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A6ItrIKt. The design of control-units for VLSI systems, such as micro-
processors, is addressed in this paper. Control units are modeled as fi-
nite automata and an encoding scheme for the primary inputs and the
internal states is presented that m;nim;7~s the silicon area requirement
for the sequenang and control store.

a common problem: the control-store takes a large fraction of the chip.
It is therefore important to reduce the silicon area taken by the
control-store. while keeping the programmability feature. Moreover
reducing the storage area corresponds in general to shorter connection
wires and consequently to faster switching-time performance.

The problem of reducing the silicon area taken by the control-store
in a ROM-based microprogrammed control-units bas been investigated
by several ~archers and surveyed in [AGER76]. Recently, PLAs
have shown to be effective components for implementing control logic
[GRAS83] [PAPA79] [LOOU7S]. PLA design is regular and struc-
tured and can be supported by computer-aided tools [DEMI84a].
Moreover PLAs impletnent logic functions more efficiently than ROMs,
as far as silicon area is concerned. Several techniques, like logic min-
imization [HONG74] [BRAY84] and topological compaction
[HACH82a] [DEMI83c], allow the design of area-effective PLA im-
plementations. Therefore PLA-based control unit designs can be opti-
mized with regard to silicon area requiretnel1t and subsequently to

switching-time performance.

1. INTRODUCTION

The Computer-Aided synthesis of Very Large Scale Integration
(VLSI) system modules must include design optimization procedures to
be effective [NEWTS1]. The design of sequential functions, such as
microprocessor control units, is a good test case for automated synthesis
tools.

This paper addre- the computer-aided design of VLSI control
units. The functional specifications of the system being designed are
assumed to be given in a Hardware Description Language program, a
flow-chan or an equivalent representation. Similarly it is assumed that
the design is partitioned into two major components: the data-flow and
the control unit.

Control-unit implementations have followed different strategies.
A custolni2ed design of the control unit can be achieved by intercon-
necting logic gates. For example, the control part of the ZSOOO micro-
processor was implemented by "random logic" gates. Such a design
style may lead to a compact and high-perfonnance implementation, but
it is highly dependent on the particular control flow. Moreover, design
time is longer in comparison to other structured implementations and
engineering changes may require a complete redesign. Other micro-
processor are completely microprOgralDmed, as in the case of the
M68~ In this case, the sequencing and control functions have a
structured implementation, that is referred to as ~quencing and
control-store or more simply control-store. The control-store is imple-
mented by a Read Only Memory (ROM), a Programmable Logic Array
(PLA) or a more elaborate structure [ANDR80]. There are ~veraJ
advantages in using microprogramming. The design of the control unit
is flexible, can be defmed at a later stage of the proceaor design and
can be eaSIly modified. Moreover microprogrammed processors can
emulate the instruction ~t of other machines.

With the advent of VLSI circuits, microprogramming became a way
to increase the regularity of the chip structure [LEWIS I). Davis
[DA VJ72) recognized this new view of microprogramming and gave the
foUowing definition: "One particular class of control mechanism uses
regularly organized storage arrays to contain a large pan of the control
infonnation. Machines employing such control mechanism are said to
be microprogrammed." Different implementation strategies of micro-
programmed processors have been foUowed: the control-store can be
located on-chip or off-chip and can be writable or not.

Control units are modeled here as deterministic synchronous finite
automata [HART66] and implemented by two components: a combi-
national component and a set of registers, that are synchronized to the
system clock and that store the state of the control unit. The combina-
tional circuit implements the sequencing and control store. It generates
the control signals to the data-flow (primary outputs) and the next
control state as a function of the present control state, operation and
condition codes (primary inputs). The combinational component can
be implemented by a single PLA or be partitioned into two or more ar-
rays. In the former case, the PLA implements both the sequencing and
control store. In the latter an array implements the seqnencing store that
generates the sequence of control states as a function of the operation
and condition codes and the present control-state. Another array gen-
erates the control signals as a function of the control-states. The former
model is used in the sequel. The extension of the technique presented
here to the latter is straight-forward.
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PLAs implement two-level switching functions as sum-of-products
or equivalent representation. The silicon area taken by a PLA has a
complex functional dependen~ on the binary representation of the
control-states and primary inputs.

We propose a new technique for encoding the control states and
primary inputs to minjmi?~ the PLA area implementing the sequencing
and control store. This problem is related to the state assignment
problem for deterministic automata that has been recently investigated
[DEMI83f] [DEMI83g] [DEMI84b] [DEMI84b].

We consider here the problem of designing control units with read-
only on~ip control store, i.e. the programmability feature is retained
until the logic design stage of the control unit. Most desig11 have shown
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The state assignment problem has been the object of extensive the-
oretical research. A critical survey of the major published results is
presented in (DEMl83g]. However, despite of all these efforts, to the
best of my knowledge, no computer-aided design tool is in use today for

an optimal encoding of contTollogic.

2. CONTROL-UNff REPRFSENTA'nON AND MINIMIZATION

For the sake of our analysis, we assume that a cont,.r:ol-unit is de-
scribed by a t8bIe of 8ia'0-0peradons [LANG82]. The 'table of micro-
operations can be constructed from a Hardware Description Language
or now-chart description. The processor state in defmed at any time
by a mnemonic string, defining the control state. We assume that each
control-state corresponds to a data-now cycle. The table of micro-
operations describes, for each control state and instruction, the action
to be taken by the data-now, which is specified by the control point
activation signals. The table specifies as well the control-state in which
the control-unit will be at the next cycle. Though the technique pre-
sented here is fairly general, we concentrate on a particular control-unit
design for the sake of concreteness.

The control-unit has nine states, corresponding to InstnlCtion-
fetch, operand-address evaluation and instruction execution.
The states are labeled by mnemonic strings, namely: 11,12, At,
A2, A3, A4, El, E2, E3. We consider seven operations,
namely: JMP (jump), SRJ (subroutine jump), SAC (store ac-
cumulator), lSZ (Increase and skip on 0), LAC (load accu-
mulator), AND (and), ADD (add). Three modes of memory
addressing are considered: DIRECT, INDIRECT and IN-
DEXED. The operation and addressing mode are specified by
two instruction fields.
Each row of the table shows an action as a consequence of
particular conditions. There are five fields In each row. Two
fields correspond to the present and next control states. Two
fields correspond to the primary Inputs, i.e. the operation code
and addressing mode. The last field corresponds to the control
signals. The first four fields are described by mnemonic fields,
the last by binary variables. We chose here to represent control
signals by binary variables. However note that control signals
could be descn"bed by a mnemonic field as wen.
For example, the first row shows that when the control-unit is
In state II, the state of the control-unit at the next cycle is 12 and
control signal OOOOOOOOOOOOOO111 (lncrementing the
program-counter) is issued. The third row shows that when the
control unit is In state AI, the Op-code is IMP and the address-
Ing mode is DIRECT, then the next control-state is 11 and the
control signal is 00000100000100100. A unspecified field In
the table corresponds to a "don't care" condition. For example
the op-code and the mode are "don't care" conditions for the
transition specified by the first row.

The table of micro-operatioDS can be implemented by a ROM or a

PLA in a straight-forward way. Each row can be associated to a
multiple-output minterm or product-term. Each state can be associated
to a state signal line and stored by a single latch. Each primary input,
i.e. each Op-code and mode, can be associated to an input signal line.
Such a representation leads to an inefficient use of silicon area, even
when the sequencing and control-store are imPlemented by a PLA.
(The size of a ROM implementing such a table grows exponentially
with the number of signals carrying state and condition information.
PLA implementations are more area-efficient than ROM implementa-
tions.) The waste of silicon area corresponds as well to a degradation
of the circuit performance. We proved in [DEMI84b] that it is always
possible to construct binary encodings of the primary inputs and
control-states of a detemlinistic automaton leading to a more efficient
implementation. However the problem of determining an encoding that
minimizes the PLA area is extremely complex.

Examole 2.1: We consider here the microprocessor design de-

scribed by Langdon in Chapter 5 of [LANG82]. Langdon pre-

sented a custom PLA implementation of the control store (he
did not specify the next-state function implementation). The

purpose of showing this example is not to claim a better imple-

mentation, but to present a design method on a documented

example. The following table of micro-operations is adapted

from [LANG82] and describes the memory-reference in-

structions. (Therefore extended Opocode and the corresponding

control signal is not considered.)
TABLE <»" "Iao-opEaAT1~

STATE OP-aXI& ~ lIZXT-aTATE ~-aIGKALI
- - II 12 00000000000000111

--- - - - - --- ---
12 AI 00000000111011000
- --- AI ,,~ DIaECT II 00000100000100100

AI SRJ OIaECT A3 00000000001000001
AI SAC DIRECT A4 00000010000000000
A1 ISZ DIaECT A4 00000000000000000
AI LAC DIaECT A4 00000000000000000
AI HID DIaECT A4 00000000000000000
AI NIO DIaECT A4 OOOOOOOOOOOOOODOO

A1 ".. INDIRECT A2 00000000000000000
AI SRJ INDIRECT A2 00000000001000001
AI SAC INDIRECT A2 00000000000000000
AI ISZ INDIaECT A2 00000000000000000
AI LAC INDIRECT A2 00000000000000000
AI AND I18DIRECT A2 00000000000000000
A1 ADD INDIaECT A2 00000000000000000

AI "MP I1IDEXED II 00001101000100100
AI SRJ IlmEX£O A2 00000000001000001
AI SAC INDEXED A3 00001101000100000
AI ISZ INDEXED A3 00001101000100000
AI LAC INDUED A3 00001101000100000
AI AND INDEXED A3 00001101000100000
AI ADD INDEXED A3 00001101000100000

A2 DIRECT A3 00000001010001000
A2 INDIRECT A3 00000001010001000
A2 I18IExm A3 00001101000100100- - - --- - -- - - ---
A3 ".. II 00010101000000100
A3 SRJ DIaECT A4 00010110000000110
A3 SRJ I~IaECT A4 00010110000000110
A3 SRJ I~ A4 00000010000000111
A3 SAC A4 00000010000000000
A3 ISZ A4 0000000000000000o
A3 LAC A4 00000000000000000
A3 AND A4 00000000000000000
A3 ADD A4 00000000000000000

M--j;.p il oooooooI010oooooi
A4 SRJ II 00000001000000001
A4 SAC II 00000001000000001
A4 ISZ EI 00000000010000000
A4 LAC EI 00000001010000001
A4 AND EI 00000001010000001A4 - EI 00000001010000001

- - - - EI LAC 11 00110100000000000

&1 - II 01000100000000000
&1 - II 00100100000000000
£1 Iaz B2 00010100001000010

- -- -. &2 UZ B3 10010110000000010

~--- - . -. &3 11 0000000100000o101

-

For this reason, some simplifying assumptions are needed. As a fIrSt
step, topological compaction techniques to reduce the PLA area, such
as folding [DEMI83c] and partitioning [DEM83d] are not considered.
Under this assumption, the PLA area is proportional to the product of
the number of rows (implementing the product-terms) times the num-
ber of columns (carrying the input/output and state information). Both
row and column cardinality depend on the encoding of the control-
states and primary inputs (i.e. operation codes and addressing modes)
represented by mnemonic strings in the table of tnicro-operations. The
(tninimum) number of rows is the cardinality of the (tninimum) cover
of the control store according to a given encoding. The code-length (i.e.
the number of bits used to represent the mnemonic strings) is related
to the number of PLA columns and in particular to the number of PLA
input and output columns corresponding to the present/next control-
states, operation codes and modes. Therefore the PLA area has a
complex functional dependence on state and instruction representation.
For this reason two simpler optimal encoding probletnS are defmed:

i) Find the encodings of tninimum code length among the en-
codings that minimize the number of rows of the PLA.
ii) Find the encOOings that minimizes the number of rows of the
PLA among the encoding of given code length.

The optimum solution to the control logic encodinl! problem. which



minimizes the PLA area, can be seen as a trade-off between the sol-
utions to problem i) and ii). Note that the above problems are still
computationalIy difficult and to date no method (other than exhaustive
search) is known that solves them exactly. Therefore heuristic strate-
gies are used to approximate their solution.

The control-state representation is local to the control-unit. There-
fore there are in general no constraints on the control-state represen-
tation and in particular on the encoding length. However the instruction
fields, that are primary inputs to the control-unit, have to be compatible
with the processor architecture requirements. Therefore it is desirable
that the number of bits corresponding to the primary-input represen-
tation matches the instruction field width. In this case, no instruction
decoder is needed, and the appropriate instruction fields can be gated
directly as inputs to the control-unit.

The encoding technique reported in the sequel is related to the op-
timal state assignment problem for Finite State Machines [DEMI83g]
[DEMI84a] [DEMI84b]. The strategy is based on the following idea:
logic minimization of the combinational component of the control-unit
is applied before the encoding. For this reason, logic minimization is
performed on a symbolic (code independent) representation. The table
of micro-operations is a symbolic: COger of the control store. Symbolic
covers have been introduced in [DEMI83f] to specify a combinational
function by means of binary and mnemonic strings. A symbolic cover
is a set of primitive elements called symbolic: ~--!!... Each row of the
table of micro-operations is a symbolic implicant and consists of a set
of (mnemonic and/or binary) fields describing a state transition and the
corresponding primary inputs and outputs.

A symbolic cover can be considered as a logic cover of a multiple-
valued logic function [SU72] [HONG74], where each entry in each
mnemonic field takes a different logic level aDd is represeuted by a
character slring. Several notations are used to represent multiple-
valued logic oovers. For example, die different logic levels can be re-
presented by integer values: 0,1,2, ... ,p - 1 . This is an extension of
the binary notation to a p-valued representation.

The positi1X181 cube notation is used here [SU72). A p-valued 1og-
ical variable is represented by a string of p binary symbols. Value, is
represented by a "I" in the "'position, aD others being "0". Note that
the positional cube notation aDows the representation of a set of values
with one string. The disjunction ( multiple-valued logical OR ) of se-
veral values is represented by a string having "1"5 in the corresponding
positions. Therefore the "don't care" value is represented by a string
of "1"5 and the empty value by a string of "O"s.

~c-

lTAft ~ - ~ft ~I~
1000000oo 1111111 111 01_00 00000000000o00111

010000000 1111111 111 001_0 00000000111011000

001000000 1000000 100 100000000 00000100000100100
00100000o 0100000 100 000010000 00000000001000001
001000000 0010000 100 000001000 000000100000o0000
001000000 0001000 100 000001000 000000_000000
001000000 0000100 100 000001000 00000000000000000
001000000 0000010 100 000001000 00000000000_0
001000000 0000001 100 000001000 0000OOOOOOOOOOOOO

001000000 1000000 010 000100000 ~
001000000 0100000 010 000100000 OOOOOOOOOO1000001001000000 0010000 010 000100000 -
001000000 0001000 010 000100000 ~
001000000 0000100 010 000100000 ~001000000 0000010 010 000100000 -
001000000 0000001 010 000100000 ~
001000000 1000000 001 100000000 00001101000100100
001000000 0100000 001 000100000 00000000001000001
001000000 0010000 001 000010000 00001101000100000
001000000 0001000 001 000010000 00001101000100000
001000000 0000100 001 000010000 00001101000100000
001000000 0000010 001 000010000 00001101000100000
001000000 0c00001 001 000010000 00001101000100000
- -- 000100000 1111111 100 000010000 00000001010001000

000100000 1111111 010 000010000 00000001010001000
000100000 1111111 001 000010000 00001101000100100

000010000 100000o 111 1000000oo 00010101000000100
000010000 0100000 100 000001000 00010110000000110
000010000 0100000 010 000001000 00010110000000110
000010000 0100000 001 000001000 00000010000000111
000010000 0010000 111 000001000 00000010000000000
000010000 0001000 111 000001000 00000000000000000
000010000 0000100 111 000001000 00000000000000000
000010000 0000010 111 000001000 00000000000000000
000010000 ~1 111 000001000 00000000000000000

000001000 100000o 111 00000o100 00000001010000001
000001000 0100000 111 100000000 00000001000000001
000001000 0010000 111 10000000o 00000001000000001
000001000 0001000 111 00000o100 00000000010000000
000001000 0000100 111 000000100 00000001010000001
000001000 0000010 111 000000100 00000o01010000001
00000 1 000 000000 1 111 000000 1 00 00000oo 1 0 1 00000o 1

000000100 0000100 111 1_000 00110100000000000_01W 0000010 111 1- 0100010000000-
00000o100 _, 111 1OOOOOOOO 00100100000oo0000
00000o100 000- 111 000000o10 0001.1__010- -- - ~ _10 0001800 111 __1 1001011000008OO10

000000oo1 1111111 111 1- _'_10'-. - - - -

multiple-valued fuIICdon .x...~ to -- aIId ODly -- binuy value
II I" (HIGH) in * CX)dcd repreleDtatioD.' By ... IhiJ ~Dtation,

binary-vallied minimi7~, Iud1 .. PRESTO [BROWSOJ, pop. MINI
[HONG74] aDd ~RESSO-n [BRA Y84). QD be 1*d to obtain mini-
ma! symbolic covers. ExperinIeDtai results have shown that
~RESSo-n yields minima) (symboIM:) coven that are quite close to
the minimum (symbolic) cover, for problems for which the miDin1wn
cover can be determined [DEMI84a].

The transformation of a table of micro-operations into a multiple-
valued cover with positional cube notation is straight-forward, since the
transformation involves only symbol translations.

ExamDIe 2.2: The table of micro-operations of Example 2.1 can
be translated into a multiple-valued position~be represen-
tation by associating a value to each state, operation code and
addressing mode. There are 9 states, 7 oP-codes and 3 modes
represented by 9-bit, 7-bit and 3-bit strings respectively. For
example 11 is represented by 1OOOOOOOO,12 by 0100000oo, etc.

Similarly operation JMP is represented by 1~, ... ad-
dressing mode DIRECT is represellted by 100, etc.

Minimizing a symbolic cover is equivalent to finding a represen-
tation of the control store with the minimum number of symbolic
implicants. Finding a minimum multiple-valued cover is a computa-
tionaIly expensive problem. Heuristic multiple-valued logic minimizers,
such as MINI [HONG74] can be used to compute a minimal (local
minimum) cover. (Program MINI [HONG74] is used in general for
binary-valued logic minimization; however it supports multiple-valued
minimization as weD.) Alternatively, the positional-cube representation
can be seen as a binary-valued encoding of a multiple-valued function.
This encoding is referred to as l-bot codiIIc. because each value of the

ExamDIe 2.3: Consider the symbolk 00VeI' of Example 2.2. A

minimal symbolic (multiple-valued) COYer, obtaiDed by
ESPRESSO-II. is the folJowing:

IIIMINAL SYIBII.IC (X)VD

STAft OP-O)D& I«X)E _XT-$TAft ~ $1-"

000000001 1111111 111 1OOOOOOOO 00000001000000101
100000000 1111111 111 010000000 00000000000000111
010000000 1111.111 111 00100000o 00000000111011000
000100000 1111111 110 000010000 00000001010001000
000010000 0111111 III 000001000 00000000000000000
000001000 1000111 111 00000o100 00000001010000001
001100000 0011111 001 000010000 00001101000100000
001000000 1111111 010 000100000 ~
00000 1 000 0 11 0000 111 1 00000000 00000oo 1 oooooooo 1
001000000 0001111 100 000001000 00000000000000000
000001000 0001000 111 000000100 00000000010000000
000000100 0000010 111 100000000 010001000000o0000
000000100 0000001 III 100000000 011100100000000000
000000100 0000100 111 100000000 00110100000000000
000000100 0001000 III 000000010 00010100001000010
000000010 1111111 111 000000001 10010110000000010
000010000 0010000 111 000000000 00000010000000000
001010110 0010000 100 000001000 00000010000000000
001000000 0100000 011 000100000 00000000001000001
000010000 1000000 011 1OOOOOOOo 0001010100000o100
000100000 1100000 001 000010000 00001101000100100
000010000 0100000 110 ooooooooo 000101100000oo110
00 1 000000 0 1 00000 1 00 0000 1 0000 oooooooooo 1 00000 1
001000000 1000000 100 1OOOOOOOO 00000100000100100
000010000 0100000 001 0OOOOOOOO 00000o100000o0111
001000000 100000o 001 1000000oo 00001101000100100- .

TIle J -bot repreoeDla1iDll has a differeD! ~1iDII III8D !be IMIIiIklnaJ cube
notaliOll. An a~te "don.1 care" et - be IlJedrIed for !be 1-- repre-
senlalloa, 10 opecify thaI D-bot encodinp do DOt repreoeDI ex8lin& ~ TIle 8-
IeteSIed reader is referred 10 (BRA Va. ) and [DEMI83a1 for details.
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Consider now the 7-th symbolic implicant from the top:
00 11 ()()()(}() 00 11111 00 1 0000 1 0000 0000 11 0 1 ()()() 1 ()()()(}()

This implicant shows that operations SAC, ISZ, LAC, AND,
ADD and mode INDEXED cause a transition from either state
Al or A2 to state A3 and implies the control signals specified
by the last field.

3. CONSTRAINED ENCODING

The minimal symbolic representation defines the constraints of an
encoding problem. whose solutions are the encodings that allow the
implementation of the control store with as many product terms as the
cardinality of the minimal symbolic cover.

We consider now the first encoding problem. In our example, the
encoding of control-states, op-codes and modes are independent of
each other. Therefore we concentrate on the encoding of the mnemonic
strings in the same field.

Even if no bound on the encoding length is specified, it is desirable
to encode the mnemonics with the minima1 number of bits. Therefore
an optimal solution to the constrained encoding problem is a minimal
length-solution. The geometric interpretation of the optimal encoding
problem is: fl.lJllC ,.. miIIiM d~- ~ ~ ;ft wIIkj ~
I"*P I~ is . ~ wIIidJ doa .", ia*'M:t ., -wi,., aD;,..t to ."
-- .", ~;- ;ft ,., ~;. ".. .

The example above shows that the effect of symbolic (multiple-
valued) logic minimization is to group together the transitions from
some control-state and under some op-code and mode into the same
next-state and activating the same control signals. Eacb. proper subset
of mnemonics represented in the same field and containing more than
one element is termed group.

Examole 2.4 Let us consider the mnemonic fields corresponding
to the control-states, operation codes and addressing modes in
the minimal symbolic cover of the control-unit of Example 2.1
2.22.3. There are two groups of control states, namely: {AI;
A2} and {AI; A3; El; E2}. There are six different groups of
op-codes, namely: {ISZ; LAC; AND; ADD}, {JMP; LAC;
AND; ADD }, {SAC; ISZ; LAC; AND; ADD}, {SRJ; SAC;
ISZ; LAC; AND; ADD}, {JMP; SRJ}, {SRJ; SAC}. There are
two different groups of addressing modes, namely: {DIRECT;
INDIRECT} and {INDIRECT; INDEXED}.

Encoding is restricted here to one-to-one mappings between the set
of mnemonics and a subset of the vertices of the Boolean hypercube,
i.e. each encoding is a O-dimensional subspace. This restriction is mo-
tivated as foUows. A O-dimensional assignment that is a solution to the
constrained encoding problem, can be derived from a n-dimensional
(n>O) solution by assigning to each mnetDOnic a vertex contained in the
corresponding n-dimensional assignment. Therefore a O-dimensional
solution has code-length less than or at most equal to the code-length
of any n-dimensional solution.

Given an encoding and a group, the conesponding group face (or
simply face) is the minimal dimension Boolean subspace containing
the encodings of the mnemonics assigned to that group (or equivalently
the bit-wise disjunction of the encodings assigned to the mnemonics in
that group).

The goal of the encoding technique presented here is to group to-
gether the encodings in binary-valued logical implicants in the same way
mnemonics are grouped in the minimal symbolic (multiple-valued)
cover. In particular, an encoding is sought, such that each symbolic
implicant can be coded by one binary-valued implicant. For this as-
signment, there exists a binary-valued cover of the control-unit having
as many implicants as the minimal symbolic cover.

Optimal constrained encoding is a complex problem of combina-
torial optimization. To date, it is not known whether an optimal sol-
ution can be computed by an non-enumerative procedure. The frame
of a heuristic algorithm is presented here, that constructs a state as-
signment satisfying the constraint relation. The algorithm is described
in detail in [DEMI84b] and [DEM184c].

An encoding. such that each group face contains the encodings of
the mnemonic strings included in the corresponding group and no other.
satisfies the above requirement. For this reason. a constrained encoding
pnJbiem is considered:

Gi- 0 .. 01 .,.,.. fi- 4ft -.dillc tlIGt -=' ~ 1-
doe ,." ~ III#. aide auig- to -y ~ Itri. ., ~
loi..l i. III#. ~i. grrI8p.

We introduce first some definitions. Let ft, be the number of mne-
monics to encode, n, the number of groups and n. the code length. To
be consistent with the positional-cube notation, groups are represented
by a 1-0 matrix and in particular by the subset of the columns of the
minimal multiple-valued cover corresponding to the field under consid-
eration. The CODstr.mt _trix A is a matrix: A I: (O,I}""" represent-
ing n, groups. Mnemonic string) belongs to group i if a,J - I.

ExamDle 3. I: The following constraint matrix is derived from
the minimal symbolic cover of Example 2.3 and represent the
state groups: (AI; A2}, {AI; A3; EI; E2}

[001 IO()(MX) ]A - 001010110

The ~ _trIX S is a matrix S £ {O,l}..'" whose rows are
the encodings. Our problem is to determine the encoding matrix S.
given a constraint matrix A. An encoding matrix S is said to satisfy the
constraint relation for a given A if S is a solution to the constrained en-
coding problem specified by A.

The encoding algorithm constructs an encoding matrix S row by
row and column by column by an iterative procedure. At each step a
larger set of mnemonics is considered and an encoding matrix S is
computed that satisfies the constraint relation for the corresponding
columns of A. For each mnemonic that is being considered, a new row
is appended to S . The encoding matrix S is initialized to a l-column

matrix, and columns are appended to S (i.e. the code-length n. is in-
creased) only when needed to satisfy the constraint relation. The
structure of the algorithm is the following:

In view of the previous considerations, any solution to the con-
strained encoding problem is an assignment such that the encoded
Boolean cover has the same cardinality as the minimal symbolic cover.
We proved in [DEMI84a] that there always exist solutions to this
problem. Unfortunately this problem does not specify the encoding
length. In some cases, the encoding length is a design specification.
Then we would like to find a solution to the above problem that satisfies
a bound on the encoding length. (We assume that the bound is greater
or equal to the ceiling of the logarithm of the number of mnemonic
strings.) In general, a solution to this problem may not exist. We could
then consider the problem of finding an encoding of bounded length
such that a maximal number of group faces do not intersect the code
assigned to any mnemonic not contained in the corresponding group.
A solution to this problem would in general not allow to encode every
symbolic implicant of the minimal cover by a Boolean implicant only.
However, if most group constraints are satisfied, then only few symbolic
implicants have to be encoded by more than one Boolean implicant.
For this reason, it is important to relate the unsatisfied group constraints
to the number of additional product-tenDs needed to implement the
Boolean cover. A length-bounded constr8iDed eDCcMI,. problem can be
stated as follows:

Gi- . mi.;-I s)"'boIk eol . "'-t OR till c.--lellgth, fl-
.. ~. 01 '-1wJ.I lengtA ,.., mi.im;. * ttIIdilllJlity 01 till
~i. Boot.. eo_.
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Each row from top to bottom is an encoding of a state according
to the sequence given above. Note that the length of the en-
coding n. is 4, and 4 is the minimum number of bits to encode
9 states.

STEP 1: Select an uncoded mnemonic.
STEP 2: Detennine the encodings for that mnemonic satisfying

the constraint relation.
STEP 3: If DO encoding exists, increase encoding length and go

to STEP 2.
STEP 4: Assign an encoding to the selected mnemonic.
STEP 5: If all mnemonic have been encoded, stop. Else go to

STEP 1.

Mnemonics are selected at ~ 1 ac:cording to a heuristic criterion,
fully referenced in [DEMI84b]. At ~ 2 all the possible encodings
for the selected mnemonic are determined, so that the corresponding
partial encoding matrix S satisrJes the constraint relation for the corre-
sponding columns of A . An appropriate encoding is selected at ~
4, ac:cording to a heuristic rule [DEMI84b] [DEMI84c].

The encoding algorithm constructs an encoding matrix S that satis-
fies the constraint relation for the given constraint matrix A, i.e. S is a
solution of the constrained encoding problem. Experimental results
show that the length of the encoding generated by the algorithm is rea-
sonably short, and often equal to the minimum length solution when this
iskDOwn.

!JMP
JSRJ SAC ISZ LAC

AND

ADD

s -

EumDle 3.3: Coasider now the mnemonic f"!eld ~DdiDg

to the 0P-c0des. The correspoDdiDg 00Dstraint matrix is:

[ 0001111 1000111 0011111 A - 0111111

1100000

0110000 I

where the columns, from left to right, correspood to the op-

codes in the following seque~: {IMP; SRJ; SAC; lSZ; LAC;

AND; ADD}. By inspecting the constraint matrix, it is pc:.sible

to see that no encoding with fewer th&n 6 bits can satisfy the

constraint relation. 10 particular, by coDSidering the first two

rows of A, it is clear that 4 is the minimal dimension of a

Boolean space to encode the op-codes {IMP,lSZ, LAC, AND

ADD}. In fact, while the last three Op-codes can be encoded in

a two-dimensional su~, IMP aDd lSZ must be encoded

along two different coordinate axes so that the face containing

the encodings of IMP and {LAC, AND, ADD} does not contain

the encoding of lSZ and vice vena. M~ver, by considering

the f"Jrst row of A, it is evident that SAC cannot be encoded in

the three dimensional subspace spanned by the encodings of

{lSZ, LAC, AND , ADD}, and by considering the f"1st two rows

of A, SAC cannot be assigned to any vertex of the

4-dimensional space without violating some constraint. Hence

at least S bits are required to encode {IMP, SAC, lSZ, LAC,

AND, ADD}. Similarly SRJ cannot be usigned to any vertex

of the 5-dimensional space aDd therefore at least 6 bits are

needed. The encoding matrix for the op-codes computed by the

algorithm is the foUowing:

110100

]110001 110010 111000 a 00000o

l OI0000 100000

where each row, from top to bottom, is an encoding of an op-

code according to the sequence given above. Note that the

length of the encoding constructed by the algorithm is 6 and

corresponds to the minimal-length of an encoding satisfying the

above constraints. However note that the 7 Op-codes could be

encoded by using 3 bits, if we do not require to satisfy the con-

straints (or some of them).

Examole 3.2 Let us consider the COnstrained encoding of the
control states of Example 2.3. The constraint matrix A is re-
ported in Example 3.1. Suppose states are selected according
to the foUowing sequence: (AI; A2; A3; EI; E2; E3; 11; 12;
A4}. Note that the last four states in the sequence do not be-
long to any group, and their encoding is not critical to the
problem. The fIrSt state to be encoded is AI, and is encoded
by O. The second state is A2, and is encoded by 1. At this point

S - [?] and S satisfies the constraint relation for the corre-

sponding columns of the constraint matrix, i.e. r! ~ 1. The next

selected state is A3. There is no l-dimensio~e~ that
can be assigned to A3. Therefore the code space dimension ,..
is increased by one, by appending a column of Os to S, i.e.

S - rlfgl Then a valid encoding for A3 is 01, because the
face 'eAnd.ining the encoding of AI and A3 does not intersect

the code of A2 and vice versa, or equivalently S - [~] satis-

fies the constraint relation for r!~? 1. State EI is selected next.
Encoding II cannot be assign'eA to-'F:1 because the face corre-
sponding to the partial group (A1;A3;EI} would intersect the
encoding of A2 that is not in that group. Hence the code space
dimension is increased again by appending to S a column of Os

and S - [m] . Now both 001 and Oil are valid encodings
010

for E1, Le. the constraint relation is satisfied for either choice.
Let us assign 001 to E1. State E2 is considered now. E2 can
be encoded by Oil. The remaining states do not belong to any
group, and can be assigned to any encoding that does not
intersect the existing faces. There are four states to be encoded,
and three available encodings in the three dimensional space:
Le.110 101 Ill. Therefore the space code dimension", must
be increased to 4. The encoding matrix S constructed by the
algorithm is:

A Boolean cover of the control store can be obtained by replacing
the computed encodinp into the mininIa1 multi-valued cover.

Examole 3.4: Consider the minima1 symbolic cover of Example
2.3, aDd the eDCOdinp for the states aDd op-codes specified by
Examples 3.2 and 3.3. The addressing modes DIRECT, INDI-
RECT and INDEXED are encoded by 00, 01, II respectively,
so that the corresponding constraint relation is satisfied. To
obtain a Boolean cover, the positionaJ-cube notations are re-
placed by the corresponding encodinp (or by the disjunction
of the corresponding encodings).

s -
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MI.IML QWD

STATS C»-aXIK 1m .-IT ~ I1G11AL1

1100 .. 1010 00000001000000101
1010 .. 1110 000000OOOOOOOO111
1110 .. 0000 _",0,,-1000 O' 0100 _'0'_'-0100 ...0.. .. _, -
0001 .00.00 .. 0010 _,0,00000o1
.000 ...0.0 11 0100 00001,01_,00000
0000 01 1000 0000000000000o000
0001 1100.. .. 1010 0000_,00000000,

0000 ...000 00 0001 OOOOOOOOOOO000000
0001 ",- .. 0010 ---,000000o0010 010000 .. 1010 0'_'-0010 ,- .. 1010 001001-
0010 -- .. 1010 001101-
0010 111- .. 0110 00010100001~10
0110 .. 1100 100101100000~10
0100 110010 .. 0000 00000010000000000

0..0 110010 00 0001 0000001000000o000
0000 11 000 1 ., 1 000 00000000oo 1 00000 1
0100 110100 ., 1010 0001010100000o100
1000 11000. 11 0100 0000,101_,00,00
0100 ,,_, O' 0000 _,01,0000000,,0
0000 ,,_, 00 0100 _0000000'_'
0000 110100 00 1010 00000,00_,00,00
0100 110001 11 0000 00000010000000111
0- 110100 11 1010 00001101000100100

The algorithm diffeR from tbe previol8 ~ in STEP 3 aIMt in tbe
heuristic Riection ruJes. A hewiatic criterion is used to select tbe group
to be split and how the split is done. Several factoR are taken into ac-
count: the poup weight, the group cardinality and the ~bility of
spliuiDI a group into subglOu.- that are ccapablJle with tbe ~

partialenI:OdiDI.

EDIDDIe 3.5: CoI8kIer apin the IXObIeID of eIM:OdiDI the op-
codes and IU~ that 3 is an upper b<XIDd on the eIM:OdiDI
leogth. Su~ op-code8 are eDa)ded in the following Ie-
q_: {LAC; AND; ADD; JMP; ISZ; SAC; SRJ}. n. ea-
codiDI of the fa tow op.codeI caa be acbievecI in a
three-dimeDliDDll ~ u bef~: i.e. the partial ~-!Jf. ma-

trix is: S - [~] . No eacodina of ISZ can be fouad in the

011
three dime.-nal 8p8Ce, becaDIe the eIKXIdiDI of die group
{JMP; LAC; AND; ADD} IP8DI the eatire 1p8ce. For this
reason this group is IeIected at ~ 3 and split into the two
poups: {JMP; ADD} {LAC;AND}. This particular split is
cbc-.I beca.- the two - pou.- Ip8D a l-dimealioaa18p8Ce
eadl.1iVina aD "eff"JC8at _" of the BooIeaa 8p8Ce. Now ISZ
can be eDCoded by 110. Next SAC II aeIected. Apin DO en-
coding of SAC caa be deterIDined because the putial group
{SAC; ISZ; LAC; AND; ADD} Ip8D8 the eatire 8pace. There-
f~ both the folk>WiDl groups Dn* be~: {SRJ; SAC; ISZ;
LAC; AND; ADD} and {SAC; ISZ; LAC; AND; ADD}. Siace
{ISZ; LAC; AND; ADD} is a poup spaaDing a two-
dimeDlional 1P8ce, it II conveaieDt to IPJit the above groupa
into: {SRJ; SAC} U {iSZ; LAC; AND; ADD} and {SAC} U
{JSZ; LAC; AND; ADD}. Now SAC caa be eIM»cIed by 101
and SRJ by 00 1. n. ~-!Jf. mauD .:

r ~l 010 011

110
101
001

The sequeaciDI and control-store can be implemented by a PLA
bavin& 26 ro- and 33 columns.

Remark ].1: This encodin& method transfomll a minimal sym-
bolic cover into a non-~ariIy-minima1 Boolean cover, be-
cause the Information about next-control Stites is not
considered (DEMI84b). POI" exampie,lUPIM* we ~verx the
fot coordinate of the Stlte encodiDp. or equiwleatiy we c0m-
plement the rot column of the ~ IDd Mxt-ltate fJekl.
Then, the 8th product-term from the ,op can be deleted, be-
cause its output part coD&i8ts of 08 only. Encodin8 techniques
that tate into ~UDt the Mxt-ltate Information ~ still under

ioYeltiptioo.

f ~~1
ISZ
SAC
SRJ

We cxmsider DOW !he ICCOIId eDCodiD& problem. wbicb II also reIe-
vant for our particular example, bcca- it Is desirable to e~ !he
op.codCl usinI three bits. In this case, we look for a IOlution In a
Boolean space of !he liven dJmcDsiOD. If such a solution Is not fouDd.
- ooDltraints an reJucd to make !he eDCOdinl poaible. In gI:DeraJ.
constraints can be relaxed by modifying !he constraint matrix or dr0p-
ping IOIDC rows. A8 a general oo.-qucncc, the Boolean oovcr of the
control-unit cannot be obtained by replacing the positional-cube no-
tatioos by the correspolXliq encodinp aDd not every symbolk:
impticant can be ~ by ~ Boolean impticant. FCX' tbiI reuoo.
it is important to be able to relate the rele- or a ooDltraint to !he
possible incrcuc of the Boolean cover cardinality. In the foDowing al-
gorithm, constraints an reIued only by spUtting a group Into two (not
tICCC888ri1y disjoint) groups. 11111 conesponds to reP1aciD& a row of !he
CODSUaint matrix..4 by two rows, wlKJ8e bit-wile disjunc:tion II the 0ri-
ginal row. SiDCC every group corresponds to a subset of implicants, a
split corresponds to duplicating these implicants, and it is therefore
possible to assign a ~ to each group accordingly. It is obvious that
by repeating group spIit1in&. the constraint matrix will eventually be an
empty matrix aDd aDd cncodinI can be found fCX' any oriIinal ~t or
groUP' and any bouDd. (By definition, a group bas more than ~ ele-
ment and rows with ~ non-zero element only can be dropped from
..4.) The stNCture of the bounded-length oonstrained encoding aI&o-
rithm II the f oIkJwiD&:

s - .

where eac:b row. fnxn top to bot1CXD. II an eIM:OdIDa of the op-

codes according to the lequeDce liven above. This cncodina
allow to specify the opocodes by three bits. The price of
breaking three grog.- correspoDd8 to impielDeDt three addi-
donalJWoduct-terms in the Boolean aJYW.

KJ.IML -- ~

STAft OI'C ~.-IT ~ SIQ1AL8
1100 ... .. 1010 _1_101
1010 ... .. 1110 _111
1110 ... .. 0000 OOOOOOOO111011-1- ... O. 0100 0000000101_1-
0100 .01 .. _1 00000000OOOOOOOOO
0100 .00 .. 0001 00000000000000000
0001 01. .. 0010 000000010100000o1
0001 .00 .. 0010 000000010100000o1
.- 101 11 0100 00001101000100000
.000 .00 11 0100 000011010001000000000 ... 01 1- --
_1 001 .. 1010 _1_1
0000 .00 00 _1 ~
0001 110 .. 0010 000000000100000oo
0010 100 .. 1010 0100010000-
0010 010 .. 1010 00100100000000000
0010 000 .. 1010 001101-
0010 110 .. 0110 00010100001000010
0110 ... .. 1100 1001011_10
0100 101 .. 0000 _1~
0.00 101 00 0001 _1~
0000 001 .1 1000 _1000001
0100 011 .1 1010 00010101_100
1000 0.1 11 0100 00001101000100100
0100 001 O' 0000 00010110000000110
0000 001 00 0100 00000000001000001
0000 011 00 1010 00000100000100100
0100 001 11 0000 000000100000oo111
0000 011 11 1010 00001101000100100

The lequeDCiDI and control-store can be Implemented by a PLA

having 29 rows and 30 columns. Therefore this implementation

rcquirel a lliahdy (1.5%) larger area than the previons one but
fewer iDpUt8 are IJeeded.

STEP 1: Select an WIa>ded mnemonic.
STEP 2: DetermiJle the encodings for that mnemonic satisfying

the constraint relation.
STEP 3: If DO encodina exists and the ell(:Odin& lenlth is strictly

IIIorter than the BiYen bound. iDcreue ell(:Odin& lenlth
and go to STEP 2. If no ell(:Odin& exiltl and the en-
coding length II equal to the &tYen bound, reIu a con-
straint and go to STEP 2.

STEP 4: AlSip an ell(:Odin& to the ~Iected -1DOnk.
STEP S: If aD InDe1IIODk haYe been encoded, itop. EI8e go to

STEP I.



4. CONCLUSIONS [DEMI83g] G. De Micheli "Comouter-Aided SYnthesis of PLA-bued
SYstems" Ph.D. DiSlertation, University of
California,Berkeley, 1983.We have presented a new technique for encoding PLA-based

control-units. Control units, specified at the functional level by tables
of mnemonic strings, are encoded into a Boolean representation that
mi.1imizes the size of the control-store inlplemented by a PLA. The
proposed method is based on symbolic minimization of the combina-
tional component of the control unit and and on two related constrained
encoding problems. Symbolic minimization yields a minimal sum-of-
product representation of the next-state transition functions, inde-
pendently of the encoding of the primary inputs and contrOl-states. The
first encoding problem is finding the lninimum length encoding among
those that minimize the number of product-terms of a PLA inlplemen-
tation. The second is finding a bounded-length encoding that miniJoize
the number of product-terms of a PLA inlplementation. Minimal-area
PLA inlplementations of the control-store can be found by trading-off
the solution to these problems.

[DEMl84a] G.De Micheli, M.Hoffman, A.R.Newton and
A.L.Sangiovanni V"mcentelli, "A Design System for
PLA-based Digital Circuits", Advances in Comouter En2i-
neerin~ Desim. Jai Press, 1984 (in print).

[DEM184b] G.De Micheli, R.Brayton and A.LSangiovanni Vincentelli,
"Optimal State Assignment for Finite State Machines",
IBM Research Reoort RC 10599 and submitted for publi-
cation.

[DEMI84c) G.De Micheli, R.Brayton and A.L.Sangiovanni Vincentelli,
"KISS: a Program for Optimal State Assignment of Finite
State Machines", Int. Conf. on CODlD. Aid. Des.. Santa

Clara, nov 1984.

Two heuristic algorithms for solving the above problems have been
presented. Both algorithms have been implemented in a computer pro-
gram. We refer the interested reader to [DEMI84b] and [DEMI84c] for
further details on the first algorithm, the computer program implemen-
tation and the experimental results.

[GRAS83) W. Grass "A Synthel System for PLA-Based Programmable
Hardware" ~2 and MkrooroRrammin2 No.
12 pp. 15-31 dec 1983.

[HACH82a] G.D.Hachtel,A.R.Newton and A.L.Sangiovanni
Vmcentelli, "An Algorithm for Optimal PLA Folding",
IEEE Trans. on CAD of Int. Circ. and SvsL . pp. 63-77 vol.
I, No.2, apt. 1982.
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