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SUMMARY
Displacement techniques used for the timinJ anaJ)'Iis of VLSI circuits are presented under a new perspective. Their
numerical prope.Jes 1ud2 ultability. ac;curaey. ~ncy and converaence are investigated.

1. INTRODUcnON

When analogue voltage levels are critical to circuit performance, or where tightly coupled feedback loops
are present, standard circuit simulatoR such u SPICE' or ASTAp2 can be used to analyse the circuit.
However, when the size of the circuit becomes large, the cost and the memory requirements of conventional
circuit simulatoR become prohibitive and new techniques have to be used. The timing simulator MOTIS'
was developed to simulate larae scale integrated circuits. The program MOTIS was a revolutionary
simulator in two main respects:

(a) It limited severely the types of networks it dealt with (MOS devices with quasi-unidirectional circuit
models and a grounded capacitor on every node)

(b) It discarded both sparse Gauss elimination and conventional Newton-Raphson iteration as solution
methods.

In MOTIS the backward Euler formula was used to discretize the time derivative operator and a
non-linear Gauss-Jacobi Jike relaxation technique. was adopted to decouple the node equations at the
non-linear equation level. The algorithms of the timing simulatoR MOTIS-c' and SPLICE6 perfected
this technique. In particular, SPLICE used a non-linear 'Gauss-Seidel like' technique with a selective
trace algorithm to exploit the 'latency" of large digital circuits. None of these algorithms carried the
iteration of the relaxation methods to convergence: only one sweep wu taken. Because of this, the
numerical properties such as stability of the integration formulae used to discretize the derivative operator
no longer bold. These methods have indeed to be considered u new integration methods. Hence a
complete analysis of their numerical propertjes has to be carried out to characterize them.

In this paper we formalize these relaxation or djspJacement methods and contrast them with a new
method proposed by W. Kahan.9 Then we propose a model to study formally the stability, accuracy,
consistency and converaence propemes of the methods. Based on this model, we evaluate the various
methods and show that the method proposed by Kahan hu better liability and accuracy properties.

2. 11MING ANALYSIS ALGORITHMS

Timing analysis proJl'8ms (e.l. MOnS and the timina analysis part of the mixed mode simulator SPLICE)
assemble the circuit equations of larae scale MOS circuits by usina node equations.1o In this paper. we
mall assume that node equations Qn be always written. A sufficient condition for this to happen is that
the circuits to be analysed contain voltage controlled current sources, voltaae controlled capacitors,
voltage controlled two terminal resistoR and independent current sources.1o Moreover, we shall assume
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that every node in the circuit has a (possibly non-linear) capacitor called grounded capacitor, to either
ground or d.c. supply voltage rails. This assumption which is usually satisfied by most practical MOS
circuits where these capacitors are used to model the time delay of a signal propagating through the
circuit, implies that the node equations of the circuit are also state equations where the state variables
are node voltages. Since each node has a capacitor to ground, the node equations have the following form:

C(y)ir + I(y, 8(t» K 0, y(O) = Yo.

.eR"; 8:R..R-; C('):R"..R"."; 1(', '):R" xR"'..R" (1)

I(y, 8(t)) - [/1(., 8(t), h(y, .(t», . . . ,I.. (y, 8(t»]T

where" is the vector of node voltages, 8 is the vector of independent source waveforms, C(v) is the
non-linear nodal capacitance matrix and I,(y, 8(t) is the sum of the currents flowing out of the capacitotS
connected to node i. In this paper we shall also assume that no floating capacitor (i.e. capacitors connected
between two non-ground nodes) is present in the circuit. Therefore C(v) is a diagonal matrix. We assume
also that C(y)-l exists for all y of interest. Therefore we can simplify (1) as follows:

++F(V,8(t»-0 .(0)=.0' (2)

where
F(v. 8(1» - C(v)-lf(v. 8(1» (3)

Algorithms used in the timing analysis of MOS and VlSI circuits discretize the derivative operator
by the backward EuJer,6 or trapezoidal formula.5 In this paper we shall focus on the backward Euler
formula

+t+l=(Vt+l-Vt)/h (4)

where h - It+l- It and Vt+l and Vt are the computed voltages of the node voltors at time It+l and It
respectively. The solution of the resulting non-linear system of equations:

Yt+l-Yt +hF(Vt+l. .(rt+l» - 0 (5)

is then approximated by one sweep of a displacement technique.
The program MOnS3 uses a Gauss-Jacobi like technique which yields the following set of decoupled

equations:
Vl+l - vl + hF1(vl+l. V~ . . .. vi. "1(tt+.» - 0

V~+1 - V~ + hF2(vl. V~+I. . . . . v.. "2(tt+l» - 0 (6)

V.+l - v. + hFn(v l. v~ . . . . V.+l. "n(tt+l» - 0

The solution of the decoupled non-linear equations (6) is then approximated by taking a single step
c4.. ng,,/a falsi iteration.]1

The MO"I'lS-C and SPUCE proarams use a Gauss-Seidel like technique. In SPLICE this technique
yieJds:

(7)11~+1 - f)~ + hF,(i.+1.,,8(t.+l» - 0, ;-1,2,...,"
where

- [ Ii i+l " ]T
(8).i+l.'- Vi+lo'" 0 Vi+lo Vi 0'" 0 Vi.

The solution of (7) is then approximated by usina one step of the Newton-Raphson algorithm.
Another displacement technique for the solution of (1) has been proposed for a simple circuit in

reference 12.1bis algorithm is a symmetric displacement method reminiscent of the alternating-direction
implicit method11 and is based on a method proposed by Kahan. The basic idea here is to 'symmetrize'
the Gauss-Seidel scheme with a method that takes two half steps of size h/2 each: one half step is taken
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in the usual 'forward' (i.e. lower trianJUlar) direction, the second half step in the backward (i.e. upper
triangular) direction. Letting:

[ 1 I 1+1 " ]T- V"..., Vit V,-l/29 . . . 9 V,-1/2

[ 1 I-I I ~T- "1-1/29'" 9 V,-l/2, V,. . . . 9 V, J

if 2/ is odd

if 2/ is even
'1,1 (9)

the forward step yields:

(10)"
and the backward step:

The solution of the decoupled equations is then approximated by taking one step of the NeWton-
Raphson algorithm. Note that none of these methods solves (5) since only one sweep of the displacement
iteration is ~ken. TherefoJ'e the stability and accuracy properties of the intearation method used to
discretize the derivative operator no longer hold. As a matter of fact, the combination of the discretization
formula, of the various relaxation steps and of the NeWton-Raphson method form a set of new integration
algorithms. These intearation methods use an implicit formula to discretize the differential equations,
but they do not solve the non-linear equation obtained. Thus, they are somewhat in between explicit
and implicit methods. We call these methods 'time advancement' a)aorithms.

In the sequel we will refer to the 'time advancement' algorithms which use the Gauss-Jacobi, the
Gauss-Seidel and modified symmetric Gauss-Seidel displacement step as Gauss-Jacobi, Gauss-Seidel
and modified symmetric Gauss-Seidel integration atgorithms respectively. In the followina section the
numerical properties of these 'time advancement' methods will be investigated.

Before leaving this section, we remark that the 'time advancement' schemes described above can be
applied to any circuit whose equations are written as in (2). However, since the main issue here is speed
of computation, we focused on cases where equations of the form (2) can be assembled directly from
the input description of the circuit. In general, formulating the equations of a circuit in form (2) is
expensive in terms of computing.

In some interesting theoretical papers, Sandberal' and Roskal9.2O have tackled the important problem
of the uniqueness of the solution of the non-linear algebraic equations obtained by discretizina the
differential equations describina the behaviour of the circuit. The 'time advancement' schemes presented
here have the njce property that since no equations are solved, the 'well-posedness' of the computation
involved is almost always ensured. We have only to make SUTe that one step of the NeWton-Raphson
iteration can be taken on (6), (7) or (10), (11). Therefore, for the Gauss-Jacobi intearation algorithm,
the diagonal entries of the Jacobian of F evaluated at Yt, .(It+l) must all be non-zero. For the Gauss-Seidel
intearation algorithm, the diagonat entries of the Jacobian of F evaluated at ft+l.iA[vl+I'.."
Vi:JI, v~, . . . , V;]T must atl be non-zero. Finally, for the modified symmetric Gauss-Seidel integration
aJ,orithm, the condition for the Gauss-Seidel integration alaorithm must be satisfied at k + i and in
addition, an anaJoaous condition must be satisfied for the backward step. Notice that these conditions
are indeed very mild.

3. NUMERICAL PROPERllES OF llM1NG ANALYSIS ALGORITHMS

The numerical properties of an integratjon method, such u stability, are studied on test problems13,1.,
which are simple enough to allow a theoretical analysis but still 10 leneral that one can have insight
about how the method behaves m leneral. For the commonly used multistep methods, the test problem
consists of a linear time-invariant uymptotically stable autonomous differential equation. Unfortunately
this simple test problem cannot be used to evaluate the displacement techniques introduced in Section
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2. In fact, each variable of the system of differential equations is treated differently according to the
ordering in which equations are processed. Hence a more complex test problem is needed. The test
problem we choose is a linear time-invariant asymptotically stable system of autonomous differential
equations, i.e.

i-As. (12).(0) =ao.

where AeR"X" and the set of eigenvaJues (spectrum) of A, (1'(A), is in the open left half complex plane,
i.e., (1'(A) e Co. In circuit theoretic tenDS, we consider as test circuits linear circuits whose natural
frequencies are in the open left half plane and which satisfy the assumptions described in Section 2. Let
A = L + D + U, where L is strictly lower triangular. D is diagonal and U is strictly upper triangular. The
displacement methods presented in Section 2 applied to the test system (12) yield the following recursive
relations:

(a) Gauss-Jacobi integration algorithm:

[1- hD]Kt.+1- [I+h(L+ U)JKt..

at.+1- Mo,(h)z..

(13)

(14)

where I is tht.. identity matrix and

Mo,(h) - [I-hD]-I[I+h(L+ U)]

(b) Gauss-Seidel integration al&orithm:

[I-h(D+L»)Kk+l- [1+ hU)Kk
"'+1 - Mos(h)ak (17)

where

Mos(h) = [1-11(0+ L)]-l[1+IIU]

(c) Modified symmetric Gauss-Seidel integration algorithm
Let:

AL-L+lo Au-u+io (19)

Forward step:

Backward step:

Combining (22) and (24) we obtain:

a'+l-Ms(h)a..
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where

The matrices MoJ(h), Mos(h) and Mslla) are caned the companion matrices of the methods. If we denote

by M(h) the generic companion matrix of a method, we have:

Sk.-[M(h)]kKo.

We define next the numerical properties of the integration algorithms described by (27) following the

outlines of one-step integration methods applied to ordinary differential equations:)

Definition 1. (consistency)
An integration algorithm is consistent if its companion matrix can be expanded in power series as a

function of the step-size h as:

M(h) -I + h A. + O(h 2)

Definition 2 (stability)
An integration algorithm is stable if 38 > 0, 3N > 0 such that "'So e R ", 3k > 0

(29)Iskll<N Vk ~f Vh e[O, 8),

Definition 3 (convergence)
Let s(t) be the exact solution of the test problem. An integration algorithm is convergent if the sequence

of the computed solution converges uniformly to s(t) as the step-size h tends to zero.

Theorem 1
The Gauss-Jacobi, Gauss-Seidel and modified symmetric Gauss-Seidel integration algorithms are

conftstent.
Proof. (a) Let us consider the Gauss-Jacobi integration algorithm first. To expand the companion

matrix given by (15) in a power series as a function of the step-size h, we compute

(30).
and

(31)ddh MoJ(O) - D+ L+ \J - A

where 1h MoJ(O) is the derivative of MoJ(It) evaluated at It - O. It follows that

(32)MoJ(1I) -I + 1IA + 0(112)

(b) The consistency of the Gauss-Seidel integration algorithm follows, 'mutatis mutandis', by a similar

argument.
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and

Hence: (35)Ms(h) -I + II A + 0(11 2)

Proposirion 1 \5
The sequence of vectors {St} defined by (27) is bounded for a given value of the stepsize h if and only

if the spectrum of M(h) is contained in the unit ball B(O, 1), i.e. u(M(h» ~ B(O, 1) and no multiple zero

of the minimal polynomial of M(h) has modulus equal to one.
In the sequel we restrict our analysis to the cae in which the step-size is constant. From Proposition

1 it is immediate to derive the followina theorem:

Theorem 2An integration algorithm is stable if and only if 38> 0 such that V h E [0, 8) the spectrum of M(h) is
contained in the unit ball B(O,1) and no multiple zero of the minimal polynomial of M(h) has modulus

equal to one..

(37)
By the spectral mappina theorem's

u(M(h)) -{l,lli -1 +hA,+O(h2); AI Eu(A);; -1, 2,..., u}

From (37) we have:
(38)

IEil-ll+#aAi+O(h%>I.1-1,2, . . . , t1'

and (39)

stable.
Proof. From the consistency of the above mentioned algorithms we have

M(h)-I+hA+O(h2) (36)
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Since M(O) -I, its eiaenvalues are all 1, and 1 is a simple zero of tbe minimal polynomial of tbe identity
matrix. Therefore from Theorem 2 it is sufficient to sbow tbat:

u(M(h»cB(0,1) Vhe(0,8) (40)
i.e. from (39)

(.1)Iljj2 < 1 Vi E (0, I) 1-1.2,. . . . D'
From (41), we have:

2Re(Al) + h(Re2(A.l)+Jm2(Ai)+O(II)<0 ; -1,2,. .., v

2Re(Aj)+O(h)<0 ;-I,2,...,v

Since by assumption Re(Aj) <0, i-I, 2,..., v, 38 >O,lucb that Vh E (0, 8),

v(M(h»)cB(O, 1).

Corollary 1

The Gauss-Jacobj; Gauss-Seidel and modified symmetric Gauss-Seidel intearauon alaorithms are
convergent.

Proof. FolJo" frcxn Theorems 1 and 3 and the classical converaence theorem.
For computationa1 efficiency, it would be hiahly desirable that the stepsize be limited only by accuracy

considerations as in the case of the implicit backward difterentiation formulae. 1) In the case of classical

mu1tistep methods, the concept of A-stabilityl. and stift-stabilityl) bave been introduced to test the
'unconditional' stability of mu1tistep methods. For the 'time-advancement' techniques introduced in this
paper, it would make sense to define a similar concept. Unfortunately, leneral resu1ts of 'unconditional'
stability are not available for the test problem previously defined, but only for a subclass, the subclass
characterized by a symmetric A matrix. In circuit theoretic terms, we are now considering linear circuits
whose node equations yield a symmetric nodal admittance matrix when only the resistive part of the
circuit is considered. Moreover it is required that this matrix remain symmetric when premultiplied by
C-1, the diagona1 matrix of the IJ'ounded capacitors. A sufficient condition for this to occur is that the
circuit consists of two termina1linear resistors and capaciton, and tbat the lJ'Ounded capaciton be equal.
The case of unequal IJ'ounded capacitors can also be included in this class provided that a scaling of the
rows of the matrix is performed.

.
D~finition 4. (A -slIIbiJity)

An intearation method is A-stable if 3N > 0 such that VZQE RIO, 3£

UK.H<N Vk~£ VhE[O,~). (45)

where {Xt} is the sequence generated by the method applied to the tat problem (12) with A symmetric.

and factorize Ms as:
Ms(h) - P(h)Q(h) (47)

~orem 4

The modified symmetric Gaua-SeideJ method iI A-stab1e.

Proof. Since A illymmetric and v(A) e Co, A is a neaative definite matrix. For It - 0, Ms(O) = I, the
eiaenvaluel of Ms(O) are aU I, and 1 is a simple zero of the minimal polynomial. Hence we need only
to see where the eigenvalues of Ms(It) lie when It e (0, ~). Let us apply to Ms(lt) a similarity tranlformation:
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where

(48)

(49)

Now:

(50)<.. K)

-t

y- [I-~AL (51).
Then:

(52)

(53)-max
,-0 h h

<1, J)-2<1, AJ)+.<1, AuALJ')

Since VY. (AL.1. AL1) > O. and A is negative definite

IIP(h)II~< 1 Vh E (0, «». (54)

Hence:

uP(h)U2< 1 Vh E (0, ~). (55)

It can be proved in a similar way that

ftQ(h )Ib < 1 VII E (0, ~). (56)

Hence:

~s(h >0 ~ O.(h >UI/Q(h >11 < 1 VilE (0. «). (57)

and:

u(Ms(h» - D'(Ms(h»cB(O, 1) Vh E (0, ~).

Remark

Note that we cannot prove any A stability result for the Gauss-Jacobi and the Gauss-Seidel integration
methods. In our practical experiments, we have seen that when applied to circuit problems, the modified
symmetric Gauss-Seidel method is indeed 'more stable' than the other two methods.

Now we are loinl to discuss the accuracy of the intearation methods presented in this paper. Once
more, we are ,oin, to define accuracy in terms of the test problem (12).
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Definition .5

Let X(lt) be the exact value of the solution of the test problem at time It. Let Xt be the computed
solution at time It assuming Sk-t - Z(lt-t) i.e. that no error has been made in computing the previous
time point-value of x. Letting h - It - It-t, the local truncation error is defined to be

.-IIx(lt)-xtU (58)
U. - O(II..t). r is said to be the order of the integration method.t3

Theorem 5

The Gauss-Jacobi and Gauss-Seidel integration methods are tint order integration algorithms.

Proof. From (S8) we have:

(59)

(60)
By expanding e

. -la(t.)-s.n
-1I(e~A- M)x.-ll1

~A in power series of h and by Theorem I,

E -1K1+hA+O(h2)-I-hA-O(h2)}x.-1H

- O(h2)
Theorem 6

The modified symmetric Gauss-Seidel algorithm is a second-order integration algorithm.

Proof. Since the matrices [I+~AL] and [1+~Au-1 commute, then:

Hence
B -1\(ehA-Ms)st-ll1 = O(h') (65)

In circuit analysis, another imponant criterion for evaluating the accuracy of an integration method,
is what we caJJ 'waveform accuracy'. In general, the computed solution 01. system of differential equations
is the superposition of a principal solution and parasitic solutions.1' Parasitic solutions are generated by
the numerical approximations of the intelf8tion methods. In particular, an nth order integration algorithm
yield n -1 parasitic solutions when applied to the test problem. For the algorithms we are dealing with
in this paper, the displacement technique used introduce spurious components also that we shall call
numerical solution components.

Proposition 2

Oscillatory numerical solution components are present in the computer solution if the spectrum of the
companion matrix M(h) contains complex conjugate eigenvalues.

If the original system to be analysed does not contain an oscillatory component, the presence of such
a component in the computed solution can be misleading in the evaluation of the performances of the



308 GIOVANNI DE .oaIEU AND A1.8ERTO SANGIOVANNI.VINCENTEW

Syltem.161berefore we introduce a subclass of the test problem, characterized by u(A) c R 0: i.e. the set
of test problems which does not have an oscillatory component in the solution, and we look for bounds
on the oscillatory components of the computed solutions.

Theorem 1 lives a bound on the oscillatory compo"nents of all the methods. In particular it is obvious
that, by choosinl an appropriately small step-size It, the numerica1solution oscillatory components can
be made nelliaible with respect to the principal solution.

U we restrict the clus of the test problems to the subclass characterized by a symmetric A matrix,
then we can prove a much stronler result for the modified symmetric Gauss-Seidel intearation method.

neonm 7
U A is a real symmetric matrix, the spectrum of the companion matrix of the modified symmetric

Gauss-Seide] in~grafjon method is real, i.e. no oscillatory parasitic components are present in the
computed solution.

Proof. Let us factorize matrix Ms as in (63)

(66)

(67)

Ms-PQ
[ h h2 J-t P- 1--A+-ALAu

2 4 .
[ h A2

JQ- 1+2A+4~Au

Since ALAu is a positive semidefinite symmetric matrix and - A is symmetric and positive definite it
follows that P is a symmetric positive definite matrix. The matrix Q is the sum of symmetric matrices,
hence symmetric. Since .p- r A,R,

1-1
(69)

where Ai are the eigenvalues and R, are the residues of matrix P, then

0-

p1/2 - r. JA;R;
i-I

pl/2 is a symmetric matrix, since the residues R. are symmetric matrices. Let us consider now the similarity
transformation:

Ms- p-1/2Mspl/2 (71)

- pl/2QPl/2 (72)

The matrix Ms is symmetric and therefore hu real eiaenvalues. Then by similarity also Ms has real
eiaenvalues.

4. CONCLUSIONS

We have investigated the numerical properties of certain displacement techniques used for the timing
analysis of VSLI, MOS circuits: the Gauss-Jacobi method used in MOnS, the Gauss-Seidel method
used in MOnS-C aDd SPLICE, and a method proposed by Kahan called here modified symmetric
Gauss-Seidel method. The algorithms have been discussed for circuits containina no float in a capaciton.
We have shown that from stability and accuracy viewpoint, the modified symmetric Gauss-Seidel
intearation alaoritbm outperforms the other two methods. When floating capaciton are present, the
alaoritbms have to be modified to deal with the additional coupling between equations introduced by
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the capaciton. The analysis of the modified algorithms is complex and is carried out in Reference 17,
where experimental results are also presented and discussed.
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