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Symbolic Design of Combinational and Sequential
Logic Circuits Implemented by Two-Level Logic
Macros

GIOVANNI DE MICHELI, MEMBER, IEEE

Abstract—This paper presents a method for the optimal synthesis of
combinational and sequential circuits implemented by two-level logic
macros, such as programmable logic arrays. Optimization consists of
finding representations of switching functions corresponding to mini-
mal-area implementations. The design of optimization is based on two
steps: symbolic minimization and constrained encoding. Symbolic min-
imization yields an encoding-independent sum of products representa-
tion of a switching function which is minimal in the number of product
terms. The minimal symbolic representation is then encoded into a
compatible Boolean representation. The algorithms for symbolic min-
imization and the related encoding problems are described. The com-
puter implementation and the experimental results are then presented.

[. INTRODUCTION

HE AUTOMATED synthesis of regular modules for

very large scale integrated (VLSI) circuit design de-
creases design time and ensures functional correctness. In
order to compete with manual designs, computer-aided
synthesis techniques must include optimization proce-
dures which attempt to minimize both silicon area and cir-
cuit switching times.

We present here a method for the optimal synthesis of
digital modules implementing combinational and/or se-
quential switching functions. Modules are implemented
by two-level logic macros, such as programmable logic
arrays (PLA’s) and synchronous registers. Optimization
consists of finding representations of switching functions
at the logic level that minimize the silicon area taken by
their physical implementation (referred to as cost in short),
without considering the interconnection area. We assume
that the digital modules to be implemented can be de-
scribed by tables. In general, tabular descriptions can be
obtained in a straightforward way from structural-level
systems descriptions in Hardware Description Languages
(HDL), as in the case of the Yorktown Silicon Compiler
31

In the standard approach to synthesis [10], Boolean rep-
resentations of switching functions are obtained from the
structural description by representing each mnemonic en-
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try in a table (or each variable in a HDL program) by
Boolean variables. The optimization of logic functions
(and, in particular, two-level logic minimization) is per-
formed on the Boolean representation. The result of logic
optimization is heavily dependent on the representation of
the variables. As an example, the complexity (in partic-
ular, the minimal cardinality of a two-level implementa-
tion) of the combinational component of a finite-state ma-
chine depends on the assignment of Boolean variables to
the internal states [9].:

The symbolic design methodology presented here
avoids the dependence on the variable representation in
the optimization process and consists of two steps: 1) de-
termine an optimal representation of a switching function
independently on the encoding of its inputs and outputs;
2) encode the inputs and outputs so that they are compat-
ible with the optimal fepresentation. This technique can
be applied to solve the following problems of logic de-
sign:

P1) find an encoding of the inputs (or some inputs) of
a combinatignal circuit that minimizes its cost;

find an encoding of the outputs (or some outputs)
of a combinational circuit that minimizes its
cost; v

find an encoding of both the inputs and the out-
puts (or some inputs and some outputs) of a
combinational circuit that minimizes its cost;

find an encoding of both the inputs and the out-
puts (or some inputs and some outputs) of a
combinational circuit that minimizes its cost and
such that the encoding of the inputs is the same
as the encoding of the outputs (or the encoding
of some inplts is the same as the encoding of
some outputs).

P2)

P3)

P4)

Finding an optimal state assignment of a sequential cir-
cuit is equivalent to solving problem P4, when the se-
quential circuit is implemented by feeding back (possibly
through registers) some outputs of a combinational circuit
to its inputs. Similarly, finding the encodings of the sig-
nals connecting two (or more) combinational circuits, that
minimize the total cost, can be reduced to problem P4.
The author presented in [4] and [5] an approximation to
the solution of the state assignment problem, in which the
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cost was minimized with regard only to the encoding of
the inputs. In particular, the technique presented in [4]
and [5] solved only problem P1. Problem P2 was attacked
by Nichols [13], but the algorithm he presented could deal
only with small-scale circuits. We refer the reader to [5]
for an extended set of references and a critical survey of
nost of the previous techniques for state assignment.

Though the symbolic design methodology is fairly gen-
eral, we restrict our attention here to two-level sum of
products implementations. Since the area of the physical
implementation has a complex functional dependence on
the function representation (even by using PLA imple-
mentations [5), we consider a simplified optimization
technique that leads to quasi-minimal areas. In particular,
we attempt to find first a sum of products representation
that is minimal in the number of products, and then a rep-
resentation of the input/output that is minimal in the num-
ber of Boolean variables.

The difficulty in solving problems P2-P4 is related to
finding a minimal two-level representation of a switching
function independently of the encoding of both inputs and
outputs. We introduce here a technique called symbelic
minimization. Symbolic minimization consists of deter-
mining a minimal encoding-independent two-level sum-
of-products representation of a switching function. It is
minimal in number of product terms and independent of
the encoding of all (or part of) the inputs and outputs [6].
The minimal symbolic representation is an intermediate
step towards the determination of a corresponding Bool-
can representation. For this reason, three encoding prob-
lems are introduced to transform the minimal symbolic
cover into an equivalent Boolean representation.

Section II contains a general overview of the symbolic
design methodology and is an informal introduction to the
problem. Then, in Section III, we present in detail the
properties of the symbolic representation and an algo-
rithm for symbolic minimization. The three new encoding
problems are introduced in Section IV, as well as an al-
gorithm for constrained encoding. The computer imple-
mentation of the symbolic minimization and the encoding
algorithms is also presented along with experimental re-
sults.

II. OVERVIEW

In this section, we present an informal overview of
symbolic design. The methodology is introduced by elab-
orating on an example. We consider first a combinational
circuit (Fig. 1) and we use symbolic design to find a rep-
resentation of its inputs and outputs and a corresponding
two-level implementation that minimize its cost. This is
equivalent to solving problem P3 of Section I. Note that
problem P1 or P2 can be derived from problem P3 by
considering only the circuit inputs or ouputs.

Example 1: The following truth table specifies a com-
binational circuit; in particular, an instruction decoder.
There are three fields: the first is related to the addressing
mode, the second to the operation code, and the third one
to the corresponding control signal. The circuit has two
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Fig. 1.

inputs and one output. Each row specifies a symbolic out-
put for any given combination of symbolic inputs

INDEX AND CNTA
INDEX OR CNTA
INDEX JMP CNTA
INDEX ADD CNTA
DIR AND CNTB
DIR OR CNTB
DIR JMP CNTC
DIR ADD CNTC
IND AND CNTB
IND OR CNTD
IND JMP  CNTD
IND ADD CNTC

In the standard approach to synthesis, each word (mne-
monic string) in the table would be encoded by a string
of binary symbols (i.e., 1’s and 0’s). Then, the encoded
table would be minimized by a logic minimizer. In sym-
bolic logic design, the table is minimized first (i.e., a ta-
ble consisting of a minimal number of rows is computed)
and then the table is encoded.

A first approach to symbolic minimization can be
achieved by grouping the set of inputs that correspond to
each output symbol. This process of reducing the size of
the table is called here disjoint minimization because the
table is considered as a set of independent subtables cor-
responding to each output symbol. Remarkably, disjoint
minimization can be achieved by using techniques of mul-
tiple-valued logic minimization [2], [5}, as shown in Sec-
tion IIL.

Example 2: From the table of Example 1, we can see
that the addressing mode INDEx and any operation codes
AND OR ADD IMP correspond to the control cNTA. Similarly
either one of the following conditions

addressing mode DIR and operation codes AND or
OR

addressing mode IND and operation code AND

correspond to control cNTB. The entire table can be ex-
pressed as a set of conditions

INDEX AND OR ADD IMP CNTA
DIR AND OR CNTB
IND AND CNTB
IND OR JMP CNTD
DIR IND ADD CNTC
DIR JMP CNTC

Note that this table is more compact than the previous
one, because it requires only six rows instead of twelve.
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The problem now is to find a Boolean representation of
the symbols, corresponding to a Boolean cover represen-
tation of the function, with as many rows as the com-
pacted table. While the encoding problem will be pre-
sented in detail in Section IV, we show here by an example
the consequence of the choice of a particular encoding.

Example 3: Consider this particular Boolean encoding
of the words

INDEX = 00 AND = 00 onTA = 11
DIR =01 or =01 cntB =01
IND = 11 aADpD = 10 cN1C = 10

iMp = 11 cNtD = 00

Then the function can be represented by a Boolean cover
as

00 ** 11
01 0* 01
11 060 01
11 *1 00
*1 10 10
01 11 10

where a don’t care condition on a binary input variable is
represented by *. Note that the fourth Boolean implicant
can be deleted because its output part is 00. Moreover,
note that by deleting this implicant this cover is mini-
mum, i.e., there exist no Boolean covers corresponding
to this encoding with fewer than five implicants. (This can
be proven experimentally by running an exact minimiza-
tion algorithm [14], like that implemented by program
ESPRESSO-II with the ‘‘exact’’ flag [18].)

We question now to what extent symbolic design guar-
antees the minimality' of the Boolean cover, obtained by
replacing the words by their corresponding binary encod-
ing.

Example 4: Consider this other Boolean encoding of
the words, in which we changed only the encoding of the
output symbols

INDEX = 00 anND = 11 con1A = 00
pIR =01 or =01 cnNtB = 01
iNnp = 11 Aapp = 10 coNTCc = 10

Mp = 11 coNtD = 11

Then the function can be represented by a Boolean cover
as

00 ** 00
01 0* 01
11 00 0l
11 *1 11
*1 10 10
01 11 10

'The optimality of a Boolean cover is measured by its cardinality, i.e.,
by the number of its implicants. A Boolean cover of a function is minimum
if there exists no cover of that function having a smaller cardinality. A
Boolean cover of a function is minimal if its cardinality is minimum with
regard to some local criterion. Usually, a Boolean cover of a function is
said to be minimal if no proper subset is a cover of the same function [2].
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Note that the first Boolean implicant can be deleted be-
cause its output part is 00. However, note that this cover
is not minimum: there exist now a minimum Boolean
cover corresponding to this encoding with three impli-
cants and that can be computed from the above one by a
standard minimization technique, namely

* 0% 01
*1 1* 10
11 *1 11

Note that the first cover has two pairs of Boolean impli-
cants with 01 and 10 in the third field and that are merged
into two single implicants in the minimum cover. This is
possible because the third implicant of the minimum cover
has 11 in the third field, and 11 covers 01 and 10.

The reason for this additional reduction is in the cov-
ering relations among the encoded output symbols. Note
that when we optimized the symbolic table by disjoint
minimization, our goal was only to group the input sym-
bols corresponding to each output symbol independently.
The relations among the output symbols were neglected.
For this reason, it is ‘important to exploit the relations
among the output symbols at the symbolic level. Sym-
bolic minimization, formally defined in Section III, is a
technique that determines an optimal ordering of the out-
put symbols. This ordering is related to the covering re-
lations among the binary encodings of the output sym-
bols, and is responsible for the additional reduction of the
table size, as shown by Example 4.

Example 5: Consider the following table:

INDEX AND OR ADD JMP CNTA
DIR IND AND OR CNTB
DIR IND ADD IMP CNTC
IND JMP OR CNTD

Here, an ordering relation is assumed that allows control
CNTD to override control cNTB and cNTC when both are
specified. The table, together with this ordering relation,
is an equivalent representation of the function specified
by Example 1. It is an example of the result of a symbolic
minimization. Note that this table can be transformed into
the Boolean cover of Example 4 by replacing each symbol
by its encoding. Moreover, the encoding of cNTD covers
bit-wise the encoding of cNTB and cNTC and allows cNTD
to override cNTB and ¢NTC. Note that the first implicant
can be deleted by assuming that cNTA is the default output
and that the encoding df cNTA is 00, which is covered bit-
wise by the encoding of all other outputs.

Once a minimal table has been found, the encoding of
the words into Boolean; variables is driven by the grouping
of the input symbols (group of symbols appear on the same
row of a minimal table) and the ordering of the output
symbols generated by isymbolic minimization. Note that
disjoint minimization deals with each output symbol in-
dependently, and therefore does not provide information
for an encoding of the output symbols that optimize the
table size. Therefore, disjoint minimization can be used
only to solve problem P1 of symbolic design.
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We describe in detail in Section IV how to compute an
encoding of the input and output symbols that is compat-
ible with a minimal table. Such an encoding allows us to
transform the minimal symbolic cover into a Boolean rep-
resentation with as many product terms as the minimal
symbolic cover. Even though this mapping is not suffi-
cient to imply the minimality of the Boolean cover, the
encoded cover can be considered a good solution to the
problem. It is important to remark that the length of the
encoding (i.e., the number of binary variables) needed to
encode each symbol may have to be larger than the min-
imum length required to distinguish all the symbols in
each field (i.e., the ceiling of the logarithm in base 2 of
the number of elements in each field). Therefore, it is in-
teresting to compute minimal length encodings compati-
ble with a minimal symbolic representation and to tradeoff
possibly the minimality of the number of rows in a table
for the number of bits required to encode each field.

Let us now consider the design problem P4 of Section
I. Any sequential circuit can be implemented by feeding
back the (some of the) outputs of a combinational circuit
to its inputs, possibly through a register (Fig. 2). A gen-
eral model of a sequential circuit is the finite-state ma-
chine model; the machine is synchronous if the feedback
path contains synchronous registers. Finite-state ma-
chines are generally represented by state tables. State ta-
bles consist of four fields related to the primary inputs/
outputs and to the present/next state representation.
While, in general, all these fields may be represented by
symbols, it is customary to represent the primary inputs
and outputs in terms of binary variables and the internal
states in terms of mnemonic symbols. A classical problem
is to find an optimal encoding of the state symbols that
correspond to an optimal implementation. This problem
is referred to as optimal state assignment [9], [10].

Optimal state assignment can be solved by symbolic de-
sign by minimizing the state table using symbolic min-
imization and by computing a state encoding compatible
with the minimal table [5]. The feedback path makes this
problem different from designing combinational units. In
particular, the state symbols appear in both an input and
an output column of the state table and must be encoded
consistently: the set of state symbols must be encoded
while satisfying the group and the ordering constraints
simultaneously. The limitations and the encoding proce-
dure is described in Section IV.

Eventually symbolic design can be applied to intercon-
nected logic circuits. Consider two units, to be imple-
mented by two-level logic macros, that communicate

Fig. 2.
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through a bus (Fig. 3). If the representation of the infor-
mation is transmitted across the bus is irrelevant to the
design, symbolic optimization can be used as follows. The
transmitting unit can be represented by a table with a sym-
bolic output field and the receiving unit by another table
with a symbolic input field. The tables corresponding to
both units are optimized by symbolic minimization and
the set of symbols, representing the communication sig-
nals, can be encoded as in the previous cases. Needless
to say, this method can be extended to the interconnection
among any number of modules, implementing combina-
tional or sequential functions.

III. SymBoLIC MINIMIZATION
A. Definitions

Symbolic functions are switching functions whose
variables can take a finite set of values. Each value is
represented by a word (or mnemonic), i.e., by a string of
characters. A symbolic variable s has a set of admissible
values S. The symbol ¢ is reserved to denote that variable
s does not take any value of S. For functions of n input
variables and m output variables, let S f, i=1,2,---,
n,and S2,i = 1,2, - -+, m, be the set of admissible
values for the corresponding variables s’ and s¢. Then the
domain of the symbolic function is the Cartesian product
§'= 81 x 8§ x -+ + x §! and the range is the Cartesian
product S¢ = §¢ x §¢ x -+ - x §2. A generic element
og the domain is denoted by s’ and one of the range by
5”7,

A completely specified symbolic function of » input
variables and m output variables is a function f: §' — §¢
that maps each element of the domain to an element of
the range. An incompletely specified symbolic function
is a function having the property that, for some inputs,
some output variables can take any value in the corre-
sponding range. The collection of these points of the do-
main is called the don’t care set of that particular output
variable.

Example 6: The truth table of Example 1 is a represen-
tation of a completely specified symbolic function with
n = 2 inputs and m = 1 outputs. Here,

§1 = {DpIR, IND, INDEX }; S% = {AND, OR, ADD, IMP};
89 = {cNTA, CNTB, CNTC, CNTD}.

Boolean or binary-valued functions are symbolic
functions whose variables can take the values S = {0, 1}.
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The domain is {0, 1}". The range of a completely speci-
fied function is {0, 1}™. For incompletely specified func-
tions, let the symbol * represent the don’r care condition.
Then the range is {0, 1, *}”. Similarly, the variables of
multiple-valued functions can take the values S = {0, 1,
-+« ,p — 1}, where p is the radix of the representation
[17], [12]. Algebras have been developed for both the
Boolean and the multiple-valued [15] representations. The
representation of the result of Boolean operations are
based on a linear order of S. Let r: § — N be an enu-
meration consistent with the linear order [16], where N is
the set of natural numbers. Then

i) Product (AND): s A s = r " min (r(s), r(s'y
i) Sum (oR): sVs' = r ! max (r(s), r(s"))
iii) Complement (NOT): 5=rlp—1-r).

Note that the order does not affect the semantics of the
representation of a switching function; however, the order
may strongly affect the size of the representation. For ex-
ample, canonical representations, such as sum of products
or product of sums depend on the linear order of §; in
particular, the minimal representations of a Boolean func-
tion and of its complement as sum of products have dif-
ferent sizes, and algorithms have been developed to ex-
ploit this fact [19].

Representations of symbolic functions depend on the
definitions of the operations among words. Unfortu-
nately, no order relation is meaningful a priori among the
elements of a symbolic description. For this reason, op-
erations on symbolic representations are related to order
relations among words, and appropriate order relations are
introduced to obtain convenient representations of sym-
bolic functions. In the following presentation, single-out-
put functions are considered first, i.e., m = 1, to simplify
the notations. The extension to multiple-output functions
is then shown.

Symbolic functions are represented here in a particular
canonical notation: sum of products or more exactly sum
of products of symbolic literal functions. Let S be the set
of admissible values for a variable s. A symbolic literal
is a nonempty subset ¢ < §. For any variable s € S, the
symbolic literal function is defined as follows:

TRUE
" FALSE else.

ifseo

i(s, o)

Example 7: Consider the set S{ = {DIR, IND, INDEX }
corresponding to the set of admissible values of the first
input variable in Example 6. An example of a symbolic
literal is DIR IND. The corresponding literal function is
TRUE for either s = DIR or § = IND.

By using a sum of product of symbolic literal functions
representation, only the order in S O affects the represen-
tation because the literal function maps words into the pair
of values (TRUE, FALSE) independently of the order in
S!. Note that if a linear order relation is applied on the
range, symbolic function representations in this canonical
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form are equivalent to multiple valued logic function rep-
resentations [17] in the same form. In particular, a mul-
tiple-valued representation can be obtained from a sym-
bolic representation by interchanging each symbol s with
r(s), where r(-) is the appropriate enumeration.

Since an order in §” is not necessarily given, the defi-
nitions of the representation of a symbolic function are
compatible with a set, possibly empty, of partial order
relations among the elements of the range. Let R = {(s,
§'); 5, s' € §°} be a partial order on S°. We say that s
covers s’ if either s = s ors = ¢ or (s, s') € TR, where
TR is the transitive closure of R [1]. The symbolic sum
of two words s and s’ is well defined only if a covering
relation exists among the elements involved. In particular

s if s covers s’
sVs =
s

!

if s’ covers s

else the symbolic sum is ambiguous or ill-defined.

A symbolic product-term (or symbolic product) of lit-
erals is the n + 1-tuple (¢, * * * , 0,, 7), Where g; & Sf,
i=1,2,---,n,7€ SY. The word 7 is called the output-
part of the literal. A symbolic product p(s’, 7) of literal
functions /;(s/, 0;),i = 1,2, + - -, n, is a function

r ifl;(s!, ;) = TRUE,
ps’, 1) = vi=1,2,--"
¢ else.

Example 8: A symbolic product of the function in Ex-
ample 1 is

, R

DIR AND CNTB.

The symbolic product function takes the value cNTB when
the two inputs take the values DIR and AND, respectively.
Two products p;, p, intersect (p;, N p, # ¢) if 3s’ €
S’ such that p,(s’, 7,) # ¢ and p,(s’, ,) # ¢. Two sets
of products P, and P, intersect (P; N P, # ¢) if 3p; €
P, and 3p, € P, such that p, and p, intersect. Two prod-
ucts are output-disjoint if either they do not intersect or
they have the same output-part, i.e., p(s T 7)) intersects
po(s’, 7,) implies 7, = 7,. A set of products is output-
disjoint if the products are pair-wise output-disjoint.
Example 9: Consider the two symbolic products

CNTC
CNTC

ADD
ADD IMP

DIR IND
DIR

The two symbolic product intersect because, for the sym-
bolic input s’ = DIR ADD, the corresponding symbolic
product functions specify a symbolic value. Since both
symbolic product functions take value cNTC, the product
terms are output-disjoint.

A symbolic function can be represented in a sum of
product form; if Vs’ € S’ for which the function is spec-
ified, the operation of symbolic sum among products is
well defined. In particular, such a representation always
exists in the following two cases: i) for any linear order
on S, ii) if the representation is a sum of pair-wise out-
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put-disjoint products. In the former case, symbolic sum
is always well defined because a covering relation is de-
fined between each pair of symbols in S, In the latter,
only the symbolic sum of identical values is required.

Sum of product representations are conveniently repre-
sented in tabular forms, as a stack of product terms. A
symbolic implicant is a symbolic product p(s’, 7) such
that Vs’ € S’ for which the symbolic function is specified,
f(s') covers p(s’, 7). A symbolic cover of a symbolic
function is a set of implicants P={Ap,py ", pPp}
whose sum is f(s '), vs! e §! for which the symbolic func-
tion is specified. Since symbolic sum depends on the or-
der R on S, we denote a symbolic cover by the pair C(P,
R). The cardinality of a symbolic cover is | P| and de-
pends on R. A minimum symbolic cover of a symbolic
function is a cover of minimum cardinality. A minimal
(local minimum) symbolic cover of a symbolic function
is a cover such that no proper subset is a cover of the same
function.

Example 10: The following table is a symbolic cover
of the function specified in Example 6:

INDEX AND OR ADD JMP CNTA
DIR AND OR CNTB
IND AND CNTB
IND OR JMP CNTD
DIR IND ADD CNTC
DIR JMP CNTC

Note that the product terms are pair—wise output-disjoint.
Therefore, this representation is output-disjoint and is
compatible with any set R of partial order relations on S,
and in particular the empty set. The following table is
another symbolic cover of the function specified in Ex-
ample 6:

INDEX AND OR ADD JMP CNTA
DIR IND AND OR CNTB
DIR IND ADD JMP CNTC
IND JMP OR CNTD

Here, R = {(cNTD, cNTB); (CNTD, cNTC)}. Note that the
fourth product term has an intersection with the second
and third one and these products are not output-disjoint.
By choosing this particular partial order, the cover car-
dinality is reduced by two. Moreover, note that the first
implicant can be removed by assuming that cNTA is the
default output, as pointed out in Example 5.

B. Symbolic Minimization

Symbolic minimization is a procedure that attempts to
determine a symbolic cover of a symbolic function in a
minimum number of product terms. Finding a minimum
symbolic cover is a difficult task. An analysis of the com-
putational complexity of the problem has not been done
yet. However, we conjecture that any method to find a
minimum cover should involve the solution of a covering
problem, which is a NP-complete problem [8]. Therefore,
heuristic algorithms are used to determine a minimal (lo-
cal minimum) solution. It is important to remark that re-
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cent progress in heuristic logic minimization has led to
techniques which very often yield minimum solutions in

" the binary [11}, [2] and multiple-valued [18] case. We

assume that the reader is familiar with heuristic logic min-
imization [11], [2]. Since most of the routines in the sym-
bolic minimization algorithm are based on logic mini-
mizer ESPRESSO-II, we refer the reader to [2] for details.

Symbolic minimization is achieved by an iterative im-
provement of the initial cover C°(P°, R%). The symbolic
function is described as input by the set of products P°,
while R® is an empty set of ordering relations because no
order relation is meaningful a priori among the elements
of a symbolic description. Therefore, P is always a set
of output-disjoint products. The main idea of symbolic
minimization is to generate the order R during the min-
imization process. The symbolic minimizer detects partial
order relations that are necessary to define sums of prod-
uct terms which would decrease the symbolic cover car-
dinality. As a result, the order relations are determined a
posteriori by the minimizer. The output of the minimizer
is a minimal cover C(P, R).

Symbolic minimization is a very complex technique.
To help the reader in understanding this method and the
underlying principle, we first consider symbolic functions
with one symbolic output only and we present a simplified
version of the main loop of the symbolic minimization
algorithm. Then the complete algorithm is described.

1) A Simplified Symbolic Minimization Loop: Symbolic
minimization can be achieved by an iterative loop that
uses a multiple-valued-input, binary-valued-output min-
imization procedure. This procedure can be regarded as a
black box that takes as input the representation of a mul-
tiple-valued-input function and its don’t care set and re-
turns a minimal representation. Computer programs
ESPRESSO-II 2], ESPRESSO-MV [18], and MINI [11]
can be used in this regard.

It is convenient to represent the partial order R by a
directed acyclic graph G(V, A), where the vertex set V' is
in one-to-one correspondence with S¢. The edge set A4 is
initialized empty and is constructed during the minimi-
zation process. An edge between two vertices defines a
order relation between the corresponding elements of S°.
Therefore the sum of two distinct elements of S is well
defined if there is a directed path between the correspond-
ing vertices.

Let us arbltrarlly label the elements of the range 59 =
{sC i=1,2,---,4q}. Let ON;, i =1, 2, ,q,be
the subset of the initial set of product terms P consisting
of the product terms whose output part 7 = 5. Note that
the set ON; does not intersect the set ON; if i # j because
P is output-disjoint. Each set ON, qpeaﬁes a symbolic
single-output single-valued function. The original sym-
bolic function can be seen as a collection of ¢ multiple-
valued-input, binary-valued-output functions whose on set
corresponds to the points of the domain mapped into 59,
whose off set corresponds to those points mapped into
s} , J # i, and whose don’t care set corresponds to the
unspecified points [2]. A representation of each set ON;
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by a minimal number of product terms, denoted here by
M;, can be obtained vi = 1, 2, - - - | ¢ by using a mul-
tiple-valued-input, binary-valued-output minimization
technique. In principle, by performing ¢ minimization in
this way, a minimal cover of the original function can be
computed as P = U7_ M, i.e., as a collection of the ¢
minimal covers M;. It is shown in [2] how to perform the
g minimizations simultaneously. This procedure is called
here disjoint minimization because the minimal cover P
of any completely specified function is output-disjoint.>
Disjoint minimization does not exploit the benefit of
choosing an order R to minimize the cover, and therefore
is a weak optimization technique.’

The main idea of symbolic minimization is that the
cover P is not constrained to be output-disjoint by intro-
ducing appropriate order relations among the elements of
S°. For example, suppose that (s, s¥) € R. Then any
point of the domain represented by ON; can be used to
reduce the cardinality of ON; in the minimization process.
In the minimal symbolic representation, such point is still
mapped into s]O because (sjo, s?) € R. In other words, the
subset of the domain represented by ON; is a part of the
don’t care set while minimizing ON;. We represent the
don’t care set by the set of product terms DC;. In this
case, ON; < DC;.

Example 11: Consider the first cover of Example 10.
Let s¢ = cnTB and s]-O = cNTD. Then, ON; is

DIR AND OR CNTB
IND AND CNTB

Suppose (cNTD, cNTB) € R. Then DC; inciudes
IND ORJMP CNTD.

Therefore, the point of the domain s’ = IND OR can be
used to reduce the cardinality of ON,; that can be repre-
sented as

DIR IND AND OR CNTB.

To minimize ON;, an explicit representation of the cor-
responding don’t care set is needed. Equivalently, the off
set can be specified and the don’t care set obtained by
complementation of the on and off sets. To take advantage
of the order relations, we use a definition of the off set
different from that used in [2] and mentioned before. For
our purposes, the off set corresponding to ON; is the sub-
set of s’ that is mapped by the function f to a value dif-
ferent than s’ and covered by 52, because Vs’ € st s.t.
f(s’) # 5P andf(s') is covered by 59, p(s’, s2) is not an
implicant of the function. If G(V, A) represents the partial
order, then the off set can be defined as a set of product
terms: OFF; = U; ON;; J = {js.t.3 a path from v, to v;
in G(V, A)}.

2If the original function is incompletely specified, the minimal cover P
is still output-disjoint if we restrict the definition of intersection among
imglicams by considering § as the care set of the function.

In a previous paper [5], the author used the concept of symbolic min-
imization to deal with the optimal state assignment problem. Since no sym-
bolic minimization technique was available at that time, disjoint minimi-
zation was used instead.
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At each iteration of the symbolic minimization loop, M;
is obtained by minimizing ON;, using a routine that per-
forms multiple-valued-input binary-valued-output min-
imization. We invoke the minimization routine with the
pair (ON;, OFF;) so that the corresponding don’t care set
DC;, computed by the minimizer by complementation,
includes by construction of the sets ON; for which no path
exists in G(V, A) from v; to v;. As a result, minimization
may be very efficient in reducing the cardinality of ON;
because of the particularly advantageous don’t care set.
If M; intersects ON;, the relation (sjo, s2) is recorded by
adding (v;, v;) to the edge set of the graph.

SYMBOLIC MINIMIZATION LOOP
Data ON;,, i = 1,2, -+, gq;
Data G(V, A);
A=¢;P=¢;
for (k = 1to ¢){
i = select (k);
OFF, = U; ON;;  J = {j|3 a path from v; to v;
in G(V, A)};
M; = minimize (ON;, OFF});
A =AU {(v;, v)s.t.M; N ON; # ¢};
P=PUM;
3

Procedure select sorts the sets ON; according to a heu-
ristic criterion. Procedure minimize is a call to a multi-
ple-valued-input binary-valued-output minimizer. The al-
gorithm generates a set of symbolic products P = U{_ M,
and the directed graph G(V, A).

Theorem 1: The graph G(V, A) generated by the sym-
bolic minimization loop is acyclic.

Proof: By construction. Initially, the graph is acyclic
because the edge set A is empty. Suppose that at iteration
k the graph has no cycles. Then at iteration k + 1 the
graph has no cycles according to the following argument.
Let i be the index returned by select at iteration & + 1.
LetJ = {js.t.M; N ON; # ¢}. Since the edges (v;, v;);
j € J are those and only those added to the edge set at
iteration k + 1, then any cycle must include a vertex v;,
j € J and a directed path must exist between v; and that
vertex. Let J = {j|3 a path from v; to v; in G(V, A)}.
Then J N J = ¢, because M; N OFF; = ¢, i.e., the
minimal cover of the on set cannot intersect the off set.
Then no cycle can be introduced at step & + 1. Therefore,
the final graph G(V, A) is acyclic. ]

Since G(V, A) is acyclic, R represents a partial order
relation on S°. It is now important to show that C(P, R)
is a cover of the symbolic function specified by the initial
cover C%(P°, R%). We assume the correctness of proce-
dure minimize in returning the minimal covers M; of the
covers ON;, i = 1,2, -+ ,q.

Theorem 2: C(P, R) is a minimal cover of the original
syrglbolic function represented by C%P°, R and |P| <
|P%.

Proof: Consider each symbolic output value sP, i =
1,2, - - -, q. Since the elements of the symbolic function
domain mapped by f into s2 are represented by ON, in P 0
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and M, is a minimal representation of ON,, then for each
element s’ in the domain mapped by finto s° and Vi, i =
1,2, -, g, there exists at least one symbollc 1mp11cant
p € P whose output part is s2 and s.t. p(s’, s ) = f(sh

For a generlc element s’ of the domain, let P(s’) = {p e
P s.t. p(s’, 7) # ¢}. Since C(P, R) is not necessarily
output-disjoint, the output parts of the product terms in
P(sh may be conflicting. However, since M; N ON; #
¢ implies (v;, v;) € 4 Vi, j, then the sum of the product
terms in P(s ) in f(s' ) Moreover C(P, R) is minimal
because the covers M, i = 1, 2, , g are minimal and
P=UL M. Eventually, since |M| |ON,|, i =1, 2

©, g, then |P| = T, [M,| < EI_, [ON] = |P°].

The order R depends on the heuristic sorting of the sets
ON;, done by procedure select. As a result, the cardinal-
ity of the cover C(P, R) generated by the algorithm
strongly depends on this routine. Several heuristics have
been tried. Note that as more edges are added to the graph,
it is more likely that the off sets become large and the
don’t care sets are small. An effective heuristic is to sort
the sets ON, in descending order of cardinality, so that the
largest sets will benefit from large don’t care sets. A key
ingredient for an effective reduction of the cover mini-
mality is that the graph should be kept as sparse as pos-
sible by introducing only the ordering relations needed to
reduce the cover cardinality. Keeping the graph sparse
corresponds to keep many degrees of freedom to order 5°
in the later iterations of the algorithm. Note that if mini-
mize is a ‘‘standard’’ minimization algorithm, it aims at
reducing both the product of literal cardinality in each
ON; . Therefore, the local optimization of the number of
literals in the minimize procedure may introduce new
edges in the graph and reduce the likelihood of reducing
the symbolic cover cardinality at a later step. For these
reasons, the symbolic minimization loop has to be modi-
fied for efficiency by tuning the minimize routine to the
symbolic minimization problem.

2) The Symbolic Minimization Algorithm: We con-
sider here symbolic functions with multiple outputs (i.e.,
m = 1): one output variable is a symbolic g-valued vari-
able; the other output variables can take values in the or-
dered set of symbols {0, 1}, i.e., are binary-valued
variables. In this case, the symbolic implicant (product
term) output part 7 has m scalar components 7,, [ = 1, 2,

, m; 7, can take any of the g values in S = {s?l,
§95, - ,sffq};n,l =2,3, , m can be either 0 or
1; in addition 7, = ¢ if the implicant does not carry any
information regarding the g-valued symbolic output. This
special case is considered because it applies to finite-state
machines whose next-state function is specified by sym-
bols and whose primary outputs are binary-valued func-
tions. The general case of m symbolic valued outputs will
be mentioned later.

To obtain an efficient algorithm for symbolic minimi-
zation, it is necessary to ‘‘open the black box’’ and ex-
amine more carefully the operations that the procedure
minimize performs. We call optimize the modified pro-
cedure for multiple-valued-input minimization used in the
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algorithm. The symbolic minimization algorithm is as fol-
lows:

SYMBOLIC MINIMIZATION
Data C(P°, RY);
Data G(V, A);
A4=20¢;P=¢;
for (k = 1toq)
ON} = slice (P°, s? k)
OFF, = get off _set (PY;
P' = disjoint __minimize (P%:
for (k = 1to gq)
ON| = slice (P', s¥));
P? = slice (P', ¢);
for (k = 1 to g){
i = select (k);
OFF; = OFF, U U ; ON; J = {j|3 a path from v;
to v; in G(V, A)};
M, = optimize (ON; , OFF));
P=PUM:;
3
P = merge (P, P?);

The first improvement over the simplified symbolic
minimization loop can be explained in terms of prepro-
cessing of the input data. As mentioned before, the or-
dering relations R need only be introduced when they re-
duce the cardinality of P. Therefore, it may be useful to
perform a disjoint minimization before entering the sym-
bolic minimization loop. Disjoint minimization is done by
procedure disjoint minimize, which invokes a multi-
ple-valued-input minimizer, such as ESPRESSO-II. The
minimized cover P' is a minimal representation of the m
scalar components of the function. Now we call ON}, i =
1 2, -, g, the sets of product terms in PI with 7, =
sl ;- The procedure that returns the sets ON/} from P' is
called slice. The sets ON; contain all the points of the
domain mapped into s{; and possibly some points of the
don’t care set. Note that there may be a nonempty subset
of products in P' with 7, = ¢; these product terms do not
carry any information related to the first scalar component
and do not affect the symbolic minimization loop: they
are stored in set P®. Similarly, while the off sets related
to each symbolic value of the first scalar component are
defined in the loop, the off sets related to the other com-
ponents do not change. We call OFF, the union of the off
sets corresponding to the binary-valued components of the
function, i.e., components [ = 2, 3, , m. Procedure
get off set extracts the off set OFF, from the original
representation P°. In the main loop, OFF,; is the union of
two subsets: OFF, and U, ONJ»O, which represents the off
set of the value of the first component being considered.
Note that the sets ON? are a “‘slice’” of the original rep-
resentation C°(P°, R%)) so that they correspond to the
points of the domain, and only those points, that have to
be mapped by finto s{;, i =1, 2, , q.

In the symbolic mlmrnlzatlon loop, procedure select
sorts the sets ON,' in descending order of cardinality. Then
the sets M, are obtained from ON/ by procedure optimize.
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Procedure optimize sets M; = ON; and then performs op-
erations on M; to reduce its cardinality. Procedure opti-
mize differs from procedure minimize (described in the
previous subsection) because the intersections between M;
and ONO J # i, are monitored during the minimization
process. In particular, if at any given point M; N ON0
¢ and a point of the domain corresponding to ONO is use-
ful as a don’t care point to reduce the number of impli-
cants of M;, this point is used and the order relation (J,
i) is recorded by adding (v;, v;) to the edge set of the
graph. If M; N ON} # &, then the points of ON/ can be
used unconditionally as don’t care points. By doing this,
we introduce a new order relation only when the cardi-
nality of M; is reduced by deleting one (or more) impli-
cants. Note that by monitoring the intersections M; N
ONf-) , we avoid the set intersections after the minimization
step, as done in the simplified loop. Procedure optimize
is implemented by a modified version of program
ESPRESSO-I1.* At the exit of the main loop, procedure
merge appends to P the implicants of P? that are not cov-
ered by (or that cannot be merged with) implicants of P.
The primary goal of symbolic minimization is to reduce
the cardinality of the cover. An interesting question is to
explore the role of the symbolic literals and how the sec-
ondary goal of symbolic minimization can be related to
the literals. A clue can be obtained by relating symbolic
minimization to the binary encoding problems sketched
in Section II. The minimal symbolic cover is an inter-
mediate step in the process of computing a2 minimal Bool-
ean cover. Therefore, the symbolic literals in a symbolic
cover should be chosen to ease the encoding of the mini-
mal symbolic cover into a Boolean cover as much as pos-
sible. Note first that a literal consisting of all admissible
values for the corresponding variable is equivalent to a
don’t care condition on that variable. Such a literal is
called a full literal. Therefore, it is always convenient to
attempt to expand each literal to full. This is the equiva-
lent to attempting to minimize input literals in standard
Boolean minimization. When it is not possible to expand
a literal to full, it is questionable which is the optimal
cardinality for each literal, i.e., the optimal number of
words in each literal. The strategy used in symbolic min-
imization is the following. For each implicant of the min-
imal cover, we compute an expanded implicant, whose
literals have maximal cardinality. The expansion process
increases the literal cardinality of a product term, while
retaining it as an implicant of the function. Then we com-
pute a reduced implicant whose literals have minimal
cardinality. The reduction process decreases the literal
cardinality of a product term, while making sure that the
reduced product term and the remaining ones are still a

“Procedure ExPAND of program ESPRESSO-II is modified as follows.
By using the terminology of [2], let EXPANDI be the routine that takes an
implicant ¢ and a cover and returns an expanded implicant ¢* and the set
W of implicants covered by ¢*. Just after the call to EXPAND1, an additional
routine checks the intersections c* N ON?, z # j. If 3j such that ¢* N
ON? % ¢ and (v;, v) ¢ Aand W = ¢, then ¢” is replaced by the original
cube c.
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cover of the function [2]. By comparing each expanded
implicant with the corresponding reduced implicant, we
can detect the don’t care words in each literal. Such words
represent input conditions that do not affect the value of
the minimal cover and that can be used effectively to ease
the encoding problem, as shown in Section IV. Procedure
optimize implements the literal optimization strategy.

We show now that C(P, R) is a cover of the symbolic
function specified by CO(PO, R®). We assume the correct-
ness of procedures disjoint-minimize and optimize in re-
turning the corresponding minimal covers. We note first
that the graph G(V, A4) constructed by the algorithm is
acyclic because the structure of the main loop and the steps
that construct the graph are the same as in the symbolic
minimization loop of the previous subsection and, there-
fore, Theorem 1 applies.

Theorem 3: C(P, R) is a minimal cover of the original
symbolic function represented by C°(P°, R%) and |P| <
|P'| < |P°|.

Proof: Let Cy(P, R) be the cover of the first compo-
nent of the function' generated by the algorithm. Let
CYP°, R% be the original cover of the first component.
As far as the first component is concerned, the symbolic
minimization algorithm is equivalent to applying the sim-
plified loop on the sets ON/, i = 1, 2, , ¢. Since all
the points of the domam mapped into s, ; are represented
by ON!,i=1,2, -+, g, by Theorem 2, C;(P, R) is a
minimal cover of the ﬁrst component of the function spec-
ified by C,(P° R%. Let now P, [ = 2, 3, , m, be
the cover of component ! computed by the algorlthm P},
l=2,3, - -, m, be the cover of component [ after
disjoint minimization, and P}, 1 = 2,3, - - - . m, be the
orlgmal cover of component /. Let ONE {s’
S’s.t. fits") = 1} and ZERO, = {s' € §'s.t. f,(s = 0},
l=2,3, , m. Then, for each component [ = 2, 3,

, m, P| represents all the points in ONE; and none of
the points in ZERO, by the assumption of correctness of
procedure disjoint__minimize. Slmllarly, P, represents
at least all the points represented by P] and none of the
points in ZERO, because P is constructed as a union of P ¢
and the sets M;, and no product term in M;, i = 1, 2,

-, g, with 7, = 1 represents any point in ZERO, be-
cause M, is obtained by optimize (ON;, OFF;) and OFF,
C OFF, represents the off set of components [ = 2, 3,

-, m. Therefore; C(P, R) is a cover of the original
symbolic function represented by C °(P°, R%. The cover
C(P, R) is minimal because the covers M;,i = 1,2, -+ -,
g, are minimal and only the products P that are not cov-
ered by U?_, M, are appended to it at the exit of the
main loop. Moreover, since |M;| < |ON}|,i= 1,2,

g, and |ON!| < |ON?|,i = 1,2, -+, q, then |P| =
|P?| + Zf_, |M;| < |P® + Zi_, |ON]| = |P'| < EI_,
JON?] = |PY]. L

The symbolic minimization algorithm invokes g times
procedure optimize, whose computational complexity is
similar to that of minimizer ESPRESSO-II. Therfore, the
total computational ‘complexity grows linearly with the
number of elements in S’. The minimization procedure is
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TABLE 1
RESULTS OF SYMBOLIC MINIMIZATION
Example Original cover Minimal cover Minimal
disjoint-cover
cardinality cardinality cardinality
EX1 24 9 16
EX2 91 49 57
EX3 170 78 78
EX4 11 5 8
EXS 25 10 11
EX6 24 17 24
EX7 115 89 94
EX8 107 57 92
EX9 184 106 115
EX10 16 14 15
EX11 166 102 111
EX12 49 i1 12
EX13 25 10 11
EX14 20 8 13
EX15 56 23 24
EX16 32 15 16
EX17 108 46 55
EX18 32 17 18
EX19 14 9 10
EX20 30 22 23

a heuristic procedure: no theoretical bounds on the com-
putational complexity have been proven for heuristic min-
imization; however, experimental results have shown that
it is practical to minimize a wide range of logic functions
[11], [2] and, therefore, the symbolic minimization al-
gorithm can be used in this perspective.

As a final remark, symbolic minimization can be ex-
tended to multiple-output functions (m > 1) with m sym-
bolic outputs by extending the definitions and operations
appropriately. In this case, m partial orders on the sets
S,-O, i=1,2, -+, m, have to be recorded. The sym-
bolic minimization algorithm can be extended to cope with
this case. However, since each symbolic implicant may
imply more than one output condition, it is very complex
to determine the best sequence to apply the optimize pro-
cedure. For this reasons, further investigation is still
needed to solve the general case.

C. Implementation and Results

The symbolic minimization algorithm has been imple-
mented in a computer program called CAPPUCCINO be-
cause it is based on the logic minimizer ESPRESSO-II.
CAPPUCCINO is written in APL and incorporates a
modified version of the ESPRESSO-II original program
[2]. CAPPUCCINO implements the symbolic minimiza-
tion algorithm described in Section III-B-2. The simpli-
fied loop was presented in Section III-B-1 to ease the un-
derstanding of symbolic minimization. It was imple-
mented only in an early experimental stage and then
superseded by the complete algorithm. CAPPUCCINO
has been tested on several examples. Table I summarizes
the results.

The first two numeric columns show the original and
final cover cardinality. The last column shows the final
cardinality obtained by disjoint-minimization, by using
program ESPRESSQ-II. In some cases (EX1, EX2, EXS,
EX17, - - ), CAPPUCCINO does significantly better
than ESPRESSO-II in reducing the cover cardinality. In
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some others, the advantage of introducing covering rela-
tions among the output symbols is not a major factor in
reducing the cover cardinality. These comparisons have
to be understood with caution because we are comparing
different minimization techniques and not program per-
formances.

Computing time ranges from a few seconds to about 20
minutes for the largest example on an IBM 3081 com-
puter. Note that APL is interpreted and, therefore, the
execution is much slower with comparison to compiled
code programs. Today, CAPPUCCINO is limited to cov-
ers of about 2000 symbolic product terms due to memory
limitations of the APL workspace and computing time.
A compiled code implementation of the algorithm based
on the data structure and the routines of program
ESPRESSO-MV [18] (in place of the APL version of
ESPRESSO-II) would definitely increase the capability
and the performance of the program.

IV. ENCODING PROBLEMS AND ALGORITHMS
A. Encoding Problems

Symbolic minimization is used as an intermediate step
in solving problems P1-P4 of Section I. Since the final
result must be a binary-valued logic circuit implementa-
tion, the symbolic representation has to be translated into
a binary-valued (Boolean) one. If a multiple-valued cir-
cuit implementation technology were available (including
logic gates implementing the literal function [17]), then
the (minimal) symbolic representation could be mapped
into a multiple-valued representation with the same car-
dinality by interchanging the words s with r(s), where
r(+) is an appropriate enumeration. If a partial-order re-
lation exists on a set of words, then the enumeration must
be consistent with it.

Let us consider first problems P1-P3. The goal of the
following encoding technique is to find a binary-valued
sum of products representation of the switching function
with as many groduct terms as the (minimal) symbolic
representation.” To construct such a Boolean cover, it is
sufficient to determine: 1) an encoding of the words re-
lated to each symbolic input variable such that each sym-
bolic implicant can be represented by one Boolean impli-
cant; 2) an encoding of the words related to each symbolic
output variable that preserves the covering relations; i.e.,
such that the encoding of the sum of any subset of sym-
bolic products is the sum of the corresponding Boolean
products. For this reason, we consider two encoding
problems: the former is related to the encoding of the

>Unfortunately, it is not possible to state the minimality of the Boolean
cover because a Boolean implicant may be covered by the sum of two or
more implicants. Symbolic minimization detects pair-wise covering rela-
tions and neglects (in the version presented here) one-to-many relations
that cannot be expressed by the partial order (e.g., a word may be made
equivalent to the simultaneous assertion of two or more of words). An ex-
tension of symbolic minimization to cope with this situation would be of
great theoretical interest, but would probably also complicate the problem
of finding a Boolean encoding. In practice, the Boolean covers obtained by
the present technique are often minimal or close to minimal.
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symbols representing the input variables; the latter to the
encoding of the output variables.

Let us consider first the encoding of the input variables.
If a variable can take at most two symbolic values, it has
a trivial Boolean encoding. In the general case, a variable
that can take more than two symbolic values is repre-
sented by more than one binary-valued variable. Then, to
achieve the goal of encoding each symbolic implicant by
one Boolean implicant, we must represent each symbolic
literal by one product of Boolean literals. A product of
Boolean literals is called cube or face because it is a sub-
space of the Boolean hyperspace that can be represented
by a hypercube. Therefore, the encoding of the words
must be such that each symbolic literal can be represented
by a face (Boolean cube) that is a subspace of the Boolean
space that contains the encoding of all and only the sym-
bols in the literal [5]. If don’t care words are specified in
that literal, then it is indifferent whether the face repre-
senting the literal contains the encoding of don’t care
words or not.

The problem of encoding the words related to the out-
put variables is different because the output part of the
symbolic implicants corresponding to an output variable
consists of one word only (and not of a symbolic literal
with possibly more than one word, as in the case of the
input variables). However, the encoding of the words re-
lated to the output variables must be such that the cover-
ing relations are preserved while transforming the sym-
bolic cover into a Boolean cover. Therefore, the encoding
must be such that, for any two words joined by an order
relation, the corresponding encoding are linked by a cov-
ering relation, i.e., the first word covers bit-wise the sec-
ond word.

The encoding problem derived from problem P4 has an
additional constraint. In this case, there is one set (or more
sets) of words corresponding to both input and output
variables. The encoding of this set of words must satisfy
the requirements for the encoding of the input variables
and the output variables simultaneously.

We now formally present the encoding problems. Let S
be a set of words to be encoded and let n, = |S|. Let n,
be the cardinality of the (minimal) symbolic cover. Let
n,, the encoding length, i.e., the number of Boolean
variables used to represent S. The encoding problem is
studied using matrix notation. Some matrices we consider
have pseudo-Boolean entries from the set: {0, 1, *, ¢}
where * represents the don’t care condition (i.e., either 1
or 0) and ¢ represents the empty value (i.e., neither 1 nor
0). Logical product and sum on pseudo-Boolean variables
is defined as follows:

Al O1*é |01 *¢
0] 0¢0¢ O0]0*xx0
1] 11 1]*1%*1
d|l o ddo o¢|01*9
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Let S be the set of values taken by a symbolic input
variable. Let us consider the set of literals in the (mini-
mal) symbolic cover related to that variable. The word-
literal incidence matrix 4 (or incidence matrix in short)
is a matrix: 4 € {0, 1, *}"»>"

aj. T
a.
A= = [aqla,| -+ la.n] = {a;}
L_a,,p. .
1 if word j belongs to literal i
* if word j is a don’t care
where: a; =

word in literal i
0 else.

Example 12: Let S be the set of operation codes in the
symbolic function specified in Examples 1 and 10, i.e., §
= {AND, OR, ADD, JMP}. Consider the minimal symbolic
cover of Example 10. Then

b 1111-T

1100
0011
L0101

Now let S be the set of values taken by a symbolic out-
put variable. The partial order adjacency matrix B €
{0, 1}">"s (or adjacency matrix in short) is the adjacency
matrix of the graph representing the transitive closure of
the partial order R. If word i covers word j, then b; = 1.
If word i covers word j and word j covers word k, then b;;
=1, by = 1 and by = 1. Since covering is a transitive
relation, we represent directly all the implied covering re-
lations by matrix B. Moreover, since it is trivial that each
word covers itself, we choose not to represent it by con-
vention, i.e., b; =0,i = 1,2, -+, n,

Example 13: Let S be the set of controls in the sym-
bolic function specified in Examples 1 and 10. Consider
the minimal symbolic cover of Example 10. Then

OOOOT
: 0000
B =
0000
0110
b -
The encoding matrix E is a matrix E € {0, 1}"5™™
i €. ]
€.
E= = [ealea] » - e,
€.

whose rows are the encoding of the words.
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Definition 1: Letae {0, 1, *, ¢} andx € {0, 1, *, ¢}.
The selection of x according to a is
X ifa =1

¢ else.

a - x

Selection can be extended to two-dimensional arrays and
is similar to matrix multiplication.

Definition 2: LetAe {0,1,*, ¢} *%and X € {0, 1, *,
$}7*". The matrix pseudo-Boolean selection is

A 'X=C: {Cij}pxr

where ¢; = V{_| ay * x; or equivalently ¢; = q; -
xijVay - x; V- - Va, - x,.

Let us consider the problem of encoding the symbolic
input variables first. This problem was presented in [5]
for the first time. We report here the most relevant results
in a more general formulation. We represent the encoding
of the symbolic literals by the face matrix F € {0, 1, *,

d)}npxnb

FPAF =@y e;)AA-E) =
oo ok ¢
10 0 0
= A = ¢
oo 1* o]
10 ok 10
£ ]
F = L
Lf”"' .

Each row of F is a face of the n,-dimensional Boolean
hypercube and corresponds to the face that encodes the
symbolic literal. The face matrix can be obtained by per-
forming the matrix pseudo-Boolean selection of E accord-
ing to an incidence matrix A

F=A4-FE

Example 14: Consider the incidence matrix of Exam-
ple 12 and the encoding of Example 4. Then

00 *ok

01 0*
E = F=A-FE-=

10 1*

11 *1

Now let 4 = {a;}, where @; = 1 if a; = 0; else ; = 0.
Then F' = a.; - ¢;. is a matrix whose rows are 1) the
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encoding of word i, if word i neither belongs to the sym-
bolic literal j nor is a don’t care word; 2) empty values.
An encoding matrix E is said to satisfy the input con-
straint relation for a given incidence matrix A4 if

fiAf,.
_ FAp.
F'AF = AL

f AL,

where & is the empty matrix, i.e., a matrix whose rows
have at least one ¢ entry and therefore representing no
point in the Boolean space.

Example 15: The encoding matrix of Example 14 sat-
isfies the input constraint relation. However, if we swap
the first two rows of E, the input constraint relation is no
longer satisfied because the encoding of the third word
ADD intersects the fourth face, or equivalently

0T 1111 011

1 1100 00
- [10] A

0 0011 10

1 0101 11

* &.

The problem of encoding the values taken by a symbolic
input variable is equivalent to finding an encoding matrix
satisfying the input constraint relation. An optimal solu-
tion is one of minimal encoding length. Therefore, we can
state

Encoding problem E1: Given an incidence matrix
A, find an encoding matrix E with minimal number
of columns that satisfies the input constraint rela-
tion.

Let us consider now the problem of encoding the output
variables.

Definition 3: LetAe {0, 1}’*?and X € {0, 1}9*". The
matrix Boolean selection is

AX = C = {C,‘j}pxr

where ¢; = V{_a, A x;; and the sum (V) and product (A)
operators on Boolean variables have the usual meaning:

Viol AlO01
0/01 0]00
1111 1]01
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Letnow G = B°E.Rowi,i=1,2, -, n, of matrix
G is the logical sum of the encoding of the words that
must be covered by the encoding of word i. Therefore,
we say that a matrix E satisfies the output constraint re-
lation for a given adjacency matrix B if E covers G or
equivalently

EAG=0

where E is the Boolean complement of E and O is the
matrix of O entries.

In this case, the problem of encoding the values taken
by a symbolic output variable is equivalent to finding an
encoding matrix satisfying the output constraint relation.
An optimal solution is one of minimal encoding length.
Therefore, we can state

Encoding problem E2: Given an adjacency matrix
B representing to a partial order, find an encoding
matrix E with minimal number of columns that sat-
isfies the output constraint relation.

The solution of problem P1 (P2 or P3) requires the solu-
tion of encoding problem El (E2 or both) for each sym-
bolic variable, after symbolic minimization. The solution
of problem P4 requires the encoding of one set (or more
sets) or words corresponding to both input and output var-
iables, after symbolic minimization.

Encoding problem E3: Given an incidence matrix
A and an adjacency matrix B representing a partial
order, find an encoding matrix E with minimal num-
ber of columns that satisfies both the input and the
output constraint relation.

We explore now the existence of solutions to the en-
coding problems E1, E2, and E3. It was shown in [5] that
1-hot encoding satisfies always any input constraint rela-
tion.

Theorem 4: The identity encoding matrix E = [ € {0,
1} satisfies the input constraint relation for any given
incidence matrix A.

Proof: 1t is reported in [5]. u

Theorem 5: Given any incidence matrix A, let A be any
Boolean matrix obtained from A by replacing any * entry
by 1 or 0. Then E = A7 satisfies the input constraint re-
lation.

Proof: Tt can be derived from the proof of a similar
theorem [5] in a straightforward way. ]

Theorems 4 and 5 show that there always exist an en-
coding that satisfies the input constraint relation, but the
length of the encoding suggested by the theorems are
often far from the minimal length.

For the output variable encoding problem, there exists
a trivial solution corresponding to the 1-hot encoding so-
lution to the input encoding problem. In particular, if we
enumerate the words consistently with the partial order
(i.e., if we reorder the words so that word i never covers
word j if j > i), then a strictly upper triangular matrix of
1 entries is a valid solution. Moreover, note that the first
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column of this encoding matrix can be dropped, because
all entries are 0.

Theorem 6: The encoding matrix E = PU satisfies the
output constraint relation for any given adjacency matrix
B representing a partial order, where U € {0, 1}"s*"s™1;
U= {u;}; w; = 1if and only if j = i and P is a per-
mutation matrix such that P~'BP is a strictly upper tri-
angular matrix.

Proof: Note first that since B represents a partial or-
der, there always exists a symmetric permutation such that
P 'BP is a strictly upper triangular matrix. Now G =
B°E = B°PU = BP-°U. Then EAG = PUABP-U =
P(UAW), where W = P~'BP-U. Since P~'BP is a strictly
upper triangular matrix, then w; = 0 if j < i. However,
u; = 0ifj = i. Then EAG = O, where O is a matrix of
0 entries and the output constraint relation is satisfied. l

Theorem 7: Given any adjacency matrix B representing
a partial order, E = BT satisfies the output constraint re-
lation.

Proof: Let G = B°B”. Then 8 = Vs by Aby =0,
vi,j=1,2, -+, n, Therefore, EAG = O and the
output constraint relation is satisfied. |

Theorems 6 and 7 show that there always exist an en-
coding that satisfies the output constraint relation. As in
the previous case, the length of these encodings is often
far from the minimal length.

Unfortunately, it is not possible to state the uncondi-
tional existence of an ¢éncoding that satisfies both the input
and the output constrdint relations simultaneously.

Theorem 8: Given any incidence matrix A and any ad-
jacency matrix B representing a partial order, a necessary
and sufficient condition for the existence of an encoding
that satisfies both the input and the output constraint re-
lations is that for each triple of words 7, s, ¢ € S such that
b,=1land b, =1, 3ks.t.a, =1;a,=0;a, =1

Proof: Necessity. For the sake of contradiction, sup-
pose there exists an encoding matrix E satisfying both the
input and the output constraint relation and suppose that
b,, = by, = 1and forsome k, 1 < k < n, a,, =1, a,
=0,and @, = 1. Let J, = {jle,, = 1 and e; = O} and
Ji. = {Jjlej = 1 and e; = 0}. Since by assumption the
encoding of r covers the encoding of s which covers the
encoding of ¢, then J,; C J,,. Then face f;. is such that f;
= *if j € J,, and either fi; = * or fi; = ¢, if j & J,,. Since
e; = e VjgJ,and f; = * Vvj € J, then f,. Ae,. # &,
the input constraint is not satisfied and we have a contra-
diction.

Sufficiency. Let A be a matrix obtained from A by re-
placing the * entries by 1 or 0. Then, E = 47 satisfies the
input constraint relation. Let E be a matrix constructed as
follows. For each column k of E, let

R = 1 and b, = 1}
1 and b, = 1}.

The set JUJY is the set of words with a 0 encoding in
e.; and required to be covered by (to cover) some words
with a 1 encoding in é.,. Note that by assumption

{jlex =0 and 3xs.t &y =

Ji = {jlex =0 and Axs.t &y =
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JP N Jl = ¢. Now let

ifJ! = ¢
#+¢ and J) = ¢

.
e, =7¢., ifJj
t, else
where 1., is a column vector whose entries are bit-pairs
01 Vvjs.t & =1
=11 vjel
00 else.

Then e.; satisfies the output constraint relation. Since the
encoding matrix E is obtained from E by replacing some
columns by their complement or by a two-bit encoding of
their entries, then the encoding matrix E satisfies the input
constraint relation. Moreover, since the covering rela-
tions are satisfied for each column by construction, then
also the entire encoding matrix E satisfies the output con-
straint relation. |

B. Encoding Algorithms

A solution to the encoding problems E1, E2, or E3 is
an encoding of minimal length that satisfies the input, out-
put, or both constraint relations. It can be shown easily
by example that, for many instances of these problems,
the encoding matrices of Theorems 4-8 do not have min-
imal numbers of columns. Therefore, it is interesting to
devise algorithms which construct a solution to problems
El, E2, and E3. Unfortunately, these are computationally
complex problems of combinatorial optimization and it is
not known whether an optimal solution can be computed
by nonenumerative procedures. Since the growth of com-
putation time as the size of the problem increases is a
practical limitation to computer-aided design systems, we
consider here heuristic algorithms for the solution of the
above problems. Experimental results show that the en-
codings constructed by these algorithms have reasonably
short length, and often equal to the minimum length so-
lution when this is known.

The heuristic techniques presented below solves the en-
coding problems using greedy strategies. An encoding
matrix £ is grown from an initial seed matrix by con-
catenating rows and/or columns. At each step, the best
local concatenation is computed, while keeping the pre-
viously computed encoding matrix as such. As a result,
the encoding ma:rix grows in size, until all the rows are
encodings for the words in § that satisfy the constraint
relations. The heuristic selections that drive the algorithm
attempt to minimize the steps that increase the number of
columns to obtain a solution, and therefore guarantee a
weak optimality.

There are two major approaches to constructing matrix
E: a row-based method and a column-based one. In the
former method, the encoding matrix is constructed row
by row, i.e., by computing the encoding of the words one
at a time [5]. In the latter approach, the encoding matrix
is constructed column by column, i.e., by computing one
bit of the encoding of all the words at each pass. This idea
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was introduced first by Dolotta [7] to solve the optimal
state assignment problem, though the encoding problem
was stated differently.

A row-based encoding method was presented in [3] to
solve problem El. This technique is also effective for
solving problem E2. The algorithm can be sketched as
follows.

STEP 1:
STEP 2:

Select a word not yet encoded.

Determine the encodings for that word satisfy-
ing the constraint relation restricted to that word
and to the previously encoded words.

If no encoding is found, increase the code di-
mension by adding a column to E and go to
STEP 2.

Assign an encoding to the selected word by add-
ing a row to E.

STEP 5: If all words have been encoded, stop. Else go
to STEP 1.

We refer the reader to [5] for the details of the algo-
rithm when applied to problem E1. We describe here in
brief how this algorithm can be used to solve problem E2.
The words are selected iteratively at STEP 1 by choosing
nodes with no outgoing edges in the directed acyclic graph
representing the partial-order relation. The node corre-
sponding to the selected word is then deleted from the
graph. Let n;, be the current encoding length. At the be-
ginning, let n, = ceiling (log, n,). In the first pass of the
algorithm, the encoding of the first selected word is a row
vector of dimension n, with all O entries. In the subse-
quent passes at STEP 2, the encodings of length n, that
are not rows of E are determined by Boolean complemen-
tation. Encodings that do not satisfy the output constraint
relation restricted to the selected and already encoded
words are discarded. At STEP 3, if no valid encoding is
left, a column of O entries is appended to matrix E. Oth-
erwise, an encoding is selected at STEP 4 that minimizes
the number of 1 entries.

The row-based encoding algorithms generate short en-
codings (see [5] for experimental results) but fail to be
effective for large examples. In particular, the candidate
encodings generated at STEP 2 may increase exponen-
tially with the encoding length n,. Therefore, when the
encoding length increases, the computer implementation
of the algorithm slows down considerably. Moreover, it
is complex to handle problem E3 with this approach be-
cause the effectiveness of the algorithm depends heavily
on the heuristic ordering of words at STEP 1, and for both
input and output constraints there may exist conflicting
orderings.

The need to handle both constraints simultaneously, as
well as a desired computational-time complexity linear in
n,, has lead to the development of a column-based algo-
rithm. In a column-based algorithm, a single-bit encoding
of all the words is introduced at each step. While there
always exist single-bit encodings of all the words that sat-
isfy the output constraint relation, it is unlikely that such
an encoding satisfies the input constraint relation. There-
fore, we say that, given an incidence matrix A, an encod-

STEP 3:

STEP 4:
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ing matrix E partially satisfies the input constraint rela-
tion if E satisfies the input constraint relation for A’, where
A’ is a subset of the rows of A. The satisfaction ratio is
n,/n,, where n, is the row cardinality of A'. Then, the
column-based encodmg algorithm can be sketched as fol-
lows.

STEP 1: Select a column vector in {0, 1}"S that satisfies
the output constraint relation and corresponding
to a maximal satisfaction ratio.

If at the first pass, let E be the selected vector.
Else, append the selected column vector to E.
If E satisfies the input constraint relation, stop.
Else go to STEP 1.

STEP 2:

STEP 3:

Before describing in detail the column-based encod-
ing algorithm, we mention some properties of the encod-
ing problems that are relevant to this method. If each col-
umn of E satisfies the output constraint relation, so does
the entire matrix E and vice versa. This is not true for the
input constraint relation. In particular, if E satisfies the
input constraint relation, then a subset of columns of E
may not satisfy it. However, we can prove that by ap-
pending a column to E, the satisfaction ratio cannot de-
crease.

Theorem 9: If E satisfies the input constraint relation
for a given A4, then E' = [E|T] satisfies the input con-
straint relation, where T'is any {0, 1} matrix with n, rows.

Proof: 1t is reported in [5]. |

Therfore, our strategy is to select columns that increase
the satisfaction ratio until it reaches unity and the algo-
rithm terminates.

Theorem 10: If E satisfies the input constraint relation
for a given A, then E' = [E|a”] satisfies the input con-

A
straint relation for \:—} .
[o4

Proof: Since E satisfies the input constraint relation
for A, by Theorem 9 [E |77 satisfies the 1nput constraint
relation for A. We just need to prove that [E |a 7] satisfies
the input constraint relation for «. Since [« 7] satisfies the
input constraint for [«] by Theorem 5, then [E |oz ] sat-
isfies the input constraint relation for «, again by Theo-
rem 9.

If the algorithm is used to solve problem El, by se-
lecting as columns the transpose of the rows of A4, we
construct as a solution E = A7, which is a valid solution
if we replace the * entries by O s or 1’s (Theorem 5). On
the other hand, if the algorithm is used to solve problem
E3, there exists also a column selection that increases the
satisfaction ratio by at least 1/2 X n,, i.e., at most two
columns will be needed to satisfy the input constraint set

by each row of 4, while satisfying any admissible output -

constraint. This is shown by the proof of sufficiency of
Theorem 8. However, since the optimality of the solution
is measured by the number of columns of E, we need col-
umn selections that maximize the increase of the satisfac-
tion ratio. The column selection procedure is described in
the detail in the sequel.
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For computational efficiency, it is important to reduce
the number of rows of A to the minimal number that rep-
resents an equivalent constraint on the encoding. It is triv-
ial that duplicate rows can be deleted, as well as rows
without O entries or with only one 1 entry. The former set
does not represent a real constraint (all encodings must be
contained in the Boolean space) and the latter set requires
that some encodings must contain themselves (which is a
tautology). The number of rows of A can be compressed
further by using the result of the following theorem.

Theorem 11: Let A be the subset of the rows of A with
no * entries. An encoding matrix F satisfies the input con-
straint relation for A if and only if E satisfies the constraint
relation for A’, where A’ is the subset of rows of A that
are not Boolean products of two or more rows of A.

Proof: The proof is reported in [5]. |

The number of rows of A can be reduced according to
these arguments. If the number of rows after performing
the reduction is ceiling (log, ny), then AT is an optimal
solution to E1, where A is obtained from A by replacing
the * entries by 1’s or 0’s. In general, there may be du-
plicate columns in A which would lead to duplicate en-
coding of the words. This is easily resolved by appending
appropriate columns to E to distinguish the duplicate en-
codings. The problem of duplicate encodings would not
exist if we consider the original incidence matrix A4 ob-
tained from a minimal symbolic cover. In fact, two col-
umns with identical entries would imply that the corre-
sponding words are incident to the same set of literals,
and therefore are indistinguishable with respect to the
switching function.

The column-based encoding algorithm is based on the
ideas sketched above. The input to the algorithm is the
incidence matrix A, the adjacency matrix B, and the en-
coding options, including possibly an upper bound
Ry max ON the numbers of columns of the encoding matrix
E. Let FI and FO be two logical flags: FI is TRUE when
solving problems E1 or E3 and FO is TRUE when solving
problems E2 or E3.

COLUMN-BASED ENCODING ALGORITHM
Data A, B;

Data FI, FO, n,_ .

n, = 0;

if (FI) A = clean (A);

if (FI) A = compress (4);

if (FI A FO) A, B = verify__constraints (4, B);

do {
e = column__select;
if (n, =0)
E =¢;
else
= [Ele];

n, = column cardinality of E;

if (FI) A = reduce__constraints (4);
|5
while (termination criterion not satisfied);

Procedure clean records first the multiplicity of each
row of A in a weight vector. Then, duplicate rows are
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deleted, as well as rows without O entries or with only one
1 entry. Procedure compress reorders first the rows of A

A . .
as LF} , where A has no * entries. Then compress returns

A’
A= [Z;:I where A’ is obtained by deleting the rows of

A that are Boolean products of two or more rows
of A, as justified by Theorem 11.

Procedure verify__constraints is invoked if both flags
FI and FO are TRUE, that is, when problem E3 is being
solved. The necessary and sufficient condition for the ex-
istence of an encoding for the given constraints (Theorem
8) is checked before beginning the encoding. If conflict-
ing constraints are found, then some constraints must be
released so that it is possible to find a solution. Un-
fortunately, a consequence of the release of a constraint
is that the encoded Boolean cover might require more im-
plicants that the minimal symbolic cover. An optimiza-
tion sub-problem is to find the set of constraints whose
release would minimize the impact on the encoded cover,
i.e., that would minimize the possible increase of impli-
cants. We have found experimentally that it is effective to
keep the matrix 4 unaltered and release the covering con-
straints by lowering some 1 entries of B to 0 until the
modified B matrix and the matrix A satisfy the conditions
for existence of an encoding.

Procedure reduce__constraints aims at reducing the
computational burden of selecting a column by updating
the matrix A at each pass of the algorithm. The rationale
of the update is as follows. Let E be the encoding matrix
partially constructed at a given pass of the algorithm. A
partial face matrix F = A - E corresponds to this encod-
ing. Then it is possible that the encodings of some words
do not belong to some Boolean subspaces specified by F.
The encoding of these words may be originally required
not to intersect these faces and therefore this requirement
is already satisfied by the partial encoding. In this case,
the corresponding entries in the A matrix, that were orig-
inally Os, can be modified to *. If a row of A does not
contain any more O entries, then the corresponding con-
straint is satisfied. Equivalently, E satisfies the input con-
straint relation for that row of 4. Since appending addi-
tional columns to E will leave the constraint satisfied, that
row can be dropped from A.

Example 16: Suppose we are solving problem El. Let

0100011
1001000
0001001

A =

Let E = [0100011]7. Then F = 4 - E = [10*]”. Then
the constraint represented by the first row of A4 is satisfied
because the first face is 1 and the encoding of the words
(in positions 1, 3, 4, and 5) which must not intersect this
face are all 0’s. Therefore, the first row of A4 can be
dropped from further consideration. Moreover, the sec-
ond face is 0, and the words whose encoding must not
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intersect this face are in positions 2, 3, 5, 6, and 7. The
encoding of the word in positions 2, 6, and 7 is 1 and
cannot intersect the second face. Therefore, the con-
straints that remain to be satisfied can be represented by

matrix
[1*010**J
A= .
0001001

Procedure reduce constraints can be summarized as
follows:

reduce__constraints
F=A4-FE
for (i = 1ton,) {
for (j = 1 tony) {
if(a; =0and f; N e; # ®)a; = *;
b

b
A = clean (A);

The termination criterion of the column-based encoding
algorithm depends on the options which are specified. In
any case, the algorithm continues to append columns to
E if some encodings are equal to some others. If the flag
FI is set, then the algorithm terminates when E satisfies
the input constraint relation. In view of the reduction of
the constraint matrix done by procedure reduce con-
straints, the algorithm terminates when matrix A has no
rows left. If an upper bound is specified on the encoding
length, then a sufficient condition for termination is reach-
ing that bound. Note that, in this case, the encoding will
not necessarily satisfy the constraint relations. However,
care is taken in the column selection procedure so that the
constructed encoding matrix E with bounded column car-
dinality has all rows different from each other.

We can now describe the column__select procedure,
which is the heart of the algorithm. We consider first the
cases in which no upper bound on the encoding length is
specified. Let us assume that only flag FI is TRUE. The
procedure aims at minimizing the encoding length, and
therefore we look for a vector in {0, 1}"s, that maximizes
the satisfaction ratio at each pass of the algorithm. To
achieve this goal, we consider first all the pairs of rows
of A. Two rows of A4, a,., and a,. are said to be compat-
ible if either a;; = ay; Vj s.t. a;; # * and ay # *oray
= @y Vj s.t. ay; # *and ay; # *. It is clear that, for each
pair of compatible rows, there exist a 0-1 assignment to
the * entries of either one that is an encoding vector that
satisfies the input constraint relation for the pair of rows.

Example 17: Let

*11001
00011*
11110*

A=

The first two rows of A4 are compatible. The encoding
[111001] 7 satisfies the input constraint relation for these
two rows.

Given a maximal set of pair-wise compatible rows,
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there exists a 0-1 assignment to any of them that is an
encoding maximizing the satisfaction ratio. Therefore,
procedure column__select determines first a set of pair-
wise compatible rows of 4, denoted by 4’, maximizing a
figure of merit that takes into account the set cardinality
and the row multiplicity (stored in the weight vector). Let
J be the set of indices of the columns of A’ whose entries
are not all *. Clearly, only the positions in the encoding
column vector specified by J are important to satisfy the
constraint relation specified by A’. Procedure col-
umn__select takes one row in A’ and assigns 0 or 1 to the
* entries in the positions specified by J in such a way to
maintain compatibility. (Procedure select i returns a
column vector given a matrix A according to this strat-
egy.) Then, the remaining * entries can be assigned ac-
cording some tie rules. In the case that only flag FI is set,
the * entries are assigned first as to minimize the size of
the faces (dimension of the Boolean subspaces) repre-
sented by the corresponding face matrix. In case of fur-
ther ties, the assignment is done to maximize the number
of O entries in the A matrix that will be modified to * by
procedure reduce constraints.

Let us now turn to the case in which both flags FI and
FO are TRUE (problem E3). The column selection in-
volves first the detection of a vector which maximizes the
satisfaction ratio, as in the previous case. We call & this
vector. Then, this vector has to be transformed to satisfy
the output constraint relation as well. Let J° = { jle =0
and 3x s.t. & = 1 and b,; = 1} be the set of words with
a 0 encoding in & and required to be covered by some
words with a 1 encoding in é. Let J' = {jle; = 0and 3x
s.t. & = 1 and b, = 1} be the set of words with a 0
encoding in € and required to cover some words with a 1
encoding in &. Note that these two sets do not intersect
because the matrices A, B satisfy the assumptions of
Theorem 8, after having been possibly modified by pro-
cedure verify _ constraints. There are now four possi-
bilities:

i) J' = ¢ and JO = ¢;

i)y J! = ¢ and J° # ¢;

iii) J' # ¢ and J° = ¢;

iv) J' # ¢ and J® # ¢.

In the first two cases, there exists a 0-1 assignment of the
* entries of vector & that satisfies the output constraint
relation and we set e = &. In the third case, there exists a
0-1 assignment of the * entries of the complement of vec-
tor & that satisfies the output constraint relation and we set
e = e . In the last case, we set ¢ = #(&), where #(é) is a
column vector whose entries are bit-pairs:

01 vjste =1

11 vjelJ!
= . .0

00 vjej

ele; else

There exists now a 0-1 assignment to the * entries of each
column of e that satisfies the output constraint relation.

613

Moreover, any 0-1 assignment to the * entries of e satis-
fies the input constraint relation for the same subset of
rows of A as . The assignment of the * entries is done
according to tie rules, as mentioned before.

If the algorithm is used to solve problem E2 (only flag
FO is true), then the column selection is done by deter-
mining directly a vector that leads to a short encoding
among those that satisfy the output constraint relation. The
strategy used to select a column, having as a primary goal
the determination of a short-length encoding, is similar to
that used in the case an upper bound is imposed on the
encoding length.

If an upper bound n;_,,, on the encoding length is
specified, then it is imperative that the rows of E are dif-
ferent from each other after n,_,, column assignments.
Therefore, there may be groups of identical rows in E with
at most cardinality 2"—mx~") after having assigned n,
columns. For this reason, the column selection is done
such that, if there are groups of identical rows in [E|e],
their cardinality is most 2"—m=~"_where n, is the col-
umn cardinality of [E|e]. When flag FI is TRUE (or when
both flags FI and FO are true), this requirement restricts
the selection of the column vector e (or €). In particular,
we have to consider a reduced set of rows of 4 in which
we search for a maximal set of compatible rows. (Proce-
dure drop drops the rows of A incompatible with the code
length goal from further consideration in the col-
umn__select routine.) The assignment of the * entries is
done to satisfy first the encoding-length constraint by
trying to minimize the cardinality of the groups of iden-
tical rows in [E|e]. In case of tie, the previous rules are
used.

In the case that both flags are FALSE, (or in the case
that FI is TRUE, F satisfies the input constraint relation
and some rows of F are identical) then column__select
returns a column which would minimize the cardinality of
the groups of identical rows in [E|e]. (Procedure
select  0.) If, in addition, flag FO is TRUE, the search
is limited to the column vectors satisfying the output con-
straint relation. (Procedure select o.)

In summary, procedure column__select can be repre-
sented as follows:

column__select
if (bound on n,) A = drop (4);
if (FI and satisfaction ratio < 1){
e = é = select i (A4);
if (FO){ .
if(J' #¢andJ’ =¢)e =¢;
if (J' # ¢ and J® # ¢)e = 1(&);

};
b
else {
if (FO)
e = selecto  o;
else
e = selecto_ 0;
};
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e = e with 0-1 assignment of the * entries according to
the tie rules;

We summarize now the properties of the column-based
encoding algorithm in a qualitative way. The algorithm
constructs an encoding matrix E. If problem E2 or E3 have
to be solved, each column is chosen as to satisfy the out-
put constraint relation. Therefore, so does the entire ma-
trix E. If problem E1 or E3 have to be solved, each col-
umn is chosen as to satisfy partially the input constraint
relation, or equivalently to satisfy the input constraint re-
lation for a subset of the rows of A. These rows are then
discarded from further consideration. After a finite num-
ber of steps, matrix E satisfies the input constraint rela-
tion. The heuristic selection of the column attempts to in-
crease maximally the satisfaction ratio at each step, and
therefore guarantees a weak minimality of the column
cardinality of E. If an upper bound on the encoding length
is specified, then the encoding may satisfy only partially
the constraint relations, but attempts to satisfy most of the
constraints.

The construction of matrix E with bounded column car-
dinality allows to tradeoff the minimality of the cover
cardinality for that of the encoding length. In particular,
given an encoding of length n,, it is possible to determine
the cover cardinality (or a bound on the cover cardinality
n,) on the basis of the satisfied constraints. Therefore, for
a particular switching function, it is possible to determine
a set of pairs of parameters (n,, n,) that relate to the size
of the implementation.

The worst-case computational cost of the algorithm
grows cubically with n; because the column__select rou-
tine involves O(n?) operations and is invoked n, = O(n,)
times. It grows quadratically with n, because of the pair-
wise comparisons in routines column _select and re-
duce__constraints. It grows linearly with n,. Note that
n, is not an input datum parameter, but the linear growth
shows that the amount of computation per column is con-
stant.

As a final remark, we would like to compare the col-
umn-based encoding algorithm with the one proposed by
Dolotta [7] and later perfected by Weiner [23], Torng
[22], and Story [20]. These algorithms addressed the state
assignment problem for finite-state machines, and the
mechanism of the encoding algorithm is similar to the one
presented here. However, the selection of the columns was
based on a heuristic criterion; in particular, a scoring
function was used to select a column on the basis of the
likelihood that logic minimization, which would have fol-
lowed the encoding, could reduce the two-level cover car-
dinality. (Story’s method optimized the number of and-
or inputs for each column choice.) In our approach, we
relate each column assignment to the satisfaction of some
input constraints and therefore to a known reduction of
the cover cardinality. Therefore, column selection is re-
lated to cover minimality in a deterministic way. How-
ever, our encoding technique is still a heuristic one be-
cause the greedy strategy considers and assigns only one
column at a time.
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TABLE II
OVERALL RESULTS
Example} n n, n, n, n, n,
EX1 2 6 2 24 i1 4
EX2 7 16 7 91 49 8
EX3 1 9 2 170 78 12
EX4 2 4 1 11 6 2
EXS 2 9 1 25 10 5
EX6 1 12 1 24 17 7
EX7 7 48 19 115 89 10
EX& 8 20 6 107 68 7
EX9 11 32 9 184 107 9
EX10 1 8 1 16 14 4
EX11 9 30 10 166 103 12
EX12 4 4 4 49 11 3
EX13 2 11 1 25 10 6
EX14 4 S 1 20 8 4
EXI1S 8 7 5 56 23 5
EX16 8 4 5 32 15 4
EX17 4 27 3 108 49 11
EX18 4 8 3 32 17 4
EX19 2 7 2 14 9 3
LEXZO 4 15 3 30 22 7

C. Implementation and Results

The column-based encoding algorithm has been imple-
mented in program CREAM. CREAM is written in APL
and consists of about 25 functions. CREAM is designed
to be used with CAPPUCCINO: it takes the representa-
tion of a minimal symbolic cover and generates an encod-
ing that can replace the symbolic entries. The final result
is a Boolean cover that can be implemented as a PLA (after
having been folded or partitioned, if desired), or used as
a starting point for multiple-level synthesis, as done by
the YLE program in the Yorktown Silicon Compiler [3].

CREAM solves the encoding problem El, E2, or E3 at
the user’s request. It accepts an upper bound on the num-
ber of columns to be used in the encoding. For a given
bound and the corresponding encoding of all the symbolic
fields, it is possible to estimate the area taken by a PLA
implementation. Therefore, it is possible to estimate the
area as well as the aspect ratio. This computation can be
done for different bounds on the encoding, and therefore
a designer can choose among several implementations
with different areas and aspect ratios.

CAPPUCCINO and CREAM have been tested on sev-
eral examples. Some results are reported in Table II.

The examples are sequential circuits, i.e., we are solv-
ing problem P4 by symbolic minimization first and by
solving encoding problem E3 after. The symbolic repre-
sentations have four fields corresponding to the primary
inputs/outputs (which are represented by Booleans vari-
ables) and the present/next states (which are represented
by symbolic variables). The first four numeric columns
represent the parameters of the function: »; is the number
of primary inputs, ng is the number of states, n, is the
number of primary outputs, and n, is the cardinality of the
initial symbolic cover. The last two columns show the
final cardinality of the Boolean cover and the state encod-
ing length. Note that for a few examples (As EX1, EX4,
-+ +), the Boolean cover cardinality is larger than the
minimal symbolic cardinality (reported in the third col-
umn of Table I) because it was not possible to satisfy all
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TABLE III
ENCODING-LENGTH COMPARISONS
Example n, log,n, ny ny ny
EX1 6 3 4 3 3
EX2 16 4 8 7 7
EX3 9 4 12 12 12
EX4 4 2 2 2 2
EXS 9 4 5 4 4
EX6 12 4 7 4 6
EX7 48 6 10 8 8
EX8 20 5 7 6 7
EX9 32 5 9 7 7
EX10 8 3 a 4 3
EX11 30 5 12 9 9
EX12 4 2 3 3 3
EX13 11 4 6 4 4
EX14 5 3 4 3 3
EX15 7 3 5 5 5
EX16 4 2 4 4 4
EX17 27 5 11 9 1
EX18 8 3 4 4 4
EX19 7 3 3 3 3
EX20 15 4 7 7 5

constraints in the éncoding. Note also that a further re-
duction in cardinality may be obtained by minimizing
again the Boolean covers that are not minimal. The com-
puting time is in the order of few seconds for all these
examples, on an IBM 3081 computer.

In Table III, we try to evaluate the optimality of the
encoding, in terms of encoding length. The second col-
umn represents the number of words to be encoded 7n,; the
third represents the minimal number of bits needed to en-
code the words regardless of any constraint on their en-
coding (i.e., ceiling (log, n)); the fourth column repre-
sents the encoding length as constructed by CREAM as a
solution to problem E3. These three columns show that
the encoding length computed by CREAM is close enough
to the minimum length; for most of the examples ceiling
(log, ny) < n, < 2 X ceiling (log, n,). For some exam-
ples (as EX14, EX16, EX18, EX19, - - +), it is possible
to provide that no encoding of length inferior to n, can be
a solution of the encoding problem. The results of
CREAM can be compared with those obtained by pro-
gram KISS [5], which uses a row-based encoding algo-
rithm. The length of a solution to problem E1 computed
by CREAM is given in the fifth column of the table and
the length of an encoding constructed by KISS in the last
column. (The algorithm of KISS can solve only problem
El.) Note that, for some examples, the row-based algo-
rithm gives a shorter encoding. However, the correspond-
ing implementation requires more product-terms, as
shown by the fourth column of Table I.

As a final remark, it would be interesting to rate the
effectiveness of the symbolic design methodology by re-
lating the experimental results to a measure of the diffi-
culty of the examples, as in the case of channel routing.
Unfortunately, it is difficult to classify the examples on
an absolute scale. The examples chosen here are derived
from finite state machine (FSM) tables. The present meth-
odology appears to be effective especially for FSM’s hav-
ing large and sparse transition graphs.
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V. CONCLUDING REMARKS AND FUTURE WORK

Combinational and sequential circuits can be optimized
using the symbolic design methodology. Symbolic func-
tions are represented by tables of symbols, which may be
direct translations of hardware description language pro-
grams. Symbolic minimization allows encoding-indepen-
dent optimization of switching functions, and the encod-
ing algorithms construct a binary representation of the
symbols that translate the minimal symbolic cover into a
compatible Boolean cover. ‘

The target technology of the symbolic design method is
a two-level sum of products circuit implementation, such
as a programmable logic array. However, this technique
can be used in conjunciton with other implementation
methodologies, such as those supported by the Yorktown
Silicon Compiler [3], by mapping the optimal two-level
representation into a multiple-level logic representation
which fits the implementation technology.

Future work will address the extension of symbolic de-
sign to multiple-level implementations. In this case, the
objective function of the optimization will consider di-
rectly multiple-level implementations without resorting to
the sum of product model.

It is important to note that the algorithms we presented
are heuristic and can still be improved. Other schemes for
symbolic minimization can be tried. The symbolic min-
imization loop could be replaced by a multiple-valued ex-
pansion of the output parts of the symbolic implicants that
takes into account the order relations. In the case of prob-
lems P4 and E3, the symbolic minimization algorithm
could include directly restrictions on the operations on the
symbolic cover such that the computed cover can always
be encoded into a Boolean cover with the same cardinal-
ity. The encoding algorithm could be improved by com-
bining row-based and column-based encoding techniques
or by iterating or backtracking in the encoding procedure
to achieve shorter encodings. Ideally, the encoding algo-
rithm should be merged with the minimization procedure
so that the entire optimization method could use the sili-
con area of the physical implementation as the objective
function.
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