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Symmetric Displacement Algorithms for the
Timing Analysis of Large Scale Circuits
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ALBERTO SANGIOVANNI-VINCENTELLI, FELLOW, IEEE

Abstract—Symmetric displacement techniques for the timing analysis
of VLSI circuits are introduced. Their numerical properties such as
stability and accuracy are investigated on different classes of circuits.

I. INTRODUCTION

HILE CIRCUIT SIMULATORS (e.g., [1], [2]) can pro-
vide accurate time-domain current and voltage wave-
forms from a device level description of an integrated circuit,
as the size of the circuit increases, the cost and memory re-
quirements of such an analysis become prohibitive. For small
circuits, the simulation time is generally dominated by the
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time required to evaluate device model equations [3], but as
circuit size increases, or if more efficient modeling techniques
are used, an increasing fraction of time is spent solving the
sparse-matrix circuit equations [3], [4].

Several methods that exploit regularity and inactivity of
large circuits have been proposed to speed up the transient
simulation. Among these methods, reviewed in [5], timing
simulators occupy a relevant position.

Timing simulators decouple the circuit equations using non-
linear simultaneous displacement [6] or successive displace-
ment {7], [8] relaxation methods. In MOTIS [7], the Back-
ward Euler formula was used to discretize the time derivative
operator, and a nonlinear Gauss-Jacobi-like relaxation tech-
nique [9] was adopted to decouple the node equations at the
nonlinear equation level. The algorithms of the timing simula-
tors MOTIS-C [7] and SPLICE1 [8] perfected this technique.
In particular, SPLICE used a nonlinear “Gauss-Seidel-like”
technique. For most circuits, this decoupling maintains a

0028-0070/83/0700-0167$01.00 © 1983 IEEE
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linear relationship between the number of circuit elements and
the simulation time required per time-point of the analysis.
An added advantage of the decoupled analysis is that event-
driven selective trace algorithms may be used easily, and inde-
pendent control of the time-step within any sub-block of the
circuit is also possible. These techniques can provide sub-
stantial savings in large digital circuits where often only a small
fraction of the circuit nodes are actively changing state at any
one time [10]. It is important to point out that none of these
programs carried the iteration of the relaxation methods to
convergence: only one sweep was taken. Because of this, the
numerical properties such as stability of the integration formu-
las used to discretize the derivative operator no longer hold.
These methods have indeed to be considered as new integra-
tion methods.

A major drawback with the use of timing analysis is that
tightly coupled feedback loops, or bidirectional circuit ele-
ments, can cause severe inaccuracies during the analysis. In
a ‘“one-sweep” relaxation-based circuit simulator, these ele-
ments must be treated as special-case elements and special
techniques must be used. One such element that has limited
the application of relaxation-based analysis is the floating
capacitor.

A floating capacitor is a capacitor whose nodes are con-
nected neither to ground nor to a fixed voltage source. Float-
ing capacitors are often important elements in the design and
in the characterization of integrated circuits. As an example,
a bootstrapped inverter is shown in Fig. 1(a). The value of the
bootstrap capacitor C, is generally large compared to the
values of the associated parasitic grounded capacitors C; and
C,. Fig. 1(b) shows a depletion-load NMOS inverter. The
value of the intrinsic gate-drain feed-through capacitance Cpy
is often small compared to other circuit parasitics at the gate
and drain nodes. However, the effect of Cyq on circuit per-
formance is significant due to the large voltage gain of the
stage.

The MOTIS program [6] avoids the problem of analyzing
floating capacitors by not allowing the user to include them
in the circuit description. The effect of a floating capacitor is
then approximated by altering the values of the grounded ca-
pacitors at appropriate nodes in the circuit. If the operation
of a circuit depends on a floating capacitor, a functional
macro-model may be used [11].

In the MOTIS-C program [7], isolated floating capacitors
are processed by maintaining the node coupling across the
floating branch and solving the resulting 2 X 2 nodal circuit
matrix at each time-point. This approach could be extended
to deal with arbitrary connections of N floating capacitors, but
this would require the solution of N+ 1 coupled equations at
each time-point and, hence, reduce the advantages of the node
decoupling approach.

In [12], an integration scheme is proposed that retains the
nice properties of timing simulation algorithms and provides
better accuracy. While this approach has proven effective for
timing simulation on a range of MOS circuits, the numerical
properties of this scheme can be demonstrated only on some
special cases at this time.

Recently, Kahan has proposed a family of “one-sweep”
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Fig. 1. (a) Enhancement-load nMOS bootstrapped inverter. (b) Deple-
tion load nMOS inverter.

symmetric displacement methods for the integration of large
systems of ordinary differential equations [13]. One of the
methods in the family has been analyzed in [14], [15] for the
timing simulation of large MOS digital circuits with no floating
capacitors. This method is shown to have better numerical
properties than any of the “one-sweep” displacement tech-
niques used in timing simulation. However, the application
of these techniques to the case when circuit elements include
floating capacitors is an open problem.

In this paper, we propose a number of new techniques for
the time-domain simulation of MOS circuits based on ‘“‘one-
sweep”’ symmetric displacement methods. Following standard
numerical analysis procedures for the characterization of inte-
gration methods, we investigate rigorously their numerical
properties by introducing test problems that are simple enough
to be studied analytically and yet complex enough to provide
insight on how they will behave in general. Then, we describe
the implementation of these methods in timing simulators and
give some experimental results that emphasize the better accu-
racy and stability of symmeftric displacement techniques.

II. SYMMETRIC DISPLACEMENT TECHNIQUES

The MOS circuits considered here are assumed to be lumped,
time-invariant, nonlinear circuits where inductive effects can
be considered negligible, and each node has a capacitance to
ground. It is also assumed that the node equations of the cir-
cuit exist and can be written in the form
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0<t<T

C)v@) = ~f(v(®), u(?)),
v(0) = 1°

2.1)

where v(£)€ R”" is the vector of node voltages at time ¢,
v(r) € R” is the vector of time derivatives of v(¢), u(r) € R"
is the vector of node input currents at time ¢, C(") = {¢; ;}:
IR” - IR**" represents the nodal capacitance matrix, f: IR? X
R"” > R” and

f,u@®) = [fi,u @), f2@,u@), -, fulo,u@D]” (2.2)

where f;(v, u(t)) is the sum of the currents flowing out of the
capacitors connected to node i. To solve (2.1), the time deriv-
ative operator is discretized to yield a nonlinear algebraic sys-
tem of equations which must be solved at each time step. For
the sake of simplicity, it is assumed that the Backward Euler
integration formula is used

k+1 k
k+1 v -0
v = .
. (23)
where 0¥*! is the vector of time derivatives of v computed at

tk*1 vP, p=k, k+1 is the node voltage vector computed at

time t7, and it £ t**1 - ¢¥ is the strictly positive stepsize.
Applying (2.3) to (2.1)
(vk+1) C(vk“) X

g(vk”, vk,u(tk”))= c f Uk+1 _ p v

+f** utk 1y =o. 2.4

Conventional circuit simulators [1], [2] solve (2.3) by using
the Newton-Raphson method to yield

Yk+1,/'[vk+1,j+1 _ vk+1,j] = —g(vk+1’i, l)k, u(tk”)) (25)

where v¥*V'P p=j j+1 is the node voltage vector v**! com-

puted at the pth Newton-Raphson iteration, and Y**1:/ s
defined by

og

k+1,j g ok
Y +1,f —~ o (vk+1 ], v ,u(t’“'l))

ov
_ af X . C(vk+1,f)
= gt L u s T
1 aC ; ;
Pew CARREA | LA AL N (2.6)
In the linear case, (2.4) becomes
Yokl = % vk +u (k) 2.7

where Y2 G + Clh; G, CER™ " are the conductance and
node capacitance matrices of the circuit.

Standard circuit simulators solve (2.5) or (2.7) using direct
methods, such as sparse Gaussian Elimination, while timing
simulators approximate the solution of (2.4) by taking only
one step of a nonlinear displacement method such as Gauss-
Jacobi [6] or Gauss-Seidel [7], [8].

The key idea of this paper is to use symmetric displace-
ment techniques for equation solution in MOS electrical
simulators. Three algorithms, which use symmetric displace-
ment techniques at different levels of the solution process,
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Fig. 2. Test circuit.

are presented. Algorithm 1 uses only one Newton-Raphson
iteration to approximate the solution of (2.4) and only one
iteration of the symmetric displacement Gauss-Seidel algo-
rithm [9] to approximate the solution of (2.5). Algorithm 2
uses one iteration of nonlinear symmetric Gauss-Seidel algo-
rithm to approximate the solution of (2.4). Algorithm 3 uses
an intermediate time-step £%*¥/2 =¢¥ + p/2. For the first half-
step, one iteration of the forward nonlinear Gauss-Seidel algo-
rithm is taken to compute v* *1/2 The second half-step uses
one iteration of the backward nonlinear Gauss-Seidel algorithm
to compute v¥*! given v**1/2,

2.1. Algorithm 1

Only one Newton-Raphson step is taken here, and the initial
value for v*¥*! is v*. Then (2.6) becomes

Yk+1,1 JAN Yk = 5 o (vk,u(tk“))— _C_'_(_lf_)_ (2.8)
v h
and (2.5) can be written
yhyk+ = C(Zk) ok + avakfﬂ (vk’u(tk+1))vk
S ACART(A) (2.9)
= Yok - fok, u(r**1)) £ b* (2.10)
Now consider the splitting
Yk =pk-v¥-vk (2.11)

where D* € R"*" is a diagonal matrix and Y¥(Y¥)e R"X"
is a strictly lower (upper) triangular matrix. Note that D¥ is
nonsingular since it was assumed that each node of the circuit
had a capacitance to ground.

The solution of (2.9) is now approximated by taking one
symmetric Gauss-Seidel step such that v**! is computed by
the following sequence.

Forward step:

[D* - YETv* =b* + YEu*, (2.12a)
Backward step:

- vPTt=b" + Yo .
[D¥ - YK vok*t = pF + Yho* (2.12b)

where v* is an intermediate node voltage vector. Note that
(2.10) can be solved easily since the coefficient matrices for
(2.12a) and (2.12b) are lower and upper triangular, respectively.

Example 2.1. 1f Algorithm 1 is applied to the circuit shown
in Fig. 2, from (2.8)
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- ¢y tes C3 -
&1 h h
Yk = (2.13)
& K, C2tes
_ h g2 h _
where
f(v%)
K
g2 avz (214)
cyte c
ck=C= [ e } ] (2.15)
€3 Cxtcey
and
k k k 0
b* =YY" "v" - PNE (2.16)
f?)
The forward step is computed as follows:
- cptes -
+ — 0
81 h [vl *
C3 k Ca +C3 02]
- h : h _
— e - Cq +C3 _ﬁg -
0 = [vl] ko & h h [vl:lk
= h +
Uy Cj3 cytes U2
0 0 - kg2 22
[ 0 ] (2.17a)
- A17a
f(v%)
and the backward step computed as
- ¢y tes e T
£1 + h h [Ul]k+l
0 g+ 2S5 ; € Lb
—0 - c; t C3 _& -
KRN |
= +
C3
—h— 0 €3 Kk, C2tcsy L2
- - - h h _
[ 0 ] (2.17b)
(02) .
|

To study the numerical properties of Algorithm 1 it is useful
to see how it specializes to linear circuits. If the circuit is
linear, Y* =Y as in (2.7). If Y is split into the components
Y=D-Y,-Y, then

¥t = M () oF - Fy(h)u(t**Y) (2.18)

where

M) =[D- Y,]" [%+ YD - Y))" (Q " Y)] (2.19)
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and

Fi()=[D- Y, 7'/~ (D- YY"} (2.20)

M, (h) is referred to as the companion matrix of Algorithm 1.

Remark 2.1: Algorithm 1 requires the computation of Y*
at each time-step. This computation in turn requires the com-
putation of the Jacobian of f(v, u(z)). .

2.2. Algorithm 2

Algorithm 2 uses one iteration of a nonlinear symmetric dis-
placement method to approximate the solution of (2.4). The
Newton-Raphson method is used to approximate the solution
of the n scalar nonlinear equations resulting from the use of
the nonlinear displacement method. In timing simulators only
one step of the Newton-Raphson iteration for each scalar
equation in Algorithm 2.

Let
S[v’l,vlz," L vbg, iR T
if 271is odd
phis (2.21)
1-1/2 I 1/2 Uz+1, -, vk

B [U{_1/2, 02_ s
if 27is even.
Then the nonlinear symmetric Gauss-Seidel-Newton step is

defined by the following.

Forward step:

k+1/2, z tk+1
vffﬂ/z:l);'c‘ E;gg'(v ¥, u( ) , i=1,2,-.n
_Eﬁ (Uk+1/2”, Uk, u(tk+l))
i
(2.222)
Backward step:
i<t BT
! ! gil (~k+1 i u(tk”))
i
i=nn-1,"--,1 (2.22b)

where the subscript 7 denotes the ith component of a vector.
Example 2.2. When Algorithm 2 is applied to the circuit
shown in Fig. 2, (2.4) becomes

[ﬁ(‘:,;:ll)] # S gk % vk =0 (2.23)
and component-wise
grok 4 < S - oh) - —3— vk - pK)=0  (2.24a)
fs* - _h; F - ob)+ C’—;cﬁ (k1 - vk)=0. (2.24b)
Let

g5 = of(w3) p=kk+1/2.

302 ’



DE MICHELI AND SANGIOVANNI-VINCENTELLI: SYMMETRIC DISPLACEMENT ALGORITHMS

The forward step is

k
o2 = pk - 101 (2.253)
pGtes
&1 h
c
f@5) - 52 2 - ob)
of 12 = k- (2.25b)
kK, C2tcCy
gf+ =

and the backward step is
v'{“ - Ul2c+1/2

. c cytce
Fok+1/2) - 73 (FH2 - pky e 2222 (v12<+1/2‘_ vl)
+
ghriiz 4 22763
(2.25¢)
c
et B
Uy =vy -~ N ) +cs (225d)
81 h
]

Remark 2.2: For linear circuits, Algorithm 2 yields the
same equations as Algorithm 1. Hence, the companion matrix
of Algorithm 2, M,, is identical to M,. =

Remark 2.3: Algorithm 2 requires the computation of 2n
diagonal entries of the Jacobian of f(v, u(¢)) only. In general,
it requires less computation than Algorithm 1. .

2.3. Algorithm 3

Algorithm 3 uses an intermediate time-step £%*1/2 = t¥ + p/2.
For the first half-step, v**/2 is computed by one iteration of
the nonlinear Gauss-Seidel-Newton algorithm. For the second
half-step, v**! is computed by one iteration of the backward
nonlinear Gauss-Seidel-Newton algorithm. The intermediate

result, v¥*1/2 s discarded after v**! has been computed. With
m m
g(v v u(tm))A 2C(U ) m_ 2C(;l) ) l)l
- ™ ut™)). (2.26)
Algorithm 3 may be written as
Forward step:
v’F+1/2 _ v].c . g (vk+1/2 i k u(fk+l/2))
b 1 a
afl (~k+1/2 i v u(tkn/z))
1
i=1,2,--,n (2.273)
Backward step:
p*l = ph+if2 gx(Nk+1 d k+1/2a u(fkﬂ))
] 13 3
_g_f_l ('5k+l,i, vk+l/2’ u(l,k+1))
i
i=n,n-1,---,1 (2.27b)

where 7% ¢ is defined by (2.21).
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Example 2.3. 1f Algorithm 3 is applied to the circuit shown
in Fig. 2 then, from (2.23), (2.24a), and (2.24b)

the forward step is

Kk
pk+1/2 =k &1U1 (2.28a)
+2 SR
g1 h
2¢
e g O =2 2 - o)
vt =y 2.28b
Frii2 = ok - o cates (2.28b)
g2 h
and the backward step is
k+1/2
=i T (2280
kyn £2_+_CE_
g2 h
2
g k12 ;3 (k1 - pk+1/2)
v+l = pkr1/2 (2.28d)
4o f1tes
£1 h
n
For linear circuits, Algorithm 3 is defined by
_ k+1/2 — 2C k+1/2
[D-Ylv + Y, | v*+u(r ) (2.29a)
k+1 _ 2C k+1/2 k+1
[D-Y,]v ——+ Y, +u(e*H). (2.29b)
Hence
¥t = May(h)v* + [D- Y, )7 [u(t*)
+[D- Y] u(@* )] (2.30)
where
2C 2C
M) 2 [D-Y,] [h +Y,][D Yil- [T*Y]
(2.31)

is the companion matrix of Algorithm 3.

Remark 2.3.  Algorithm 3 requires the computation of 2n
diagonal entries of the Jacobian of f(v, u(z)), as does Algo-
rithm 2. It will be shown in Section III that Algorithm 3 has
better stability and accuracy properties than Algorithms 1
and 2. =

III. NUMERICAL PROPERTIES OF THE ALGORITHMS

In many cases, the numerical properties of an integration
method, such as stability and accuracy, can be studied using
test problems [16], [17] which are simple enough to allow a
theoretical analysis but still sufficiently general to provide in-
sight into how the integration method will behave in more
complex situations. For the analysis of the usual multistep
methods, the test problem consists of a linear, time-invariant,
zero-input, asymptotically-stable, differential equation.

Unfortunately, this simple test problem cannot be used to
evaluate the displacement techniques described in Section IL
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In fact, each variable of the system of differential equations
is treated differently according to the order in which the equa-
tions are processed. Hence, a more complex test problem
must be used. The test problem used to analyze the numeri-
cal properties of the algorithms presented in Section II are
circuits which belong to the following class:

Definition 3.1: A circuit is said to be a test circuit of
class 7 if:

(i) it consists of positive, linear, time-invariant resistors
and capacitors and linear, time-invariant voltage-
controlled current sources;

each node has a capacitor to ground;

it is asymptotically stable.

(i)

(iii)

For test circuits of class 7, (2.1) may be written
Ci(r) = -G

v(0) =1° (3.1

where, by (i) and (ii) above, C is strictly diagonally dominant
and G can be decomposed into G + G,,,, where G is the nodal
conductance matrix of the circuit with no controlled sources,
and G,, is the nodal conductance matrix of the controlled
sources alone. Note that ¢ is diagonally dominant and sym-
metric. The state equation for a test circuit of class 7 is

v(t) = Av
v(0)=1° 3.2

where 4 2-C71(G + G ) and, by (iii), a(A), the spectrum of
A, is in @q, the open left half plane. When Algorithms 1, 2,
and 3 are applied to a test circuit of class 7, the sequence of
the computed solutions is given by

o= M) 0%, i=1,2,3 (3.3)

where M;(h) is the companion matrix of the method defined
in (2.19) and (2.31). Following [16] and [17], the numerical
properties of the methods will be investigated using fixed step-
size h yielding

vE* = [M;(h)]F* 0. (3.4)

Unfortunately, we cannot prove the numerical properties of
Algorithms 1, 2, and 3 on circuits of class 7, and we specialize
to subclasses 7;. In defining the subclasses 7; we try to identify
the largest classes for which the numerical properties of inter-
est help. Since subclasses 7; C 7 will be used to test the various
methods, the definition of numerical properties are also rela-
tive to a class.

Definition 3.2. (stability): Algorithm i, i=1, 2, 3 is stable
for a test circuit of class 7;, if 36 >0, IN >0 such that
vuv® € R”, 3k > 0 such that

W <N Vk=k VYheE]O,8) (3.5)

where {v¥} is the sequence generated by the algorithm applied
to the test circuit of class ;.

Definition 3.3. (A-stability): Algorithm i, i=1, 2, 3 is A-
stable for a test circuit of class 7; if 3N >0 such that Vov° € R",
3k such that

lW*l<N Vk=k Vhe|[0,) (3.6)
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where {v¥} is the sequence generated by the algorithm applied
to the test circuit of class 7.

Remark 3.1: The concept of A-stability [14], [15] is re-
lated to the concept of A-stability [17]. An algorithm which
is A-stable for a large class 7; would be highly efficient since
the stepsize is only limited by accuracy considerations, as in
the case of implicit backward differentiation formulas [18]. =

The definition of stability requires that the sequence of {v*}
be bounded for small values of the stepsize &; the definition
of A-stability required that the sequence of {v*} be bounded
for all positive values of . The following proposition relates
the boundedness of the sequence {v*} with the spectrum of
M(h).

Proposition 3.1: The sequence of vectors {v*} defined by
(3.4) is bounded for a given value of the stepsize 4 iff the
spectrum of M(/1) is contained in the unit ball (0, 1), i.e.,
oM(R)CB(0,1) and no multiple zero of the minimal
polynomial of M(#) has modulus equal to one [19].

The following proposition may be derived immediately from
Proposition 3.1:

Proposition 3.2:  Anintegration algorithm s stable (A-stable)
iff 36 >0 such that VA& [0,8)(Vh € [0, o)) the spectrum
of M(h) is contained in the unit ball (0, 1) and no multiple
zero of the minimal polynomial of M(k) has modulus equal
to one.

We define now the largest class of circuits for which it is pos-
sible to prove the stability of Algorithms 1, 2, and 3.

Definition 3.4: A test circuit of class 7 is said to be of class
7, if all capacitors have one node connected to ground, i.e.,
C = C; where Cy is a diagonal matrix.

Theorem 3.1: Algorithms 1 and 2 are stable for any test cir-
cuit of class 7.

Note that class 7, is the subset of circuits 7 with no floating
capacitors. The properties of “‘one-sweep” integration methods
for such circuits are extensively described in [14] and [15].

We consider now Algorithm 3 and we prove that it is stable
for a class of circuits containing floating capacitors. Let C be
split as

C'_'Cd‘ Cl_ Cy (37)
where C;, C}, and C,, are diagonal, lower triangular, and upper
triangular, respectively. Let

H=-3[(Ca- C)™ +(Ca- C)7'IG (38)

Definition 3.5: A test circuit of class 7 is said to be of class
7, if 0(H) C TCy; i.e., matrix H has eigenvalues in the open left
half-plane.

Theorem 3.2: Algorithm 3 is stable for any circuit of class 7,.

Remark 3.2: Since it is easy to see that a circuit of class 7,
is also of class 7,, Algorithm 3 is stable for any test circuit of
class 7,. Hence, it is “more” stable than Algorithm 1 and 2. =

We define now the class of test circuits for which Algo-
rithm 3 is A-stable.

Definition 3.6 Let

WE(Cy- C)G+G(Cy-C) (3.9a)

VE(Cq-C)G+G(Ca C). (3.90)
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A test circuit is said to be of class 74 if:

(i) G=G=Gy, where G4 is a diagonal matrix, i.., the
circuit resistive elements are only two terminal resis-
tors with one terminal connected to ground;

(if) either W and V are positive definite or G is positive
definite and W and ¥ are positive semidefinite.

Theorem 3.3: Algorithm 3 is A-stable for any test circuit of
class 73.

We show now other interesting stability properties of Algo-
rithm 3 on a larger class of circuits.

Definition 3.7: A test circuit of class 7 is said to be class
74 if: G=G =Gy is a diagonal positive definite matrix; i.e.,
the circuit resistive elements are only two terminal resistors
with one terminal connected to ground and all nodes have
one resistor connected to ground.

Theorem 3.4: For any test circuit in 74, 34, such that

M3, <1 YhE (R, ) (3.10)
and in particular
o(M3(h)) C B0, 1) VHE (h, ). 31

Remark 3.3: This result shows that Algorithm 3 does not
introduce instabilities for test circuits of class 74 if the step-
size is chosen large enough. Note that in general integration
algorithms are stable for values of the stepsize bounded from
above. This result is peculiar of Algorithm 3. L

Note that 73 C 74. We can prove that Algorithm 3 is A-stable
for any circuit of class 14 if the circuit equations (2.1) are pre-
scaled as follows:

Co=-7
5(0) = 7°

where C=G~Y2CG~Y?, and v = G%v. If Algorithm 3 is ap-
plied to (3.12) then the companion matrix becomes

(3.12)

ZAGRIGE Yu)[%? + ?:]-1(5‘ ?z)[ﬁz—é ' ?u]-l
(3.13)

where Y =2C/h+Iand Y =D - ¥;- ¥,; D is diagonal, ¥, and
Y, are strictly lower and upper triangular, respectively.
Theorem 3.5: Algorithm 3 is A-stable for any test circuits
of class 74, provided that the circuit equations are prescaled as
in (3.12).
Remark 3.5: For circuits in 74, Algorithm 3 is 4-stable no
matter what the values of the floating capacitors in the circuit

are. =
We address now the accuracy of the symmetric integration
algorithms.

Definition 3.8: Let v(t*) be the exact value of the solution
of a test circuit of class 7 at time z*. Let v* be the computed
solution at time ¥, assuming v*~! = v(t¥ 1), i.e., no error has
been made in computing the value of v at the previous time-
point. Letting & £ 4k _ t5-1_the local truncation error for a
test circuit of class 7 is

e = [lu(t%) - v¥|\. (3.14)
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If e= O(h"™"), r is said to be the order of the integration algo-
rithm for the test circuit.

For Algorithms 1, 2, and 3 applied to a test circuit of class 7,
we have

M(h)=T+h M(0)+0(h2) i=1,2,3 (3.15)
and

v(t*) = e ok 1) = [T+ hA]v*-! + O(R?). (3.16)
Therefore

e=urnarrt - 1on 22O et o) @7y

<HA aM (0) HH U R+ 00,  i=1,2,3.(3.18)

If the test circuit is of class 7y, then 8M;(0)/dh = A as proven
in Theorems 3.1 and 3.2. Hence, Algorithms 1, 2, and 3 are
first-order integration methods.

Unfortunately, for test circuits of class 7, (3.18) is the closest
estimate of the efror, i.e., the integration algorithms are not
even first-order methods. However, experimental results show
that the algorithms behave well on a large set of MOS circuit
examples.

When existing timing simulators, such as the timing simula-
tion part of the SPLICE.1A program, are used to analyze MOS
circuits, nonphysical oscillatory components may appear in
the computed solutions, as shown in [11] and [21] if the step-
size is not chosen carefully. These parasitic components are
generated by the numerical approximation and, in particular,
by the displacement method used.

We will now determine bounds on such oscillatory compo-
nents for the algorithms introduced in Section II. We start by
defining a new class of test circuits.

Definition 3.9: A circuit of class 7 is said to be of class 75 if:

(i) C=C4, where Cy is a diagonal matrix, i.e., every capaci-
tors in the circuit is grounded;
(i) the eigenvalues of 4 =-C 1G are real,ie., 0(4) C R.

Test circuits in this class have no oscillatory components
since the eigenvalues of A are real. Therefore, any oscillatory
component in the computed solution is due to the numerical
approximation.

Proposition 3.3: QOscillatory parasitic components are pres-
ent in the computed solution if the spectrum of the companion
matrix M (/) contains complex conjugate eigenvalues.

Since 75 C 7y and Algorithms 1, 2, and 3 are first-order inte-
gration methods for circuits in 74

max Im (EPi=0*); ;€ oMY, i=1,2,3. (3.19)
This ensures that the oscillatory components of the computed
solutions can be made negligible by choosing a sufficiently
small step-size. Algorithm 3 has stronger properties. In fact,
we can prove that it “‘behaves well” also for circuits containing
floating capacitors.

Theorem 3.6: For any circuit belonging to subclass 74

max lmgl=00?, &<o@:(). (3.20)
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Note that € and G are positive definite and symmetric for cir-
cuits in 74. Hence, the eigenvalues of 4 = -C~1G are all real.

This result shows that numerical oscillatory components in-
troduced by Algorithm 3 are bounded by O(h?) also for cir-
cuits containing floating capacitors. Moreover, we can prove
that Algorithm 3 does not introduce oscillatory components
for all step sizes, for test circuits of subclass 7.

Definition 3.10: A test circuit is said to be of class 74 if

(i) [2C/n+ Y] and (D~ Y))™! commute;
(i) the eigenvalues of 4 =-C~!( are real, ie., 0(4) C R.

Theorem 3.7: For any test circuit belonging to subclass 7
oM;(h)C R, VhE]|OQ, ™). (3.21)

IV. EXPERIMENTAL RESULTS

The accuracy and stability properties of the algorithms have
been established for test circuits of restricted classes. Note
that MOS circuits do not belong to any of the 7; classes intro-
duced before. To verify the usefulness of these methods in the
analysis of VLSI MOS circuits, it is important to test these
properties on actual MOS circuits used in digital design. For
this purpose, an experimental timing simulator has been devel-
oped to explore these different algorithms [21]. Since our
aim is to test accuracy and stability, the simulator does not
perform an event-driven analysis of the circuit. In the next
section we show how event-driven symmetric algorithms can
be implemented.

Different benchmark circuits, which are used as building
blocks for VLSI systems, have been successfully simulated.
The circuits have floating capacitors and each node has a
capacitor to ground. Nonlinear capacitors from MOS transis-
tor terminal nodes to ground are defined by the MOS internal
model.

Though the numerical properties proved in Section III are
valid for limited classes of circuits, the simulations show that
the algorithms yield stable and accurate solutions for usual
MOS circuits. The node voltage waveforms never show para-
sitic oscillatory components. Moreover, the voltage waveforms
well agree with those computed with circuit simulator SPICE2.

The circuit in Fig. 3(a) is an enhancement-load NMOS boot-
strapped inverter. A floating capacitor, bootstrap, allows the
load transistor to be turned hard on when the input voltage
is rising. This enhances the speed of the circuit. Fig. 3(b)
shows the computed voltage waveform of the output node, in
response to a delayed input voltage pulse.

The circuit shown in Fig. 4(a) is a MOS-TTL interface. It
consists of three stages of depletion-load MOS inverters, fol-
lowed by a push-pull enhancement-load MOS driver stage.
The output capacitor simulates the driven load. Fig. 4(b)
shows the computed voltage waveform of the output node, in
response to a delayed input voltage pulse.

The circuit in Fig. 5(a) is a NMOS register. A pass transistor
is floating between nodes 3 and 4. The initial condition is:
Vi1 =HIGH, V3 =L0wW, V4 =HIGH, V5 =Low. A delayed volt-
age pulse is applied to the gate of the pass transistor. At the
end of the transient V; = Low and V5 = HiGH. Fig. 5(b) shows
the voltage waveforms of nodes 4 and 5.

-
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Fig. 3. (a) Enhancement-load nMOS bootstrapped inverter. (b) En-

hancement-load nMOS bootstrapped inverter: Computed waveforms.

The circuit shown in Fig. 6(a) is a multiplexer realized with
a tree of NMOS pass transistors. The initial condition is V4 =
Low, Vs = Low, and Vg = HIGH. Node 1 is kept HIGH. A de-
layed voltage pulse is applied to the address lines Ay, 4, and
A,. At the end of the transient V5 = HIGH and V¢ = Low. Fig.
6(b) shows the voltage waveforms of nodes 5 and 6.

V. IMPLEMENTATION OF EVENT-DRIVEN SYMMETRIC
ALGORITHMS

In this section we discuss the significance of the symmetric
algorithms to the design of new timing simulators. An effec-
tive implementation of the symmetric integration algorithms
in a timing simulator requires an ordering of the equations that
allows one to exploit the advantages of the relaxation-based
integration algorithms. A large part of the computing time
saving achieved by timing simulators is due to event-driven
analysis, which allows the simulation of only the active parts
of a circuit at each time-point [22], {8]. The effect of event-
driven selective trace analysis is to dynamically sort the circuit
nodes for processing, according to the flow of the signal in
the network. Selective trace algorithms have been successfully
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TABLE 1
NUMERICAL PROPERTIES OF THE SYMMETRIC DISPLACEMENT
ALGORITHMS FOR DIFFERENT CLASSES OF CIRCUITS
| - Numerical
Stability =~ A-stability 1 order  oscillations No numeri-
accuracy bounded cal oscilla-
by 0(h?) tions
Algorithm 1 T T Ts
Algorithm 2 T T Ts
Algorithm 3 Te Ts k7 T4UTs e

implemented in connection with the nonlinear Gauss-Seidel
algorithm in the SPLICE1 program [8].

Symmetric displacement algorithms can be implemented in
connection with event-driven analysis by coupling the selec-
tive trace algorithm with a special bilateral integration algo-
rithm. In particular, subcircuits containing strongly bilateral
elements can be solved using Algorithm 3, while unilateral
elements can be solved by the usual Gauss-Seidel integration
algorithm. The bilateral integration algorithm detects the sub-
networks of bilateral elements and pushes the corresponding
nongrounded nodes on a stack.

In the setup phase of the simulation every node i of the cir-
cuit is associated to a list L; of the nodes connected to i by
bilateral elements, and to a flag F;, which is set to true if
node i is connected to bilateral elements.

The algorithm is described in Pidgin C. Let i be the scheduled
node at any time-point and i~ the node scheduled before i.
Let h be the stepsize.

Bilateral Integration Algorithm
if (F;is TRUE) {
if (F;- is TRUE) {
h=h/2
for (each node nin L)) {
if (n is not in the stack)
schedule n immediately after i;
solve the forward half-step of Algorithm 3 (2.27a)
for node i
push i onto the stack;
}
else {
while (stack not empty) {
pop a node, m, from the stack;
solve backward half-step of Algorithm 3 (2.27b)
for node m;
}

if (F;- is TRUE) h = 2h;
solve nonlinear Gauss-Seidel step for node 7;

}

VI. CONCLUSIONS

"In this paper we addressed the problem of determining the
numerical stability and accuracy of integration algorithms for
the timing analysis of large scale circuits. In particular, we
have proposed three symmetric displacement algorithms and
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we have investigated the related numerical properties of each
algorithm, Table [ summarizes our results. Based on the re-
sults obtained in {14], {15] and the results presented in Sec-
tions III and IV, we conclude that symmetric displacement
algorithms can be effectively used for the timing simulation
of MOS circuits containing floating capacitors. Note that the
numerical behavior of all these methods is intrinsically limited
because only one step of displacement is computed at each
time-point. Recent results {23]-{25] have shown that better
numerical properties can be obtained by iterating the displace-
ment step to convergence at the expense of an increased time
and memory requirement.

VII. ACKNOWLEDGMENTS

The authors wish to thank Dr. R. Brayton and Dr. E. Lelar-
asmee for many helpful discussions.

APPENDIX
Proof of Theorem 3.1: N
Let M(h) = M;(k),i=1,2. Let G be split according to

G=Gy- G- G, (A1)

where G, 5,, and é“ are diagonal, lower triangular, and upper
triangular, respectively. From (2.19) and (A1), M{#) can be
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written in the following form:
M= [C+1(Gy- G
HC+HGC+h(Gy - GDIT'IC+RG,)). (A

For h=0, M(Q0)=1. Taking the derivative with respect to
stepsize k1

DD — (e 4 1@ - 6017 @~ G M(h)
+{CH+1(Gy- G
AGHC+h(Ga- GYIMC+HG,]
~ hG{C+h(Gy - Gl Gy - Gy
“[C+ h(éd - 61)]_1[C+h6u1
+hGi[C+h(Gy - G} 'GL} (a3)
B = -CM @y G+ CIG=-CTGma (a9

where dM(0)/dh is the derivative of M(%) evaluated at 2 = 0.
Hence, M(h) can be expressed as a power series of A

ME)=1+hA+O0MR?). (AS)
By the spectral mapping theorem [19]

oM)) = {&lE; =1+, + O

NEG(A);, i=1,2,--, 0} (A6)

From (A6)

EGl=N+a+0my|, i=1,2,--",0
and

&l = [1 +h Re (X)) + [ Im (A)]* + O). (A7)

Since M(0) =1, its eigenvalues are all 1, and 1 is a simple zero
of the minimal polynomial of the identity matrix. Therefore,
from Proposition 3.2 it is sufficient to show that

oMh)CB(0,1), VAE(0,8) (AB)
or
&2 <1, Vhe(0,8), i=1,2,- -, 0. (A9)
From (A7)
2 Re (A) + A(Re*(A) + Im2(\)) + 0(h) <0,
i=1,2,---,0 (A10)
2Re(Ap)+0M)<0, i=1,2,-"',0. (ALD)

Since by assumption Re(A;)) <0, i=1,2,---,0, 38§ >0,
such that VA € (0, 8)

o) C B(0, 1) (A12)

and from Proposition 3.2 the Algorithms are stable. »
Proof of Theorem 3.2:
From (2.31), (3.7), and (A1) the companion matrix M;(h)
for a circuit of class 7 can be expressed as
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o~ o~ ]t h o~ Hence, following an argument similar to the one used in
Mi(h)= |(Cq- )+ B (Ga-Gu)| [(Ca-Cu)+ 2 G Theorem 1, it is easy to show that 3§ s.t.

~ ~ |1 ~ C
. [(Cd -C)+ _Z_ (Gg - Gz)] [(Cd -C)t % Gu] oM B (0. 1) VRE(,8). (A20)
This completes the proof. L
(A13)  Proof of Theorem 3.3:

and M5(0)=1. Since Ms(0) = I, its eigenvalues are all 1, and 1 For any circuit of class 7, we showed in Theorem 3.2 that

is a simple zero of the minimal polynomial of the identity ma- M3(0)=1. Therefo.re., its eigenvalu?s are all lj and. lisa sim—
trix. Therefore, from Proposition 3.2 it is sufficient to show Pl Z€ro of the minimal polynomial of the identity matrix.
Therefore, it is sufficient to show that ||M5(R)|l, <1 VA >0,

that
which implies that all the eigenvalues of the companion ma-
o(M(h)) C 3(0,1), VhE(0,5). trix lie inside the unit disk. To prove this we need the fol-
Now. let lowing lemmas:
’ Lemma 3.1: If
P= Cd - Cu
0=G,- G, H:zh—C+Y,:](D— Yu)"H <1 Va>0 (A2la)
2
R= él 2C
< 4 - -1
and taking the derivative of M3(k) with respect to the step- ”[ h Y"J (D~ 1) 2 <1 Vi>0. (A21D)
size
Then
sy L[ [k T o, “P+2R]
o 5 5 o| ¢ 3 0 5 Mz, <1  Yh>O0. (A22)
-1 -1 Proof:
Pt et el I
2 2 2 M5l = lIM3 12 (A23)
1 h 17,k 2C 2, L7
l b = = - -1]2C _yy-1]2&
At ) oo i enfor i
-1 -1 A24
._PT+EQT QTPT+£QT (A24)
2 2 [2c ] 2C
=||S=+Y|(D- Y ) S5+ Y, |[0- Y)!
nh . h -t h h 2
|PT+=RT|+|PT+ =0T RT (A14) y :
2 2 (A25)
and - 1 _
M0 1 | < —2—hg+ Y |(D-Y,)! “F}IQ + Yu](D— Yp!
3 ~ _ i i 2 2
_._—_=_,_P1 _R]+__PT1 T__RT AlS
=== s [P Q- R+ S[-PT(QT - RT)] (AI9) a6
1 ] ) <1. " A27
=S UCa= CH +(Ca )G +Gm) (ALG) (A7)
]
£H. (A17) Lemma 3.2: If G is a diagonal matrix and either W is posi-
tive definite or G is positive definite and W positive semidefi-
Hence .
nite, then
Ms(hy=I1+hH+O0WH? (A18) 2c
and ‘ = + Y,] (D-Y,)Y <1  Vh>O0. (A28)
2
oM3(h) = {18 =1 +hN; + O(W*)N; € o (H)}. (A19) y
00f:
2C 12
[ rjo- |
h ~ -1}j2
= H(Cd - Cu)<Cd + '2— G- Cu) (A29)
2

~[1 -1
<(Cd - cu)[cd S+ 2 G] x,(Cy - cu)[cd e+l G] x>
2 2
= max . (A30)
x#0 {(x,x)
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It can be shown similarly that

~ _l 2
yé[cd-cﬂﬁc] X. (A31) 2C vy, |- v <1 wh>piog 2T
2 h 2 {y, G2y>
Then (A42)
2C ik
H[_h— + Yl](D‘ Yl ,
= <(Cd N Cu)y! (Cd - Cu)y> (A32)
—rpax o~ .
}¢0<[Cd_cu+§'G]y, [Cd“‘cu'f'EG V>
R hz<y’ (Ca- Cl)(hcd "Gy (A33)
0 ~ -~ -~
T (€Cam )€ Cpr+ T 1G5 G (Cam G+ (o Gy Gy
= max (¥, (Cq~ C)(Cq - CY ot
y#0

Since (Cyz- C(Cyq - C,)=(Cyq- CH(Cq - C)T is a positive
definite matrix, then

25 vjo- o
a
Lemma 3.3: 1If G is a diagonal matrix and either V is posi-

tive definite or G is positive definite and V positive semidefi-
nite, then

vh>0. (A35)

<l
2

Vi >0. (A36)

[%19 + Yu](D— | <1
Proof: The proof follows the same argument of Lemma
3.2. ]
Proof of Theorem 3.3—Continuation:
For any circuit in class 74, from Lemmas 3.1, 3.2, and 3.3
follows that:

Mz, <1 Vh>0 (A37)
and therefore Algorithm 3 is A-stable. =
Proof of Theorem 3.4:
Let
a(y)={y,(Cq -~ CH(Cq - C)¥>. (A38)
Then
a(y)>0 Vy#0 (A39)
and from Lemma 3.2
2C 47
l.[—h— + Yz](D‘ Y, ;
= max w (h a(y) <1 (A40)
7o a(y)+ 3{3 (y, Gy + (y, Wy)}
— (y, Wy
VYh>h,=-2 . A4l
1 <y’ G2y> ( )

2" Cu) |
3. (Ca= CNCa- Corr+ 2w G2+ iy wm)

and VA > h =max(hy, h,) both the following inequalities are
satisfied:

[2,1—C + Y,](D Sy L <1 (Ad3a)
l [Zhg ¥ Yu] D - Y,)*“2 <. (A43b)
Hence, it follows from Lemma 3.1 that
Mz, <1 VhE(h, ) (A44)
and in particular
o(Ms(h)) CB(0,1) VhE(h, o). (A45)
n
Proof of Theorem 3.5:
Let
C=Cy-C,-C,. (A46)
Then
W=V=2C;-C, - C,. (A47)

Matrices W and V are symmetric and diagonally dominant.
Hence, they are positive definite and by Lemma 3.1, 3.2, and
3.3 follows:

IMsMll, <1 VYh>0 (A48)
and in particular
o(M3(h)) CB(0,1) VhE(O, ). (A49)

Moreover, M3(0) = I, its eigenvalues are all 1, and 1 is a simple

zero of the minimal polynomial of the identity matrix. This

completes the proof. »
Proof of Theorem 3.6:

From (A18)

Ms(h)=1+hH +O(h?) (AS0)
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where
H=[(Cq- C) " +(Ca- CY'IG. (AS1)
Matrix H is similar to
H=GYV*M,G /2 (A52)
=G'{(Ca- Y+ (Ca- C)MIGTV, (AS3)

Matrix A is symmetric and therefore has real eigenvalues. By
similarity H also has real eigenvalues. Hence

o(Ms(m) = {ElE=1+M+0M?), NEoH)  (A54)
and

max [Im §| = O(h?). (A55)

"

Proof of Theorem 3.7:

M) =(D- Y,,)"[—zh£ ¥ Y,] D - Y T;hc_ ¥ Yu]
- (AS56)
=(D-v,)'(D- Y,)-l[zh—c + Y,] %C— + Yu]
L (A57)
[(D- Y)TD- Yu)]-l[[Zh_C + Y,][%l—c + Y,}TJ.
(AS8)

Hence, matrix M3(k) is the product of two real symmetric
matrices and matrix [(D- Y,)T(D- Y,)] is positive defi-
nite. With an argument similar to the one used in Theorem
3.6 it is easy to show that M;(k) has real eigenvalues for all
values of the stepsize. ]
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A Study of Variance Reduction Techniques
for Estimating Circuit Yields
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Abstract—The efficiency of several variance reduction techniques
(in particular, importance sampling, stratified sampling, and control
variates) are studied with respect to their application in estimating cir-
cuit yields. This study suggests that one essentially has to have a good
approximation of the region of acceptability in order to achieve signifi-
cant variance reduction. Further, all the methods considered are based,
either explicitly or implicity, on the use of a model. The control vari-
ate method appears to be more practical for implementation in a
general purpose statistical circuit analysis program. Stratified sampling
is the most simple to implement, but yields only very modest reduc-
tions in the variance of the yield estimator. Lastly, importance sam-
pling is very useful when there are few parameters and the yield is very
high or very low;however, a good practical technique for its implemen-
tation, in general, has not been found.

I. INTRODUCTION

STATISTICAL CIRCUIT DESIGN is a broad topic, and
over the years researchers have formulated and classified
many topics within the general area. A main concern is the
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manufacturing yield of a circuit. Intuitively, circuit yield is
the percentage of acceptable circuits achieved in production.
A circuit designer is usually interested in estimating the yield
in advance for use as a circuit evaluation measure. This is the
yield analysis problem. Secondly, the designer may want to
improve this yield estimate via parametric design. This is the
yield maximization problem or yield optimization problem.
Yield analysis is the subject of this paper.

In order to estimate yield for analysis and design, one first
defines a set of performance or response functions, along with
constraints for those functions, for each circuit as

g&i(x)<B,, (1)

These functions are usually only known implicitly via simula-
tions, and thus can be very costly to evaluate. Assuming that
the components or circuit parameters can be statistically de-
scribed by a probability density function (pdf), p(x), x €R",
one can express circuit yield as

Y= f p(x)dx

Rg

i=1,--- m.

@

where R, is the region of acceptability; that is, the region in
which the constraints (1) are satisfied.

Methods of statistical circuit design can be classified as either
deterministic or statistical in nature. The deterministic meth-
ods use optimization theory and are definitely more mature
than Monte Carlo techniques [1]-[18]. However, determinis-
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