IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 5, SEPTEMBER 1987 751

Performance-Oriented Synthesis of Large-Scale
Domino CMOS Circuits

GIOVANNI DE MICHELI, MEMBER, IEEE

Abstract—The quality of the design of large-scale integrated circuits
is determined by such figures of merit as silicon area, power consump-
tion, and switching-time performance. We address here the problem
of the automatic synthesis of digital circuits with the goal of achieving
high-performance designs. We assume we are given an intermediate
circuit representation that optimizes area and/or power. We use timing
optimization techniques to improve the circuit performance, possibly
at the expense of the other figures of merit.

We consider general cl of digital circuits, with a given partition
into registers, combinational blocks, and /O ports. Circuit perfor-
mance is related te the worst-case propagation delay of signals between
two register boundaries. In this context, circuit performance optimi-
zation is equivalent to minimizing the critical path delay through the
combinational circuits. We assume a multiple-level implementation of
the combinational legic, by means of an interconnection of logic gates
implementing arbitrary multiple-input, single-output logic functions.
We consider dynamic CMOS implementation of the logic gates, oper-
ating in the domino mode.

We present a global approach to timing performance optimization,
which involves operations at the logic, topological, and physical level of
abstraction of the circuit. In particular, at the logic level, we ook for
optimal structures of multiple-level combinational networks. At the to-
pological level, we search for the optimal positions of gates or groups
of gates. At the physical design level, we optimize MOS device sizes.

The algorithms are described, together with their implementation
and the interface to the Yorktown Silicon Compiler system, which is
an automated synthesis system described in [7]. The results of applying
timing-performance optimization to a 32-bit microprocessor design are
reported.

I. INTRODUCTION

HE RAPID EVOLUTION of electronic systems and

the progress in performance/price ratios are related to
the increasingly widespread use of very large scale inte-
gration (VLSI) circuits. Computer-aided design (CAD)
tools are essential for designing integrated circuits, and
their importance is increasing as designs become more
complex. Moreover, the capability of quickly designing
high-performance processors is key to commercial com-
petitiveness. Fast-turnaround designs allow system-level
tradeoff comparisons, by trying several architectures in
the search for the best match between system structure
and implementation technology. In this perspective, au-
tomated synthesis systems, or silicon compilers, are nec-
essary for the development of integrated circuits now and
in the future.

Manuscript received February 12, 1987; revised May 11, 1987.

The author is with the Computer System Laboratory, Department of
Electrical Engineering, Stanford University, Stanford, CA 94305.

1EEE Log Number 8715661.

In addition, circuit performance plays a key role in the
commercial value of an integrated circuit. In the past, the
first automated synthesis systems neglected this key de-
sign feature because of the complexity of achieving an
automated design. Today, the automated synthesis sys-
tems technology has progressed to the point where per-
formance-oriented synthesis has become a key issue [13],
(11, 161, 171, [14].

We explore in this paper some of the problems of tim-
ing performance optimization of digital circuits in con-
nection with automated synthesis. We present some al-
gorithms that tackle the timing optimization problem at
different levels: logic, topological, and physical. In par-
ticular, at the logic level, we look for optimal structures
of multiple-level combinational networks. At the topo-
logical level, we search for the optimal positions of gates
or groups of gates. At the physical design level, we op-
timize MOS device sizes. These techniques assume the
existence of a circuit description that is generated by a
synthesis system or by hand. The circuit representation,
used as a starting point, is often determined by the crite-
rion of optimizing some figures of merit of the circuit
(e.g., area, power, total wiring length). In this paper we
refer to timing optimization in a wide sense that includes
tradeoffs among the above-mentioned figures of merit and
timing performance. The algorithms have been special-
ized for use with the Yorktown Silicon Compiler (YSC)
system [7] and they can be seen as the code opti-
mizer part of the compiler, which can be invoked when
compiling circuits with critical timing performances.

The Yorktown Silicon Compiler is an automated syn-
thesis system that aims at generating circuit designs com-
petitive with manual designs in silicon area, power, and
switching-time performances. The circuit to be imple-
mented is described in a behavioral language. The YSC
transforms this representation, in a stage called structural
synthesis, into a hierarchical interconnection of circuit
blocks, called modules. The leaf modules are combina-
tional logic units, registers, and library cells, e.g., 1/0
ports. Eventually, the YSC system generate the geome-
tries of the masks of the chip. The quality of the “‘com-
piled”” design is achieved by including several optimiza-
tion procedures that modify the hierarchical structure and
the module representations. By default, optimization at
the logic level minimizes the silicon area. The floor plan
design minimizes the total wiring length, which correlates

0278-0070/87/0900-0751$01.00 © 1987 IEEE

752 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 5, SEPTEMBER 1987

with minimal area and power. We refer the interested
reader to {7] for the details.

Circuit performance can be optimized in the YSC sys-
tem during the structural synthesis stage by allocating reg-
isters and by determining the system partition in terms of
combinational logic modules, registers, and 1/O ports.
This global system structure is ‘‘frozen’’ after the struc-
tural synthesis stage. From this point on, circuit perfor-
mance is related to the worst-case propagation delay of
signals between two register boundaries, because the sys-
tem clock has to be adjusted to allow the arrival of each
signal to the destination registers within the clock cycle.
In this context, the optimization of circuit performance is
equivalent to the minimization of the critical path delay.
We do not address here performance optimization in con-
junction with the structural synthesis stage (see [7] and
[10]). We present here techniques that apply to combi-
national logic circuits and, in particular, to the combina-
tional modules that are connected between two register
boundaries, as designed by the YSC system. We consider
here only circuits designed in the dynamic CMOS tech-
nology and operating in the domino mode [20], [19].

Previous work on timing performance optimization ad-
dressed one particular level of the circuit representation.
At the circuit level, Ruehli [22], Trimbereger [23], Fish-
burn [15], and Marple [21] proposed device-sizing opti-
mization techniques. At the topological level, Burstein [9]
(and, independently, Donath and Kurtzberg) studied and
implemented placement and wiring strategies that opti-
mize timing performances. At the logic design level, a
fundamental contribution is due to Hitchock [16]. This is
only a partial list of some significant contributions. Per-
formance optimization was also achieved indirectly by
methods that simplify the circuit complexity by reducing
its area and/or number of gates (e.g., logic minimization)
[17], [2] or by choosing a placement of the gates that min-
imizes the routine wire length [18].

We present here a global approach to timing optimiza-
tion, which combines operations at different levels of the
circuit representation, namely:

i) resynthesis, i.e., changing the multi-level struc-
ture of combinational logic;
ii) resizing, i.e., changing MOS device sizes;
iii) repositioning, i.e., changing the module posi-
tions.

Timing optimization can be seen as an iteration among
these operations and an evaluation of the critical path de-
lay until a satisfactory performance is obtained. A precise
evaluation of the critical path delay requires the design to
be complete. As an example, a complete geometric layout
is needed to extract accurately the wiring capacitance,
which plays an important role in the computation of the
circuit delay. Since delay evaluations are needed before
the circuit synthesis is completed, some assumptions and
approximations are used for those circuit details that have
not been determined yet. With these delay evaluations, a
more detailed circuit description can be determined, which

optimizes some timing-related criteria. In this perspec-
tive, synthesis and timing optimization can be seen as a
stepwise refinement process.

In our approach, we use a worst-case estimate of the
wiring capacitance computed on the basis of the gate/
module positions. While this approximation provides cir-
cuit delay measurements that are less accurate than those
based on capacitance extraction, the circuit model is more
suitable for applying stepwise improvement techniques.
The approximations in the circuit delay estimations are
also related to the circuit synthesis flow. In particular,
while the evaluation of the critical path delays requires a
knowledge of the gate/module positions, the determina-
tion of the gate and module positions should also be driven
by timing considerations. In our implementation, we es-
timate the delays early in the synthesis process, disre-
garding the gate positions and wiring length. The infor-
mation about the critical nets in the circuit is then
incorporated into the objective function of the floor-plan
design stage of the synthesis. As a result, the module po-
sitions are influenced by timing considerations. These po-
sitions are then used to estimate the wiring. Based on a
new critical path delay estimate, the positions of the cir-
cuit modules can then be readjusted. Then, resynthesis
and resizing can be applied. Unfortunately, there is no
guarantee that the module position previously determined
is optimal for the new circuit structure. Therefore, repo-
sitioning, resynthesis, and resizing are iterated. With the
circuit model and transformations presented in the follow-
ing sections, we can claim an iterative improvement of
the circuit performance. In practice, the number of itera-
tions can be limited, because only a marginal gain is
achieved after the first few iterations and to bound com-
putation time.

It is a complicated problem to find optimal tradeoff
points among the circuit figures of merit by using the
techniques outlined above for general circuits. We do not
attempt a complexity analysis of the problem, but rather
concentrate on heuristic methods. The computer pro-
grams implementing the heuristic algorithms for resyn-
thesis, resizing, and repositioning have been shown to
yield good designs in most cases.

We present first, in Sections II and 111, the domino gate
model and the circuit model, respectively. In Section III,
we show how critical path delays are estimated. Then, the
resynthesis, resizing, and repositioning algorithms are
presented in Sections IV, V, and VI, respectively. Even-
tually, in Section VII we describe the algorithm imple-
mentations and their interface to the YSC system, and we
present some experimental results.

II. DomMino GATE MODEL

In this paper we consider here only one family of cir-
cuits, in particular, dynamic CMOS circuits operating in
the domino mode [20], [19]. Combinational circuits in
this family are implemented by an interconnection of mul-
tiple-input, single-output gates. The gates consist of i) a
series/parallel connection of transistors which provides a

DE MICHELI: LARGE-SCALE DOMINO CMOS CIRCUITS

discharging path to ground from a precharged node; ii) a
driver, implemented by a static CMOS inverter; and iii)
additional circuitry (some of which may be optional, e.g.,
a bleeder device [11]) that is irrelevant to the topics dealt
with in this paper. An example of a domino gate is shown
in Fig. 1. Each gate implements a Boolean function rep-
resented by a suitable' factored algebraic expression that
has a straightforward mapping into the series/parallel
transistor connection personalizing the gate. The output
drive capability of the gate is determined by the physical
dimensions of the devices implementing the driver. Each
gate drives a capacitive load, consisting of the input ca-
pacitance of the following stages and of the parasitic ca-
pacitance to ground of the wires. The physical width of
the two transistors implementing the driver (referred to as
driver size in short) is a design parameter. We denote by
w a parameter that is proportional to the gate width and
therefore directly affects the gate output drive capability
and the gate switching time. We assume that the physical
length of the two transistors implementing the driver is
kept constant. The physical dimensions of the transistors
in the discharging path are not a design parameter, be-
cause the capacitance of the sense (precharged) node is
small compared to the gate output capacitance and affects
the gate switching time by a negligible amount.

We consider in this paper circuit timing considerations
that are related only to the evaluation phase of the domino
cycle; i.e., we consider only the signal propagation
through the circuit and we assume that the timing of the
precharge phase is correct. Since we address here the de-
lay evaluation and optimization of large-scale circuits, we
have chosen a delay model which can be computed quickly
and retains a reasonable accuracy. The propagation de-
lay through a physical gate is modeled by an empirical
delay equation. An empirical delay equation for a logic
family, in particular dynamic domino CMOS gates, can
be obtained by i) determining a set of characteristic pa-
rameters; ii) simulating the transient behavior of a large
set of gates with different values of the parameters using
a circuit simulator such as ASTAP or SPICE to compute
the propagation delay; and iii) using regression analysis
to tabulate the delays as a function of the characteristic
parameters.

In the case of dynamic domino CMOS gates, the output
transitions are always low-to-high. Interesting parameters
that affect the gate propagation delay are i) the size w of
the drivers; ii) the capacitive loading c at the output, which
in turn depends on the fan-out of the gate and the wiring
capacitance to ground; iii) the structure of the series/par-
allel transistor connection forming the discharging path of
the sense node (in particular the maximum number of de-
vices in series in discharging path [and the worst-case

'For some gate implementations, such as linear MOS transistor arrays
used in the YSC system, the series/parallel graph, abstracting the intercon-
nection, is required to be covered by an Euler path joining any two nodes
and to be bounded in the number of series edges. In these cases, we assume
that an algebraic expression in transformed into a form suitable for imple-
mentation, i.e., the corresponding graph has the required properties.

753

Vdd

5‘* out

—

L
g
g4

clk

o

|Csense _| Cioad
=

|
]

¢

L]

gnd

Fig. 1. Example of domino CMOS gate implementing ABC + AD.

charge redistribution factor); and iv) the parameters of the
input signals, such as rise time and relative arrival times.
Experimental results on gates with typical parameter val-
ues have shown a negligible dependency of the switching
time as a function of worse-case charge redistribution and
input signal parameters. Therefore, the gate delay has

‘ been tabulated as a function of the parameters (w, c, [).

A convenient expression of the delay is
d(w, c, 1) = a(w) + B(w)c + y(w)L

The coefficients «, 3, and +y are tabulated for a finite rum-
ber of values of w by using the method outlined above. It
is practical for automatic synthesis reasons to limit the
choice of the driver device widths to a finite number.
Therefore we assume that the parameter w can take a finite
set of values 1, 2, - - -, p. In our delay model, the func-
tions B(w) and 7y (w) are monotonically decreasing with
w, while a(w) is monotonically increasing with w. This
is consistent with the fact that the current flowing through
the MOS transistors forming the driver is directly propor-
tional to the gate width (the higher the current, the lower
the propagation delay) and that the driver gate capacitance
increases as the size increases (the higher the gate capac-
itance, the higher the propagation delay). As a net result,
for typical values of ¢ and [, the propagation delay is
monotonically decreasing with w.

The energy required by a gate in a domino cycle has
three components: the first two are related to charging and
discharging the sense and load nodes, and the third one is
related to the energy dissipation within the driver. The
last two terms are the most significant ones; and power
dissipation can be modeled as p = p(w, ¢), where the
function p is increasing with both w and c¢. Power dissi-
pation can be tabulated by a procedure similar to that used
for the propagation delay.

The expression for silicon area occupied by a gate has
also three terms, related to the discharging path, the
driver, and the additional circuitry. The first term is pro-
portional to the number of devices in the discharging path,

754 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 5. SEPTEMBER 1987

which is equal to the number of variables (counting rep-
etitions)in a factored algebraic expression describing the
gate. We denote this parameter by n. The second term is
directly proportional to w, and the third term is a fixed
overhead. In summary, the area taken by a gate can be
expressed as a = a(n, w). For some gate implementa-
tions, the dependence on w can be neglected and included
in the overhead.

The critical reader may question the validity of this de-
lay model that we assume as a basis of our optimization
procedure. The characterization of the propagation delay
by simulation and regression analysis has been carried out
in the case of domino CMOS gates in a proprietary tech-
nology [12], as used by the YSC system. Therefore, the
delay coefficients, as well as the domino gate parameters,
are proprietary information. Nevertheless, it can be said
that the computed gate delays are a conservative estimate
of the simulated gate delays and that the error is at most
10 percent of the simulated delay value. We believe that
our delay model, though simple, is very practical be-
cause it may be tuned to different technologies and be-
cause delays can be evaluated quickly as needed in the
case of large-scale circuits.

HI. Circuit DELAY MODEL

We consider here the problem of optimizing the cycle
time of synchronous sequential circuits. We assume that
sequential circuits are implemented by connecting com-
binational circuits to synchronous registers. We assume
also that we are given a global circuit structure in terms
of an interconnection among input/output ports, a com-
binational circuit, and a set of registers and that this struc-
ture cannot be modified. Therefore the circuit cycle time
is bounded from below by the speed of its combinational
component. For this reason, we concentrate on the opti-
mization of the timing performance of combinational cir-
cuits and we consider each signal stored in a register as
both a primary input and output to the combinational sub-
system. We assume that each primary input signal is
available in both phases.?

We assume that combinational logic is implemented in
a general multiple-level form. An abstraction, at the logic
description level, of a digital circuit is a Boolean net-
work. A Boolean network is described in terms of Bool-
ean variables and Boolean functions that specify the
value of each variable in terms of other variables; i.e.,
each function has multiple inputs and a single output. We
assume that the Boolean network is unidirectional, i.e.,
that there are no cyclic dependences among the Boolean
functions. With this assumption, we avoid the possibility
of race conditions and we restrict Boolean networks to the
domain of combinational circuits.

A Boolean network can be implemented by an intercon-
nection of logic gates: each gate is the implementation of

*Registers have complementary outputs, and both output phases are
available simultaneously. Input ports with negative (or both phases) are
assumed to be available. The delay through the corresponding circuit may
be taken into account by the input signal arrival time.

a Boolean function, and the interconnection is achieved
by a set of nets carrying electrical signals. A network has
a set of primary inputs and outputs, which are also inter-
connected to the logic gates by means of nets. Each logic
gate is assumed to be unidirectional. Therefore, we can
associate a source and one (ore more) sink gates to each
net corresponding to the signal propagation direction along
that net. The network can be modeled by a directed graph
G(V,A), whose node set V = {¢v} = VS U V' U WV =
{vf} U {0’} U {¢} is in one-to-one correspondence
with the set of logic gates (V*), primary inputs (V'), and
primary outputs (¥°). The ege set A4 is in one-to-one cor-
respondence with the source-sink pairs of the nets. The
graph G(V, A) is acyclic, because the network is unidi-
rectional. A node v; is said to be a predecessor (succes-
sor) of node v, if there is a directed path from v; to v;
(from v; to v;) in G(V, A). A predecessor (successor) is
said to be direct if the path has length one.

Each node of the graph corresponding to a gate has a
set of attributes. An algebraic expression is the attribute
that specifies the Boolean function. An algebraic expres-
sion relates the algebraic input variables by means of the
product and sum operators. Any level of parenthesis can
be used. The input algebraic variables are the Boolean
variables and their complements, i.e., Boolean literals.
The value of an algebraic expression corresponds to the
value of the corresponding Boolean variable with the pos-
itive phase. Each algebraic expression corresponds to a
discharging path of the corresponding domino gate. Since
domino circuits do not provide logic inversion, no com-
plementation operator is permitted in the algebraic
expressions. Output variables with negative phase (i.e.,
complemented) are specified by the algebraic expression
of the complement of the Boolean function. To make this
possible, we have assumed that each primary input is
available as well as its complement.

We abstract a gate as a point on the chip surface. The
x, ¥ coordinates are other attributes of a node. The length
of a net connected to a gate output can be estimated from
a knowledge of the x, y attributes of a node and its direct
successors (net end points). In particular, we use as a
worst-case approximation the half-perimeter of the small-
est rectangle containing the net end points. The gate ca-
pacitive loading (node attribute c¢) is estimated as a
weighted sum of the output net length and of the gate fan-
out (which depends on the number of transistor gates con-
nected to the net). Assuming an average number of tran-
sistor gates per input of a logic gate, the gate fan-out may
be approximated by the node out-degree. Other attributes
of a node are the driver size (w), the maximum number
of devices in series (/), and the total number of devices
(n). The last two attributes depend on the algebraic
expression. These parameters determine other node attri-
butes, such as the gate propagation delay, power, and sil-
icon area consumption, as shown in the previous section.

The attributes of the node are figures of merit of the
corresponding gate. Additive figures of merit of the net-
work, such as power and area, can be computed by sum-

DE MICHELI: LARGE-SCALE DOMINO CMOS CIRCUITS

ming the corresponding- attributes of the nodes. (In the
case of area, the routing space must be added too). The
switching-time performance of a Boolean network is eval-
uated by attributing to each node a data ready time ¢(v;),
i=1,2,--,|V]. The data ready time of a node is the
time at which the signal generated by the corresponding
gate (or input) is ready. For our purposes, we synchronize
the computation of the data ready times to the system
clock. Therefore, we assume the data ready time to be
zero for each primary input corresponding to a register.
The data ready times of the remaining inputs are set to the
delay of the corresponding input signal with regard to the
system clock. The data ready times can be computed by
tracing forward the signal propagation, i.e., by comput-
ing

t{v;)) = d(v;) + I]{la]? t(v,) K= {k s.t. (v, v;) eA}
€
for each node v; in a sequence consistent with the partial
order represented by graph G(V, A). Here, the propaga-
tion delay through node v, is denoted by d(v;). The prop-
agation delay of the nodes corresponding to gates (v; €
V&) is computed as shown in Section II; the propagation
delay of the other nodes (v; € V' U V°) is zero.
Another node attribute to the node slack. Let 7 = {#(v)
s.t. v € V°} be a set of required arrival times for the pri-
mary circuit outputs (e.g., the minimum system cycle
time). The slack of each primary output node (v; € V)
is defined as the difference between the required time and
the computed data ready time:

s(vi, T) = i(v;) — t(v).

The slack at the other nodes (v; € V' U V#) is defined to
be

s(v;, T) = min{s(vj,

T) + max t(v;) — t(v,»)}
jeJ kek

where

J={js.t.(vi, vj)eA} K = {ks.t.(vk, vj)eA}.

The slack at an internal node measures how much addi-
tional delay the corresponding signal may tolerate, while
the relation #(v;) < f(wv;) is satisfied for each node v; €
V°. The slacks are denoted in short by s (), by assuming
as implicit their dependence on T. The slacks can be com-
puted by tracing the signal propagation backward in the
circuit, i.e., by computing the slack at each node in a
reverse sequence consistent with the partial order repre-
sented by graph G(V, A).

Let € be an arbitrary constant. The set of critical nodes
C(e, T) < Vis the set of nodes C(e, T) = {vs.t. s(v,
T) < e }. The set of critical nodes is denoted in short by
C. The critical graph H(C, B) is the subgraph of G in-
duced by C. Note that in general H(C, B) is not a con-
nected graph. A critical section (of the critical graph)
S € C N V& is a maximal subset of critical nodes cor-
responding to gates which are not mutually reachable (i.e.,
not connected by a directed path). A critical section is a

755

node separating set when H(C, B) is a connected graph.
A critical path P € Cis a maximal directed path in H(C,
B).

The critical graph can be used in different contexts ac-
cording to the attributes of the problem we want to solve,
which can be specified by the choice of ¢ and T Suppose
we require that the output data ready times of a circuit
satisfy a set of upper bounds, represented by 7', and that
the parameter ¢ takes into account safety margins and tol-
erances. Then, the circuit meets the timing specification
if and only if the critical graph is empty. If not, the data
ready time of the critical nodes must be reduced by a tim-
ing optimization procedure to meet the timing specifica-
tions. Reducing the data ready time at the noncritical
nodes does not help in meeting the circuit timing speci-
fication.

It is common in circuit design that the output nodes of
interest represent the input to synchronous registers. A
design strategy may try to minimize the data ready times
at these nodes and then adjust the system clock accord-
ingly. Suppose no upper bound Tis specified. In this case,
the critical nodes and graph may be used to detect those
gates that limit the timing performance of a circuit. Let t*
be the largest data ready time in the circuit, i.e., r* =
max,.y t(v). The system clock period is bounded from
below by r*, and timing performance optimization aims
at reducing r*. For this problem, we set T = T* where
T* is a set whose elements are all ¢*. Then the set of
critical nodes C (0, 7*) has the following obvious prop-
erties: i) the corresponding critical graph is connected; ii)
any critical section is a node separating set for the graph
and intersects any critical path (in particular, a critical
graph may be a simple path and a critical section just a
node); and iii) any independent variation in the data ready
time of any critical section implies a varition of #*. There-
fore the nodes (gates) along the critical graph are *‘criti-
cal’’ because the timing performance of the circuit (lim-
ited by 7*) can be improved by decreasing the data ready
time at the critical nodes. This can be done, for example,
by reducing the propagation delays at a critical section.

Output timing constraints can be considered in con-
junction with the problem of minimizing the maximum
data ready time by setting the elements of T to the mini-
mum of 7* and the corresponding data ready upper bound.
In the sequel, we will refer to the problem of minimizing
t* as the timing optimization problem. The value of #* can
be regarded as a figure of merit of the circuit.

It is important to remark that a variation of the data
ready time of a critical node »; may influence +* by very
little if the direct successor of that node has a noncritical
direct predecessor v; such that |7(»;) — 7(v;)]| is a small
quantity. In other words, node v; is ‘‘almost critical.”
Considering ‘‘almost critical’” nodes is important in a
timing optimization procedure, as far as computational ef-
ficiency is concerned. For this reason, ‘‘almost critical’’
nodes are made ‘‘critical’” by choosing € = 0. The choice
of positive values for parameter e widens the set of critical
nodes.

756 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6. NO. 5, SEPTEMBER 1987

From the model of the gates and of the circuit, it is clear
that the timing performance can be improved by changing
the structure of the graph G(V, A) and/or the node attri-
butes. Circuit resynthesis operates on the structure of the
graph, device resizing on the set of sizes w, and reposi-
tioning on the coordinate attributes x, y. In all cases, we
assume the existence of an initial circuit structure and val-
ues of the node attributes. Though the structure and the
attributes may be arbitrary, we assume that the circuit has
been synthesized with the goal of optimizing a given fig-
ure of merit. In particular, in the YSC system, the graph
G(V, A) is constructed with the goal of minimizing the
estimated circuit area. The attributes w take minimal val-
ues to optimize the worst-case power dissipation and area.
The coordinates x, y are determined with the objective of
minimizing the total wiring length, which correlates pos-
itive with minimal values of power (because it minimizes
the total capacitance Lc) and area (because it reduces the
wiring space).

A general algorithm for timing optimization (minimiz-
ing #*) and for exploring the area/power/timing tradeoffs
has the following frame:

Algorithm Model

data (e, f);

do{
C = critical (e, Ty,
S = select (C);
if (S = ¢) stop;
transform (S);

}

The algorithm iterates the steps: i) compute the critical
nodes C; ii) select a section § of the critical graph; iii)
perform a transformation that modifies the attributes of
the nodes in S and possibly those of its predecessors and
successors. The transformation may change locally the
structure of G(V, A). The three procedures, critical, se-
lect, and transform, depend on the particular technique
used and are detailed in the following sections. The trans-
formations of the attributes of a node may affect the node
propagation delay and that of its predecessors (e.g., a
change of the out-degree of a direct predecessor, which
affects the parameter ¢). As a result, in general a trans-
formation may affect the data ready time of other nodes
in the graph and their being critical or not. For this rea-
son, a transformation may or may not be useful to im-
prove the circuit switching-time performance according to
the context. A transformation of node v; is said to be fa-
vorable if in the modified circuit i) the data ready time at
node v; decreases; and ii) any increase of the data ready
time at any other node is less than the corresponding slack.
To be more specific, let 1(v;) and ¢' (v;) denote the data
ready time before and after the transformation at node v;
and let Au(v;) = t'(v;) — t(v;) — s(v;). A transfor-
mation of node v; is favorable if

Au(v;) + s(v;) <0

Au(v;)) =0 foreachj # 1.

For a given transformation at a given node, the set of val-
ues Au(v;), i = 1,2, - -+, |V#|, gives a measure to
evaluate the desirability of the transformation. Lowering
the entries of Au(v) corresponds to increasing the slacks
at the nodes and moving them far from their region of
criticality. Therefore, transformations are graded on the
basis of the values of Au(v) and the variation in area Aa
and in power Ap.

In general, a transformation may be a single modifica-
tion or a set of modifications of the attributes of its target
nodes. In the second case. a transformation may still be
favorable even though some of the corresponding circuit
modifications may be uphill moves. The algorithm model
guarantees a descent of the maximum data ready time ¢*
when all the transformations are favorable. We use this
property to combine different types of transformations
(e.g., resynthesis and repositioning) to minimize r*. While
in principle each call to procedure transform may invoke
a different type of transformation (e.g., the *‘local best’’
among resynthesis, resizing, and repositioning), an effi-
cient program implementation requires alternating se-
quences of transformations of a given type. In practice,
circuit resynthesis, resizing, and repositioning (i.e., se-
quences of transformations affecting the structure of G(V,
A), the attributes w and x, y) are iterated.

IV. CircuiT RESYNTHESIS

We consider in this section the problem of improving
the circuit performance by changing the gate interconnec-
tion. According to our model, we attempt to optimize the
circuit by modifying the graph G(V, A) by adding/delet-
ing edges/nodes and/or changing the node attributes (e.g.,
the algebraic expressions). Note that these changes may
affect both the parameters {c} and {/} at some nodes,
because of the variation of the corresponding node out-
degree and in-degree. We assume in this section that the
timing performance of the network is not limited by the
driver size (parameter w). Indeed, we assume that all the
driver sizes are maximal (i.e., w = p) while searching
for an optimal structure of the graph G(V, A). Resizing,
described in the next section, is then applied to select the
optimal size for the drivers.

A. Circuit Transformations

Circuit resynthesis is achieved by a sequence of trans-
formations. Circuit transformations for synthesis have
been presented elsewhere [3], [7], [8]. We report here
only on the basic transformations that are used to improve
timing performance and the relations among these trans-
formations and the timing/area figures of merit. We refer
to the reader to [3], [7], and [8] for the details of the al-
gorithms. We describe three basic transformations: elim-
ination, decomposition and simplification. We consider
the first two transformations in their algebraic flavor [7]
for the sake of simplicity.

1) Elimination: The elimination of a node, say v;, into
a direct successor node, say v;, is the substitution of the
algebraic expression attributed to v; into the one of ;. The

DE MICHELI: LARGE-SCALE DOMINO CMOS CIRCUITS

(a) (b)

Fig. 2. Network graph before and after elimination.

edge (v;, v;) is removed from the edge set A4; the edges
(vy, v;) are added to A when v, is a direct predecessor of
v; and not of ¢; before the transformation. A node v € V*
with no successors can be deleted from the graph.
Example I: Let us consider the graph of Fig. 2(a). Let

X=(E+F)G+H
Y=(A+ B)X + CD
Z = AX.

Then the algebraic expression for X can be substituted into

the one for Y, yielding Y = (4 + B)((E + F)G + H)

+ CD. The corresponding graph is shown in Fig. 2(b).
n

By carrying on node elimination, the network will
eventually collapse into one having a single gate for each
primary output. In principle, this can always be achieved
since each primary output function can be expressed in a
sum of product form. Moreover, the network has a mini-
mal number of nodes: [V'| + 2 x | V] because | V¥| =
| V°]. (We assume that no two primary output functions
coincide.) Collapsing a network into a minimal number
of gates may not be practical for some circuits, due to the
explosion in complexity of the corresponding algebraic
expression.

2) Decomposition: We call here decomposition the
transformation opposite to elimination. In its general
form, an algebraic expression fis replaced by g - & + r,
where g, 4, and r are also algebraic expressions, called
subexpressions of f. Since we consider here algebraic
transformations, the subexpressions g and 4 are required
not to share variables that are identical or represent Bool-
ean complements..One, two, or all three subexpressions
g, h, and r may be replaced by intermediate variables: if
a node has an algebraic expression attribute equivalent to
the subexpression, its output variable replaces the sub-
expression; otherwise, a new node is added to the graph
(with default values for the attributes x, v, and w). The
edges incident to the node which is the object of the de-
composition are modified according to the dependency on
the input variables. Note that decomposition may have
several flavors, and different algorithms may be used to
achieve different goals. In particular, the literature [3],
[6]-]8] refers to “‘resubstitution’’ for the transformation
in which g is replaced by an existing variable and “‘ex-
traction’’ for the addition of a new node implementing a
subexpression common to the expression attributes of two

757

nodes. Decomposition is referred to in the literature as the
transformation used to break down an expression into
smaller subexpressions to satisfy technology require-
ments. In particular, note that g or & may be a Boolean
TRUE (and therefore the decomposition yields the sum of
two intermediate subexpressions) or » may be a Boolean
FALSE (and therefore the decomposition yields the product
of two intermediate subexpressions).

Example 2: Let us consider the graph of Fig. 3(a). Let

X = A + POR
Y = AC + AD + PQRC + PQRD + EF
Z=CX.

Then the algebraic expression for Y can be decomposed
as: Y= (A + POR)(C + D) + EF and the first factor
can be substituted by X, i.e., Y = X(C + D) + EF. The
corresponding graph is shown in Fig. 3(b). |

By carrying on decomposition, the network can be de-
composed into an interconnection of nodes implementing
two-input orR’s and AND’s. By combining elimination and
decomposition, a network may be transformed into an in-
terconnection of nodes implementing arbitrary expres-
sions (e.g., gates from a given library).

3) Simplification: The algebraic expression of a node
is replaced by an equivalent one having a simpler form.
The goal of this transformation is to minimize area, rep-
resented by the parameter n.® This transformation does
not change the number of nodes in the graph representa-
tion. However, some edges incident to the node may be
added and/or deleted as a consequence of a change in the
set of support variables.

Example 3: Let us consider the graph of Fig. 4(a). Let

X = AB + BC
Y = AD
Z=X+ CY.

Then a simplification at node v. leads to Z = X + Y and
to the graph of Fig. 3(b).* (See [7], 8] for details.) W

Gate transformations change the attributes (/, ¢, n) of
one or more nodes and as a consequence change the cir-
cuit figures of merit representing switching time, area, and
power. As far as timing is concerned, a node elimination
(decomposition) corresponds to reducing (increasing) the
number of stages needed to implement a primary output
of the circuit. However, by node elimination (decompo-
sition), the attribute /. corresponding to the modified
expression, may increase (decrease) as well as the node
propagation delay. The data ready time at the node and at
its successors is affected by the transformation. More-
over, the capacitive load ¢ of some direct predecessors of

*Diffcrent objectives may be used for simplification [7]. [8]. We con-
sider here the minimization of algebraic support variables, which represent
Boolean literals. Minimization of Boolean support variables is also possi-
ble. Minimizing the support variables correlates to reducing n. B

“Let de be the don't care set. Then, X = AB + BC — dc D X(AB_+
BC) = dc D XABCD + XABCD = XCAD = XCY. Then, Z = X + CY
=X+ XCY+XCr=X+XY=X+Y.

758 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6. NO. 5, SEPTEMBER 1987

(@) (b)

©@EO0EEE

(b)
Fig. 4. Network graph before and after simplification.

the transformed node may vary, as well as their propa-
gation delay. For example, a node elimination without a
deletion of the eliminated node may lead to an increase in
the out-degree of some direct predecessors of the node.
As a by-product of the transformation, the data ready time
at some other circuit outputs may be affected. Similar
considerations apply to node simplification. In particular,
the parameter / may vary as well as the parameter ¢ of the
nodes that are direct predecessors of the node under con-
sideration before and after the simplification.

In summary, a node transformation may be found to be
favorable or not. This is the criterion for measuring the
usefulness of a transformation as far as timing is con-
cerned. The values of Au(v) can be used to give a quan-
titative grade to the transformation.

Example 4: Consider the elimination of Example 1.
Suppose () and t(v,) are larger than the data ready
time of the other inputs. Then, r(v,) = t(v,) + d(v,)
+ d(v,) before the elimination. After the elimination,
t'(vy) =1t (v,) +d (v,), wheret' (v,) = t(v,) because
the parameter ¢ of v, increased due to larger out-degree
and d'(v,) > d(v,) because the parameter / of v, in-

"creased due to the variable elimination. However, the
propagation delay through v, is eliminated. It is possible
that 7' (v,) < t(v,) according to the actual values of the
parameters. This is not the only condition for a favorable
transformation. Since ¢’ (v,) > t(v,), then ¢'(v,) >
t(v) t(v,)and ' (v,) > t(v,). To be a favorable trans-
formation, we also need ' (v.) — t(v.) < s(v,). |

Example 5: Consider the decomposition of Example 2.
Suppose t(vy) is larger than the data ready time of the
other inputs and larger than 7(v,). Then, t(v,) = t(vy;)
+ d(wv,) before the decomposition. After the decompo-
sition, if t(vy) > t'(v,) holds, then ' (v,) = t(v;) +
d’'(vy). Note that the parameter / of v, decreases, d' (v,)
< d(vy), and ' (v,) < t(v,). The other condition to have

a favorable transformation is that ¢’ (v,) — t(v.) < s(v,).
Note that d (v,) will increase due to the larger out-degree
and, as a consequence, f(v,.) may also increase. |

The silicon area is affected by the circuit transforma-
tions. Let us consider first simplification. This transfor-
mation targets the reduction of the parameter n. There-
fore, simplification may only be beneficial as far as silicon
area is concerned.

The elimination of node v; into v; affects the area of
gate v;, which increases, because its total number of var-
iables (parameter n) increases. The total silicon area of
the circuit may increase or not, according to the circum-
stances. For example, an elimination leads to a savings
of silicon area when node v; is deleted from the circuit
and its corresponding variable occurs only once in the al-
gebraic expression for v;. In this case, the number of var-
iables in the expression for v; after the transformation is
equal to the sum of the number of variables in v; and v;
minus one. Moreover, we are saving the area overhead of
the node being deleted. In general, a node elimination
opens a potential simplification of the corresponding al-
gebraic expression. For this reason, the effectiveness of
node elimination and simplification should be evaluated
together. We refer the interested reader to [7] for details.

A gate decomposition may or may not be advantageous
in terms of the total silicon area. Clearly, a decomposition
is a loss of area when a new node is introduced in the
graph to implement one subexpression; this node has only
one direct successor and the variable related to the new
node is used only once in the algebraic expression of its
direct successor. In this case, the silicon area increase
comes from the overhead of the additional gate and the
additional variable introduced. On the other hand, resub-
stitution and extraction may be used efficiently to save
silicon area. Algorithms have been devised to detect when
these transformations can be used to reduce the area pen-
alty. We refer the interested reader to [7] for details.

Finally, these circuit transformations affect the power
consumption by changing the capacitive load (¢) by vary-
ing the node out-degree. Changes may be positive or neg-
ative and must be computed along with the transforma-
tion.

B. Resynthesis Algorithms

Circuit resynthesis consists of applying a sequence of
transformations to the original circuit description. Though
the starting point may be arbitrary, we consider in this
section methods for devising area/speed tradeoffs.
Therefore we assume that the circuit structure used as a
starting point has been optimized as far as area is con-
cerned. Circuit transformation modify this structure by
trading off silicon area for improved switching-time per-
formances.

We consider different strategies for resynthesis. They
can be classified as global or local. Global strategies ap-
ply a sequence of transformations to nodes of the graph
of the entire combinational circuit. Local strategies as-
sume a partition of the circuit into blocks; transformations

DE MICHELI: LARGE-SCALE DOMINO CMOS CIRCUITS

are applied to the nodes of the subgraph representing each
block of the partition one at a time. Clearly, global strat-
egies can achieve results that are at least as good as those
obtained by applying local strategies. However, the com-
putational cost of algorithms grows with the node set car-
dinality, and it may be impractical to apply a global strat-
egy to a large graph. (For example, we consider *‘large’’
the graph representing all the combinational logic of a 32-
bit microprocessor.) Local strategies exploit the divide
and conquer paradigm. Local strategies yield good results
if the circuit partition is appropriate. Since in this case
circuit transformations do not consider the interactions
among nodes in different blocks of the partition, a mea-
sure of the appropriateness of a circuit partition is the sep-
aration of independent or loosely coupled circuit blocks.
In the actual implementation of these algorithms, perfor-
mance optimization has been coupled to the YSC synthe-
sis system. A circuit partition is achieved at the level of
the structural synthesis of a circuit, and this partition has
been shown to be adequate for our purposes.

We consider first an algorithm with a global strategy.
The algorithm is based on the model presented in Section
III and iterates three steps: i) compute the set of critical
nodes; ii) determine a particular critical section; if none
is found, stop; and iii) apply a transformation to the nodes
in the section. Procedure critical computes the propaga-
tion delays, the data ready times, and the slacks, as shown
in Section III. Then it determines the set of critical nodes,
as a function of the parameter e and 7. The parameter e
can be set to a positive value (usually a fraction of r*) to
widen the set of the critical nodes. This is done for com-
putational efficiency, to avoid fluctuations in the critical
node set which may add /drop iteratively group of nodes
with similar interconnections and similar timing behavior.
(This effect may be common in circuits with wide bus
structures, e.g. 32-bit processors.) Procedure select re-
turns a critical section and the transformation to be ap-
plied to each node in the section. The selection is based
on grading each transformation for each node by a
weighted sum of the elements of Au(v) and the variation
in area Aa. The selected section must satisfy two require-
ments: i) include a critical section of H(C(0, f'), B); and
ii) the transformations chosen for the nodes in H(C(O0,
T'), B) are favorable. In the case where no section satis-
fying the above requirements exists or the set of critical
nodes is empty, the procedure returns an empty set ¢.
Procedure transform applies the chosen transformations
to the chosen nodes in subset S.

The algorithm has the property that at each iteration
there exists a subset of critical nodes, which includes
C(0,7), whose data ready time is decreased. As a con-
sequence, the data ready time at some critical outputs de-
creases as well; in particular, the maximum data ready
time t* decreases. The algorithm is fairly general, and
procedure select may choose among a wide set of trans-
formations. A specific example of a resynthesis algorithm
with global strategy was detailed in [5]. A fixed stage de-
lay model was assumed (i.e., d(v) = 1). Procedure

759

transform used a set of eliminations first, followed by
other transformations. Elimination was used to reduce the
number of stages and was always favorable, because of
the delay model. An area /delay tradeoff was achieved by
associating a weight to each node in the graph corre-
sponding to the increase in silicon area Aa due to the
elimination. Procedure select returned a minimum weight
section. A similar resynthesis technique was used in the
system described in [6].

Resynthesis with global strategies may be inefficient for
circuits described by large graphs. In this case, due to the
large number of possible transformations for each node,
time-effective implementations of procedure select must
include heuristics to limit the search of candidate sections
and transformations. This limitation has been found to af-
fect the quality of the results. On the other hand, resyn-
thesis with a local strategy applies transformations to
smaller graphs. A more careful search for circuit trans-
formations is then possible.

We consider now an algorithm with a local strategy, as
was finally implemented. The circuit is partitioned into
blocks called modules. Each module is described by a
graph GM (V¥ 4M), which is obtained by adding to the
subgraph of G(V, 4) induced by the nodes corresponding
to the gates in the partition block, the set of the corre-
sponding input and output nodes, and the related edges.
Each module is considered along with its boundary con-
ditions, which are the data ready times at the module in-
puts and the slacks and external capacitive load at its out-
puts. The interconnections among modules are represented
by graph G'(V’, A"), which is obtained from G(V,A) by
merging into a single node all the nodes in each circuit
block. Since the partition may be arbitrary, we assume
that this graph is acyclic. (The YSC system constructs an
acyclic graph G'(V!, 4").) A module is said to be critical
if its graph GM(VM A™M) has at least one critical node. A
module critical section in G'(V/, A') is a maximal subset
of critical modules which are not mutually reachable.

The main algorithm, based on the local strategy, may
be described in terms of the algorithm model (Section IIT)
as an iteration among the steps: i) compute the set of crit-
ical modules; ii) determine a particular subset of critical
modules; if none is found, stop; and iii) apply resynthesis
to the chosen modules. In this case, procedure critical
computes the set of critical nodes and returns the set of
critical modules. Procedure select determines the set of
critical modules to be resynthesized by procedure trans-
form. By analogy with the previous algorithm, procedure
select may return a critical section of G'(V/, A"). The size
(i.e., cardinality) of this section reflects some tradeoffs in
the circuit partition. Fine-grain partitions correlate to
small modules and large section sizes, while coarse par-
titions lead to large modules and small section sizes, often
just one module. The experience of running the resyn-
thesis algorithms with different environments has shown
that procedure transform cannot achieve its goal if the
modules are too small, because of a limited search trans-
formation space. Therefore, a coarse partition has been

760 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN., VOL. CAD-6. NO. 5. SEPTEMBER 1987

used. For implementation reasons, it is sometimes con-
venient to resynthesize several modules at a time. There-
fore, procedure select has a switch that makes it possible,
if requested, to return a subset of critical modules which
includes a section and other modules. In this case, the
modules are sorted according to the partial order repre-
sented by the subgraph induced by the selected set. The
rationale is not to change the input data ready times of a
module after its resynthesis, since the circuit structure has
been tuned to this particular input signal arrival-time dis-
tribution.

Procedure transform performs the resynthesis of a
module with the goal of reducing the data ready times at
its critical nodes. Note that since the module is ‘‘ex-
tracted’’ from the whole circuit, the slacks cannot be re-
computed after each transformation. Therefore, the slacks
are computed only once, at the beginning. The corre-
sponding critical nodes are labeled. Circuit transforma-
tions are applied to reduce the data ready times at these
nodes. In the end, the set of transformation is tested for
being favorable using the initial values of the slacks.

Circuits transformations can be applied in different se-
quences and they can be specified by a ‘‘program.”” We
have experimented with different programs and we have
found that resynthesis can be effectively done by stepping
through these tasks: i) collapse (partially) the network by
using node elimination; ii) apply simplification to the col-
lapsed network; iii) extract common subexpressions and
introduce new nodes; iv) perform resubstitution; and v)
adjust the gate and network structure according to the tar-
get technology requirements. Procedure transform can
be synthetically described by this program:

critical; collapse; simplify; distill; resub; design.

Procedure critical computes the data ready times and
slacks and detects the critical nodes. These nodes are la-
beled and they are the target of the transformations. Pro-
cedure collapse detects first the pairs of critical nodes and
critical direct predecessors. These pairs are sorted by
choosing first the nodes with lowest slack. In case of tie,
pairs with the lowest total slack are chosen first. Node
elimination is then tried on all pairs in the computed se-
quence. An elimination is performed if favorable. Pro-
cedure collapse attempts then to delete some of the nodes
that have been eliminated into their direct successors, to
balance the possible increase in silicon area. To do this,
these nodes are eliminated into their direct successors,
even if these are noncritical and even if their data ready
time increases. The criterion to perform these elimina-
tions is based on the value of Au(v) and Aa. In particular,
all the entries in Au(v) must be negative (any possible
increase in the data ready time is bounded by the slack)
and there should be a saving in area. Prccedure simplify
is applied after the node elimination to reduce the total
number of variables n in the algebraic expressions and
therefore save area.

Procedure distill extracts the algebraic subexpressions
that are common to pairs of nodes, one of which is criti-

cal. Then, a node is introduced into the network if the
decomposition of the expression at the critical node
(nodes) is favorable. Procedure resub attempts to use node
decomposition differently. For each critical node, we
search for algebraic divisors of the corresponding expres-
sion among the expression of the other nodes. Only fa-
vorable transformations are performed.

Procedure design factors the node algebraic expres-
sions and makes sure that each signal is generated with
the positive phase and that the parameter / is lower than
a given threshold if required by the implementation tech-
nology. This procedure is a set of standard tasks in the
YLE program [7].

V. DEgVICE RESIZING

Before introducing the device sizing strategy, it is im-
portant to consider the particular delay model for domino
CMOS circuits and how the device sizing affects the prop-
agation delay. As pointed out in Section II, the propaga-
tion delay d(w,c,l) of a gate is monotonically decreasing
with w. The variation of the propagation delay as a result
of a variation in the driver size is denoted by A" d(v) =
d(w + m,c,l) ~ d(w,c,l). Then A" d(v) is always neg-
ative for each node v and m > 0. Note that the domino
gate input capacitance does not change with w, because
only the driver size changes. Therefore an increase in the
parameter w is always beneficial in reducing the node
propagation delay and does not increase the data ready
time of any other node; i.e., the gate resizing transfor-
mation is always favorable.

With this model, it is clear that a minimum value of r*
can be achieved by selecting the maximal value for w (i.e.,
w = p) at each node. However, the drawback of this triv-
ial size assignment is the cost in silicon area and power
consumption, which are both nondecreasing functions of
the parameter w. Conversely, assigning a minimal value
to the size w (i.e., w = 1) at each node would optimize
arca and power but would also correspond to a maximum
value of r*. Therefore, the problem of device resizing can
be seen as finding an assignment of the size parameters w
that yields a good area /speed tradeoff. Here we consider
the problem of finding a size assignment corresponding to
a minimum value for r* with minimal area/power con-
sumption.

In this context, as far as power estimation is concerned,
we consider just the energy dissipated through the drivers.
The gate power dissipation can be approximated as a lin-
ear function of w, and the total power consumption as a
linear function of W = Ew. As Fishburn [15] pointed out,
the quantity W correlates positively with the total area and
other interesting figures of merit of the circuit. Therefore
our problem specializes to finding an assignment of the
sizes w that minimizes W and corresponds to a minimum
value of r*.

We consider two heuristic approaches to the solution of
the problem. A first algorithm starts by setting the size
parameter of each node to its minimal size and then rais-
ing the parameter w of the critical nodes in an iterative

DE MICHELI: LARGE-SCALE DOMINO CMOS CIRCUITS

way. The algorithm is based on the model of Section III.
Procedure critical computes the data ready times and
slacks and returns the critical nodes. Procedure select
checks first if there exists a critical path in H(C(O0, T,
B) where the size attribute w is maximal (i.e., w = p) at
each node. In this case, procedure select returns an empty
set and the algorithm terminates. Otherwise, the proce-
dure deletes from H(C, B) all the nodes with maximal w
and selects a critical section in the reduced graph H' (C’,
B'). Procedure transform increases the size attribute w
by one for each node in S.

The selection of the critical section is done by setting
S = ¢ and iterating the steps: i) select a node from C’ and
add it to §; and ii) delete from H'(C’, B') all the prede-
cessors and successors of the selected node. The iteration
stops when C’ is empty. The node selection is done using
a greedy strategy by choosing the nodes with largest |A'
d(v)|. The rationale is to maximize the minimum value
of |A'd(v)], ve S N C(0, T), which in turn is an upper
bound of the improvement of the maximum data ready
time |Af¥].

The algorithm terminates when the maximum data ready
time * is determined by a critical path in H(C(O0, T), B)
consisting of nodes with maximum size attribute w. At
this point, the maximum data ready time is insensitive to
any other increase of any node attribute w. Unfortunately,
the procedure does not guarantee any minimality of W.

A second algorithm uses an opposite heuristic strategy.
The attribute w of each node is set initially to its maxi-
mum value. Then we decrease the parameter w at some
noncritical nodes that would not become critical after w
is decreased. These nodes are characterized by the prop-
erty that s(v) — A™' d(v) = € and are called informally
“‘oversized”’ because their corresponding driver size is
larger than required. Also this algorithm is based on the
model of Section III. Here, procedure critical returns the
subset of C of oversized nodes with nonminimal param-
eter w (i.e., w > 1). Procedure select returns a maximal
subset of C, whose data ready time attribute can be de-
creased independently. This corresponds to a maximal
subset of nodes of C that are not mutually reachable. Pro-
cedure transform decrements the parameter w of the
nodes in S.

The algorithm terminates when there are no more
““oversized”’ gates, i.e., at a local minimum of W. Note
that the value of #* is not affected by the algorithm, be-
cause the size attribute of no critical node is changed. In
the implementation of the sizing procedure, the first al-
gorithm is used to determine a size assignment corre-
sponding to a minimum value of #*. Then, this assignment
is used as a starting point for the second algorithm, which
ensures a local minimality of W. In the actual implemen-
tation, for practical reasons, two other stopping criteria
are used in both algorithms. The algorithms terminate if
the number of outer iterations reaches a predefined quan-
tity. The first algorithm terminates also if the area /power
estimate W reaches a predefined bound W,,,,. Note that by
adding these two other stopping criteria, the optimality of

761

the solution cannot be claimed. However, a ‘‘good’’ so-
lution can be found with limited computing time and /or
silicon area and power requirements.

In the first algorithm, to reduce the number of iterations
needed to reach a minimum ¢*, the parameter € can be set
to a positive value, usually a fraction of 7*. Widening the
set of critical nodes allows us to resize, in the same step,
nodes affecting output nodes with data ready time within
e from r*. This may avoid fluctuations in the set of critical
nodes, as we mentioned in the case of the resynthesis al-
gorithm. On the other hand, with the choice ¢ = 0, the
algorithm resizes only nodes that cause a decrease of the
local value of r*. There is a tradeoff in the choice of e: by
increasing e fewer iterations are needed by possibly more
nodes are resized and eventually W is higher. In the sec-
ond algorithm, the choice of ¢ = 0 corresponds to the
widest set of ‘‘oversized’’ nodes and therefore is prefer-
able.

V1. GATE AND MODULE REPOSITIONING

We consider here how to improve the circuit timing
performance by operating on the node capacitance attri-
bute ¢ and in particular on the component of ¢ which de-
pends on the wiring length. A worse-case estimate of the
wiring capacitance of the net interconnecting some gates
is computed using the node coordinate attributes, as shown
in Section III. As we mentioned previously, the node co-
ordinate attributes are often determined with the goal of
minimizing the total wiring length. This figure of merit
correlates positively with the silicon area and worst-case
power dissipation. Unfortunately, it does not correlate
with the switching-time performance measure +*. The ob-
jective of the repositioning algorithm is to improve the
timing performance by a set of transformations, called
moves, that modify the coordinate attributes of the nodes.
As in the case of resynthesis, we assume here that all driv-
ers have maximal size. Resizing is applied after reposi-
tioning to select the optimal driver size.

Since the wiring length and capacitance depend on the
node coordinates, any move affecting a node changes the
parameter ¢ of the node itself and of all its direct prede-
cessors. For this reason, also in this case, we use the con-
cept of favorable transformations to denote those moves
that reduce locally the data ready time and do not intro-
duce new critical nodes. Incidentally, favorable moves for
this problem can be described by considering the slacks
in the geometrical domain. The geometrical slack g(v;)
of a node v; represents the additional wiring length that
can be added to the gate output before the corresponding
node becomes critical. The geometrical slack g (#;) is de-
rived from the slack s(v;) as g(v;) = s(v;)/68(w),
where & is the capacitance per unit length. It is straight-
forward to see that a move of node v; is favorable when:
i) the length of the net, which has source node v;, de-
creases; and ii) any increase in the length of a net, which
has any other node as source, is bounded by the corre-
sponding geometrical slack.

A repositioning algorithm can be implemented by using

762 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. CAD-6, NO. 5. SEPTEMBER 1987

the algorithm model, where now procedure transform
performs favorable moves of the selected nodes. The
move set depends on the layout style. For example, in a
standard-cell approach, a move may be a displacement of
a cell or a pairwise cell interchange.

The repositioning algorithm we implemented was
geared to the layout style of the YSC. The YSC system
partitions a circuit hierarchically into modules; each mod-
ule is implemented by a rectangular cell. The leaf cells
corresponding to combinational logic blocks are designed
as rectangular macrocells consisting of an interconnection
of domino gates [7]. Gates are interconnected by wires
that run inside and outside the macrocell. In general, gates
are highly connected within the module and weakly con-
nected across module boundaries. However, the wiring
capacitance is due primarily to the interconnections across
the module boundary. Moreover, we decided, for the sake
of convenience, not to change the module hierarchy, i.e.,
not to move gates across the module boundary. For these
reasons, we restricted our attention to the intermodule
wiring and to the moves that attempt to reduct this quan-
tity. Therefore we considered the modules as the object
of the moves. This was done by assigning as coordinate
attributes of a node the coordinates of the bottom left cor-
ner of the corresponding module.

The algorithm described above can be adapted to the
search for module candidates and module moves, by con-
sidering pairwise interchanges of modules. The definition
of favorable moves is modified accordingly. Since mod-
ules may have different aspect ratios and areas, a com-
patibility relation (represented by a binary matrix) asso-
ciates to each module those whose differences in area and
aspect ratio satisfy a given upper bound. The compatibil-
ity relation is used to determine the modules that may be
interchanged with a given one. For implementation pur-
poses, as in the case of the resynthesis algorithm, it has
been shown to be convenient to detect the critical modules
C and then perform several moves of the elements of C,
regardless of whether we perform transformations on a
critical section or on a larger set. The repositioning al-
gorithm that has been implemented replaces procedure se-
lect and transform by a combined routine, called inter-
change. Procedure interchange performs a favorable
sequence of pairwise interchanges. The procedure at-
tempts to minimize an objective function which is a
weighted sum of the length of the nets whose sources are
critical nodes. The procedure uses a greedy strategy in
determining the sequence of moves. The local ‘‘best”
move is the one corresponding to a maximal decrease of
the objective function.

Procedure interchange performs the following opera-
tions. A candidate module is selected from C by using a
weighted sum of the parameters of the critical nets con-
necting it to other modules of compatible shape. Then the
set of favorable moves for the candidate module is deter-
mined. If no move is possible, the candidate is rejected.
Otherwise, the local best interchange is performed and
another interchange for that module is searched for. A flag

signals that at least one interchange has been performed.
When all the critical modules have been examined as can-
didates, another pass is done if the flag is set. Otherwise
the procedure returns.

When the original module positions minimize the total
wiring length, this figure of merit is monitored during the
interchange. The algorithm trades off the total wiring
length for the wiring length of the critical nets. An addi-
tional (optional) termination criterion is reaching a bound
on the total wiring length.

VII. SysTEM IMPLEMENTATION AND RESULTS

The major goal of this research project is to combine
timing optimization strategies at different circuit abstrac-
tion levels. The problems related to the interactions of the
different techniques were outlined in the introduction. We
present here the actual system implementation. From an
algorithmic standpoint, the entire optimization process can
be explained in terms of the algorithm model. The circuit
is optimized by a sequence of favorable transformations,
which guarantee a descent of the timing figure of merit
r*. The iteration stops when either the output data ready
times satisfy the requested upper bounds or when area (or
other technolgical) bounds are met or when no acceptable
transformation is available. The overall iteration is ac-
tually an iteration among resynthesis, resizing, and re-
positioning, i.e., transformations of the same kind are
clustered together for the sake of efficiency. In turn, each
of these tasks is implemented by subsequences of trans-
formations. Resizing is always applied after resynthesis
or repositioning to tune the driver size to the new logic
and geometric structure of the circuit. Therefore, the
overall iteration alternates the pairs (resynthesis, resizing)
and (repositioning, resizing). A sufficient condition for
termination is the failure of resynthesis or repositioning
to find a favorable transformation.

The program implementation of the algorithms de-
scribed in the previous sections was influenced by the pro-
gramming environment of the Yorktown Silicon Compiler
system and its data base. The YSC is written mainly in
APL, except for a few computational-intensive programs.
The high-level interface of the YSC system is written in
Rexx, an interpretive language for VM /CMS systems.
Data are stored in CMS files, one for each node in the
hierarchy. Different views of the circuit being designed
(e.g., at the logic or physical abstraction levels) are rep-
resented by files with different types on the CMS file sys-
tem. As far as the implementation of the timing algo-
rithms is concerned, a circuit is represented by a
‘‘geometric’’ hierarchy. Each file, describing an internal
node, stores the interconnection of its children as well as
their position and points to the files describing them. Each
file, related to a combinational leaf module, described the
macrocell to be implemented. This representation can be
thought of in terms of the graph model and the set of at-
tributes.

The programs that needed a ‘‘global view’’ of the cir-
cuit had to access both the hierarchy and the detailed leaf

DE MICHELIL: LARGE-SCALE DOMINO CMOS CIRCUITS

representation. This is the case of the entire resizing pro-
gram and the main routines of the resynthesis and repo-
sitioning algorithms. The module resynthesis program
needed just to access the leaf module representation. The
module repositioning program needed just to operate on
the representation of the hierarchy, which contains the
module position information. The way in which programs
view the required data affected their implementation and
the selection of the targets of the transformations. The
programs were implemented as three APL workspaces.
The first one implemented those programs that needed the
‘‘global view’” of the circuit. The second, implementing
resynthesis, is just an ‘‘overlay’’ to the YLE program [7]
that performs the logic synthesis stage of the YSC. The
last one implements procedure interchange of the repo-
sitioning algorithm. The workspaces access the data base
and communicate through it. The loading of the work-
spaces, as well as the APL function execution, is deter-
mined by short Rexx programs. To optimize execution
time, the implementation of the algorithms tends to avoid
change workspaces. In particular, the resynthesis algo-
rithm selects at each iteration a set of modules that in-
cludes a critical section; therefore, the resynthesis work-
space operates on a larger set of modules each time it is
loaded. Procedure interchange (repositioning) performs
a sequence of moves every time the corresponding work-
space is loaded.

The first workspace maps the design hierarchy on the
file system into an internal hierarchy. Here, the leaf mod-
ules are represented by APL character variables. The re-
synthesis of a module is seen as a variable update, and
the change in the internal data structure can be done effi-
ciently. Time stamps are stored to keep track of the evo-
lution in time of the data structure, to avoid duplicate in-
formation and keep consistency.

The programs have been tested on some test cases.
However, a global evaluation of the capability of the sys-
tem can be done only on a large-scale example, so that all
the different techniques could be exercised appropriately.
We report here on the application of the timing optimi-
zation algorithms to the design of a 32-bit microprocessor
[4]. The circuit, with a total of about 55 000 devices, had
a combinational logic component (data path and control)
consisting of 58 combinational modules, 1415 domino
gates, 2698 nets, and 17 660 devices. The overall com-
puting time for loading the workspaces, creating the in-
ternal data structure, and running the algorithms was of
the order of a few minutes on an IBM 3090 computer.

The maximum data ready time in the circuit, *, was
72.7 ns before optimization. A pass of a resynthesis and
a resizing step could reduce the maximum data ready time
to 53.2 ns, i.e., by 26.9 percent. Table I summarizes the
results of resynthesis. The critical path of the processor
was related to the generation of condition codes as a result
of a trap condition based on the outputs of the processor
ALU. Therefore, the path affected nine critical modules,
i.e., 15 percent of the total. In the table, the delays are
given while assuming maximal sizes for all drivers. Note

763
TABLE 1
RESULTS OF RESYNTHESIS (EXCLUDING RESIZING)
#Elinv Total Percent
Module #Gates/ #Extr/ o Delay Delay
#Lits #Resub Delay Reduction Reduction
[~ CBFMT 5750 0/0/3 44 08> 18.1%
BFMT 381275 620 2.7 <09> 33.3%
ALUI 112/499 3/2/12 11.1 <1.9> 17.1%
ALUII 87/961 18/64120 104 29> 278%
TRAPGN 5/54 0/0/0 27 0> 0%
IVSSET 25/104 0/0/0 33 <0> 0%
RUNSET &/157 0/0/0 144 <0> 0%
KILSET 8/48 0/0/0 44 <0> 0%
CRENAB /27 3120 68 <16> 23.5%
total, 29812175 /7635 0.2 81T 13.4%t

tTotal delay reduction is lower than or at most equal to the sum of the
local delay reductions.

first that module resynthesis was effective on the largest
modules, where ‘‘large’’ is related to the number of gates
and literals. Smaller modules (e.g. TRAPGN) had a sim-
ple structure which could not be modified effectively by
the program, or were found already optimally designed
by the first logic synthesis stage. In the five modules in
which resynthesis was effective, critical signals were
speeded up by 0.8 to 2.9 ns. Note that the total delay
reduction figure, 8.1 ns, is an upper bound on the actual
delay reduction, because data ready times are not additive
quantities. Indeed, an effective speedup of about 7 ns
(11.6 percent) was achieved by resynthesis only (exclud-
ing resizing). After resynthesis, the device sizing algo-
rithm took 46 iterations with ¢ = 0 and 17 iterations with
¢ = 2.5 ns. The increase in W = Zw over the original
value (i.e., all drivers with minimal size) was 5.3 percent
in the first case and 9.8 percent in the second.

The repositioning algorithm was applied only to a part
of the chip consisting of the glue logic circuits imple-
menting the interrupt and global processor control. (The
other combinational modules were placed in a stack and
their positions were determined to optimize a bus struc-
ture interconnection.) One pass of repositioning and re-
sizing reduced the maximum data ready time by an addi-
tional 2.1 ns; i.e., the total timing improvement in one
pass was about 30 percent. This corresponded to a de-
crease of the total estimated length of the critical nets of
about 4.9 percent.

After repositioning (and the corresponding resizing), the
set of critical modules included only two modules
(CAFMT and AFMT), which were not critical before and
which replaced CBFMT and BFMT. The other seven crit-
ical modules were the same as those detected in the first
pass. Resynthesis could reduce the delay through CAFMT
and AFMT by about 1 ns, which corresponded to an
equivalent reduction of r*. For this circuit example, no
other timing improvement could be achieved; i.e., the
maximum data ready time was 49.9 ns and the total re-
duction of r* was 31.3 percent. At this point, the perfor-
mance of the circuit was limited by the structural decom-
position on which the present techniques have no control.
(For example, the speed of module RUNSET was limited
by an excessive fan out.) This suggests that further im-
provements of these methods can be achieved by migrat-

764 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 5, SEPTEMBER 1987

ing the timing optimization techniques to the structural
synthesis stage.

VIII. ConcLusioNs AND FUTURE DIRECTIONS

Automated synthesis systems need to incorporate
area /power /timing tradeoff strategies to be competitive.
Here we have presented some algorithms which improve
the timing performance of combinational circuits at the
expense of area /power optimality. The algorithms apply
circuit transformations to a given circuit representation,
which may be a point of optimality for some figures of
merit of the circuit. Transformations are applied at differ-
ent circuit abstraction levels. In particular, resynthesis
modifies the structure of multiple-level combination logic
blocks, resizing affects the physical device sizes, and re-
positioning changes the position of gates or groups of
gates. Heuristic algorithms implementing these tech-
niques have been programmed and interfaced to a com-
plete automatic synthesis system, the Yorktown Silicon
Compiler.

Experience in developing and running the algorithms
has taught us that the difficult problem of achieving an
automated design that is balanced in the value of its fig-
ures of merit can be solved by a stepwise refinement of
an initial circuit ‘‘draft.”’ Early timing estimation can be
based on preliminary (partial) circuit geometric layouts.
Indeed, progress has led to faster computer systems and
better synthesis algorithms. It is conceivable to use a syn-
thesis system to generate draft layouts using appropriate
approximation for the sake of estimating figures of merit.
Circuit drafts are then improved iteratively. This process,
which contrasts the ‘‘one pass compilation’’ of the earlier
systems, mimics better the thinking and action of a human
designer.

The interaction among different techniques, such as re-
synthesis, resizing, and repositioning, has to be studied
further in connection with more accurate circuit models
that would take the geometric layout information into ac-
count. The definition of a circuit partition, by means of
structural synthesis, has to be incorporated into this frame
and linked to the other techniques. These techniques
should also be developed for general classes of circuits,
not restricted to the domino family.

ACKNOWLEDGMENT

This research was done at the IBM T. J. Watson Re-
search Center. The author would like to thank Dr. R.
Brayton, Dr. C. L. Chen, and Dr. R. Otten for many
helpful discussions and ideas.

REFERENCES

[1] K. Bartlett, W. Cohen, A. De Geus, and G. Hachtel, ‘‘Synthesis and
optimization of multilevel logic under timing constraints,”” IEEE
Trans. Computer-Aided Design, vol CAD-5 no. 4, pp. 582-596, Oct.
1986.

[2] R. Brayton, G. D. Hachtel, C. McMullen, and A. L. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis.
Norwell, MA: Kluwer Academic Publishers, 1984.

[3] R. Brayton and C. McMullen “‘Synthesis and optimization of logic

)

circuits,”’ in Proc. Int. Conf. Circuit Comput. Design (Rye, NY),
Sept. 1984, pp. 23-28.

[4] R. Brayton, C. Chen, G. De Micheli, J. Katzenelson, C. McMullen,
R. Otten, and R. Rudell, ‘A microprocessor design using the York-
town Silicon Compiler”” in Proc. Int. Conf. Circuit Comput. Design
(Rye, NY), Oct. 1985, pp. 225-230.

[5] R. Brayton and G. De Micheli *‘A method for minimizing critical
timing in digital systems,”’ IBM Technical Disclosure Bulletin, 1985.

[6] R. Brayton, E. Detjens, S. Krishna, T. Ma, P. McGeer, L. Pei, N.

Phillips, R. Rudell, R. Segal, A. Wang, R. Yung, and A. Sangio-

vanni-Vincentelli, ‘‘Multiple-level logic optimization system,”’ in

Proc. Int. Conf. Computer-Aided Design (Santa Clara), Nov. 1986,

pp- 356-359.

R. Brayton, R. Camposano, G. DeMicheli, R. Otten, and J. van

Eijndhoven, ‘‘The Yorktown Silicon Compiler system,’’ in Silicon

Compilation, D. Gaiskj, Ed. Reading, MA: Addison Wesley, 1987.

[8] R. Brayton, ‘‘Algorithm for multilevel synthesis and optimization™’
in Design Systems for VLSI Circuits: Logic Synthesis and Silicon
Compilation, Norwell, MA: Martinus Nijhoff, 1987.

[9] M. Burstein and M. Youssef,, ‘‘Timing influenced layout design,”’
in Proc. 22nd Design Automat. Conf. (Las Vegas), June 1985, pp.
124-130.

[10] R. Camposano and J. van Eijndhoven, ‘‘Partitioning a design in
structural synthesis,’’ to be published in Proc. Int. Conf. Circuit
Comput. Design (Rye), 1987.

[11] C. L. Chen and R. Otten ‘‘Considerations for implementing CMOS
processors,”’ in Proc. Int. Conf. Circuit Comput. Design (Rye, NY),
Sept. 1984, pp. 48-53.

[12] C. L. Chen, private communication.

[13] J. Darringer, D. Brand, J. Gerbi, W. Joyner, and L. Trevillyan, ‘‘LSS:
A system for production logic synthesis,”” IBM J. Res. Develop., vol.
28, no. 5, Sept. 1984.

[14] G. De Micheli, A. Sangiovanni-Vincentelli, and P. Antognetti, Ed.,
Design Systems for VLSI Circuits: Logic Synthesis and Silicon Com-
pilation, Norwell, MA: Martinus Nijhoff, 1987.

[15] J. Fishburn and A. Dunlop, ‘‘TILOS: A polynomial programming
approach to transistor sizing,”’ in Proc. Int. Conf. Computer-Aided
Design, (Santa Clara), Nov. 1985, pp. 326-328.

[16] R. Hitchcock, G. Smith, and D. Cheng, ‘‘Timing analysis of com-
puter hardware,”” IBM J. Res. Develop. vol. 26, no. 1, pp. 100-105,
Jan. 1982.

[17] S. J. Hong, R. G. Cain, and D. L. Ostapko, ‘“MINI: A heuristic
approach for logic minimization,”’ IBM J. Res. Develop., vol. 18,
pp. 443-458, Sept. 1974.

{18} S. Kirkpatric, D. Gelatt, and M. Vecchi, ‘‘Optimization by simulated
annealing,”’ Science, May 1983.

[19] R. Krambeck, C. Lee, and H. Law, ‘‘High speed compact circuits
with CMOS,”” IEEE J. Solid-State Circuits, vol. SC-17, no. 3, pp.
614-619.

{20] J. Luisi, ‘“High-speed low-cost clock-controlled CMOS logic imple-
mentation,”” U.S. Patent 3 982 138, Sept. 21, 1976.

[21] D. Marple and A. El Gamal, ‘‘Optimal selection of transistor sizes
in digital VLSI circuits,”” in Advances in Research in VLSI, P. Los-
leben, Ed. Cambridge, MA: MIT Press, 1987.

[22] A. E. Ruehli, P. K. Wolff, Sr., and G. Goertzel ‘‘Analytical
power/timing optimization technique for digital systems,’” in Proc.
14th Design Automat. Conf., 1977, pp. 147-152.

[23] S. Trimberger, ‘‘Automated performance optimization of custom in-
tegrated circuits,”” in Advances in Computer-Aided Engineering De-
sign, A. Sangiovanni, Ed. Greenwich, CT: Jai Press, 1985.

[7

—

*

Giovanni De Micheli (S°79-M"83) was born in
Milan, Italy, in 1955. He received the Dr. Eng.
degree (summa cum laude) in nuclear engineering
from the Politecnico di Milano, Italy, in 1979, and
the M.S. and Ph.D. degrees, in electrical engi-
neering and computer science from the University
of California, Berkeley, in 1980 and 1983, re-
spectively.

He spent the fall of 1981 as Consultant in Res-
idence at Harris Semiconductor, Melbourne, FL.
In 1983, he was Assistant Professor in the De-

partment of Electronics of the Politecnico di Milano. In 1984, he joined
the technical staff of IBM T.J. Watson Research Center, Yorktown Heights,
NY, where he held the position of Project Leader of the Design Automation

DE MICHELI: LARGE-SCALE DOMINO CMOS CIRCUITS

Workstation group. In 1987, he became Assistant Professor in the Depart-
ment of Electrical Engineering, Stanford University. He was codirector of
the NATO Advanced Study Institute on Logic Synthesis and Silicon Com-
pilation, held in L’Aquila (Italy) in 1986. He was granted a Fulbright
Scholarship in 1980, a Rotary International Fellowship in 1981, and an
IBM Fellowship for VLSI in 1982 and 1983.

Dr. De Micheli received a Best Paper Award at the 20th Design Auto-
mation Conference, in June 1983. He received the 1987 Best Paper Award
for a paper published in the IEEE TRANSACTIONS ON COMPUTER-AIDED DE-
SIGN OF INTEGRATED CIRCUITS AND SYSTEMS. His research interests include
several aspects of the computer-aided design of integrated circuits, with

765

particular emphasis on automated synthesis, optimization, and verification
of VLSI circuits. He has published several papers in the field. He is coed-
itor of the book Design Systems for VLSI Circuits: Logic Synthesis and
Silicon Compilation, Martinus Nijhoff Publishers, 1987.

Dr. De Micheli has been an active member of IEEE in both the Com-
puter and Circuit & System societies. He is member of the editorial board
of the JEEE Deisgn & Test magazine. He has served as Group Vice-Chair-
man and Chairman of the ICCD Conference in 1986 and 1987, respec-
tively, and as a member of the technical committee of the ICCAD Confer-
ence. He also served as a member of the executive committee of the New
York Chapter of the Computer Society in 1985 and 1986.

