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This paper presents a new approach to optimal topological
design of PLAs (programmed logic arrays). In particular we
address the array partitioning problem and the implementa-
tion of partitioned affays as block folded or parallel con-
nected PLAs. We present a graph theoretic interpretation of
the problem and an efficient heuristic algorithm. A compu-
ter program, Smile, is described and experimental results
are reported. .

design, interpretation, algorithm

degrades the time performance of the PLA by introducing
unnecessary parasitics.

The topological design aims to reduce the wasted area.
This design step has been recently investigated by several
authors. PLA folding is a powerful technique to accomplish
this task 7 -10. The objective of folding is to determine a
permutation of the rows (and/or columns) of the array
which permits a maximal set of column pairs (and/or row
pairs) to be implemented in the same column (row) of the
logic array.

An alternative approach is block foldingll which has
been referred to also as bipartite folding12 and as array
segmentationI3,1.. Block folding aims to determine a
permutation of the rows (and/or columns) of the array
such that the columns (rows) can be partitioned into two
sets and any pair of columns (rows) in different sets can
be implemented in the same column (row) of the physical
logic array (see Figures 3(b) and 4(b)).

PLA decomposition into parallel connected arrays has
AND ~ OR ptane
4, ~

PLAs (programmed logic arrays) are used extensively in
the structured design of VLSI circuits' . Multiple output
switching functions are conveniently implemented by
PLAs2,3, because they show a regular structure and can
be effectively designed and optimized with the support
of computer aids.

We consider here PLAs implementing sum-of-products
switching functions with the following structure. The PLA
consists of two adjacent arrays: the input array or AND
plane and the output array or OR plane (Figure 1). Input
signals and their complements run vertically in the AND
plane, product terms run horizontally in both planes and
outputs run vertically in the OR plane. Both arrays are
personalized by the presence of active devices in positions
corresponding to the 'cares' of the switching function.
Note that in general PLAs are implemented by two NOR
subarrays in nMOS and in cMOS technology, but this
does not affect our analysis.

The design of PLAs involves several steps as shown in
Figure 24. Boolean equations are translated first into a set
of two-level sum-of-products logical implicants. In general,
this is followed by a logic minimization, in order to reduce
the number of implicants and literals. Logic minimizers
are effective tools for this tasks,6. However most arrays are
still very sparse: the number of 'cares' is much smaller than
the number of 'don't cares". A straightforward physical
implementation results in a significant waste of the silicon
area not directly contributing to the implementation of the
logic function. The wasted area reduces circuit yield and
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Figure 3. TPM of a benchmark PLA (PLA 2) before
partitioning

or parallel connected arrays, our approach embodies the
previous proposed implementations as special cases.

BASIC CONCEPTS AND DEFINITIONS

The topological description of a PLA is contained in the
TPM (topological personality matrix) whose entries arc
1 if the corresponding element in the PLA is a 'care', and
0 otherwise8.

The TPM can be divided into two submatrices A and B
related to AND plane (input subarray) and OR plane
(output subarray) respectively. If the PLA has N inputs,
M outputs and P products, the TPM has P rows and N+M
columns (Figure 5).

We define the input (output) column set I = {ii, i2,
..., iN} (0 = {Ol, °2,... ,OM}) the set of the first N
(last M) columns of the TPM.

We define the product row set P = {PI ,P2, . .. ,pp}
the set of rows of the TPM. A product row P; is split into
two parts: PiA contains the first N entries of P; and p? the
last ones.

We define the logical conjunction (disjunction) of two
vectors x, y:

xVy (xAy) (1)
the vector obtained by the component-wise conjunction
(disjunction) of x and y. Logical conjunction (disjunction)
of n vectors will be indicated as:

n n-Vi; 1 Xi (Ai = 1 Xi)

throughout the paper.
Two vectors x,y are independent (orthogonal) if

x A y = 0, where 0 is the null vector. We denote by xl y
two independent vectors.

Two vector sets X, Yare independent if
x 1 Y V x E X and Vy E Y

Logic array partitioning relies on determining indepen-
dent sets of vectors in the TPM. A logic array is said to be
input (output) partitionable if there exist input (output)
column independent sets. An input (output) partition able
array has also independent sets of input (output) product
rowpf(p?). A logic array is said to be parallel parti-
tionable (or simply partitionable) if there exist product
row independent sets.

A parallel partitionable array is input and output
partitionable, but the inverse is not true because input
independent product row sets and output independent
product rows sets can belong to different product row sets.

(2)

been investigated by Suwa 14. A logic array is broken into
several subarrays and the outputs of the subarrays are
merged together.

We investigate in this paper a general framework for PLA
optimal topological design based on array partitioning.
Kangll proposed for the first time a heuristic algorithm
for PLA partitioning. We present in this paper a partitioning
algorithm based on a graph representation of the PLA struc-
ture. The algorithm takes advantage of array transformations
based on logical operations to ease partitioning. Since parti-
tioned arrays can be implemented as multiple block folded

(3)

BLOCK FOLDED OR PLANE
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EQUIVALENT ARRAYS AND PARTITIONING
In general the TPMs of logic arrays do not have input
and/or output independent sets of products rows and
cannot be oartitinned as they are. It is then necessary to1
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We refer the reader to LawlerJ6 for definitions of graph
theory.

The AND plane (OR plane) of a PLA can be represented
by a bipartite graph GA(/,PtF,A)(GB(P,O,EB») whose

adjacency matrix is ~ ~J ( ~T ~J). The whole

logic array is therefore represented by the union of such
graph~ ie the tripartite graph G(/,P,O,E), where
E = E U EB (Figure 6). The node sets I,P and 0 are in
one-to-one correspondence with the PLA input column,
product row and output column sets respectively.

In order to give an estimate of the silicon area taken by
the PLA we define a function F 0 on G as follows:

Fo=(al/l+bIOI)IPI+cl/l+dIOI+eIPI (8)
where coefficients a-e are parameters depending on the
physical layout of the PLA. The first term takes into
account the area of the array and the last three terms the
area taken by the drivers, the output inverters and the
loads.

We will consider now the input, output and parallel
partitioning problem in that order.

transform an array into an equivalent one before parti-
tioning it.

Two logic arrays are equivalent if they implement the
same switching function. Equivalent arrays can be of
different size and can be obtained by introducing redun-
dant rowslS and/or columnslo,13 or by rearranging the
TPM of the array by a reshapes of the logic function.

We consider in this paper a general equivalence trans-
formation based on row (column) augmentation. We define
augmentation of an input, output or product, the substi-
tution of the input, output column or product row with
a set of input, output columns or product rows that gives
an equivalent logic array. We now present rules to obtain
equivalent arrays by augmentation:
. Rule 1: input column augmentation. The logic arrays

defined by A,B and A:B are equivalent if:

0 A' is obtained from A by replacing an input column
ii with a column setlj = {ljl,ij2,'" ,iisJ such that

V:=liik=ii (4)
0 Input signals to columns in Ij correspond to input

signal to column ii'

An input partitionable array can be obtained by a
sequence of input column augmentations.

. Rule 2: output column augmentation. The logic array
defined by A,B and A,B' are equivalent if

0 B' is obtained from B by replacing an output
column OJ with a column set OJ = {OJ I , °i2,.. ., Ojs}
such that:

V;=loik = OJ (5)

0 The output signal from column OJ corresponds to the
logic conjunction of the output signals from the
column in OJ.

. Rule 3: product row augmentation. The logic array
defined by A,B and A:B' are equivalent if:

0 [A'IB'] is obtained from [AIB] by replacing a
product row Pj with a row set Pj = {Pjl' Pj2, . . . ,Pjs}
such that

s B' B
Vk=lPjk =Pj

p~'=PjA Vk=l,2,...,s

An output partitionable array can be obtained by a
sequence of product row augmentations and a partitionable
array by a sequence of product augmentations followed by
a sequence of input augmentations.

It is clear that there are many different possible aug-
mentations for a row or a column according to rules 1,
2 and 3. For optimal topological design it is convenient
that augmented rows and columns keep the array as sparse
as possible. Hence we require the augmented columns and
the output part of the augmented product rows to be
independent. Moreover optimal topological design based
on array partitioning requires the determination of an
optimal sequence of augmentations.

(6)

(7)

GRAPH INTERPRETATION OF THE
PARTITIONING PROBLEM

A graph interpretation of the partitioning problem gives a
pictorial representation of the connectivity of the array
and is useful in understanding the underlying structure.

Input partitioning
In this case we restrict our attention only on graph
GA (I, P, EA) because input partitioning does not affect
the OR plane.

Let us consider first the trivial case in which set P is the
disjoint union on n input independent sets P"i = 1,2,
. . . , n. Because of independence, input columns are also
partitioned into n disjoint sets 'i' As a consequence graph
GA is disconnected into subgraphs Gt = (lj,Pj,EjA),
j = 1,2, . . . ,n.

Each subgraph Gt represents a block of an input parti-
tioned PLA. It is straightforward that in this case an input
partitioned array has an area smaller than the original one.

However, in general, graph G is connected and the
input array is not partitionable. A transformation of the
input array into an equivalent input partitionable one is
then required: this corresponds to transform graph GA
into an equivalent disconnected one. This goal can be
achieved by an input node splitting which is the Gounter.
part of the input augmentation. The procedure is shown
in Figure 7 on a simple example.
. Input node 2 is split into two nodes 2' and 2" (column



Output partitioning
In this case we restrict our attention to graph GB(P,O,EB)
since the input node set is not affected by output parti-
tioning.

As stated above, output partitioning can be achieved
by output column and/or product row augmentation.
The procedure is shown in Figure 8 on a simple example.
. Product node 1 is split into two nodes l' and 1 II

(product row augmentation) and the edges incident to
1 are now incident either to 1 I or to 1 II. The equivalent

augmented PLA is shown with its output partitioned
implementation.

In general let us denote by llm (EB) ajartition of the edle
set EB into m subsets Ef I Er,.. - , Em- Let G1(Pj,Oj,Ej )
be any subgraph induced by the partition where Pi and OJ
are the sets of product and output nodes which are adjacent
to edges in E? - Because of output node splitting in general

m m
101 ~ ~ 10ji and IPI ~ ~ IPjl. SubgraphsGjBj = 1, 2,

1=1 j=l
. . - , m correspond to the blocks of the output partitioned
array.

An estimate of the output partitioned array area is
given by:

Figure 7. (Above left) graph GA of the original PLA.
(A hove right) graphs G~ and G~ of the input-partitioned
PLA. and (below) input-partitioned PLA

augmentation on the PLA) and the edges incident to 2
are now incident either to 2' or to 2". The equivalent
augmented PLA is shown with its input partitioned
implementation.

In general let us denote by fin (EA) a fartition of the ed1:e
setEA intonsubsetsE~,E~,...,En.LetGt(lj,Pj,Ej)
be any subgraph induced by the partition where I j and Pj
are the sets of input and product nodes which are adjacent
to edges in Et. Because of input node splitting in general

n n
III ~ 1: II j I while IPI = 1: IPjl (no product augmentation

j=l j=1
is allowed). Subgraphs Gt j = 1, 2, . . . , n correspond to
the blocks of the input partitioned array. An estimate of
the input partitioned array area is given by:

n n
FA= 1:IPjl(alljl+bIOI)+c 1:lljl+dIOI+eIPI

}=1 j-1
n

+f( ~ IIJI- III) (9)
J=l

where the last term takes into account the overhead due to
the routing of the augmented input columns.

We can now state the input partitioning optimization
problem OP1 as follows:
. Problem OP1. Find a partition n~ (EA) such that:

;A(n~(fA)) <FA(nn(fA)) \/nn(fA) and Vn(lO)

PJ()Pk=~ Vj,k=1,2,...,n; i*k (11)
Note that the optimal solution may not be unique.
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m m
+g[( 1: 10jl) -101] +h[( 1: IPjl) -IPI] (12)

j=1 jE1

where the last terms take into account the overhead due to
the routing of the augmented output columns and product
rows. We can now state the output partitioning optimiza-
tion problem OP2 as follows:
. Problem OP2. Find a partition n;" (£B) such that:

f6(n;"(~)) "f6(nm(£B))
vnm (£B) and Vm

Note that the optimal solution may not be unique.
If only output column augmentations are allowed, the

m
last term in equation (12) is equal to zero (IPI = 1: IPjl)

j=1
and then f6 can be obtained from FA by interchanging I
with O. In this case the output partitioning is exactly the
'dual' of the input partitioning. The problem OP2 is then
obtained from the problem OP1 by adding the constraint
equation (11) to equation (13).

6

II ~
I ,,0,

2 :><::>
PI
rZI °.

(13)

I,

Figure 9. (Above)graphsG1 andG2 of the parallel-
partitioned PLA (with product augmentation). (Below)
parallel-portitioned PLA (with product augmentation)

F(ni(E?)) ~ F(n,(E?)) Vn,(E?) and VI (15)

Note that the optimal solution may not be unique.
The unconstrained partitioning of the edge set E? may

lead to several product augmentations and consequently
input augmentations as required by equation (7). The
augmentation may induce a kind of chain reaction. It is
therefore more convenient to consider a constrained
partitioning of the set E? which avoids product augmenta-
tions. This corresponds to adding to equation (15) the
following additional constraint:

Pi n Pk :: 41 Vi, k :: 1, 2, . . . , I; j * k

The procedure is shown in Figure lOon the example.

Parallel partitioning

For this problem we require a graph representation of the
whole logic array by means of G (I, P, 0,£). Parallel parti-
tioning of a PLA can be obtained if we transform the
original PLA into an equivalent one whose graph G is
disconnected.

This goal can be achieved by node splittings, ie by
means of input, product and/or output augmentations.
The procedure is shown in Figure 9 on the same simple
example. The equivalent augmented PLA is also shown
with its parallel partitioned implementation.

Injenerallet us denote by ",(£B) a partition of the edge
setE into/subsets£B',EB2,... ,£B,. LetGB(Pj,Oj,EjB)
the subgraph induced by the partition where Pj and OJ are
the node sets of product and output nodes which are
adjacent to edges in Ef. Let E jA be the set of edges incident
to nodes in Pj and Ij be the set of nodes adjacent to Pi.

,
Because of output node splitting in general 101 ~ 1: 10ji

j=1
(16)I I

and IPI ~ ~ IPjl. Moreover also III ~ ~ Iljl because of
j=l /=1

the input augmentation required by equations (6) and (7).
Any subgraph Gj(li' Pi' OJ' Et UE') corresponds to the
jth PLA of the parallel partition.

An estimate of the area taken by the 'logic subarrays
and by the interconnect to route them is given by:

I I I
F= ~ IP/I(a/I/I+bIO/I) +c ~ Iljl +d ~ 1°/1

/=1 }=1 }=1
I I I

+e~IPjl+f[( 1: Iljl)-I/I) +g(( 1:1°/1)-101)
'-1 }-1 }-1

HEURISTIC CLUSTERING ALGORITHM
FOR PLA PARTITIONING

The optimization problems arising from PLA partitioning
require the minimization of a nonlinear function with
integer constraints. The objective functions depend on
the cardinality of the node subsets induced by an edge
set partitioning.

We propose a heuristic algorithm based on a cluster
searchl7 and on array transformations. We use the same
~Iuster sear~h strategy for the three partitioning problems.
For this reason we denote by G (V, E) the graph related
to a partitioning problem. The node set V is defined as
I UP, PUO and I UPUO and the edge set E as EA, EB

('4)
I

+h[( ~ IPII) -IPI]
1=1

We can now state the parallel partitioning optimization
problem OP3 as follows:
. Problem OP3. Find a partition nj(EB) such that:
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Figure 10. (Above)graphsGl andG2 of the parallel-
partItioned PLA (without product augmentation). (Below)
parallel-partitioned PLA (without product augmentation)

Partitioning algorithm

begin
while (V*,.p) do
begin

IS = .p; AS = .; OF = .p;

i= 1;
IS(i) = INSELECT [V] ;
AS(i) = ADj [/S(i)];

while ({ cluster ctiterion not satisfied}) do

begin
IS(i+1) = NEXTSELECT [AS(/)];
AS(i+1) = NEXTADj [/S,AS(i)];
i=i+1. ,

end
G(V,£) = UPDATE [G(V,E)];

end
end

Procedure ADj [I] returns the nodes adjacent to node i.
Procedure NEXTADj [/S,AS(i)] returns all the nodes
adjacent to node IS (/+ 1) not contained in u}= l/S(j).
An efficient way to evaluate the procedure IS described
in Sangiovanni Vincentelli et alu; the nodes returned by
NEXTADj are obtained from AS(/) by deleting/S(i+1)
and adding the set of all the nodes which are adjacent
to IS(i+ 1) that are not already in AS(i) or in UJ= l/S(j).
Procedure INSELECT [V] selects an initial node of the
graph G(V,E) and procedure NEXTSELECT [AS(i)]
selects the next iterating node in AS(i). Both selections
follow an heuristic criterion described in the sequel.
Procedure UPDATE [G(V,E)] stores subgraph GI (VI,E I)
and returns subgraph G2.(V2.,E2.).

Graphs G1 (VI ,E I) and G2. (V2.,E2.) are defined accord-
ing to the partitioning problem and the augmentation
strategy required. At each step of the internal while loop
of the algorithm, the set V is partitioned into three dis-
joint subsets:

X= U;:l/S(j) Y=AS(/) Z= V-X- Y (17)

The nodes in X are inside the cluster and are adjacent only
to nodes in XUY. Nodes in set Yare 'border' nodes. By
construction, the nodes in Z are not adjacent to any node
in X. Let WCX be the subset of nodes adjacent to Yat the
current step of the algorithm. Let us define XI (Xp,Xo) ,
Y I(Y p, Yo), WI(Wp, Wo), ZI(Zp,ZO) the subsets of input
(product and output) nodes of X, Y, Wand Z respectively
(ie XI = xn/).

In the case of input partitioning we augment only
input columns. Hence the set V I is obtained by adding to
cluster nodes X the input nodes Y I adjacent to cluster
nodes. Set V" is obtained by adding to the cluster comple-
ment set nodes YUZ the input cluster nodes WI adjacent
to them. Note that the product node set P is partitioned
into two subsets Xp and ZpU Y p. The edge set E is parti-
tioned accordingly: E. and £" are the subsets of E, whose
elements are incident to nodes in Xp and ZpU Y p respec-
tively. Hence we define:

G. (VI,Et) = Gt(XUYI,E I)
(18)

G" (V",E,,) = G,,(YUZUWI,E,,)

The following example illustrates this.

. Consider the AND plane of PLA shown in Figure 5.
Suppose that at one step of the internal while loop
the cluster set contains the following nodes:

and £A U£B for input, output and parallel partitioning
respectively.

The algorithm attempts first to find a node cluster
inside graph G (V, £) and then partitions V into two sub-
sets Vi and V2. The former contains the cluster nodes and
the latter the remaining ones. Let EC£ be the set of edges
joining nodes in Vi to nodes in V2.lfE is empty, the node
partition induces a graph partition into two disjoint sub-
graphs G1 (V1,£ 1) and G2 (V2,£2)' If E is not empty,
the algorithm modifies the graph by adding to Vi and V2
appropriate nodes incident to E, so that £ is partitionable
into £1 and £2 and G1 (V1,£1) and G2(V2,£2) are dis-
joint. This operation corresponds to node splitting
(augmentation) and is described in detail later according
to the different partitioning problems. Subgraph G1 (V1,£ 1)
is stored and the algorithm reattempts a cluster search on
the updated graph G(V,£) = G2 (V2,£2)' The selection of
cluster nodes is driven by the values taken by the objective
function.

Different authors have dealt with clustering related
problemsl8-». We base our algorithm on the contour
tableau approach2J,22. The contour tableau is an array of
three columns. The first one is called an IS (iterating set)
and its entries are nodes of the graph. The second one is
the AS (adjacency set) and its entries are sets of nodes of
the graph. The third column is the OF (objective function)
vector and for our purposes its entries are the values of the
area estimates FA, fB and F.

The tableau is built iteratively until a cluster is found
and convenient conditions are met to separate it from the
rest of the graph. At this point the tableau is cleared and
the algorithm restarts on the rest of the graph. The al-
gorithm is described in pidgin Algol.
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Figure ". Node sets generated by cluster algorithm

X= {/1,PI,P2}. The adjacency set is Y= {/2}. The
other two sets defined by the partitioning algorithm
are: W = {PI} and Z = {/3,P3,P4} (Figure 11).
According to equation (18) VI = {/1,/2,PI,P2}
and V2 = {/2,/3,P3,P4}.

A similar definition applies, mutatis mutandis, to the
output partitioning problem with product (output)
augmentations only..

GI(VI,EI) =GI(XUYp,EI) (19)
G2 (V2,E2) = G1(YUZUWp,E2)

(GI(VI,EI) = GI(XUYo,EI)

G2(V1,E2) = G2(YUZUWo,E2))'

In the case of parallel partitioning with input and output
augmentations only, the set VI is obtained by adding to
cluster nodes X the input nodes Y, and the output nodes
Yo adjacent to cluster nodes. Set V2 is obtained by adding
to the cluster complement set nodes YUZ the input and
the output cluster nodes W,UWo adjacent to them. Note
that the product node set P is partitioned into two sub-
sets X p and ZpU Y p as in the input partitioning problem.
The edge set E is partitioned accordingly: Eland E 2 are
the subsets of E, whose elements are incident to nodes in
Xp and ZpUYp respectively. We define:

GI (VI,E I) = GI (XUY,UYo,EI)

G1(V1,E2) = G2(YUZUW,UWo,E1)

The cluster criterion is satisfied when at least one of the
following conditions is met:

IAS(i) I = 0
'Y(IX,I,IXpl,IXol,1 y,I,IYpl,IYol,IW,I,

IWpl,IWol»'Ymax

OF(/) is a local minimum

(20)

The first condition guarantees that a cluster is found if
graph G(V,E) is not connected. The second condition
allows the user to define a scalar function 'Y of the cardi-
nality of the subsets X" Xp, Xo, Y" Yp, Yo, W" Wp and
Wo in order to specify the maximum size of each block
according to the technological constraints of the imple-
mentation of the partitioned array. The third condition
is a heuristic rule to determine a cluster. It can be also
required that OF(/) is smaller than a proper fraction of
the initial area OF(O) to ensure that partitioning is per-
formed only if it gives a considerable saving in the total
area. Since the objective function vector may have several
local minima close to each other, the cluster decision
can be taken a few steps after the minimum is detected.

We can now describe procedure NEXTSELECT.
Procedure NEXTSELECT uses a greedy strategy to select
the next iterating node among the nodes in AS(/). When
any node in AS(/) is added to the cluster node set X,
graph G (V, E) can be partitioned according to equations
(18), (19), (20) or (21) and the corresponding value of
the objective function be computed. The selected node
is the one that minimizes the objective function at that
step of the algorithm. This means that the selected node
is the 'local best' node.

Procedure INSELECT returns the initial iterating node.
As pointed out in Sangiovanni Vincentelli et al22, a node
connecting two clusters is a bad selection of initial node.
Nodes with degree 1 cannot join two clusters and hopefully
the Jower the degree of the node, the lower is the probability
of choosing a 'bad' node. Hence procedure INSELECT
returns the min-degree node in the actual implementation
of the algorithm.

It is interesting to show that the time computational
complexity of the algorithm is polynomially bounded,
although the total number of nodes may increase at each
iteration. Letn = IVI.

Theorem: The time computational complexity of the
partitioning algorithm is bounded by O(n3).

Proof: Every time the algorithm cycles through the
external while loop, procedure UPDATE [G(V,E)) returns
G2 (V 2, E 2). At least one node of the cluster set is not
added to V2, because otherwise G(V,E) = G2(V2,E2)
and the cluster condition cannot be met. Hence V2C V
and Iv I is decreasing at every step of the external loop.
The algorithm cycles at most n times through the external
while loop. Moreover since AS(/)C V and IAS(/) I <n,
the algorithm will execute at most n inner inner while
loops, because there is necessarily an integer m, m < n,
such that IAS(m)1 = 0 and a cluster condition is satisfied.
Since procedures NEXTSELECT and NEXTADj can per-
form at most n comparisons and objective function
evaluations, the time complexity of the algorithm is
bounded by O(n3).(21)

(22)

(23)

(24)

tin the case of output partitioning with product and output dupli.
cations and parallel partitioning with input, output and product
duplications, subgraphs G. (V.,E.) and G2 (V2 ,E2) are defined
differently. Since these definitions do not affect the analysis of
the algorithm, they are not reported here for the sake of simplicity

SMILE DESCRIPTION

Smile is an interactive program for programmed logic arrays
partitioning. The program is a module of an integrated
system for the automated synthesis of programmed logic
arrays and finite state machines developed at the University
of California, Berkeley, USA.

The PLA description is given as input to the program
in the form of personality matrix (Figure 3(0)). The out-
put file of logic minimizer Presto23 can be used as input
to Smile. Partitioning instructions are entered into the
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Figure 12. Check plot of a benchmark PLA (PLA 2) before
partitioning

Figure 13. Check plot of a benchmark PLA (PLA 2) after

output-partitioning

The program Smile is coded in Ratfor. Intermediate
code in Fortran 77 is available. Smile runs in a V AX-UN IX
environment, but is easily transportable to other machines.

program along with the personality in the input file. Input,
output or parallel partitioning can be requested. The pro-
gram performs input and output augmentations by default.
In the case of output partitioning, product augmentations
can be allowed.

The user can require limitation of the number of clusters,
ie the number of subarrays in which a plane (or both planes)
is partitioned as well as the maximum size of the subarrays.

Smile generates an output file containing a symbolic
matrix, representing the personality of the partitioned
array (Figure 3(b)). As an example consider the PLA shown
in Figure 3. Since the OR plane is very sparse, an output
partitioning is attempted by the program. Smile partitions
the output column set into two disjoint subsets: {os, os,
010,O11,O14,O17,01S,010} {06,07,O9,OI1,013,O1S,
016, °19, }. Three product terms, namely P3, P 11 and P 11 ,
are augmented in order to transform the original array into
an equivalent partitionable one. Figure 4 shows the output
partitioned array. The OR plane has been implemented as
a block folded array. Note that the array size has changed:
eight columns are not needed for the PLA implementation
at the expense of adding three extra rows. A global area
saving of 29 per cent has been achieved.

The Smile output file can be processed by a silicon
assembler program, which generates the mask layout of
the array according to a given technology. Note that the
symbolic array is technology independent. We used the
program Plaid~ to assemble the partitioned PLA as a
column block folded array. The check plot of the original
array is shown in Figure 12 and the block folded imple-
mentation of the partitioned array in Figure 13.

Table 1. Normalized partitioned array areas. Initial area = 100

EXPERIMENTAL REMARKS
We tested Smile on a large set of industrial PLAs. Some
results are reported in Table 1. The time spent by the algo-
rithm ranges from a few hundreds of milliseconds for PLA 1
to several seconds for larger arrays (PLA 7). Since execution
time is small, circuit designers may want to use the program
with different requirements in order to compare the differ-
ent partitioned structures.

Note that it is not possible to achieve an area reduction
of PLA 2 by means of input partitioning, because the AND
plane has a full structure (no 'don't cares').

61
6S
67
46
60
S9
S7

71
100
78
7S
7S
11
"

64
71
81
70
80
81
81

PLA 1
PLA2
PLA 3
PLA4
PLA 5
PLA6
PLA 7

CONCLUSIONS
The method presented in thi~ paper attempt~ to ~dve the
total silicon area by adding extra columns (and/or rows)
to the array. Smile is a first implementation of this method
and has been used to test its validity.



Future work in this direction includes the investigation
of more general rules for array transformations to allow
partitioning and the implementation of other partitioning
algorithms based (or not) on cluster methods.
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