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Abstract—Programmable logic arrays are important building blocks
of VLSI circuits and systems. We address the problem of optimizing
the silicon area and the performances of large logic arrays. In partic-
ular, we describe a general method for compacting a logic array defined
as multiple row and column folding and we address the problem of in-
terconnecting a PLA to the outside circuitry. We define a constrained
optimization problem to achieve minimal silicon area occupation with
constrained positions of electrical inputs and outputs. We present a
new computer program, PLEASURE, which implements several algo-
rithms for multiple and/or constrained PLA folding.

I. INTRODUCTION

ERY LARGE SCALE integrated circuits and systems are
Vso complex that structured design techniques are often
used to ensure electrical correctness while maintaining a rea-
sonable design time. Array logic has been used extensively
in VLSI design, and programmable logic arrays have proved to
be an effective means to implement multiple output switching
functions [1], [2].

The PLA implementation of a switching function can be par-
titioned into three tasks: functional design, topological design,
and physical design. Functional design consists of translating
a set of Boolean equations into a set of two-level sum-of-
products logical implicants. In general, this step is followed by
a logic minimization, in order to reduce the number of impli-
cants and literals. Logic minimizers are effective tools for this
task [3], [4]. Topological design involves the transformation
of the set of implicants into a topological representation of the
PLA structure, such as a symbolic table or a stick diagram.
The physical design is the translation of the topological rep-
resentation into the mask layout according to an implementa-
tion technology.

In this paper, we address the problem of optimizing the area
used by a PLA, by means of row and column folding [5].
Wood presented for the first time a folded PLA implementa-
tion in [6], and Hachtel er al. an algorithm for PLA folding
in {7]. The technique reported in [6] and [7] is referred here
to as simple folding. Simple folding aims at determining a per-
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mutation of the rows (and/or columns) of the array which
permits a maximal set of column pairs (and/or row pairs) to be
implemented in the same column (row) of the physical array.
Folding comes in two flavors: column folding and row folding.
Since large arrays are usually very sparse, a considerable area
reduction can be achieved by folding rows and columns.

A generalization of simple folding is multiple folding. The
objective of multiple column (and/or row) folding is to deter-
mine a permutation of the rows (and/or columns) of the PLA
which allows to implement in each column (and/or row) of
the physical array a set of logic columns (rows). From the
description given above, it is clear that multiple folding con-
tains simple folding as a special case. Thus the area-saving
achieved by this technique can always be made better than (or,
in-the worst case, equal to) the one achieved by simple folding.
Note that if simple folding is used, the area of the PLA can be
reduced at most to 25 percent, no matter what the sparsity of
the personality of the PLA is. If multiple folding is used, we
are limited only by the sparsity structure of the PLA.

Greer proposed for the first time a multiple row folded PLA
implementation in [8] and called it segmented array. Paillotin
and Chuquillanqui et al. presented multiple column folded
arrays in [9] and in [10}. A taxonomy of the folding tech-
niques for PLA is reported in [11].

All existing folding techniques have a major drawback. The
connection of a folded PLA to the outside circuitry may in-
volve complex and area-consuming routing, because the posi-
tions of the inputs and the outputs of a folded array are
permuted by the folding algorithm. In order to use effectively
PLA folding for VLSI design, it is crucial to allow the posi-
tions of inputs and outputs to be constrained.

In this paper, we present: i) a new algorithm for constrained
multiple folding, which allows to compact PLA area while en-
suring easy routing of the folded array; ii) two PLA architec-
tures to implement effectively multiply-folded PLA’s; and
ili) a general folding computer program, PLEASURE, which
implements the new folding algorithms to accomplish simple
and multiple, constrained and unconstrained row and column
folding.

II. MuLTIPLE-FOLDED PLA IMPLEMENTATIONS

An unfolded PLA has the general structure shown in Fig. 1,
and can be implemented both in bipolar and MOS technology.
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Fig. 1. Symbolic representation of a Programmable Logic Array.
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Fig. 4. Multiple folded array mixed diagram (architecture #1). —:
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Fig. 3. Multiple folded array.

We refer in this paper to the NOR-NOR nMOS implementation
presented in [12] as the standard PLA architecture.

The implementation of simply column (and/or) row-folded
PLA is straightforward, since at most two columns (rows) are
folded together and connection to the outside circuitry can be
done from the top or the bottom of the array (Fig. 2), [5],
[6]. The implementation of the multiple-folded PLA is more
complex. We deal first with the implementation of multiply
column-folded logic arrays.

The implementation of several logic columns in the same
physical location requires the physical (metal, poly, or diffu-
sion) columns be split into segments (Fig. 3). Therefore, a
path must be provided to route input and output signals to/
from the split physical columns inside the array. Thus stan-
dard PLA architectures cannot be used to implement multiply
column-folded PLA’s. Several authors [8], [10], [13] have
proposed different architectures for multiply-folded arrays.
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Fig. 5. Multiple folded array mixed diagram (architecture #2). —:
metal, ———: poly, metal 2, X active device, =~ :cut, - contact. Dif-
fusion ground lines not shown.

We consider the following two structures, which can be imple-
mented in nMOS or ¢cMOS technology.

The first architecture is shown in Fig. 4. It requires two
levels of metal (polysilicon), in addition to the usual levels of
poly (metal) and diffusion. The PLA is implemented using
two arrays (the AND plane and the or plane) personalized
by MOS transistors. Input signals run vertically in the input
columns of the AND plane, product terms run horizontally in
rows of both planes, and output columns run vertically in the
OR plane. Two levels of interconnect are used for these rows
and columns, in addition to ground diffusion rows and col-
umns. The third level of interconnect (second metal or second
poly level) is used to run horizontal connection rows above the
product-term rows to route the input and output signals to/
from the input and output column segments to the outside
circuitry.

An alternative architecture supports multiple folding with
only one level of metal, poly, and diffusion. Input and output
signals are routed inside/outside the array by connection-rows
parallel and alternated to the product term rows and imple-
mented on the same level. This structure is simpler than the
previous one but the area used by a multiply folded PLA is
larger (Fig. 5).

It is important to note that PLA’s implemented with either
structure are essentially circuit blocks through which input
and output busses run straight in the connection-rows. They
are, therefore, excellent building blocks of a regular and struc-
tured VLSI design methodology.

Moreover, it is important to point out that column folding
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Fig. 6. Multiple folded array with ordered connection-row assignment.
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Fig. 7. Multiple folded array with bounded connection-row assignment.

induces a permutation of product terms and connection-rows.
While product term rows provide connection internal to the
PLA only, connection-rows join the array to the outside cir-
cuitry and their ordering is essential to an optimal routing of
the PLA to the other functional blocks of the circuit.

We, therefore, define a multiple constrained column folding
problem. The goal of multiple constrained folding is to com-
pact the PLA area subject to an ordering of the connection-
rows. Constrained multiple folding is necessary, for example,
for an area-effective compaction of PLA’s implementing
switching functions whose inputs and outputs are signal data
busses inside a VLSI processor.

We address two constrained column folding problems: col-
umn folding with ordered connection-row assignment and
column folding with bounded connection-row assignment. In
the former problem, each PLA input (and/or output) column
is given a position index. Folding is constrained so that
connection-rows can be positioned according to the sequence
of indexes of the connected columns, as shown in Fig. 6. In
the latter, each input (and/or output) is given an upper and a
lower bound on the position of the contracted connection-
row. Folding is constrained so that each connection-row can
be assigned to a position with an index satisfying the given
bounds (Fig. 7).

Unconstrained multiply row-folded PLA’s can be imple-
mented with a single-poly, single-metal technology {12].
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Fig. 8. Personality matrix.

Row-folding induces a permutation of input and output col-
umns, which leads to a segmented array, consisting of a se-
quence of AND and OR planes. This may be a technological
drawback, because product terms require area-consuming con-
nections between adjacent planes, in addition to an increased
complexity of input and output routing.

Simple row folding may be constrained so that the folded
array shows an AND-OR-AND Or an OR-AND-OR structure
[11]. In this case, input or output signals can be routed to
both external planes by connection-rows.

On the other hand, multiple row folding leads to a segmenta-
tion of the array into more than three planes [8], [14]. Since
routing of the columns of the internal planes may be difficult,
we introduce a new multiple constrained row folding problem:
row folding with bounded column assignment. Each column is
given a left and right bound, and row folding is constrained so
that each column can be assigned to a position within the
bounds.

Multiply row and column-folded arrays can be implemented
with the described architectures, provided that only columns
in the external planes are multiply folded. To connect a mul-
tiple row and column folded array effectively, it is important
to be able to determine which signals are routed to the ex-
ternal planes through connection-rows and which are routed
from the top and the bottom of the array.

The related constrained multiple row and column folding
problem consists of constraining the fold so that input and
output signal can be routed from the desired (left, right, top,
bottom) direction,

III. GRAPH THEORETIC INTERPRETATION OF THE
MuLTIPLE FOLDING PROBLEM

We concentrate our attention on a topological representation
of a PLA. The following definitions are a generalization of
those given in [7]. A logic array is described by a personality
matrix. For the sake of generality, we assume that the (i, j)th
entry of the personality matrix is zero if the (7, j)th location of
the physical array is occupied by interconnect only. Fig. 8
shows the personality of the PLA sketched in Fig. 1. Let {c;,
i=1,2,---,nct ({r;, i=1,2,---,nr}) be the set of col-
umns (rows) of the personality matrix. Each column is labeled
input (output), if it carries an input (output) signal in the
physical array. A maximal set of adjacent input (output) col-
umns is called input array or AND plane (output array or OR
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plane). Let R(c;) (C(r;)) be the set of rows (columns) with a
nonzero entry in the ith column (row) of the personality ma-
trix. Two columns c;, ¢; (rows r;, r;) are disjoint if R(c;) N
R(cj) = ¢ (C(r)) N C(rj) = ¢). A column folding list (row fold-
ing list) is a set of either input or output disjoint columns

fi = {ci,l’ Ci,2s " s ci,n} (I‘OWS .fi = {ri,17 Tiogs ™" rri,n})~
An ordered column folding list 0; = (¢; ;,¢;,2," ", €i,n) (Or-
dered row folding list 0; = (r; ;,r; 5, ", i pn)) is a column
(row) folding list whose elements are ordered. A column

(row) folding set is a set of disjoint column (row) folding lists

F={f1,f2, . fi} and ordered column (row) folding set is
a set of disjoint column (row) ordered folding lists O = {0,,
05, ,0r}. Let U be the set of unfolded columns (rows),

ie, U= {cldkst.c€or} (U= {r{dks.t.r€o,}). The col-
umn (row) cardinality of a folded PLA is C(0)=|0]|+ |U|
(R(0)=1{0|+|U]). An ordered folding list of columns (rows)
induces a set QR(0) (QC(0)) of ordering relations among the
rows (columns)

OR(0) = {ry <ry|ry €R(cij)iry ER(Cijs1 );
¢i,j» Ci,j+1 €0450; € O}

(QC(0) = {ex <cylex €ECri j)icy, €Crijay )
rijsTij+1 €055 0, €0}).

Let OR*(0) (QC*(0)) be the transitive closure of QR(O)
(QC(0)) [15]. A column (row) ordered folding set is imple-
mentable if QR*(0) (QC*(0)) is a partial order of the set Z*.

The optimal unconstrained column (row) folding problem
can be stated as follows:

Find an implementable ordered folding set that minimizes
the column (row) cardinality of the PLA.

Remark 3.1: In the simple folding case |U|= (initial col-
umn/row set cardinality) -2|Q/|. Hence, the optimal uncon-
strained simple folding problem is to find an implementable
ordered folding set with maximum cardinality. .

We introduce a graph theoretic interpretation of the mul-
tiple folding problem in order to gain a better insight into the
problem and to study heuristics for the related algorithm. We
consider column folding first. According to [7], we define
column-intersection graph G(V, E) a graph whose nodes
ve V are in one-to-one correspondence with the columns of
the logic array and the set £ is defined as £ = {v;, v; |R(c;) N
R(c;) # ¢}. Given an ordered column folding set O, we in-
troduce an associated mixed graph G(0)=G(V, E, A(0)). A
mixed graph G(V, E, A) is a graph with two sets of edges, a
set of undirected edges £ and a set of directed edges A. ¥ and
E are defined as in the column-intersection graph. A4(0) is de-
fined as

A(0) = {vi,k,vi,kn |(Ci,1,Ci,2, o
€0 k=1,2,---,n-1}.

5 ChksCik+1s T ,Ci,n)

We define x-path in G(V, E, A(0O)), a directed path x = [v,,
Uz, """, Up] such that

i) the first edge in X is directed and the last undirected;i.e.,
(v1,v:)€A4(0)and {vp_;,v,} EE
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Fig. 9. Mixed graph G(V, E, A(0)).
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Fig. 10. Partially folded array.

ii) everv undirected edge in X is followed by a directed edge;
ie.,

{v;, Ui+1} € L= (v VVisg ) EA(0),
vi=1,2,---,p~ 3.

Example 3.1: For the PLA sketched in Fig. 1 and the or-
dered folding set O ={01}; 01 =(c10, ¢1, Co), the associated
mixed graph is shown in Fig. 9, and the partially folded array
in Fig. 10. A x-path is [vyo, V7, V9,0, ]. -

We define “x-cycle in G(V, E, A(0)) a closed x-path having
at least two undirected edges.

Theorem 3.1: An ordered column-folding set O is imple-
mentable if and only if the induced mixed graph G(V, E,
A(0)) has no x-cycles.

The proof is reported in [16].

Remark 3.2: Theorem 3.1 allows to verify the existence of
a row ordering compatible with a column ordered folding set
by checking relations among columns only. This procedure is
much simpler (and, therefore, much faster to be executed on a
digital computer) than to verify directly cyclic relations in
OR™(0). .

Remark 3.3: The graph interpretation and Theorem 3.1 ap-
plies “‘mutatis mutandis” to the multiple unconstrained row
folding problem. In this case G(V, E)) is the row-intersection
graph and G(¥, E, A(Q)) is the mixed graph obtained by add-
ing to G(V, E) the set of directed edges

AO)={vs,k, Vi ka1 | i1 Fias ik ikt """ 5 Tn)
€0;k=1,2,"--,n-1} L

A graph interpretation of unconstrained row and column
folding is more complex, because it involves bookkeeping of
the ordering relations among rows and among columns. For
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this problem the information contained in the column and row
intersection graphs is not sufficient.

Example 3.2: Consider the partially column folded array
shown in Fig. 10. We question the implementability of the
array after folding row rs with row r¢. The folded array is
clearly not implementable, even though it does not introduce
any cycle in both intersection graphs. n

We introduce, therefore, the row constraint graph G and the
column constraint graph G¢ which are the directed graphs cor-
responding to the transitive closure relations QR*(O¢) and
QR*(Og) induced by the column and row folding sets O¢
and Og [11]. By definition, the ordered folding sets Og and
Oc¢ are implementable if graphs Gz and G are acyclic.

IV. AN ALGORITHM FOR MULTIPLE PLA FoLDING

The optimal multiple PLLA folding problem was shown to be
NP-complete in [17]. We, therefore, propose a heuristic algo-
rithm that can be considered an extension of the simple fold-
ing algorithm presented in [5].

We consider first the multiple column folding problem. The
ordered column folding set and the mixed graph G(V, E,
A(0)) are constructed by the algorithm. At each step the algo-
rithm tries to increase the cardinality of the folded column set
and verifies the implementability of the folding by checking
that the mixed graph has no x-cycle.

A conceptual description of the algorithm is the following.

MASTER ALGORITHM

Step 0: Initialize the folding procedure.

Step 1: If the set of columns which have not been processed
is empty, stop. Else select a pair of unfolded dis-
joint columns or an unfolded column and a column
folding list as folding candidates.

If the fold induces x-cycle in graph G(V, E, A(O)),
reject it and go to Step 1.

If folding has secondary constraints and constraints
are not satisfied, reject the fold and go to Step 1.
(This step is performed by the algorithms described
in Section V.)

Fold the candidates, modify the PLA accordingly.
Go to Step 1. =

Step 2:

Step 3:

Step 4:

A detailed description of the algorithm for simple column
folding is given in [5]. In this section, we will concentrate on
the generalization to multiple folding, and on the procedure
for multiple folding candidate selection.

The selection of the candidate columns for multiple folding
can be done according to one of the following folding patterns.

1) A new folding list can be formed by folding two unfolded
columns.

2) An unfolded column can be folded on top (bottom) of
an existing folding list.

3) A folding list can be “opened” and an unfolded column
can be folded “by insertion” into it.

A selection of the folding pattern and candidate column is
done at each step according to a heuristic strategy.
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Let us define first the set of descendants D(v) (ancestors
A(v)) of a vertex V as follows:

A vertex d is descendant of v if there is a x-path from v to d.
A vertex ¢ is ancestor of v, if v is descendant of a.

We define an adjacency set ADJ(v) of vertex v, the set of
vertices connected to v by an undirected edge. By definition,
we consider every vertex adjacent to itself.

We define pseudo-descendants D(v) of a vertex v the union
of the adjacency set of v and the descendant sets of each ver-
tex adjacent to v

D)= | D@)VADI(v).
vE ADJ(v)
Remark 4.1: It follows from Theorem 3.1 that for each pair
of consecutive columns in an implementable ordered folding
list, the corresponding vertices v; and v, are such that

ADJ(v) N A(v;) = ¢. .

Let us consider now the selection strategy for folding
pattern 1.

Example 4.1: When two columns, say ¢, and ¢, , are folded,
a directed edge (vy, v, ) is added to A(QO). Hence,a x-path joins
v; to each vertex in 5(1}2 ). Therefore, all pseudo-descendants
D(v,) of v, are descendants of v,

D(v;) < D(vy) U D(v,).

Moreover, since a x-path joins each ancestor of v, to vy, the
descendants of v, are descendants of each ancestor of v,

It follows that an upper bound on the number of ancestor-
descendant relations induced by the column folding is

£ = lA(Ul)”DN(Uz)‘- n

It is reasonable to conjecture that the fewer relations are
induced, the lower is the probability of finding x-cycles at
further steps of the algorithm. Hence, a good choice for a
candidate folding pair vy, v, is the one for which p, is min-
imal. Unfortunately, n(n - 1)/2 candidate pairs have to be
tried to find the minimum p,; for an array with n unfolded
columns. This procedure is too time consuming for large
arrays. Therefore, an alternative selection strategy is used:
select the candidate folding pair (v, , v, ) such that

v, =arg min |A(v)|
veV

v, = arg min |D()]
vEV

where ¥V C V is the vertex subset corresponding to the un-
folded columns.

Similar considerations apply to the candidate selection ac-
cording to folding pattern 2. When a column ¢; is folded on
top of an ordered folding list (¢; 1, " * *, €2, 5), a directed edge
(vy, vz, 1) is added to A(O). Hence, a x-path joins v, to each
vertex vy, such that v, € 5(v;y 1). Therefore, an upper bound
on the number of ancestor-descendant relations induced by
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the column fold is

p2 = |A(vy)| |5(02,1)I-

Conversely, when a column ¢, is folded on the bottom of an
ordered folding list (€1,1, €1,2," " ,C1,n) an oriented edge
(01,5, U2 ) is added to 4(0). Hence, a x-path joins every vertex
A(vy, ) to every vertex in 5(02). Therefore, an upper bound
on the number of ancestor-descendant relations induced by
the column fold is

P2 = |A(U1,n)| |D~(Uz)|

The strategy for candidate selection according to folding pat-
tern 2 is based on the same considerations used for folding
pattern 1.

A slightly different strategy is used for candidate selection
according to folding pattern 3.

Example 4.2: Consider the PLA shown in Fig. 1. Let us
suppose that column ¢, is folded into the folding list 0; =
(c10, c9) to give (¢10, €7, Co), as shown by Fig. 10. The an-
cestors of ¢, become ancestors of ¢y and the ancestors of ¢,
become ancestors of ¢ . L]

In the general case, suppose that column c¢ is folded into a
folding list (¢; 1,¢5,2, """, Ci,n) tOGIVE (C; 1, €12, """ s Ch k=15
€, Ci ks " ,Ci,n)- An oriented edge joins vertex v; x_; to U
and v to v; . Hence, the ancestors 4(V) become ancestors of
the vertices in 5(0,-,,‘) and the ancestors A(v; x -, ) become an-
cestors of the vertices in D~(i). Therefore, an upper bound on
the number of ancestor-descendant relations is

p3 = 1A k- ) ID@)| + 141Dy 1))

Unfortunately, the computation of the minimum p3; may be
too time consuming for large arrays. Hence, we find first the
candidate for insertion as

5 = arg min (|D(v)| + |A@)])
veV

and then the folding list and the insertion position such that
P3 = |A@W; x-1)] |D(D)]+14(P)] [ﬁ(vi,k)l

is minimal.

When the “best” folding candidates have been selected ac-
cording to the three folding patterns, the selection of the fold-
ing pattern is based on a weighted comparison of the upper
bounds p;, i=1, 2, 3. Weighting factors allow to privilege a
folding pattern with regard to the others, as, for example,
multiple folding versus simple folding.

Remark 4.2: The Master Algorithm and the candidate selec-
tion strategy applies mutatis mutandis to the multiple un-
constrained row folding problem. .

The Master Algorithm is used for multiple row and column
folding also. Order relations induced by the folds are de-
scribed by the row constraint and column constraint graphs.
A candidate fold is rejected at Step 2 of the algorithm if it
induces a direct cycle in any of the two graphs. The folding
candidate selection strategy is similar to the one used for col-
umn folding, provided that some definitions are changed to be
compatible with the different graph representation.

For this problem, a vertex d is descendant of v if there is a
direct path from v to d; the adjacency set of a vertex is not de-
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fined and the pseudo-descendant set is equivalent to the de-
scendant set. Hence, the “best” column and the “best” row
folding candidates and patterns can be found by a procedure
similar to the one described above. Let p© (p") be the related
upper bounds on the number of relations induced in G (G¢)
by a column (row) fold. A column (row) fold is attempted if

a*pt<p*p”

(a*p“=p*p")
where a = (C(0) - 1)/C(0) and 8 = R((0O) - 1)/R(O) are dy-
namic weighting factors which take into account the relative
area saving achieved by a column (row) fold at that step of the
algorithm and C(O) (R(0)) is the column (row) cardinality.

It is important to remark that this strategy allows to achieve

more folds in comparison with other algorithms performing
column (row) folding after row (column) folding. Neverthe-

less, it is straightforward to constrain the selection so that all
column (row) folds are tried first, if desired.

V. MuLTIPLE CONSTRAINED FOLDING

As stated in Sections I and II the PLA constrained folding
problems are related to the interconnection of the array to the
outside circuitry. We classify the constraints on folding into
two major categories:

1) architectural or primary constraints; and
2) secondary constraints.

Architectural constraints are related to the structure of the
array and to the positions of input/output busses relative to
the array. Secondary constraints are related to the positions
of input and output lines inside the busses. Examples of
architecture constrained folding problems are the following.

1A) Simple column folding with a subset of inputs and/or
outputs connected to the top (bottom) of the array.

1B) Simple row folding with AND-OR-AND Or OR-AND-OR
architecture.

1C) Segmented arrays: the column set is partitioned into
subsets, each forming a segment of the array. Columns
are folded with columns in the same segment only and
the sequence of segments is preserved.

The following folding problems involve secondary constraints.

2A) Column folding with bounded product-row assignment.

2B) Row folding with bounded column assignment.

2C) Column folding with bounded connection-row assign-
ment.

2D) Column folding with ordered connection-row assign-
ment.

The Master Algorithm presented in Section IV can handle both
architectural and secondary constraints. Different strategies
are used in the two cases. To satisfy architectural constraints
it is sufficient that folding candidates satisfy the following re-
quirements for the related problems:

1A) Columns connected to 1/O busses on the top (bottom)
of the array are folded either on top (bottom) of an un-
folded column or folding list or not folded at all.
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1B) AND-OR-AND (OR-AND-OR) architecture. Rows con-
nected to input (output) columns that are connected
to rows folded on the left or on the right are selected
as candidates to be split on the left or on the right of
the array, respectively.

Selected candidates for column folding are constrained
to be in the same segment. In the case of no more than
three segments and simple row folding, the selection of
candidates for row folding is as follows: rows connected
to columns in the leftmost (rightmost) segment are
Jolded on the left (right ) only or not folded at all.

10)

Unfortunately, we cannot be sure that secondary constraints
are satisfied only on the basis of an appropriate selection of
folding candidates. The reason is that secondary constraints
are related to the row (column) positions induced by a column
(row) folding. Therefore, we present in this section two as-
signment algorithms that assign positions to rows and/or col-
umns and check if the secondary constraints are satisfied. We
will present first the assignment algorithm for problem 2A).
From this, an algorithm for problem 2B) can be easily derived
by interchanging rows with columns. Problems 2C) and 2D)
are solved by a double assignment algorithm, based on the
assignment algorithm of problem 2A).

5.1. Column Folding with Bounded Product-Row Assignment

We consider in this section the problem of constraining prod-
uct-term row positions only. We, therefore, refer to product-
term rows as rows throughout this section.

We define lower (upper) row bound map:

Lg: {rsi= yary > {1,2,- - nr}
Ug: {ri= yary=>{1,2,-- nr})

a map relating each row to a lower (upper) position bound.
We define row assignment P: {r;i=1,2,---,nr} > {1, 2,
-, nr} a permutation of the rows and implementable row as-
signment a permutation compatible with an ordered column-
folding set O; i.e., P(r,) <P(r,) V7x <ry € QR*(0).
An implementable bounded row assignment is an implement-
able row assignment such that

Lr (rp) <P(r) < Ugr(ry),

Example 5.1.1: For the logic array shown in Fig. 1, the fol-
lowing lower and upper bounds are given:

1,2,...
1,2’...

vj=1,2,--,nr.

Lr=1,1,1,4,4,6
Uz =1,3,3,6,6,6.

This means that r, is constrained to the first position, r, and
rs are constrained between position 1 and 3, and so on. The
implementable row assignment (ry, 74, 72, '3, s, ) induced
by the column folding shown in Fig. 2 does not satisfy the
given bound maps. On the contrary, the folded PLA shown in
Fig. 11 has the following implementable row assignment: (ry,
ry, 73, 7s, ra, Fg). Note that rows are numbered from the top
to the bottom of the array. =

The optimal bounded row column folding problem can be
stated as follows:

cl Cp C3 Cg C

b

X
“l
$x L

Cq C4 Cq

»
P —

3

=

r

Fig. 11. Folded PLA with bounded-row assignment.

Find an implementable ordered column-folding set and re-
lated implementable bounded row assignment that mini-
mizes the column cardinality of the folded PLA.

Let us consider a graph interpretation of the following
subproblem:

Given an ordered column-folding set and a lower and up-
per row bound maps, find an implementable bounded row
assignment, if it exists.

The graph interpretation is useful to understand the underly-
ing structure and to develop and algorithm and related heu-
ristics. We associate to this subproblem a directed graph
G(R, N, A), with two node sets N and R, and a set of directed
edges A.

The node sets R and N are in one to one correspondence
with the row set and the set of the first nr natural numbers
representing the possible row positions. Our problem consists
in finding a matching between R and N, i.e., coupling each
row-node to a position-node, so that all the required bounds
are satisfied. We represent position bounds by a set of di-
rected edges

A=A, UAd, UAds Ud, U A

where A, = {(nj, #;,,);7=1,2,* -, n- 1} represents the or-
der on the sequence of the first nr natural numbers; A, =
{g, PILG) =i+ 1,j=1,2, -, nr} and A3 = {(r, n)|
U =i-1,j=1,2,- -~ , nr} take into account the lower and
upper bound maps; A4 = {(r;,7;)|r; <r; € QR(0O)} represents
the order relations among the rows induced by the column
folding.

Example 5.1.2: Fig. 12(a) shows graph G(R, N, A) A’ =
A, UA, UAs U A, for the PLA of Fig. 12, the row bounds
of Example 5.1.1, and the ordered folding set O = {(c7, ¢9),
(c3,ca) (cz,¢5)} a

Note that an edge from a node in N(R) to a node in R(V)
represents now a strict lower (upper) bound. If a lower (up-
per) bound on a row position is 1 (nr), it can be represented
by appending nodes n, (1, ) to set N and by adding appro-
priate directed edgesto 4.

Moreover, note that if a row, say 7, has the position w as
strict upper bound (i.e., (7, n,,) € A3) and must follow an-
other row, say 7 (i.e., (7, 7) € A,), then row 7 has as strict
upper bound a position lower or equal to w - 1.
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Fig. 12. (a) Graph G(R, N, A"). (b) Edge set 4.

Example 5.1.3: Row r; must be above r, which in turn
must be above ;. Since r4 is required to be assigned to a po-
sition lower or equal to 6, r; must be assigned to a position
lower or equal to 4. (In this case, r; has already the more
stringent constraint to be in position 1.) -
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We, therefore, define: A5 = {ry, n;-p)| 3 rysuch that (r;, n;) €
Az and 37+ 1 distinct nodes in R along the directed paths in
A4 from rg to r;}. Similar considerations apply to lower
bounds, but the assignment algorithm does not require that
the set of directed edges is further increased.

Example 5.1.4: The edges in subset A5 are represented by
dashed lines in Fig. 12(b). =

Our problem is to find an additional set of undirected edges
E matching every node in R to one and only one node in N so
that the resulting mixed graph G(R, N, E, A) is acyclic.

Remark 5.1: Column folding with bounded row assignment
is equivalent to the sequencing problem with release times and
deadlines where all task length are equal to one [18], [19] and
where a partial order on the tasks is given. n

The following algorithm will either construct a set of undi-
rected edges such that graph G(R, N, E, A) is acyclic or will
return a flag if no possible edge set exists. We recall that the
in-degree of a node is the number of directed edges incident
to that node and the deletion of a node from a graph corre-
sponds to remove the node from the node set and all edges
incident to/from the edge set. The algorithm is described in
Pidgin C.

ASSIGNMENT ALGORITHM
E=¢;
delete n,, from graph G;
for(i=1;i<nrii=i+1){
if (in-degree (n;) # 0) return (FALSE);
Q= {r €ER;in-degree (r)=0};
if (0 = ¢) return (FALSE);
; = r € @ such that (77, ny ) € 4 and & is minimal;
E=EU {n;, rj};
delete n; from graph G;
delete r; from graph G;

}

return (TRUE),; =

The algorithm runs in linear time since it cycles at most »r
times through the main loop. The algorithm uses a greedy
strategy: at each iteration it matches the available position
with lowest index to the most constrained node in R (i.e, se-
lects the product-row with lowest upper bound). The algo-
rithm finds an implementable bounded row assignment, if one
exists, as stated by the following theorem.

Theorem 5.1: The Assignment Algorithm returns TRUE if
and only if there exists a matching E such that graph G(R, N,
E, A)is acyclic.

The theorem is proven in the Appendix. =

Example 5.1.5: Consider the column folded logic array
shown in Fig. 11, and the related graph G(R, N, A) shown in
Fig. 12. The implementable bounded-row assignments given
by the algorithm is

(rlsr23r3sr59r4’r6)' u

The Assignment Algorithm replaces Step 3 of the Master
Algorithm for column folding with bounded-row assignment.

A different strategy for folding candidate selection is used.
Since folding is limited by row positions, we try to fold col-
umns incident to rows constrained to be in the top part of the
array with columns incident to rows constrained to be in the
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bottom part of the array. We, therefore, can compute two
“induced bound” maps for each column

Z(c,-)= min Lp(r), j=1,2,"-,nc
FER(g
fj’(c,-) = max Ug(r), Jj=1,2,-"-,nc.

rER(cj)

The column with the lowest (highest) entry in I7(E ) is the
most constrained to be folded on the top (bottom).

Example 5.1.6: For the logic array of Fig. 1 and the row
bound maps of Example 5.1, the induced bound maps are the
following:

L=1,1,1,1,4,1,1,1,4,1
U=6,3,1,3,6,6,1,6,6,6.

Hence, columns ¢3 and ¢, are the most constrained to be

folded on the top part of the array and ¢s and ¢y on the

bottom. L]
Hence, a “good” section is the candidate pair (c;, ¢) thus

~ min (7(c]-)

F=1,2," ", e

c;=arg

ce=arg max L ().

j=1,2,0,0¢
A more considerate choice also takes care of the number of
ancestor-descendant relations induced in the mixed graph, as
shown in Section IV. Therefore, we use a weighted selection

cirtierion

ci=arg  min [a|A(@v)]+ U]
i=1,2, 0,00

cxy =arg  min [alﬁ(vj)| - BE(U,')]~
j=1,2,,me

Example 5.1.7: The first folding pair selected by the algo-
rithm is (¢4, o). =

Similar considerations apply mutatis mutandis to the mul-
tiple folding candidate selection.

Remark 5.2: The graph interpretation and an algorithm for
the row folding with bounded column assignment problem can
be derived mutatis mutandis from this problem. .

5.2. Column Folding with Bounded Connection-Row
Assignment

We refer in this section to a logic array implemented with
connection-rows for routing input and output signals as de-
scribed in Section II. According to these architectures, there
are two sets of connection-rows contacting the columns of the
left and right array, respectively. For the sake of simplicity,
we will consider constrained folding of one array only.

Both proposed architectures support, at most, as many
connection-rows as product-rows. Since each column is con-
tacted to a connection row, we require throughout the sec-
tion that the number of columns in the considered array is
at most equal to the number of rows. Most PLA’s satisfy this
assumption.

We define connection-row assignment a one-to-one map:
T: {c;, i=1,2,--~,nct>ME{1,2, -+, nr}suchthatj=
T(c;) if column ¢; is contacted to the connection row in the
jth position.
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Fig. 14. Folded or array with bounded connection-row assignment.

Example 5.2.1: Consider the or plane of the PLA shown in
Fig. 1. Fig. 13 shows the unfolded array with the connection-
row assignment:

T(c)=1 T(eg)=2 T(cs)=5 T(eyo)=6. n

We define physical connection-row set M the image of 7.
Its elements are the positions of the connection-rows which are
physically implemented. Note that there are A = nr-nc slack
connection-rows which are not implemented and whose posi-
tions are irrelevant to the problem.

We define lower (upper) connection-row bound map

Le:{esy i=1,2,,nc}~>1,2,-- nr
We: {ei, i=1,2,-+,nc}~>1,2,---,nr)

a map relating each column to a lower (upper) position bound
on the position of the contacted connection-row,

Example 5.2.2: For the or plane of the PLA shown in Fig,
1, the following bounds are given:

Le=1,1,4,6
Uc=1,3,6,6.

This means that the first column of the OR plane (c7) must be
connected to a connection-row in position 1; the second one
{cg) to a connection-row whose position is bounded between
1 and 3; and so on. ]

An implementable connection-row assignment is an assign-
ment compatible with a column ordered folding set, i.e.,is an
assignment such that

max (P(R (ci,i—l ))) < T(Cl’,]‘) < min (P(R (ci,fi'l )))
j=1,2,-,n
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Fig. 15. (a) Graph G(R, N, C,A"). (b) Edge set Ag U A4. (c) Edge setAs. (d) Edge setAg.

V column ¢;; in folding list o; with cardinality n, where by T(c7)=1 T(cz)=2 T(cs)=3 T(cy10)=6.

definition

The connection-row contacted to c¢g is in position 2, and

max (P(R (¢1,0)))=0 and min (P(R(Ci,n+ 1)) =oe. therefore is above (has lower index than) the product rows

connected to ¢;o (in positions 4 and 6). The connection row

Example 5.2.3: Consider the folded or plane shown in contacted to €10 is in position 6 and is below (follows) the
Fig. 2 with the ordered folding set O = {(c, ¢s), (¢s, c10)}. product rows connected to cg (in positions 2 and 3). L]
An implementable connection-row assignment would be An implementable bounded connection-row assignment is
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an implementable connection-row assignment such that

Lo(ep)<T(cp)<Uclcy), i=1,2,",nc.

Example 5.2.4: The implementable connection-row assign-
ment of Example 5.2.3 does not satisfy the bounds given in
Example 5.2.2. An implementable bounded connection-row
assignment is

T(C7)=1 T(C3)=2 T(C9)=4 T(C10)=6.

Fig. 14 shows a folded implementation of the orR plane com-

patible with the bounded connection-row assignment. m
We can now state the column folding with bounded connec-

tion-row assignment problem as follows:

Find an implementable ordered column-folding set and a
related implementable bounded connection-row assign-
ment which minimizes the column cardinality of the
folded PLA.

As we did for the previous problem, we consider a graph in-
terpretation of the following subproblem:

Given an ordered column-folding set and a lower and up-
per connection-row bound maps, find an implementable
bounded connection-row assignment, if it exists.

Note that an implementable bounded connection-row assign-
ment requires, by definition, a product-row assignment, be-
cause the positions of rows in both sets influence each other.
Hence, the problem consists in finding the two row assign-
ments compatible with the ordered column-folding set, if they
exist.

We associate to this subproblem a directed graph G(R, N,
C, A), with three node sets R, ¥V, and C and a directed set of
edges A. The node sets R, C, and /N are in one to one corre-
spondence with the row set, the column set and the set of the
first nr natural numbers, respectively.

We represent the bounds on the row positions by a set of
directed edges

A=A1 UAz UA3 UA4 UA5 UAG UA7 UAB

where 4, and A, are defined as, in Section 5.1, 4, = {(n;, ¢;)|
Le(epy=i+1; j=1,2, - ,ncland 45 = {(cj, n)\Uc(cj) =
i-1; j=1,2, -+, nc} take into account the lower and upper
bound maps.

Example 5.2.5: Fig. 15(a) shows graph G(R,N,C,A"), A’ =
A, U A4, U Az U A, in the case that the oR plane of the PLA
of Fig. 1 is folded and the ordered column-folding set O =
{(cq, ¢g), (cs, c10)} is compatible with the bounds given in
Example 5.2.2. =

We consider the mutual relations among products and con-
nection-rows by the edge subsets: A¢ = {(7, ¢)| FER(?), and
¢ is split on top of ¢}, and A4, = {(C, F)|FER(C) and Cis
split on top of ¢}. In other words, if column ¢ is folded on
top of ¢, then all the rows (product and connection) con-
nected to ¢ must be assigned to positions with index lower
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than the positions of all the rows connected to <.

Example 5.2.6: Fig. 15(b) shows the edges in subsets Ag
and A, for the problem of Example 5.2.5. u

Moreover, note that if a column, say ¢, has as a strict upper
bound the position w (i.e., (2, n,) EA3), (F, ©)EAs, and
(r, F)EA,, then r has as upper bound the position w- 2.
We, therefore, define As = {(r, n;_1)|3r(r not necessarily
distinct from ry) and 3¢, such that (7, ) € 4, (¢, n)EA;
and 37+ 1 distinct nodes along the directed paths in A4 U A¢
from r, to ¢}. The edges in this set represent the upper
bounds on the position of each product-row induced by fold-
ing. Note that all nodes in R must be assigned to a position
lower than nr+1. Hence, we append to As the edges (r,
Rpre1) ¥ i € R having no explicit upper bound.

Example 5.2.7: Fig. 15(c) shows the edges in subset 45 for
the problem of Example 5.2.5. .

Similarly, upper bounds induced on the column positions are
represented by Ag = {(cy, 7;-7)|3 >0 nodes 7 €R such that
(ck, T)E A, and (7, n;) €A}

Example 5.2.8: Fig. 15(d) shows the edges in subset Ag for
the problem of Example 5.2.5. .

In graph terms, this problem is to find a set of undirected
edges £ matching every node in R and in C to one and only
one node in N so that the resulting mixed graph G(R, N, C,
E, A) is acyclic. Note that, in general, the number of columns
and, hence, of physical connection-rows required is smaller
than the number of rows by A and we take advantage of this
in the double assignment algorithm.

DOUBLE ASSIGNMENT ALGORITHM

E=¢
A =nr- nc;
delete n,, from graph G;
for(i=1;i<nr;i=i+1){
if (in-degree (n;) # 0) return (FALSE);
Q = {r €R; in-degree (r) = 0},
if (Q = ¢) return (FALSE)
r; =r € Q such that (77, n;) € A and k is minimal;
E=EV (n;,r);
H = {c € C;in-degree (c) # 0},
if (H=¢) {
A=A-1;
if (A <O0) return (FALSE);
}
else {
¢; = ¢ € H such that (¢;, ng) € A and k is minimal,
E=EU (ni’ cl);
delete ¢; from graph G;
}
delete 7; from graph G;
delete n; from graph G;

}

return (TRUE); L

The double assignment algorithm runs in linear time and uses
a greedy strategy. At each iteration, it tries to match the avail-
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able position with lowest index with the most constrained
product and connection-rows. Note that a connection-row
need not be assigned at each iteration, but the total number of
slack positions must be lower or at most equal to A.

Theorem 5.2: The assignment algorithm returns TRUE if
and only if there exists a set of undirected edges £ matching
each node in R and in C to one and only one node in NV such
that G(R, N, C, E, A)is acyclic.

The proof is reported in [16]. =

The Double Assignment Algorithm replaces Step 3 of the
Master Algorithm for column folding with bounded connec-
tion-row assighment.

The selection of folding candidates is based on the following
strategy. Try to fold columns incident to connection-rows
constrained to be in the top part of the array with columns
connected to connection-rows constrained to be in the bottom
part of the array. Therefore, the candidate selection follows
the outlines presented in Section 5.1, where L (¢j) =L(cj) and
Ulcj)=Ul(c;)j=1,2, -, nc. Alsoin this case, a considerate
choice of folding candidates uses a selection criterion weight-
ing the number of ancestor-descendant relations induced by
the fold and the required row positions in the array.

We state the column folding with ordered connection-row
assignment problem as follows:

Find an implementable ordered column-folding set and a
related implementable ordered connection-row assignment,
which minimizes the column cardinality of the folded
PLA.

This problem is equivalent to column folding with the follow-
ing bounds on connection-row positions:

Le(e))=8(c;), Vi=1,2,--+,nc
Ucle)=S(c) +4, Vi=1,2,--,nc

with the additional constraint on the order of the connection-
rows.

As we did in the previous section, we give a graph representa-
tion for a subproblem:

Given an ordered column-folding set and an order map,
find an implementable ordered connection-row assign-
ment, if it exists.

The graph representation of this subproblem is given by
graph G(R, N, C, 4) introduced in Section 5.2 where an addi-
tional subset of directed edges is added to take care of the
order map

A9 = {(cb C]')Il.=S(Ck),].=S(Ck+1),k= 1) 27 IR (4 1}
The Double Assignment Algorithm can be used to replace
Step 3 of the Master Algorithm for the column folding with
ordered connection-row assignment problem.

Example 5.3.2: Fig. 17 shows graph G(R, N, C, A) for the

order map of Example 5.3.1 and the ordered folding set
0 ={(cs,co)}. n
5.3 Column Folding with Ordered Connection-Row

" Assignment

We extend to this section the considerations on multiple-
column folded PLA implementation and the basic definitions
presented in Section 5.2.
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Fig. 17. Folded or array implementation with ordered connection-row
assignment.

We define order map S: {c;;i=1,2,--,nc}—> {1,2, -,
nc} a one-to-one map relating each column to the required rel-
ative position of the contacted connection row. We define
implementable ordered connection-row assignment an imple-
mentable connection-row assignment such that

Tl <T(c;) if S(cp<S(q) Vi,j=1,2,--", ne.

Example 5.3.1: Consider the Or plane of the PLA shown in
Fig. 1 and the following order map:

Se)=2  S(g)=1 S(es)=3  S(cro)=4

This means that column folding is constrained so that the con-
nection-row to cg ‘is in the topmost position, followed by
those connecting ¢4, ¢y, and c¢q in order. Fig. 16 shows a
folded implementation with the implementable ordered con-
nection-row assignment

T(c7)=2 T(cg)=1 Tl(co)=3 T(c10)=4. "

Remark 5.3: In the case that there are no slack positions or
in the case that we are not interested in taking advantage of
the slack positions, the column-folding with ordered connec-
tion-row assignment problem can be solved more easily by
the following equivalent formulation: column folding with
bounded product-row assignment, where bounds on row posi-
tions are dynamically induced by column-folding. In particular

Ur(ci, j)=S(cijey )+ 8- 1
Lr(cijer) =S ) +6+1

Ve ;€0;, Vo0,€0 andany fixed§st.0<8<A.

An implementable product-row assignment satisfying the
above bounds is a necessary and sufficient condition for the
existence of the implementable ordered connection-row as-
signment T(c;) = S{c;) + 6. =

The selection of folding candidates is based on the following
strategy. Try to fold columns incident to connection-rows
constrained to be in the top part of the array with columns
connected to connection-rows constrained to be in the bot-
tom part of the array. Therefore, the candidate selection
follows the outlines presented in Section 5.1, where now
L{¢j)=S8(c;) and ﬁ(cj) =8(¢;)i=1,2,--, nc. Also, in this
case, a considerate choice of folding candidates uses a selection
criterion weighting the number of ancestor-descendant rela-
tions induced by the fold and the required row positions in
the array.
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V1. PLEASURE

PLEASURE is an interactive program for simple/multiple
constrained/unconstrained row and/or column folding of
Programmable Logic Arrays. »

The PLA design is given as input to the program in the form
of two-level sum-of-products logic implicants.

The output of the program is a symbolic table representing
the folded array with the positions of the active devices cor-
responding to the cares of the logic function, the locations of
the cuts and the contacts between columns and connection
rows. The symbolic table is suitable to be processed by a
silicon assembler program which generates the mask layout
of the array according to a given technology. Note that
the symbolic table generated by PLEASURE is technology
independent. .

The program is a command interpreter: input files can
be read and edited; logic arrays can be folded in a single run
or one fold at a time. This allows the user to monitor PLA
folding step by step, by displaying the partially folded array.
The user can enter column and/or row folding candidates of
his choice and verify the implementability of his selection.
When PLA’s are folded in single run, a soft interrupt capa-
bility allows the user to halt the compaction at any point to
see the partially compacted array before resuming folding
execution. The program can be run in a silent mode (ie.,
with no interaction with the user), so that it can be inter-
faced with other programs in a system for automated syn-
thesis of PLA’s.

Folding instructions are entered to the program along with
the PLA description in the input file. PLEASURE allows col-
umn (row) folding only and row and column folding.

Column folding can be simple or multiple, constrained or
unconstrained in either or in both planes. Architectural con-
straints can be set on column positions. Columns can be re-
quired to be folded on the top (bottom) of the array or not
folded at all. Column folded arrays can be segmented into
three adjacent planes, so that columns in the external planes,
can be multiply folded and contracted by connection rows.
Secondary constraints can be put on product and connection-
row positions. In particular, column folding with bounded or
order connection-row assignment can be achieved.

Row folding can be simple or multiple. Simple row folded
arrays can be constrained to have an AND-OR-AND or OR-
AND-OR architecture. Secondary constraints can be put on
the column positions.

Row (column) folding can follow column (row) folding.
Row folds can be alternated with column folds, by allowing
the program to choose the local “best™ fold at each step. This
procedure achieves the best results as far as compaction is con-
cerned. Multiple row and column folded PLA can be con-
strained by input/output position. An input (output) can be
required to be connected to the top, bottom, left, or right of
the array.

Program PLEASURE is coded in razfor and consists of about
5000 lines. Intermediate code in fortran 77 is available.
PLEASURE runs in 2 VAX-UNIX® environment, but is easily
transportable to other machines.

We consider now a simple example to show how the folded
array structure can be implemented. The representation of a



164 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-2, NO. 3, JULY 1983

B seess ;0 RIARSSRRISE - RRSENETREVERUODOOSSA IO USNUTOREVARERRES
C2C4Cg CgCio o .
: PLEABURE : PLA TOPOLDDICAL COMPACTION ENVIROMMENT :
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Fig. 18. PLA logical description. B T it o
::::::'nn 12
PLA as a sum-of-product logical implicants is shown in Fig. it ;;'" 3ve
18. The topological structure is represented in Fig. 1. Assume Certiom prreld
that the rows and the columns of the array have to be folded -
so that FOLDING REQUESTED

. A0H MDD COLUN FOLDING
i) the folded array has an AND-OR-AND structure;

ii) inputs to columns 1, 2, and 4 are connected from the
left side of the array;
iii) inputs to columns 3, 5, and 6 are connected from the

SIWLE COLUYN FOLDING IN THE OR PLANE
MULTIPLE COLUMN FOLDING IN THE AND PLANE

SECNENTED ARRaY

right side of the array; COLLve FOLDINGS
iv) outputs from columns 8 and 9 are connected to the top
Of the array; ORDERED COLUMN FOLDING LIST @ 1
v) outputs from columns 7 and 10 are connected to the H
bOttom Of the array' ORDEMED COLUMN FOLDING LISY ¢ 2
The PLEASURE output file is shown in Fig. 19. We have 4
chosen to show an NMOS implementation of the folded PLA ORDENED COLUMN FOLDING LIST & 3
according to the design rules suggested in [12], because of .
their generality (Fig. 20). Area-effective implementations of ?
multiple folded arrays in two-level metal and two-level poly ORDEWED COLUMN FILDING LIST & 4
processes depend heavily on manufacturer-dependent design v
rules. *°
The same PLA can be folded with the additional constraint L T
that input connection-rows are positioned according to the
input-column label order. Fig. 21 shows the PLEASURE out- ORDERED WOW FOLDING LIST o 1
put file. Note that the additional constraint leads to a less 2

[ 3
compacted structure. For example, it is not possible to fold

the bottom two rows in Fig. 21, because two connection-rows

are needed to contact both column segments ¢, and ¢4 and be oo ron "f ™ o m’: T LeFT
positioned below the fourth row from the top. H 3
The layout of small folded arrays (Fig. 20) shows that a con- M 2
siderable area is taken by the extra contacts and power and .
ground lines required by the folded structure. However, this CONTACTS 0% THE LEFT PLoE CONTACTS On THE RIGHT PLane
overhead is negligible in larger arrays. . s
PLEASURE has been tested on a large set of industrial .
PLA’s. To compare results obtained with arrays of different 2 3
sizes, the following foldings have been tried: i) unconstrained
folding; ii) column folding with constrained row positions: Foled PLA tates 30T of the eripinel ares

L(r;) = max (i- «,0); U(r;) = min (i + «, nr); &= nr/10; i) col-
umn folding with constrained connection-row positions;

Le(e;) = max (i - @, 0); Ug(c;) = min (i + a, nr); & = nr/10; PERSONALLTY mATRIX

iv) column folding with ordered connection-row assignment: 3o
S(c)=4i,i=1,2, -+, nc. The folding results and execution oo
time on a VAX 11/780 computer are reported in Table I. — i 10
VII. CONCLUSIONS EXECUTION TirE 4
In this paper, we addressed the multiple constrained folding 065 000000000:0000000 BYE BYE  SOSS0RSNISRRNRIANNY

problem of Programmable Logic Arrays. A heuristic algorithm Fig. 19. PLEASURE output file.
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FOLDING AEGUESTED
BIMPLE  CORUM FOLBING 6 THE OR PLANE
MULTIME COLUMK FOLDINE IN THE AMD PLANE
ONDERED FOLDING IN THE LEFY ARRAY
ORDERED FULDING IN THE RIONT ARRAY

Fig. 20. Folded PLA implementation.

SECHENTED AR®AY

TABLE | COLUMM FOLDINES
ComparisoN oF PLA’s FoLpep By PLEASURE witH
D1rrERENT CONSTRAINTS ORDENED COLUIS FILDING LIST & 1
]

PLA size Constraints Folding Folded Area Time ?
nr*(ni+no) lists Unfolded (sec)

Area = 100 ORDENED COLUMN FOALDING LIST ¢ 2
>

PlA L 30*(B+31) none 7 29 B s
30%(8+31) Yow positions 14 51 13
30+(B+31) conn-row positions 15 53 23 ORDERED COLAN: PDLDING LIST & 3
30%(B+31} ordered tonn-rows 15 53 168

PLAZ 52‘2231*20 none k4 37 15 M
52*(23+20 row positions 12 80 34 10
52%(23+20) conn-row positions 13 46 62
52%(23+20) ordered conn-rows 13 58 53

COLAMNE PuOt NE TOP AOWE FROM THE LEFT

PLAS 86%(8+563) none g 58 112
as*ge-sss row positions 15 87 257 4 s
BB*(8+63 conn-row positions 12 83 305 1 1
86%(B+63) ordered conn-rows 15 73 828 : s

PLA4  62%(24+14) none 11 58 = 3 s
82+{24+14) row positions 10 73 36 by 2
B2%(24+14 conn-row positions 9 B8 45
62%(24+14 ordered conn-rows 8 76 (o]

PLAS ss'éznxog none 14 54 0 CONTACTS O THE LEFY PLANE CONTACTS O THE RIOHT PLaNE
85%(27+10, row positions 10 B7 a8 3 3
85‘52?-&10) conn-row positions ] 12 87
85¢(27+10) ordered conn-rows [ 7O 59 s

PLAE  75%(35+20) none 17 53 50 2 .
75% 35+29§ row positions 19 82 119 a
THH{3I5+29 conn-row positions 18 84 189
754(35+29) ordered conn-rows 10 73 202

PLA? §3*(35+29) nene 10 48 26
53%(35+29) row positions 13 67 65 Foldod PLA tobes 70X of the sriginal ares
§3*%(35429 conn-row posilions 17 58 110
53%(35+29 ordered conn-rows 10 80 147

PLA B 223‘2474-62; none 15 38 1262 PERSINALITY MATAIX
R23%(47+62 row positions 39 55 3933
223%{47+62) conn-row posttions 39 87 4722
223%{47+62) ordered conn-rows 33 80 4769 - i -

- 3™ 30
-1 *Iv 3~
-t 1 -0
—_— 1 -3
: . 61~ .-
for multiple folding has been presented as well as two assign-
ment algorithms for PLA row/column constrained positioning. EXECUTION TINE ’
A computer program, PLEASURE, has been described and e BYE BYE  SENNIaRESSSBESRASZESE
shown to be an effective tool for interactive topological design Fig. 21. PLEASURE output file.

of logic arrays.

The PLEASURE output file contains all the topological in-  bler program, once an implementation technology is chosen.
formations for the implementation of multiple folded arrays. We have presented two PLA structures which support multiple
The layout of the masks of the folded array can be obtained folded arrays in MOS technology: the former uses two levels
from the PLEASURE output file by means of a silicon assem-  of metal (poly) and the latter one level of metal and poly.
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Future work include the development of a silicon assembler
program, that can generate the multiple folded PLA mask lay-
out according to different architectures and design rules.

PLEASURE is a part of the integrated system for Program-
mable Logic Arrays and Finite State Machines automated
design developed at the University of California, Berkeley.

APPENDIX

Proof of Theorem 5.1:

(if)

Suppose that the algorithm returns FALSE at step i, i.e.,
after having matched /- 1 row nodes to position nodes. For
the sake of contradiction, suppose that there exists a matching
E'={{rj,m;},j=1,2, -+, nr}, such that GR, N, E', A) is
acyclic.

The algorithm returns FALSE in one of the following two
cases:

Case 1: Q=¢atstepi.

There are nr - i + 1 row nodes that must be matched to posi-
tion nodes n;, j >1i. Since |[{n; EN,j>i}|=nr- i, no row as-
signment can be found satisfying the given bounds. In fact,
since 3/ > 7 such that (n), r}) €A, then [n;, - -, n;, ri,ngis a
cyclein G(R, N, E, A). Therefore, we have a contradiction.

Case 2: in-degree (n;) # 0 at step i.

Let E? be the partial assignment constructed by the algo-
rithm, i.e., EP = {{n,-,r,"’},j =1,2,---,i- 1}

We show first that the matching £’ can be transformed into
another matching E£”, such that G(R, N, E", A) is acyclic and
the row nodes matched to n;,j=1,2,---,i- 1in E” and E"
are identical. For this reason let

a =arg min {j|r] #rj”}.

Nodes r, and r% have no incoming directed edges from {n;,
j=a}. Moreover, 3ny,, ny €N, k = h > a, such that (7,
ng) €A and (7, ny) € A. Letn, €N, st. {n,, rP} €E’".
Thena <b <h <k. Let us consider the matching

E” =E’U {r(’lanb} U {rapana}_ {r(’lsna}_ {rgsnb}-

We claim that G(R, N, E", A) is acyclic. If not, there would
be at least a directed path joining one of the following node
pairs:

1) nb7r(’1
ii) ng,rf
iii) 7y, 1,
iv) r2 n,

and G(R, N, E', A) would have a cycle. In fact

i) Since b > a and there is a directed path from n, to n,,

there would be the cycle [n,,r,,n,, -, np].

ii) Since rf has no incoming directed edges from ni,j>a
there would be a directed path from 7, to a node n;,
j < a and, therefore, there would be the cycle [n,, - -
nj, e, n,l.

iii) Since r, has no directed edges into n;,j <h, there would
a directed path from a node n;, j > h to ny, and, there-
fore, there would be the cycle [n, - - -, ni, o npl.
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iv) Since b > a and there is a directed path from n, to n,,

there would be the cycle [rf, ng, -, np, rf].

LetnowE"= {n;,r' Y EE",j=1,2,+-,i- 1}. f E" =EP,
then n; has no incoming directed edges from {r; ER|;j > i}.
Suppose that {(rx, n;) €A and k >i. Then [rg, n;, * -, ng,
re] would be a cycle in G(R, N, E", A). We, therefore, have a
contradiction. If E” # EP, then we can construct a finite se-
quence of matching E”, E",---, E* using the procedure
shown above, so that G(R, N, E*, A) is acyclic and E* = EP,
where £* = {{nj, rfy€E*j=1,2,---,i- 1}. Alsoin this
case we have a contradiction.

(only if)

The algorithm terminates in a finite number of steps, be-
cause it attepts at most nr assignment. Let £ = {{n;,7;},j = 1,
2, ,nr} be the assignment constructed by the algorithm.
Since n; and r; have no incoming directed edges from {{ny |
k> U {rclk>j}j=1,2, -, nr} by construction, then
G(R,N,E, A)is acyclic.
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