to v( . ) as the step-size h
tends to zero.

Theorem 7.4.3.

The Gauss-Jacobi, Gauss-Seidel and modified symmetric Gauss-Seidel time-advancement
algorithms are convergent..

These results show that the time-advancement algorithms can be used to analyze circuits
without floating capacitors. The numerical stability of the methods can be achieved by
monitoring the step-size, as in the case of the explicit integration methods.

For computational efficiency, it would be highly desirable that the step-size be limited only
by accuracy considerations, as in the case of some implicit methods, such as backward Euler
and the trapezoidal. In the case of multi-step methods, the concepts of A -stability
[DALQ71] and stiff-stability [7.14] have been introduced to test for unconditional stability.
For the time-advancement algorithms, it would make sense to define a similar concept. The
general results of unconditional stability are not available for the test problem previously
defined, but only for a subclass, the subclass characterized by a symmetric A matrix. In cir-
cuit theoretic terms, only linear circuits are considered now, whose node equation yield a
nodal admittance matrix, when only the resistive part of the circuit is considered. Moreover
it is required that this matrix remain symmetric when premultiplied by C-1, the diagonal
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matrix of the grounded capacitors. A sufficient condition for this to occur, is that the circ"Uit
consists of two-tenninal resistors and capacitors, and the grounded capacitors be equal. The
case of unequal grounded capacitors can also be included in this class, provided that a scaling
of the rows of the matrix is performed.

Definition 7.4.4.

An integration algorithm is A-stable if, for each test problem with A symmetric, 3N > 0 such" -
that Vvo E: R ,3k > 0

I "k I < N Vk 2:: k Vh E: [O,~)

where "k is the sequence generated by the algorithm.

Theorem 7.4.4.

The modified symmetric Gauss-Seidel time-advancement algorithms when applied in solving-
(7.4.9) with A being symmetric is A -stable. .

Even if this result can be proven under restrictive assumptions, experimental results on a
wide set of circuits [7.11] have shown that the modified symmetric Gauss-Seidel algorithm
has better stability property than other time-advancement methods.

A major limiting factor in determining the step-size of the time-advancement methods is
preserving the accuracy of the solution.

Definition 7.4.5.

Let v(lk) be the exact value of the solution to the test problem at time Ik' Let Vk be the com-
puted solution at time Ik assuming vk-l = V(/k-l) , i.e. no errOr has been made in computing
the previous time-point value of v. Let h - Ik - Ik-l' The local truncation error is defined
to be:

t = I Vk - v(tJ I

If £. - O(h,+I), r is said to be the order of the integration method.

Theorem 7.4.5.

The Gauss-Jacobi and Gauss-Seidel integration methods are first order integration algo-
rithms. The modified symmetric Gauss-Seidel is a second order integration algorithm..

In circuit analysis, another important criterion for evaluating the accuracy of an integration
method. can be defined as WQ~form accuracy. In general, the computed approximation to
the solution of a system of differential equations is the superposition of a principal solution
and associated parasitic solutions. Parasitic solutions are generated by the numerical ap-



G. De Michl/i, H. Y. Hsieh and I. Hali

proximation of the integration methods. In particular. a P order integration method yields
P - 1 parasitic solutions when applied to the test problem. For the algorithms under con-
sideration. the displacement techniques introduce additional spurious components called
numerical solution components.

If the original system to be analyzed does not contain an oscillatory component, the presence
of such a component in the computed solution may be misleading in evaluating the per-
formances of the system. It is then necessary to measure the waveform accuracy of the in-
tegration method. To this end, a subclass of the test problem is now introduced,
characterized by the circuits whose state matrix A have no pair of complex eigenvalues, i.e.
o(A) E: R These circuits do not show oscillatory components in the zero-input response.

It is clear that convergence of the time-advancement methods implies that oscillatory
parasitic components can be bounded by limiting the step-size. By restricting the class of test
problems to the subclass characterized by a symmetric A matrix, it is possible to prove a
stronger result for the modified symmetric Gauss-Seidel integration method.

Theorem 7.4.6.

If.A in (7.4.9) is a real symmetric matrix, the modified symmetric Gauss-Seidel method does
not introduce parasitic oscillatory components for any value of the step-size. .

The numerical properties of the three time-advancement integration algorithms applied to
circuits without floating capacitors can be summarized as follows. The methods are stable
and consistent and therefore they can provide reliable solutions, provided that the time-step
is controlled to insure the required stability and accuracy. Waveform accuracy can be guar-
anteed by monitoring the step-size as well. The modified symmetric Gauss-Seidel integration
algorithm shows better stability and accuracy properties than the two other methods. In
particular the stepsize is not limited by stability and waveform accuracy consideration for a
wide class of circuits. Moreover it is a second order integration method and therefore the
step-size can assume larger values for a given bound on the local truncation error.

7.4.3 Circuits with floating capacitors

The use of time-advancement integration algorithms and timing simulation has been limited
to circuits without floating capacitors. This implies that the gate-drain and gate-source
feedthrough capacitances of MOS devices, often critical to circuit performance, cannot be
included in simulation. Even if the physical values of these capacitances are small, their ef-
fects can be significantly magnified in situations involving gain like the well known Miller
effect.

Early timing simulators avoided the problem of analyzing circuits with floating capacitors
by not allowing the user to include them in the circuit description. In MOTIS, the effect of
a floating capacitor is approximated by altering the values of the grounded capacitors at ap-
propriate nodes in the circuit. In the MOTIS-C program, isolated floating capacitors are
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processed by maintaining the node coupling across the floating branch and solving the re-
sulting 2 x 2 nodal circuit matrix at each time-point. This approach could be extended to
t1eal with arbitrary connections of N floating capacitors, but this would require the solution
of N + 1 coupled equations at each time-point and, hence, reduce the advantages of the node
decoupling approach.

Here a general framework for dealing with floating capacitors is presented. Since the speed
or the computation is of utmost importance. the time-advancement algorithms are general-
ized to circuit equation formulation that can be assembled directly from the input de-
Ncription.

When floating capacitors are present in the circuit to be analyzed, the nodal capacitance
matrix C( v) is not diagonal and it is not computation ally efficient to invert C to obtain the
nodal equations in state form. Therefore circuit equations are:

(7.4.13)C( v)v + f( V./) - 0

Vov(Q) -
~~

lJy discretizing the derivative operator using the Backward Euler fonnula, the resulting set
or nonlinear algebraic equations is:

C(Vk+l)Vk+l - C(Vk+l)~ + hf(vk+lt Ik + 1) (7.4.14)= 0

"his set of nonlinear algebraic equations must be solved at each time-point.

The approacr used in the MOTIS program can be formalized in the frame of the time-
&advancement integration algorithms. The integration method is based on one-sweep
Gauss-Jacobi relaxation.

(7.4.15)
;; ;;' I ;-1C;;(Vk+I)Vk+1 - C;;(Vk+I)Vk + hl(~, ... , Vk ; ;+1

, Vk+l' Vk ,V;,tk.+l)=O; i= l,2,...,n

Note that using one Gauss-Jacobi sweep corresponds to simulating the effect of a floating
l~.'pacitor by replacing it with a pair of grounded capacitors of the same value. In fact, the
{Iiagonal entries of the nodal capacitance matrix c;; represent the sum of all capacitances
connected to node i. (See Chapter 2).

'rhe Gauss-Jacobi time-advancement algorithm is not consistent for circuits containing
floaling capacitors, so no matter how small an integration step-size is used, the computed
waveform will approximate the exact solution of a circuit whose floating capacitors have
been replaced by grounded capacitors, not the exact solution of the original circuit. There-
fore, when the function of a floating capacitor is critical to the performance of the circuit
(c.g. a bootstrapped inverter [7.24] ) the numerical solution cannot provide accurate infor-
malion. However, it is important to remark that this method has been widely used in the past.
The method is useful for circuit simulation, as long as its limitations are spelled out clearly.



G. De Micheli. H. Y; Hsieh and I. Hajj

The Gauss-Seidel time-advancement method can be extended to circuits with floating

capacitors:

(7.4.16)

;~ . I . t I 1 I i+- ~Cl!.vl+I)~ + hf(vk.+t, ... 'Vk~I' Vk+I' Vk

}-I

;

LCi}.(vl+l>vL+
j-l

I II

"""'k,lk+ - 0;

for i s 1,2, ... ,n. This scheme takes into account only the feedforward effect of the
floating capacitors, but it neglects the feedback effects. As a result, the method is not con-
sistent.

The Gauss-Seidel time-advancement method has shown poor waveform accuracy for circuit
containing floating capacitors [7 .24b]. In particular, parasitic oscillations .are present in the
computed solution and these do not represent the physical dynamics of the circuit. These
oscillations are related to considering only the feedforward effect of the floating capacitors
and not the feedback effect, i.e. they are related only to the numerical manipulation of the
equations.

As an attempt to consider both the feedback and the feed forward effect of floating
capacitors, a family of symmetric Gauss-Seidel time-advancement methods has been studied
[7.11]. As an example, the modified symmetric Gauss-Seidel time-advancement algorithm
can be extended to circuits with floating capacitors as follows.

Forward step:

;-1

LCi).(~+1/2)~+1/2 + CU(

}-I

I I I-I
Yt+1/2 + Yt I ~ I I

()"k+1/2 - ""Cij.(Yk+1/2)Yk - Cu

i-12

(7.4 7a)

. 1
+ hl(~+1/2' ; ; - 1.2. ,n

Backward step:

i i
"1+1 + 1"k+l/2ft

L C~~+I)~+I + CII(

}-I+I

ft

)V~+1 - L c';<~+I)vl- cit
j-i+l2

(7.4.17b)

Vl+I/2 + Vt+1. I
+ hl<Vk.+1/2' 1-1. , "1:+1/2' ; i = n. n - I, ... , 1;+1 II )""1+1' ... ,Vk.+I' 'k. + 1

2

k
where .I. = 0 if k < i. The forward step takes into account the feed forward effect of the

J.'
floating capacitors, while the backward step takes into account the feedback effect.
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The modified symmetric Gauss-Seidel method, extended to circuits including floating-
capacitors, has been proven to be accurate, stable and even A -stable but only for particular
classes of circuits. The interested reader is referred to [7.11] for the details. Experimental
results have shown that the modified symmetric Gauss-Seidel algorithm can be used for the
simulation of a large class of circuits and the step-size is not severely limited by accuracy and
stability considerations.

Another family of time-advancement algorithms can be obtained by applying one relaxation
sweep before replacing v by the Backward Differentiation Formulae. Consider the set of
nonlinear differential equations at a time-point, for example at t k + 1 :

C(Vk+l)Vk+l + f(vk+lt t k + 1 ) - 0 (7.4.18)

By using the Gauss-Jacobi relaxation scheme:

n~ .. . 1 .1
LJ CiJ.(~)V'k + I(Vk. ... . V~-

j=l,j"i

; ;+ 1 n ) 0. Vk+ 1. Vk .. .. . Vk. t k + 1 = ; (7.4.19)
( ; ) ';

C;; Vk+ I Vk+ I +

for i = 1,2, ... , n where by the Backward Euler formula: "'-A'"

"1+1 - Vi.

It

Yt - Yt-l
h

and vk = (7.4.20)Vk+l =

Similarly, by using the Gauss-Seidel relaxation scheme:

i n

Lci}.(~)~+1 + L ci}.(~)~ +!(V:+I' ..., v~~~, V~+I' v~+
j-1 j-i+1

"
"",Vk,tk+ = 0; (7.4.21)

for i = l,2, ... , n. A symmetric Gauss-Seidel scheme can also be obtained by combining a
forward and a backward Gauss-Seidel half-step. The Gauss-Seidel scheme was proposed by
R.Newton and called Implicit-Implicit-Explicit, because the ~pproximation vk+l = vk and the
use of the Backward-Euler fomlula (Implicit) is equivalent to using the Forward-Euler for-
mula (Explicit). Hence the algorithm is halfway between implicit and explicit methods. This
technique was used in some versions of program SPLICEl [7.24] [7.25].

T. Huang proved recently the numerical properties of the Implicit-Implicit-Explicit method
on the class of circuit having a grounded capacitance at each node and consisting of
voltage-controlled current sources, voltage-controlled capacitors, voltage-controlled resis-
tors and independent current sources [7.20]. For this class of circuits we can state:

Theorem 7.4.7

The integration methods (7.4.19) and (7.4.21) are consistent, stable and convergent..

For this reason the Implicit-Implicit-Explicit method can be used for reliable timing simu-
lation of circuits with floating capacitors. However this method is not proven to be A-stable
and waveform accuracy considerations may limit the step-size considerably.
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Conclusions
In this chapter we have reviewed some decomposition techniques for the transient analysis
of large-scale systems. The transient analysis leads to the solution of a set of ordinary non-
linear differential equations. Here we considered solution methods in which the simulation-
time window is sliced into time-steps, and the computed solution is obtained by solving a set
of algebraic nonlinear equations at each time-point. For this reason, these techniques are
called incremental-time integration methods. The set of discretized nonlinear algebraic
equations is solved at each time-point. If Newton's method is used, the nonlinear set of
equation is solved by a sequence of sets of linear algebraic equations.

There is a hierarchy of decomposition techniques that can be applied to the solution of
incremental-time integration methods. Decomposition techniques can be used to solve linear
and nonlinear algebraic systems of equations. New integration methods are introduced by
timing simulators, where single-step nonlinear relaxation modifies the structure and the
properties of the integration formulae.

Eventually, it is conceivable to think of using decomposition techniques, such as relaxation,
directly on the set of differential equations. In this case, the objects of the relaxation are in
the solution space, i.e. are circuit waveforms. A solution to the set of nonlinear differential
equations is obtained by improving an initial "guessed" solution, over an entire time-
interval. This leads to another family of methods for the transient simulation, that have been
recently discovered and applied: waveform relaxation methods. These techniques are dealt
with in detail in the next chapter.
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