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SUMMARY

Displacement techniques used for the timing analysis of VLSI circuits are presented under a new perspective. Their
numerical properties such as stability, accuracy, comistency and convergence are investigated.

1. INTRODUCTION

When analogue voltage levels are critical to circuit performance, or where tightly coupled feedback loops
are present, standard circuit simulators such as SPICE' or ASTAP? can be used to analyse the circuit.
However, when the size of the circuit becomes large, the cost and the memory requirements of conventional
circuit simulators become prohibitive and new techniques have to be used. The timing simulator MOTIS?®
was developed to simulate large scale integrated circuits. The program MOTIS was a revolutionary
simulator in two main respects:

(a) Itlimited severely the types of networks it dealt with (MOS devices with quasi-unidirectional circuit

models and a grounded capacitor on every node)

(b) It discarded both sparse Gauss elimination and conventional Newton-Raphson iteration as solution

methods.

In MOTIS the backward Euler formula was used to discretize the time derivative operator and a
non-linear Gauss-Jacobi like relaxation technique* was adopted to decouple the node equations at the
non-linear equation level. The algorithms of the timing simulators MOTIS-C® and SPLICE® perfected
this technique. In particular, SPLICE used a non-linear ‘Gauss-Seidel like' technique with a selective
trace algorithm to exploit the ‘latency’® of large digital circuits. None of these algorithms carried the
iteration of the relaxation methods to convergence: only one sweep was taken. Because of this, the
numerical properties such as stability of the integration formulae used to discretize the derivative operator
no longer hold. These methods have indeed to be considered as new integration methods. Hence a
complete analysis of their numerical properties has to be carried out to characterize them.

In this paper we formalize these relaxation or displacement methods and contrast them with a new
method proposed by W. Kahan.” Then we propose 2 model to study formally the stability, accuracy,
consistency and convergence properties of the methods. Based on this model, we evaluate the various
methods and show that the method proposed by Kahan has better stability and accuracy properties.

2. TIMING ANALYSIS ALGORITHMS

Timing analysis programs (e.g. MOTIS and the timing analysis part of the mixed mode simulator SPLICE)
assemble the circuit equations of large scale MOS circuits by using node equations.'® In this paper, we
shall assume that node equations can be always written. A sufficient condition for this to happen is that
the circuits to be analysed contain voltage controlled current sources, voltage controlled capacitors,
voltage controlled two terminal resistors and independent current sources.'® Moreover, we shall assume
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that every node in the circuit has a (possibly non-linear) capacitor called grounded capacitor, to either
ground or d.c. supply voltage rails. This assumption which is usually satisfied by most practical MOS
circuits where these capacitors are used to model the time delay of a signal propagating through the
circuit, implies that the node equations of the circuit are also state equations where the state variables
are node voltages. Since each node has a capacitor to ground, the node equations have the foliowing form:

Cv)Vv+f(v,u(1)=0, v(0)=v,.
veR"; w:R-+>R™; C():R"=»R"™;, f(-,'):R"XxR™=-+R" 1)
fov, u() =[fi(v, (1)), fo(v,w(2)), . . ., fu(v,0(1))]"

where v is the vector of node voltages, u is the vector of independent source waveforms, C(v) is the
non-linear nodal capacitance matrix and f;(v, w(¢)) is the sum of the currents flowing out of the capacitors
connected to node i. In this paper we shall also assume that no floating capacitor (i.e. capacitors connected
between two non-ground nodes) is present in the circuit. Therefore C(v) is a diagonal matrix. We assume
also that C(v)™* exists for all v of interest. Therefore we can simplify (1) as follows:

v+F(v,u(r))=0 v(0) = v,. (2)
where:
F(v,u(r))=C(v) 'f(v,u(r)) 3)

Algorithms used in the timing analysis of MOS and VLSI circuits discretize the derivative operator
by the backward Euler>® or trapezoidal formula.® In this paper we shall focus on the backward Euler
formuia

Vier1= (Vs =vi)/h 4)

where A=4.,,—# and v,., and v, are the computed voltages of the node voltors at time #.: and #
respectively. The solution of the resulting non-linear system of equations:

Vie1 =V +AF (Visy, 8(rs1)) =0 (5)

is then approximated by one sweep of a displacement technique.
The program MOTIS? uses a Gauss-Jacobi like technique which yields the following set of decoupled
equations:

1 1 12
Oie1 = Ok + AF 1 (Vkats Vhs - - -, OR, 41(1h41)) =0
2 1.2
i1 — 0z + hF2(vk, Viess - . ., UK, U2(1ks1)) =0 (6)
1,2
Vke1 = VR +AFa(Vk Vs o o DRty Un(frsn)) =0

The solution of the decoupled non-linear equations (6) is then approximated by taking a single step
of a regula falsi iteration.”’
The MOTIS-C and SPLICE programs use a Gauss—Seidel like technique. In SPLICE this technique
yields:
Vher — 0k +hF(Vis1,n8(te1))=0, i=1,2,...,n )
where
L ZFNE 1 (") SO T AL ®)

0
The solution of (7) is then approximated by using one step of the Newton-Raphson algorithm.

Another displacement technique for the solution of (1) has been proposed for a simple circuit in
reference 12. This algorithm is a symmetric displacement method reminiscent of the alternating-direction
implicit method'’ and is based on a method proposed by Kahan. The basic idea here is to ‘symmetrize’
the Gauss-Seidel scheme with a method that takes two half steps of size 4/2 each: one half step is taken
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in the usual ‘forward’ (i.e. lower triangular) direction, the second half step in the backward (i.e. upper
triangular) direction. Letting: _

=[vl,...,0h0i}..., vi-1,2)7  if 2/ is odd
i ' ©

’ .
1 i-1 § T . N
-[00-1/2. veey Di=1/2s Ve o sy vn if 2/ is even

the forward step yields:

h h
'Lﬂn-""'z Fl(ﬁun.ﬂ(hun»*’;Fi(’hn/:,t—l'('hu: D=0, i=1,2, n (10)

and the backward step:
h h ,
Vi -vi+; Fi(Vesrpw(tisy ))""4' Fi(Vee1401,8(0441)) =0, i=nn-1,...,1

The solution of the decoupled equations is then approximated by taking one step of the Newton-
Raphson algorithm. Note that none of these methods solves (5) since only one sweep of the displacement
iteration is taken. Therefore the stability and accuracy properties of the integration method used to
discretize the derivative operator no longer hold. As a matter of fact, the combination of the discretization
formula, of the various relaxation steps and of the Newton-Raphson method form a set of new integration
algorithms. These integration methods use an implicit formula to discretize the differential equations,
but they do not solve the non-linear equation obtained. Thus, they are somewhat in between explicit
and implicit methods. We call these methods ‘time advancement’ algorithms.

In the sequel we will refer to the ‘time advancement’ algorithms which use the Gauss-Jacobi, the
Gauss-Seidel and modified symmetric Gauss-Seidel displacement step as Gauss-Jacobi, Gauss-Seidel
and modified symmetric Gauss-Seidel integration algorithms respectively. In the following section the
numerical properties of these ‘time advancement’ methods will be investigated.

Before leaving this section, we remark that the ‘time advancement’ schemes described above can be
applied to any circuit whose equations are written as in (2). However, since the main issue here is speed
of computation, we focused on cases where equations of the form (2) can be assembled directly from
the input description of the circuit. In general, formulating the equations of a circuit in form (2) is
expensive in terms of computing.

In some interesting theoretical papers, Sandberg'® and Roska'®° have tackled the important problem
of the uniqueness of the solution of the non-linear algebraic equations obtained by discretizing the
differential equations describing the behaviour of the circuit. The ‘time advancement’ schemes presented
here have the nice property that since no equations are solved, the ‘well-posedness’ of the computation
involved is almost always ensured. We have only to make sure that one step of the Newton-Raphson
iteration can be taken on (6), (7) or (10), (11). Therefore, for the Gauss-Jacobi integration algorithm,
the diagonal entries of the Jacobian of F evaluated at v,, u(f,.,) must all be non-zero. For the Gauss-Seidel
integration algorithm, the diagonal entries of the Jacobian of F evaluated at ¢,.,,&[vi.,,...,
vih ks - .., ©2]7 must all be non-zero. Finally, for the modified symmetric Gauss-Seide! integration
algorithm, the condition for the Gauss-Seidel integration algorithm must be satisfied at k +4 and in
addition, an analogous condition must be satisfied for the backward step. Notice that these conditions
are indeed very mild.

3. NUMERICAL PROPERTIES OF TIMING ANALYSIS ALGORITHMS

The numerical properties of an integration method, such as stability, are studied on test problems
which are simple enough to allow a theoretical analysis but still so general that one can have insight
about how the method behaves in general. For the commonly used multistep methods, the test problem
consists of a linear time-invariant asymptotically stable autonomous differential equation. Unfortunately
this simple test problem cannot be used to evaluate the displacement techniques introduced in Section

13,14
*
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2. In fact, each variable of the system of differential equations is treated differently according to the
ordering in which equations are processed. Hence a more complex test problem is needed. The test
problem we choose is a linear time-invariant asymptotically stable system of autonomous differential
equations, i.e.

= Ax, x(0) =x,. (12)

where A€ R"™" and the set of eigenvalues (spectrum) of A, o(A), is in the open left half complex plane,
i.e., o(A)e Co. In circuit theoretic terms, we consider as test circuits linear circuits whose natural
frequencies are in the open left half plane and which satisfy the assumptions described in Section 2. Let
A=L+D+U, where L is strictly lower triangular, D is diagonal and U is strictly upper triangular. The
displacement methods presented in Section 2 applied to the test system (12) yield the following recursive
relations:

(a) Gauss-Jacobi integration algorithm:

(I-ADxi.)=[I+A(L+U)k,. (13)
X1 = Mgj(h)xs. (14)
where 1 is the identity matrix and
Mg(h) = [1-AD] '[I+h(L+U)]
(b) Gauss-Seidel integration algorithm:
A-AD+L)xis =T+ AUk,

Xi+1 ™= Mas(h)x, 17)
where

Mos(h)=[I-h(D+L)]"'[I1+AU)

(c) Modified symmetric Gauss-Seidel integration algorithm:
Let:

Ac=L+iD Ay=U+iD 19)

Forward step:

[x—f(zun)]x..m- :l+§(n+w)]xk

h 'k
[l"i AL]lhx/z = _“’5 AU]&

- h -1 h
Xe+172"= .l—i AL] [l+5 Au]x;‘

Backward step:

[l—% D+ 2U)]x,‘,, = l+g (2L + D)]!uu:

Ok “Ir h
X411 = Ll"i Au] [l +§ AL]‘k*llz

Combining (22) and (24) we obtain:
Xr+1 = Mg(h)x,
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-1 h
[‘*5‘“’]

The matrices Mg;(h), Ms(h) and Ms(h) are called the companion matrices of the methods. 1f we denote
by M(k) the generic companion matrix of a method, we have:

x. = [M(h)) 0.

where

Ms(h) = [l-gAu]-l[HgA.,][l-gAL

We define next the numerical properties of the integration algorithms described by (27) following the
outlines of one-step integration methods applied to ordinary differential equations.‘

Definition 1. (consistency)

An integration algorithm is consistent if its companion matrix can be expanded in power series as a
function of the step-size h as:

M(h)=1+hA+O(h%

Definition 2 (stability)
An integration algorithm is stable if 35 >0, 3N >0 such that Vx,eR", 3k>0

<N Vk >k Vhel0,3d), (29)

where x, is the sequence generated by the algorithm applied to the test problem according to (27).

Definition 3 (convergence)

Let x(r) be the exact solution of the test problem. An integration algorithm is convergent if the sequence
of the computed solution converges uniformly to x(¢) as the step-size h tends to zero.

Theorem 1

The Gauss-Jacobi, Gauss-Seidel and modified symmetric Gauss-Seidel integration algorithms are
consistent.

Proof. (a) Let us consider the Gauss-Jacobi integration algorithm first. To expand the companion
matrix given by (15) in a power series as 8 function of the step-size A, we compute

f;umm-u—hnr*na-hnr'n+h<l.+m1+n-hnr‘(Lw) (30)
and
d—thg,(O)-D+L+U=A (31)

where ;d; Mo;(0) is the derivative of Mog;(h) evaluated at A =0. It follows that

Mo;(h)=1+hA+O(h?) 32)

(b) The consistency of the Gauss-Seidel integration algorithm follows, ‘mutatis mutandis’, by a similar
argument.
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(c) For the modified symmetric Gauss-Seidel integration algorithm, we have:

d h, 11 A, 1T'[uh A TY. . h
thS(h)’B[‘-EAU EAU[‘-EAU] [l"’iAL][l"iAL] [l+-iAU]

NN SNy
RN BN SN ENRE

PO B L R 1T
*["5“0] ['*5&]["5*&] 2Av

ﬁ-Msm)siAuﬂAwiAuiAu-A

and

Hence:
M;(h)=1+hA+O(h?) 35)

The definition of stability requires the boundness of the sequence at X for small values of the stepsize
h. The following proposition relates the boundness of the sequence xi t0 the spectrum of M(h).

Proposition 1'°

The sequence of vectors {x.} defined by (27) is bounded for a given value of the stepsize A if and only
if the spectrum of M(h) is contained in the unit ball B(0, 1), i.e. o(M(h)) s B(0,1) and no multiple zero
of the minimal polynomial of M(h) has modulus equal to one.

In the sequel we restrict our analysis to the cae in which the step-size is constant. From Proposition
1 it is immediate to derive the following theorem:

Theorem 2

An integration algorithm is stable if and only if 35 >0 such that Vh [0, 8) the spectrum of M(h) is
contained in the unit ball B(0, 1) and no multiple zero of the minimal polynomial of M(h) has modulus
equal to one.

Theorem 3

The Gauss-Jacobi, Gauss-Seidel and modified symmetric Gauss-Seidel integration algorithms are
stable.

Proof. From the consistency of the above mentioned algorithms we have

M(h)=1+hA+O(h%) (36)
By the spectral mapping theorem'®
oM(h) = {616 =1+h,+O(h)); A ea(A);i=12,..., o} (37
From (37) we have:
=11 +hA+ORY, i=1,2,...,0 (38)

and
|2 =[1+h Re A)F+[h Im W)} + O(h?) (39)
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Since M(0) = 1, its eigenvalues are all 1, and 1 is a simple zero of the minimal polynomial of the identity
matrix. Therefore from Theorem 2 it is sufficient to show that:

o(M(h))<=B(,1) VYhe(0,8) (40)

i.c. from (39)

l6P<1 VYhe(0,8) i=12,...,0 (41)
From (41), we have:

2Re(A)+h(Re*(A)+Im* A )+ O(h)<0 i=1,2,...,0

2Re(A))+O(h)<0 i=1,2,...,0

Since by assumption Re(A;)<0,i=1,2,...,0, 36 >0, such that Vx € (0, 8),
o(M(h))<= B(0, 1).

Corollary 1

The Gauss-Jacobi; Gauss-Seidel and modified symmetric Gauss-Seidel integration algorithms are
convergent.

Proof. Follows from Theorems 1 and 3 and the classical convergence theorem.

For computational efficiency, it would be highly desirable that the stepsize be limited only by accuracy
considerations as in the case of the implicit backward differentiation formulae.'’ In the case of classical
multistep methods, the concept of A-stability'* and stiff-stability'> have been introduced to test the
‘unconditional’ stability of multistep methods. For the ‘time-advancement’ techniques introduced in this
paper, it would make sense to define a similar concept. Unfortunately, general results of ‘unconditional’
stability are not available for the test problem previously defined, but only for a subclass, the subclass
characterized by a symmetric A matrix. In circuit theoretic terms, we are now considering linear circuits
whose node equations yield a symmetric nodal admittance matrix when only the resistive part of the
circuit is considered. Moreover it is required that this matrix remain symmetric when premultiplied by
C~!, the diagonal matrix of the grounded capacitors. A sufficient condition for this to occur is that the
circuit consists of two terminal linear resistors and capacitors, and that the grounded capacitors be equal.
The case of unequal grounded capacitors can also be included in this class provided that a scaling of the
rows of the matrix is performed.

Definition 4. (A-stability)
An integration method is A-stable if 3N >0 such that Vxoe R", 3k
Iki<N Vk>k Vhel0, ). (45)
where {x,} is the sequence generated by the method applied to the test problem (12) with A symmetric.

Theorem 4

The modified symmetric Gauss—Seidel method is A-stable.

Proof. Since A is symmetric and o(A) € Co, A is a negative definite matrix. For h = 0, Ms(0) =1, the
eigenvalues of Ms(0) are all 1, and 1 is a simple zero of the minimal polynomial. Hence we need only
to see where the eigenvalues of Mg(h) lie when A € (0, o). Let us apply to Ms(k) a similarity transformation:

- h R, 1
#s(h) = [1-3 A s 1-3 Au] 46)
and factorize Mg as:

Mq(h) = P(h)Q(h) 47
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where
P(h)= [l+gA,_][l—gA;]-‘ (48)
o= +§A.,][:-§Au]4 49)

Now:

h AT h _h

—— (['*2 AL][' 2“](‘:)['*2“][' 3AJx) 50)
y=[1-2a] " (51)

Then:

T~

[ h h
15 Ay [1+3 A ]5)

(-3adn[-50)

[P(h)|} = max
y»0

(52)

h h?
y, )+ 3 (y, Ay) Ay (y, AvALy)
plkiirs h h (53)
Ay, V-3 @ AN+ (. AvAry)

Since Yy, (Ary, ALy) >0, and A is negative definite

PR)Z<1 Vhe (0, ). (54)
Hence:

P(h)l.<1 Whe (0, ). (55)
It can be proved in a similar way that

RAL<1 Vhe(0, o) (56)
Hence:

Ms(Wl <IPRIQRI<1  Vh € (0, ). (57)
and:
o(Ms(h)) =o(Ms(h))cB(0,1) Vhe (0, o).

Remark

Note that we cannot prove any A stability result for the Gauss-Jacobi and the Gauss-Seidel integration
methods. In our practical experiments, we have seen that when applied to circuit problems, the modified
symmetric Gauss-Seidel method is indeed ‘more stable’ than the other two methods.

Now we are going to discuss the accuracy of the integration methods presented in this paper. Once
more, we are going to define accuracy in terms of the test problem (12).
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Definition 5

Let x(#) be the exact value of the solution of the test problem at time .. Let x, be the computed
solution at time f, assuming Xi-; = X(f-;) i.c. that no error has been made in computing the previous
time point-value of x. Letting h = ¢, —#,_,, the local truncation error is defined to be

€ =|x(t) - x (58)
If e = O(h™"), r is said to be the order of the integration method."
Theorem 5
The Gauss-Jacobi and Gauss-Seidel integration methods are first order integration algorithms.
Proof. From (58) we have:
e = fx(t) - x. ) (59)
=fie** - M)xe-, | (60)
By expanding ¢"* in power series of A and by Theorem 1,
e={I+hA+O(h*)~1-hA - O}z il
=O(h%)
Theorem 6

The modified symmetric Gauss-Seidel algorithm is a second-order integration algorithm.

Proof. Since the matrices [l+é A;]and [l+ﬂ A, ]! commute, then:

2 2
BT A, T'[L & h
Me=[1-3A0] [1-3A] [1ega][1+3A0]
h_ h? r k., K
-[l“EA'FTALAu] [l+§A+TALAU]
h? s
-l+hA+?A+O(h ).
Hence.
e =ll(e"* - Ms)xi il = O(h%) (65)

In circuit analysis, another important criterion for evaluating the accuracy of an integration method,
is what we call ‘waveform accuracy’. In general, the computed solution of a system of differential equations
is the superposition of a principal solution and parasitic solutions.'® Parasitic solutions are generated by
the numerical approximations of the integration methods. In particular, an nth order integration algorithm
yield n —1 parasitic solutions when applied to the test problem. For the algorithms we are dealing with
in this paper, the displacement technique used introduce spurious components also that we shall call
numerical solution components.

Proposition 2

Oscillatory numerical solution components are present in the computer solution if the spectrum of the
companion matrix M(h) contains complex conjugate eigenvalues.

If the original system to be analysed does not contain an oscillatory component, the presence of such
a component in the computed solution can be misleading in the evaluation of the performances of the
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system.'® Therefore we introduce a subclass of the test problem, characterized by o(A) < R : i.e. the set
of test problems which does not have an oscillatory component in the solution, and we look for bounds
on the oscillatory components of the computed solutions.

Theorem 1 gives a bound on the oscillatory components of all the methods. In particular it is obvious
that, by choosing an appropriately small step-size A, the numerical solution oscillatory components can
be made negligibie with respect to the principal solution.

If we restrict the class of the test problems to the subclass characterized by a symmetric A matrix,
then we can prove a much stronger result for the modified symmetric Gauss-Seidel integration method.

Theorem 7

If A is a real symmetric matrix, the spectrum of the companion matrix of the modified symmetric
Gauss-Seidel integration method 15 real, i.e. no oscillatory parasitic components are present in the
computed solution.

Proof. Let us factorize matrix M; as in (63)

Ms=PQ (66)
2 -1
r-[l-gA«»"TALAU]_ 67
A, A
Q= [l+iA+7ALAU]

Since A Ay is a positive semidefinite symmetric matrix and — A is symmetric and positive definite it
follows that P is a symmetric positive definite matrix. The matrix Q is the sum of symmetric matrices,
hence symmetric. Since

P= i AR, (69)

iml

where A, are the eigenvalues and R, are the residues of matrix P, then

o
P”z = z \/A, R,’
(L)
P'/? is a symmetric matrix, since the residues R, are symmetric matrices. Let us consider now the similarity
transformation:

m-r—llzmsrllz (71)
- Pl/20P1/2 (72)

The matrix Ms is symmetric and therefore has real eigenvalues. Then by similarity also Mg has real
eigenvalues.

4. CONCLUSIONS

We have investigated the numerical properties of certain displacement techniques used for the timing
analysis of VSLI, MOS circuits: the Gauss-Jacobi method used in MOTIS, the Gauss-Seide! method
used in MOTIS-C and SPLICE, and a method proposed by Kahan called here modified symmetric
Gauss-Seidel method. The algorithms have been discussed for circuits containing no floating capacitors.
We have shown that from stability and accuracy viewpoint, the modified symmetric Gauss-Seidel
integration algorithm outperforms the other two methods. When floating capacitors are present, the
algorithms have to be modified to deal with the additional coupling between equations introduced by
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e capacitors. The analysis of the modified algorithms is complex and is carried out in Reference 17,

where experimental results are also presented and discussed.
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