OPTIMAL ENCODING OF CONTROL LOGIC

Giovanni De Micheli
IBM-Thomas J. Watson Research Center
Yorktown Heights, N.Y. 10598

Abstract. The design of control-units for VLSI systems, such as micro-
processors, is addressed in this paper. Control units are modeled as fi-
nite automata and an encoding scheme for the primary inputs and the
internal states is presented that minimizes the silicon area requirement
for the sequencing and control store.

L INTRODUCTION

The Computer-Aided synthesis of Very Large Scale Integration
(VLSI) system modules must include design optimization procedures to
be effective [NEWT81]). The design of sequential functions, such as
microprocessor control units, is a good test case for automated synthesis
tools.

This paper addresses the computer-aided design of VLSI control
units. The functional specifications of the system being designed are
assumed to be given in a Hardware Description Language program, a
flow-chart or an equivalent representation. Similarly it is assumed that
the design is partitioned into two major components: the data-flow and
the control unit.

Control-unit implementations have followed different strategies.
A customized design of the control unit can be achieved by intercon-
necting logic gates. For example, the control part of the Z8000 micro-
processor was implemented by "random logic" gates. Such a design
style may lead to a compact and high-performance implementation, but
it is highly dependent on the particular control flow. Moreover, design
time is longer in comparison to other structured implementations and
engineering changes may require a complete redesign. Other micro-
processor are completely microprogrammed, as in the case of the
M6800(In this case, the sequencing and control functions have a
structured implementation, that is referred to as sequencing and
control-store or more simply control-store. The control-store is imple-
mented by a Read Only Memory (ROM), a Programmable Logic Array
(PLA) or a more elaborate structure [ANDRS80). There are several
advantages in using microprogramming. The design of the control unit
is flexible, can be defined at a later stage of the processor design and
can be easily modified. Moreover microprogrammed processors can
emulate the instruction set of other machines.

With the advent of VLSI circuits, microprogramming became a way
to increase the regularity of the chip structure [LEWI81]. Davis
[DAVI72] recognized this new view of microprogramming and gave the
following definjtion: ""One particular class of control mechanism uses
regularly organized storage arrays to contain a large part of the control
information. Machines employing such control mechanism are said to
be microprogrammed.” Different implementation strategies of micro-
programmed processors have been followed: the control-store can be
located on-chip or off-chip and can be writable or not.

We consider here the problem of designing control units with read-

only on-chip control store, i.e. the programmability feature is retained
until the logic design stage of the control unit. Most design have shown

CH2080-0/84/0000/0016501.00 © 1984 IEEE

16

a common problem: the control-store takes a large fraction of the chip.
It is therefore important to reduce the silicon area taken by the
control-store, while keeping the programmability feature. Moreover
reducing the storage area corresponds in general to shorter connection
wires and consequently to faster switching-time performance.

The problem of reducing the silicon area taken by the control-store
in a ROM-based microprogrammed control-units has been investigated
by several researchers and surveyed in [AGER76). Recently, PLAs
have shown to be effective components for implementing control logic
[GRAS83] [PAPA79] [1LOGU7S). PLA design is regular and struc-
tured and can be supported by computer-aided tools [DEMI84a).
Moreover PLAs implement logic functions more efficiently than ROMs,
as far as silicon area is concerned. Several techniques, like logic min-
imization {HONG74] [BRAYS84] and topological ocompaction
[HACHS82a] [DEMI83c], allow the design of area-effective PLA im-
plementations. Therefore PLA-based control unit designs can be opti-
mized with regard to silicon area requirement and subsequently to
switching-time performance.

Control units are modeled here as deterministic synchronous finite
automata [HART66] and implemented by two components: a combi-
national component and a set of registers, that are synchronized to the
system clock and that store the state of the control unit. The combina-
tional circuit implements the sequencing and control store. It generates
the control signals to the data-flow (primary outputs) and the next
control state as a function of the present control state, operation and
condition codes (primary inputs). The combinational component can
be implemented by a single PLA or be partitioned into two or more ar-
rays. In the former case, the PLA implements both the sequencing and
control store. In the latter an array implements the sequencing store that
generates the sequence of control states as a function of the operation
and condition codes and the present control-state. Another array gen-
erates the control signals as a function of the control-states. The former
model is used in the sequel. The extension of the technique presented
here to the latter is straight-forward.

MMETRUCTIONS D -
CoupiTION CooEs ¢
PRRARY nPuTS) [) FRRUAY SUTPUTS)
e oR
rLa "nwae
-3

CONTROL=STATE
P-LATORS
PLAs implement two-level switching functions as sum-of-products
or equivalent representation. The silicon area taken by a PLA has a

complex functional dependence on the binary representation of the
control-states and primary inputs.

We propose a new technique for encoding the control states and
primary inputs to minimize the PLA area implementing the sequencing
and control store. This problem is related to the state assignment
problem for deterministic automata that has been recently investigated
[DEMI83f] {DEMI83g] [DEMI84b] [DEMIB4b].

The state assignment problem has been the object of extensive the-
oretical research. A critical survey of the major published results is
presented in [DEMI83g). However, despite of all these efforts, to the
best of my knowledge, no computer-aided design tool is in use today for
an optimal encoding of control logic.

- REP| N TION

For the sake of our analysis, we assume that a control-unit is de-
scribed by a table of micro-operations [LANGS82). The table of micro-
operations can be constructed from a Hardware Description Language
or flow-chart description. The processor state in defined at any time
by a mnemonic string, defining the control state . We assume that each
control-state corresponds to a data-flow cycle. The table of micro-
operations describes, for each control state and instruction, the action
to be taken by the data-flow, which is specified by the control point
activation signals. The table specifies as well the control-state in which
the control-unit will be at the next cycle. Though the technique pre-
sented here is fairly general, we concentrate on a particular control-unit

The control-unit has nine states, corresponding to instruction-
fetch, operand-address evaluation and instruction execution.
The states are labeled by mnemonic strings, namely: 11,12, Al,
A2, A3, A4, El, E2, E3. We consider seven operations,
pamely: JMP (jump), SRJ (subroutine jump), SAC (store ac-
cumulator), ISZ (increase and skip on 0), LAC (load accu-
mulator), AND (and), ADD (add). Three modes of memory
addressing are considered: DIRECT, INDIRECT and IN-
DEXED. The operation and addressing mode are specified by
two instruction fields.

Each row of the table shows an action as a consequence of
particular conditions. There are five fields in each row. Two
fields correspond to the present and next control states. Two
fields correspond to the primary inputs, i.e. the operation code
and addressing mode. The last field corresponds to the control
signals. The first four fields are described by mnemonic fields,
the last by binary variables. We chose here to represent control
signals by binary variables. However note that control signals
could be described by a mnemonic field as well.

For example, the first row shows that when the control-unit is
in state 11, the state of the control-unit at the next cycle is 12 and

design for the sake of concreteness.

Example 2.1: We consider here the microprocessor design de-
scribed by Langdon in Chapter $ of [LANGS82]. Langdon pre-
sented a custom PLA implementation of the control store (he
did not specify the next-state function implementation). The
purpose of showing this example is not to claim a better imple-
mentation, but to present a design method on a documented
example. The following table of micro-operations is adapted
from [LANGS2] and describes the memory-reference in-
structions. (Therefore extended op-code and the corresponding

control signal is not considered.)
TABLE OF MICRO-OPERATIONS

STATE OP-CODK MODE WEXT-STATE COWTROL-SIGMALS

n 12 00000000000000111
12 A 00000000111011000
Al Jne DIRECT 1 00000100000100100
A SR DIRECT A3 100000

Al sAC DIRECT M 1

Al 152 DIRECT A

A Lac DIRECT Ae

Al] DIRECT Ad

A ADD DIRECT 'Y

A Jne INDIRECT A2

A SR INDIRECT A2 1000001
Al SAC INDIRECT A2

A 153 INDIRECT A2

al Lac INDIRECT A2

Al AND INDIRECT

A Ao INDIRECT A2 00000000000000000
Al awe 1 00001101000100100
Al sry INDEXED 00000000001000001
A sAC INDEXED A3 0000110100010000

Al 152 INDEXED A3 0000110100010000

Al LAC INDEXED A3 0000110100010000

A AND INDEXED A3 0000110100010000¢
A ADD 1 A3 00001101000100000
a2 o a3 00000001010001000
A2 INDIRECT A3 ©0000001010001000
A2 IMOEXED A3 00001101000100100
A g n 00010101 100
A SRJ DIRECT As 0001011 110
A sw IMDIRECT M 000101 110
A3 SRJ IMOEXED A4 1 111
A BAC M 1

A 153 M

A3 LAC M

A A0 As

A ADD M

» o I e 00000001010000001
A BRI 1 1 1
'y SAC 4]) 1
Ad 153 E 1

A LAC £} 101 1
M ND E 10) 1
M DD 3] 101 1
£ 1 n 001101

El o 11 01000

Kl a0 1 001001

El 182 E2 0001010000100001

n 192) 10010110000000010
) n 00000001000000101

control signal 00000000000000111 (incrementing the
program-counter) is issued. The third row shows that when the
control unit is in state A1, the op-code is JMP and the address-
ing mode is DIRECT, then the next control-state is I1 and the
control signal is 00000100000100100. A unspecified field in
the table corresponds to a "don’t care” condition. For example
the op-code and the mode are "don’t care” conditions for the
transition specified by the first row.

The table of micro-operations can be implemented by a ROM or a
PLA in a straight-forward way. Each row can be associated to a
multiple-output minterm or product-term. Each state can be associated
to a state signal line and stored by a single latch. Each primary input,
i.e. each op-code and mode, can be associated to an input signal line.
Such a representation leads to an inefficient use of silicon area, even
when the sequencing and control-store are implemented by a PLA.
(The size of a ROM implementing such a table grows exponentially
with the number of signals carrying state and condition information.
PLA implementations are more area-efficient than ROM implementa-
tions.) The waste of silicon area corresponds as well to a degradation
of the circuit performance. We proved in [DEMI84b] that it is always
possible to construct binary encodings of the primary inputs and
control-states of a deterministic automaton leading to a more efficient
implementation. However the problem of determining an encoding that
minimizes the PLA area is extremely complex.

For this reason, some simplifying assumptions are needed. As a first
step, topological compaction techniques to reduce the PLA area, such
as folding [DEMI83c] and partitioning [DEM83d) are not considered.
Under this assumption, the PLA area is proportional to the product of
the number of rows (implementing the product-terms) times the num-
ber of columns (carrying the input/output and state information). Both
row and column cardinality depend on the encoding of the control-
states and primary inputs (i.e. operation codes and addressing modes)
represented by mnemonic strings in the table of micro-operations. The
(minimum) number of rows is the cardinality of the (minimum) cover
of the control store according to a given encoding. The code-length (i.e.
the number of bits used to represent the mnemonic strings) is related
to the number of PLA columns and in particular to the number of PLA
input and output columns corresponding to the present/next control-
states, operation codes and modes. Therefore the PLA area has a
complex functional dependence on state and instruction representation.
For this reason two simpler optimal encoding problems are defined:

i) Find the encodings of minimum code length among the en-

codings that minimize the number of rows of the PLA.

ii) Find the encodings that minimizes the number of rows of the

PLA among the encoding of given code length.

The optimum solution to the control logic encoding problem, which

minimizes the PLA area, can be seen as a trade-off between the sol-
utions to problem i) and ii). Note that the above problems are still
computationally difficult and to date no method (other than exhaustive
search) is known that solves them exactly. Therefore heuristic strate-
gies are used to approximate their solution.

The control-state representation is local to the control-unit. There-
fore there are in general no constraints on the control-state represen-
tation and in particular on the encoding length. However the instruction
fields, that are primary inputs to the control-unit, have to be compatibie
with the processor architecture requirements. Therefore it is desirable
that the number of bits corresponding to the primary-input represen-
tation matches the instruction field width. In this case, no instruction
decoder is needed, and the appropriate instruction fields can be gated
directly as inputs to the control-unit.

The encoding technique reported in the sequel is related to the op-
timal state assignment problem for Finite State Machines [DEMI83g)
[DEMI84a] [DEMI84b). The strategy is based on the following idea:
logic minimization of the combinational component of the control-unit
is applied before the encoding. For this reason, logic minimization is
performed on a symbolic (code independent) representation. The table
of micro-operations is a symbolic cover of the control store. Symbolic
covers have been introduced in [DEMI83f] to specify a combinational
function by means of binary and mnemonic strings. A symbolic cover
is a set of primitive elements called symbolic implicants . Each row of the
table of micro-operations is a symbolic implicant and consists of a set
of (mnemonic and/or binary) fields describing a state transition and the
corresponding primary inputs and outputs.

A symbolic cover can be considered as a logic cover of a multiple-
valued logic function {SU72] [HONG74), where each entry in each
mnemonic field takes a different logic level and is represented by a
character string. Several notations are used to represent muitiple-
valued logic covers. For example, the different logic levels can be re-
presented by integer values: 0,1,2, ... » — 1. This is an extension of
the binary notation to a p-valued representation.

The positional cube notation is used here [SU72). A p-valued log-
ical variable is represented by a string of p binary symbols. Value r is
represented by a "1" in the r* position, all others being "0". Note that
the positional cube notation allows the representation of a set of values
with one string. The disjunction (multiple-valued logical OR) of se-
veral values is represented by a string having "1"s in the corresponding
positions. Therefore the "don’t care” value is represented by a string
of "1"s and the empty value by a string of "0"'s.

The transformation of a table of micro-operations into a multiple-
valued cover with positional cube notation is straight-forward, since the
transformation involves only symbol translations.

Example 2.2: The table of micro-operations of Example 2.1 can
be translated into a multiple-valued positional-cube represen-
tation by associating a value to each state, operation code and
addressing mode. There are 9 states, 7 op-codes and 3 modes
represented by 9-bit, 7-bit and 3-bit strings respectively. For
example 11 is represented by 100000000, I2 by 010000000, etc.
Similarly operation JMP is represented by 1000000, ... ad-
dressing mode DIRECT is represented by 100, etc.

Minimizing a symbolic cover is equivalent to finding a represen-
tation of the contro] store with the minimum number of symbolic
implicants. Finding a minimum multiple-valued cover is a computa-
tionally expensive problem. Heuristic multiple-valued logic minimizers,
such as MINI [HONG74] can be used to compute a minimal (local
minimum) cover. (Program MINI [HONG74} is used in general for
binary-valued logic minimization; however it supports multiple-valued
minimization as well.) Alternatively, the positional-cube representation
can be seen as a binary-valued encoding of a multiple-valued function.
This encoding is referred to as 1-hot coding, because each value of the

SYNBOLIC COVER

STATE

OP-CODE NODE MEXT-STATE COWNTROL-SIGRALS
100000000 1111111 111 010000000 000000000000001 11
010000000 1111111 111 003000000 00000000111011000
00 100 0 0)
001 100 O
001 010 100 1
001 00 100 1
001 0000 100 1
00 DOO 100 00001000
001t 100 00001000
00 010 000
00 D00 010 000 0000000000
001 010000 010 000
001 0010 o0 0
001 D000100 O1 0
001 000010 01 0!
001 0000007 01 0!
00 1 001 0000110100010010¢
001 0100000 001 0000 010
001 0010000 001 0000110100¢
001)00100 00)00 0000 0
001 0 00 000010 0000 0 000
001 00 000010000 - 0000 0
001 1 007 000010 0000 0
000100000 1111111 100 000010000 00000001010001000
100000 1111111 010 000010000 00000001010001000
000100000 1111111 001 000010000 00001101000100100
10000 1000000 11 000 0001010 10
000010000 100 1000 00101 1
000010000 016 1000 1 1
10000 00 000001000 1
000010000 n 1000 1
000010000 0001000 11 30000 1000
000010000 00001 111 000001000
000010000 1 D0000 1000
000010000 $000001 111 000001000
0001000 m 10 10 1
000 m 1
D00001000 m 1
D0000 1000 1 m 10¢
300100 119 10¢ 101
1 10 11} 00000010¢ 1010000001
000001000 m] 101
¥ 3 m o0110
13 m 01 1
10¢ 111 001001
1 111 000000010 00019109001990010
000000010 0001000 111 00000000Y 100101310000000010
000000001 1111111 111 100000000 GOGO00S 1000800101

mulﬁple-vahedfnnetionconupondstommdonlyonebimryvalue
"1" (HIGH) in the coded representation.! By using this representation,
binary-valued minimizers, such as PRESTO [BROWS0], POP, MINI
{HONG74] and ESPRESSO-11 [BRAY84], can be used to obtain mini-
mal symbolic covers. Experimental results have shown that
ESPRESSO-1 yields minimal (symbolic) covers that are quite close to
the minimum (symbolic) cover, for problems for which the minimum
cover can be determined [DEMIS84a).

Example 2.3: Consider the symbolic cover of Example 2.2. A
minimal symbolic (multiple-valued) cover, obtained by
ESPRESSO-IL, is the following:

NINIMAL SYNBOLIC COVER

STATE OP-CODE MODE MEXT-STATE CONTROL SIGMALS
; 1mmm I 1 101
1 1111117 111 010000000 00000000000000111
01 11111 111 001000000 11011000
000100¢ i 110 00001000(1010001000
0000100 [3553) 11 00000100 0
0000 100011 1y D0 10C 101 1
001100000 001111} 001 0000 1000(DOOL 1000100000
o0 1111111 010 000
000001 0110000 1111 1
1 0001111 100 0000 B
000001000 0001000 111
000000100 0000010 111 100G
0000001 111 0100
0000100 111 100000000 0011
0001000 111 0001 00 0!
1mnn 1 001
000010000 0010 m
00101011 00100 100 000001000
001 0100 011 000 100000
00001 . o1t 000 01 10¢
0010 1 001 000010000 0000 1000100100
10001 0 10 DO0101 110
01 01 100 000010000
01 1 100 0000(100
0001000 [+] 001 11t
01 1 001 1 00001101000100100

The 1-hot representation has a different interpresation than the positional cube
notation. An appropriate "don’t care” set must be specified for the 1-hot repre-
sentation, to specify that n-hot dings do not rep isting values. The in-
terested reader is referred 1o [BRAY84] and [DEMI83g) for details.

Consider now the 7-th symbolic implicant from the top:
001100000 0011111 001 000010000 00001101000100000
This implicant shows that operations SAC, ISZ, LAC, AND,
ADD and mode INDEXED cause a transition from either state
Al or A2 to state A3 and implies the control signals specified

by the last field.

The example above shows that the effect of symbolic (multiple-
valued) logic minimization is to group together the tranmsitions from
some control-state and under some op-code and mode into the same
next-state and activating the same control signals. Each proper subset
of mnemonics represented in the same field and containing more than
one element is termed group .

Example 2.4 Let us consider the mnemonic fields corresponding
to the control-states, operation codes and addressing modes in
the minimal symbolic cover of the control-unit of Example 2.1
2.2 2.3. There are two groups of control states, namely: {Al;
A2} and {A1; A3; El; E2}. There are six different groups of
op-codes, namely: {ISZ; LAC; AND; ADD}, {JMP; LAC;
AND; ADD }, {SAC; ISZ; LAC; AND; ADD}, {SRJ; SAC;
ISZ; LAC; AND; ADD}, {JMP; SRI1}, {SRJ; SAC}. There are
two different groups of addressing modes, namely: {DIRECT;
INDIRECT} and {INDIRECT; INDEXED}.

Given an encoding and a group, the corresponding group face (or
simply face) is the minimal dimension Boolean subspace containing
the encodings of the mnemonics assigned to that group (or equivalently
the bit-wise disjunction of the encodings assigned to the mnemonics in
that group).

The goal of the encoding technique presented here is to group to-
gether the encodings in binary-valued logica! implicants in the same way
mnemonics are grouped in the minimal symbolic (multiple-valued)
cover. In particular, an encoding is sought, such that each symbolic
implicant can be coded by one binary-valued implicant. For this as-
signment, there exists a binary-valued cover of the control-unit having
as many implicants as the minimal symbolic cover.

An encoding, such that each group face contains the encodings of
the mnemonic strings included in the corresponding group and no other,
satisfies the above requirement. For this reason, a constrained encoding
problem is considered:

Given a set of groups, find an encoding such that each group face

does ot intersect the code assigned to any mnemonic string not con-

tained in the corresponding group.

In view of the previous considerations, any solution to the con-
strained encoding problem is an assignment such that the encoded
Boolean cover has the same cardinality as the minimal symbolic cover.
We proved in [DEMI84a] that there always exist solutions to this
problem. Unfortunately this problem does not specify the encoding
length. In some cases, the encoding length is a design specification.
Then we would like to find a solution to the above problem that satisfies
a bound on the encoding length. (We assume that the bound is greater
or equal to the ceiling of the logarithm of the number of mnemonic
strings.) In general, a solution to this problem may not exist. We could
then consider the problem of finding an encoding of bounded length
such that a maximal number of group faces do not intersect the code
assigned to any mnemonic not contained in the corresponding group.
A solution to this problem would in general not allow to encode every
symbolic implicant of the minimal cover by a Boolean implicant only.
However, if most group constraints are satisfied, then only few symbolic
implicants have to be encoded by more than one Boolean implicant.
For this reason, it is important to relate the unsatisfied group constraints
to the number of additiona! product-terms needed to implement the
Boolean cover. A length-bounded constrained encoding problem can be
stated as follows:

Given a minimal symbolic cover and a bound on the code-length, find

an encoding of bounded length that minimizes the cardinality of the

corresponding Boolean cover.

19

3. CONSTRAINED ENCODING

The minimal symbolic representation defines the constraints of an
encoding problem, whose solutions are the encodings that allow the
implementation of the control store with as many product terms as the
cardinality of the minimal symbolic cover.

We consider now the first encoding problem. In our example, the
encoding of control-states, op-codes and modes are independent of
each other. Therefore we concentrate on the encoding of the mnemonic
strings in the same field.

Even if no bound on the encoding length is specified, it is desirable
to encode the mnemonics with the minimal number of bits. Therefore
an optimal solution to the constrained encoding problem is a minimal
length-solution. The geometric interpretation of the optimal encoding
problem is: finding the minimal dimension Boolean space in which each
group face is a subspace which does not insersect the encoding assigned to any
mnemonic not contained in the corresponding group .

Encoding is restricted here to one-to-one mappings between the set
of mnemonics and a subset of the vertices of the Boolean hypercube,
i.e. each encoding is a 0-dimensional subspace. This restriction is mo-
tivated as follows. A O-dimensional assignment that is a solution to the
constrained encoding problem, can be derived from a n-dimensional
(n>0) solution by assigning to each mnemonic a vertex contained in the
corresponding n-dimensional assignment. Therefore a O-dimensional
solution has code-length less than or at most equal to the code-length
of any n-dimensional solution.

Optimal constrained encoding is a complex problem of combina-
torial optimization. To date, it is not known whether an optimal sol-
ution can be computed by an non-enumerative procedure. The frame
of a heuristic algorithm is presented here, that constructs a state as-
signment satisfying the constraint relation. The algorithm is described
in detail in [DEMI84b] and [DEMI184c].

We introduce first some definitions. Let n, be the number of mne-
monics to encode, i, the number of groups and n, the code length. To
be consistent with the positional-cube notation, groups are represented
by a 1-0 matrix and in particular by the subset of the columns of the
minimal multiple-valued cover corresponding to the field under consid-
eration. The constraint matrix A is a matrix: 4 ¢ {0,1}»* » represent-
ing n, groups. Mnemonic string j belongs to group i if a, = 1.

Example 3.1: The following constraint matrix is derived from
the minimal symbolic cover of Example 2.3 and represent the
state groups: {Al; A2}, {Al; A3; El; E2}

4= [&igtere]

The encoding matrix § is a matrix § € {0,1}»*~ whose rows are
the encodings. Our problem is to determine the encoding matrix S,
given a constraint matrix 4. An encoding matrix S is said to satisfy the
constraint relation for a given A if S is a solution to the constrained en-
coding problem specified by 4.

The encoding algorithm constructs an encoding matrix S row by
row and column by column by an iterative procedure. At each step a
larger set of mnemonics is considered and an encoding matrix § is
computed that satisfies the constraint relation for the corresponding
columns of A. For each mnemonic that is being considered, a new row
is appended to § . The encoding matrix § is initialized to a 1-column
matrix, and columns are appended to § (i.e. the code-length n, is in-
creased) only when needed to satisfy the constraint relation. The
structure of the algorithm is the following:

STEP 1: Select an uncoded mnemonic.

STEP 2: Determine the encodings for that mnemonic satisfying
the constraint relation.

STEP 3: If no encoding exists, increase encoding length and go
to STEP 2.

STEP 4: Assign an encoding to the selected mnemonic.

STEP 5: If all mnemonic have been encoded, stop. Else go to
STEP 1.

Mnemonics are selected at STEP 1 according to a heuristic criterion,
fully referenced in [DEMI84b). At STEP 2 all the possible encodings
for the selected mnemonic are determined, so that the corresponding
partial encoding matrix § satisfies the constraint relation for the corre-
sponding columns of A . An appropriate encoding is selected at STEP
4, according to a heuristic rule {[DEMI84b) [DEMI84¢c). -

The encoding algorithm constructs an encoding matrix S that satis-
fies the constraint relation for the given constraint matrix 4, i.e. Sisa
solution of the constrained encoding problem. Experimental resuits
show that the length of the encoding generated by the algorithm is rea-
sonably short, and often equal to the minimum length solution when this
is known.

Example 3.2 Let us consider the constrained encoding of the
contro] states of Example 2.3. The constraint matrix A is re-
ported in Example 3.1. Suppose states are selected according
to the following sequence: {Al; A2; A3; El; E2; E3; I1; I2;
A4}. Note that the last four states in the sequence do not be-
long to any group, and their encoding is not critical to the
problem. The first state to be encoded is Al, and is encoded
by 0. The second state is A2, and is encoded by 1. At this point

S= [?] and § satisfies the constraint relation for the corre-

sponding columns of the constraint matrix, i.e;lL} ") . The next
selected state is A3. There is no 1-dimensional ¢ ing that
can be assigned to A3. Therefore the code space dimension n,
is increased by one, by appending a column of 0s to S, i.e.

S-ng Then a valid encoding for A3 is 01, because the
face ¢onfaining the encoding of A1 and A3 does not intersect

00
the code of A2 and vice versa, or equivalently $ = [(1)(1)] satis-

fies the constraint relation fcg‘u“)‘l’]é State E1 is selected next.
Encoding 11 cannot be assi; t0"E1 because the face corre-
sponding to the partial group {A1;A3;E1} would intersect the
encoding of A2 that is not in that group. Hence the code space
dimension is increased again by appending to S a column of Os

000
and S = [108 . Now both 001 and 011 are valid encodings
01

for E1, i.e. the constraint relation is satisfied for either choice.
Let us assign 001 to E1. State E2 is considered now. E2 can
be encoded by 011. The remaining states do not belong to any
group, and can be assigned to any encoding that does not
intersect the existing faces. There are four states to be encoded,
and three available encodings in the three dimensional space:
i.e. 110 101 111. Therefore the space code dimension n, must
be increased to 4. The encoding matrix S constructed by the
algorithm is: .

0000 Al
1000 A2
0100 A3
0010 El
S = |0110] = |E2
1100 E3
1010 I
1110 2
0001 A4J

Each row from top to bottom is an encoding of a state according
to the sequence given above. Note that the length of the en-
coding n, is 4, and 4 is the minimum number of bits to encode
9 states.

Example 3.3: Consider now the mnemonic field corresponding
to the op-codes. The corresponding constraint matrix is:
0001111
1000111
A = |0011111
0111111

1100000
0110000

where the columns, from left to right, correspond to the op-
codes in the following sequence: {JMP; SRJ; SAC; ISZ; LAC;
AND; ADD}. By inspecting the constraint matrix, it is possible
to see that no encoding with fewer than 6 bits can satisfy the
constraint relation. In particular, by considering the first two
rows of A, it is clear that 4 is the minimal dimension of a
Boolean space to encode the op-codes {JMP, ISZ, LAC, AND
ADD}. In fact, while the last three op-codes can be encoded in
a two-dimensional subspace, JMP and ISZ must be encoded
along two different coordinate axes so that the face containing
the encodings of JMP and {LAC, AND, ADD} does not contain
the encoding of ISZ and vice versa. Moreover, by considering
the first row of 4, it is evident that SAC cannot be encoded in
the three dimensional subspace spanned by the encodings of
{lSZ,LAC,AND.ADD},andbyconsiderhngthef‘mtworows
of A, SAC cannot be assigned to any vertex of the
4-dimensional space without violating some constraint. Hence
at least 5 bits are required to encode {JMP, SAC, ISZ, LAC,
AND, ADD}. Similarly SRJ cannot be assigned to any vertex
of the 5-dimensional space and therefore at least 6 bits are
needed. The encoding matrix for the op-codes computed by the
algorithm is the following:

110100
110001
110010
111000 | =
000000

010000
100000

where each row, from top to bottom, is an encoding of an op-
code according to the sequence given above. Note that the
length of the encoding constructed by the algorithm is 6 and
corresponds to the minimal-length of an encoding satisfying the
above constraints. However note that the 7 op-codes could be
encoded by using 3 bits, if we do not require to satisfy the con-
straints (or some of them).

A Boolean cover of the control store can be obtained by replacing
the computed encodings into the minimal multi-valued cover.

Example 3.4: Consider the minimal symbolic cover of Example
2.3, and the encodings for the states and op-codes specified by
Examples 3.2 and 3.3. The addressing modes DIRECT, INDI-
RECT and INDEXED are encoded by 00, 01, 11 respectively,
so that the corresponding constraint relation is satisfied. To
obtain a Boolean cover, the positional-cube notations are re-
placed by the corresponding encodings (or by the disjunction
of the corresponding encodings).

NININAL BOOLEAMN COVER

STATE OP-COOE MO MN-ST CONTROL SIGHALS
.. 10

1101100(
1 1
00
000 eee0°0 11 0700 1001 10100(0
0000 eseess 0y 1000
0001 1100es ee¢ 1010
0000 000 00 0001
111000 *¢ 0010
0010 010000 e¢ 1010 01000
[®e 1010 00100
0010 ee 1010 0011
0010 111000 ** 0110 000101000010000
0110 eesees oo 1100 100
0100 10010 oo 00
0ee0 110010 00 0001
10001 o1 00 00000
0100 10100 1 1010 000 01000000100
1000 110%0°* 11 0100 0000110100010010C
0100 110001 O¢ D00 1 1
0000 110001 00 0100 0
0000 10100 00 1010 00000100 10¢
0100 10007 11 0000)] 1"
0 10100 11 1010 ©0000110100010010C

The sequencing and control-store can be implemented by a PLA
having 26 rows and 33 columns.

Remark 3.1: This encoding method transforms a minimal sym-
bolic cover into a non-necessarily-minimal Boolean cover, be-
cause the information about next-control states is not
considered [DEMI84b). For cxample, suppose we reverse the
first coordinate of the state encodings, or equivalently we com-
picment the first column of the present and next-state field.
Then, the 8th product-term from the top can be deleted, be-
cause its output part consists of Os only. Encoding techniques
that take into account the next-state information are still under
investigation.

We consider now the second encoding problem, which is also rele-
vant for our particular example, because it is desirable to encode the
op-codes using three bits. In this case, we look for a solution in a
Boolean space of the given dimension. If such a solution is not found,
some constraints are relaxed to make the encoding possible. In general,
constraints can be relaxed by modifying the constraint matrix or drop-
ping some rows. As a general consequence, the Boolean cover of the
control-unit cannot be obtained by replacing the positional-cube no-
tations by the corresponding encodings and not every symbolic
implicant can be expressed by one Boolean implicant. For this reason,
it is important to be able to relate the release of a constraint to the
possible increase of the Boolean cover cardinality. In the following al-
gorithm, constraints are relaxed only by splitting a group into two (not
necessarily disjoint) groups. This corresponds to replacing a row of the
constraint matrix 4 by two rows, whose bit-wise disjunction is the ori-
ginal row. Since every group corresponds to a subset of implicants, a
split corresponds to duplicating these implicants, and it is therefore
possible to assign a welght to each group accordingty. It is obvious that
by repeating group splitting, the constraint matrix will eventually be an
empty matrix and and encoding can be found for any original set of
groups and any bound. (By definition, a group has more than one ele-
ment and rows with one non-zero element only can be dropped from
A.) The structure of the bounded-length constrained encoding algo-
rithm is the following:

STEP 1: Select an uncoded mnemonic.

STEP 2: Determine the encodings for that mnemonic satisfying
the constraint relation.

STEP 3: If no encoding exists and the encoding length is strictly
shorter than the given bound, increase encoding length
and go to STEP 2. i no encoding exists and the en-
coding length is equal to the given bound, relax a con-
straint and go to STEP 2.

STEP 4: Assign an encoding to the selected mnemonic.

STEP S: If all mnemonic have been encoded, stop. Else go to
STEP 1.

[N

The algorithm differs from the previous one in STEP 3 and in the
heuristic selection rules. A heuristic criterion is used to select the group
to be split and how the split is done. Several factors are taken into ac-
count: the group weight, the group cardinality and the possibility of
splitting a group into subgroups that are compatible with the computed
partial encoding.

Exampie 3.5: Consider again the problem of encoding the op-
codes and suppose that 3 is an upper bound on the encoding
length. Suppose op-codes are encoded in the following se-
quence: {LAC; AND; ADD; JMP; ISZ; SAC; SRJ}. The en-
coding of the first four op-codes can be achieved in a
lhree-dmemmlwuhefm i.e. the partial encoding ma-

uixis: S = | 000

011

three dimensional space, because the encoding of the group
{JMP; LAC; AND; ADD} spans the entire space. For this
reason this group is selected at STEP 3 and split into the two
groups: {JMP; ADD} {LAC;AND]. This particular split is
chosen because the two new groups span a 1-dimensional space
each, giving an "efficient vse” of the Boolean space. Now ISZ
can be encoded by 110. Next SAC is selected. Again no en-
coding of SAC can be determined because the partial group
{SAC; ISZ; LAC; AND; ADD}! spans the entire space. There-
fore both the following groups must be split: {SRJ; SAC; ISZ;
LAC; AND; ADD} and {SAC; ISZ; LAC; AND; ADD}. Since
{ISZ, LAC; AND; ADD} is a group spanning a two-
dimensional space, it is convenient to split the above groups
into: {SRJ; SAC} U {ISZ; LAC; AND; ADD} and {SAC} U
{ISZ; LAC; AND; ADD}. Now SAC can be encoded by 101
and SRJ by 001. The encoding matrix is:

. No encoding of ISZ can be found in the

000 LAC
100 AND
0N ADD
S = 01 o« | JMP
11 15Z
10 SAC
00 SRJ

where each row, from top to bottom, is an encoding of the op-
codes according to the sequence given above. This encoding
allow to specify the op-codes by three bits. The price of
breaking three groups corresponds to implement three addi-
tional product-terms in the Boolean cover.

NININAL BOOLEAN COVER

§
5
]

CONTROL SIGHALS

-
g
[3
.
®
*
*
-
o
-
-]

£
s
g

ees oo 1110 000000000000001
0000 100(

-
[-1-2
L3
.
.
[3
.

°
*
.
(-4
.
-4
-
8

88

g
L3
.
=4
o
-
-t s

1]
:

§5

g

2gs8g

222
i3
g
§

=94

.'g‘ F:

O0000=
.
.

58

—0
8=82:88

°
3
2
2=2:8
o
4
2
8

1
N‘) 000 10¢

prd
o
1-1-]
[-4
14
-

888

D 1 L
00 11 0000 1
0000 011 11 1010 000011010001001¢

The sequencing and control-store can be implemented by a PLA
having 29 rows and 30 columns. Therefore this impiementation
requires a slightly (1.59) larger area than the previous one but
fewer inputs are needed.

4. CON ION

We have presented a new technique for encoding PLA-based
control-units. Control units, specified at the functional level by tables
of mnemonic strings, are encoded into a Boolean representation that
minimizes the size of the control-store implemented by a PLA. The
proposed method is based on symbolic minimization of the combina-
tional component of the control unit and and on two related constrained
encoding problems. Symbolic minimization yields a minimal sum-of-
product representation of the next-state transition functions, inde-
pendently of the encoding of the primary inputs and control-states. The
first encoding problem is finding the minimum length encoding among
those that minimize the number of product-terms of a PLA implemen-
tation. The second is finding a bounded-length encoding that minimize
the number of product-terms of a PLA implementation. Minimal-area
PLA implementations of the control-store can be found by trading-off
the solution to these problems.

Two heuristic algorithms for solving the above problems have been
presented. Both algorithms have been implemented in a computer pro-
gram. We refer the interested reader to [DEMI84b] and [DEMI84c] for
further details on the first algorithm, the computer program implemen-
tation and the experimental results.

5. ACKNOWLEDGMENTS
The author wish to thank Bob Brayton, Gary Ditlow, Curt

McMullen, Richard Rudell, Alberto Sangiovanni-Vincentelli and
Tiziano Villa for several helpful discussions.

REFERENCES

[AGER76] T. Agerwala "Microprogram Optimization: a Survey" IEEE
Trans on Comput., vol. C-25, pp. 962-973, oct 1976.

[ANDR80] M. Andrews Principle of Firmware Engineering in Micro-
program Control Computer Science Press, 1980.

[BRAY84) R.Brayton,G.D.Hachtel,C.McMullen and A.L.Sangiovanni-
Vincentelli, "ESPRESSO-II: Logic Minimization Algo-
rithms for VLSI Synthesis", in preparation.

[BROWS1] D.W.Brown, "A State-Machine Synthesizer - SMS", Des.

Autom. Conf., pp. 301-304, Nashville, jun. 1981.
{CLAR75] C.R.Clare, "Designing Logic Systems using State Ma-

chines", McGraw Hill, 1975.

[DAVI172] P. Davies "Readings in Microprogramming", IBM Jour. of
Res. and Dev., vol. 11, No. 1, pp. 16-40, jan 1972.

{DEMI83c} G.De Micheli and A.L.Sangiovanni Vincentelli , "Multiple
Constrained Folding of Programmable Logic Arrays: The-
ory and Applications”, IEEE Trans. on Comput. Aided Des.
of Int. Circ, vol. CAD-2, No. 3 pp. 167-180 jul. 1983.

{DEMI83d] G.De Micheli and M.Santomauro, "SMILE: A Compmer
Program for Partitioning of Programmed Logic Array",
Computer Aided Design No. 2 pp. 89-97, mar. 1983 and
Memorandum UCB/ERL No. 82/74.

[DEMI83f] G. De Micheli, A.Sangiovanni-Vincentelli and T.Villa,
"Computer-Aided Synthesis of PLA-based Finite State
Machines", Jnt. Conf. on Comp. Aid. Des., Santa Clara pp.
154-157. sep 1983.

[DEMI83g] G. De Micheli "Computer-Aided Synthesis of PLA-based
Systems" Ph.D. Dissertation, University of
California,Berkeley, 1983.

[DEMI84a] G.De Micheli, M.Hoffman, A.R.Newton and
A.L Sangiovanni Vincentelli, "A Design System for
PLA-based Digital Circuits”, Advances in Computer Engi-
neering Design, Jai Press, 1984 (in print).

{DEMI84b] G.De Micheli, R.Brayton and A.L.Sangiovanni Vincentelli,
"Optimal State Assignment for Finite State Machines”,
IBM Research Report RC 10599 and submitted for publi-
cation.

[DEMI84c] G.De Micheli, R.Brayton and A.L.Sangiovanni Vincentelli,
“KISS: a Program for Optimal State Assignment of Finite
State Machines"”, Int. Conf. on Comp. Aid. Des., Santa
Clara, nov 1984.

[GRAS83] W. Grass " A Synthes System for PLA-Based Programmable
Hardware" Microprocessing and Microprogramming No.
12 pp. 15-31 dec 1983.

[HACHS82a] G.D.HachteLA.R.Newton and A.L.Sangiovanni
Vincentelli, "An Algoritam for' Optimal PLA Folding",
1EEE Trans. op CAD of Int. Circ. and Syst. , pp. 63-77 vol.
1, No. 2, apr. 1982.

[HART66] J. Hartmanis and R.E.Stearns, " i
of Sequential Machines", Prentice Hall, 1966.

{HONG74) S.J.Hong,R.G.Cain and D.L.Ostapko, "MINI: a Heuristic
Approach for Logic Minimization", JBM Jour. of Res. and
Dev., vol. 18, pp. 443-458, sep. 1974.

[LANG82] G.Langdon "Computer Design", Computech Press, 1982.

[LEWI81} T. Lewis and B. Shriver "Introduction to Special Issue on

Microprogramming”" IEEE Trans on Comput., vol. C-30,
Pp. 457-459, jul 1981.

[LOGU75] J.C.Logue N.F.Brickman F.Howley J.W.Jones and
W.W.Wu, "Hardware Implementation of a Small System in

Programmable Logic Arrays”, IBM Jour. of Res. and Dev.,
vol. 19, pp. 110-119, mar. 1975.

[NEWTS81] A .R.Newton, D.O.Pederson, A.L.Sangiovanni Vincentelli
and C.H.Sequin, "Design Aids for VLSI: the Berkeley Per-

spective”, IEEE Trans. on Circ. and Syst., vol. CAS 28 pp.
618-633 jul. 1981,

[PAPA79] C. Papachristou "A Scheme for Implementing Micropro-
gram Addressing with Programmable Logic Arrays" Digital
Processes No. 5 pp. 235-256 may 1979.

{SU72] S.Y.H.Su and P.T.Cheung, "Computer Minimization of Multi-
Valued Switching Functions", IEEE Trans on Comput., vol
21, pp. 995-1003, 1972,

