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Computer-Oriented Formulation of Transition-Rate
Matrices via Kronecker Algebra.

. .
The main fe:1ture of our procedures is their suitability

for computer implementation; the overall matrix is built
on an initial component matrix by an iterative pro<:edure
which, step by step, adds to the existing one the ma-trices
pertinent to the other components of the system. This
special result and the g~eral computer oriented formula-
tion of the problem are made possible by the use of
Kronecker Algebra. Krone<:ker Algebra is an easy language
for formal description of reliability problems. A few
results from graph theory are used here in connection with
the concept of relation graph for the purpose of decom-
position. A computer program has not been written.

The method of building the transition rate matrix using
Kronecker Algebra was proposed for the firSt time in [I)
and was extended by [2]. We begin with the results in [1]
and extend them to various cases involving s-dependence
using Kronecker Algebra.
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2. PRELIMINARY CONSIDERATIONS

2.1 Notation (Adapted from [3])

N number of components in the system
(I') superscript, component inc.lex, i = 1, ..., N
k subscript, subsystem index, denotes the cardinal-

ity of the subsystem comprising the first k com-
ponents (according to index order I')
subscript, system-state index, j = 1, 211 and
subsystem-state index j = 1, 2-

denotes a system or a subsystem
state of component i; 1 is the good state, 0 the bad
state
state of the system (or subsystem)
column vector, top clem~nt is Pr{x"1 s I}. bot-
tom element is the complement
column vector, dement is Pi(/) ~ Pr{X:1 z I}
structure vector, element is Cj = 1 if Xj = 1. other-
wise Cj = 0

llil, Jtlil transition rates of element i
A transition-rate matrix, element is A u. v = 1, ...,

211

A(/), R(t) availability and reliability ut time t
Rtf linear space of k x 1 real matri(;es

Abstract-This pap" ronnul~l~ the dirrCfefllial equa'lnM typiral of
a M~rknY prohl~m in "ysl~m-n:li:.bilil) 'h~r) in a systematic ..ay in
~~r 10 ~en~i-2te cclmpul~r-nrienled prn~edur~. The coefndetl( .alri-
.r thn~ ~qu~linn~ «he Inn"ilion f:.le malri_1 can be obtained for t~e
.hol~ "yslrm Ihroa:b :It:~hI':.ic np~r"lion" on componcn( tnnsitlon-rate
8Ialricrs. Suctl :alf,~bnic nprnlinn. ~re ~rfc)rm~d accordinlt (0 (ht rules
of Kron«k~r "11:~"r~. \V~ con,ic!tf "Y!il~m rcl:~bility ~nd .yuilabililY
.j(h \Ir~ d~lItnu"nl:~ ~nd ltI:linl~n:ln« policies.

n~nr~m" a~ &iv~n rnr ~c)II~lrul:linl: Ih~ "ys(em m:alri.~ III four ~:

j

. Reli:ohililY :and a~3iJ;lhililr ~ilh nn-line multiple or sin~le

mainlen:onl:f.
. R"li:ohililY and a\;lil:oltililY with ~)stem-5tl1te dependent failure

fal.:,;.. RfliabililY and a~3ilahililr wilh ~1:Jndhy I:ompnnenls.. Orr.linf m:oinl~lnabililr.

S
x'"T1I~ ~ulls 3n ~'prn~d in :l1~\"br~i~ It'I'm. ..d .5 a consequftll:e thrir

implrn'~nl:lli,.n by 3 mplllo:r prn~r:Jm L' -'lnli!:hlfnrward. We aku 00.
83in inrnrm~'- ~h.,ullh~ ~1"I.:Iur~ .,r Iho: m:llticcs inv,",ved. Sudllnror-
m:llilln I::ln cnA'id"3hl~ imp,,'~~ c"mpIiIOlli.'n:a1 erri.:iency or Ih~ eom-
pUIf't c..do:~ h«3U"~ il ~II.,.. inlr"dul"inlt "p~ci:ll idca~ and techn"lues
~~I"n,'11 fnr l..rk~~~"I~m :In:ll\-j, ""I:h .., "p:lt,;ily. d~c:oml'n"ili()n. anll

l~ri"lt.

XJ

plll(t)

p(t)
c

I. INTRODUCTION

~ The purpose of this 1"3~r is to describe a computer-
orie"t~d appr03ch to reli3bility analysis of complex
systems. It is re$lricted 10 systetns modeled as Markov pro-
Ce5~es. Thc ~1:1rl.;ov mouc=1 le:1ds to a set of linear
homogeneou$ diff~r~nti.11 equations, such as 1'(/) = /\p(/).

The m:lin re~ult 01 this p.1p~r is a set of rules concerning
the (truclurc or the coerfil:icnt matrix or such a system.
Thesc rul~ :1re the starting point for a number of pro-
cedures to obtain thc: ~YSt.:m m3trix from the knowledge of
each component fo1ilure 3nd repair rate, system structure,
mi1intenan~ policy. and stress dependence of failure rates.

2.2 Kronecker Aigehra

For:1 complete explanation see (4-6].

Direct (Kronecker) Product

Let A E Rtf and BE R_. The Direct Product of A and
B. is the partitioned m:ltrix {4)

Y'" ,,~___,n_YI!!~~
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3. STATE-INDEPENDENT PARAMETERS

We summarize our main results from [1] in the follow-
ing two theorems and refer to [1] for details and proofs.(1)A8Bs

G'"B I - I G'"s
I I

: I I
: I I

II
..,B I .. -.,s Theorem J

Kronecker Sum

Let A E R- and B e R_. The Kronecker Sum of A
andBis

77Ieorem2

(2)AeB5{ASl.) +(l.~B)
(9)

where 1. is the unit matrix. of order k.
or, in a recursive way,

Property J
(lOa)A. - A.-I. Ali)

(3a)
.

a. (A + B)@C=Aec+ S8C
(lOb)At = Att)

b. AS(B + C) = AeB + A~C
Remark 1

Property 2
Kronecker Sum provides a unique binary ordering of

system states; index j for a state is related to component
state by the relation:

(4)(A 0B)X(CGD) -(A XC)0(BxD)

The dimensions of the matrices are such as to give meaning
to the various terms. (11)

J" = 2N - L XC') 2/-1 - 1
;al

Property IProperlY J

(Sa)t=x0.v

(Sb)

In general any entry A..~ of transition-rate matrix
depends both on the set of ).(11 and JlIII. Neverth~iess
among all the possible ordering of system states. there exist
some for which the folloYwing property holds:

A... depends only on the set of ).111 {JA(I') for u> v (u < v)

Theorem 3P,opcrt.v .,

Property 1 holds for the ordering of system stat~ in-
troduced by (11).

A I and .4, are decomposable (o-decomposition).
namcly

Remarks 2A, = L, + U,; AI = Ll + U2; L E L, ~L2;

(6)u= U,0U1

whl:re Lt. L1 arc lo\\"er triangular matrices and U1. U1 are
Uppl:f triangul:1f matrices.

Another ordering of system states [8) for which proper-
ty 1 holds is that defjn~d by an increasing number of failed
components.

The following three problems can be treated.

(7)A = A. ~AJ = L + U
i. Reli.1biiity without maintenance

0
are lower 3nd upper triangular respective1y.

The propeny obviously extends to the sum of more
th:ln two m:ltnces. In other words o-decomposition and
Krona:ker-sum commute.

-1('.
(12)Ali) =

01,11.

This is well-known in probability theory (7]; it is stated
here in terms of Kronecker Algebra.
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where ACI)I-c,)- is the failure rate of component; in the
System state in which only component r is failed. r is the
reduced s-dependence matrix. In other words r is obtained
from B by selecting the N columns related to the states with
only one component failed. From (11), (IS), (16) it follows
that: .

ii. Availability with multiple on-line maintenance

-1(" ,,11)
A(I) K (13)1 (n -IJ.(I)

Hi. Maintajn~bi1ity off-line
'fIr - /1;.2""'. (17)

0 IACII
The knowledge of r "is enough for our purpose, if the
following a.uumption is made.

A(I) e (.4)
0 -JlI')

Theorem 2 allows the transition-rate matrix to be build in asystematic way. We get for instance: .

-11" ,..(a) -1(2) ,,(2)
All) = A(l) =

1(1. -,£'1. 1(21 -,,(2)

-1(1). -1(1)

1(11

,,(2)
-1(1) _,,(2)

,,(1)
0

0
,,(1)

A - Afll . Afll -
1(1)

0
0

1(1)

_,,(1) -1(2)

1(2)

JAil)

_JAI»_Jill)

Theorem 1 allows the probabilistic behaviour of the system
to be computed without requiring the knowledge of A. It is
only necessary to inlegrate ."oj differential systems plll(t} -
All) pCil(t) and tn p~rform N - 1 Kronecker Products.

Chain s-dependence assumption: The stress effect on
component i due to the failure of a set of components is
representable as the chain product of the stress adjustment
faCtors of component i pertinent to the f;jiled components

Let H = {hlo hzo hr} be the subset of the faile.j com-
ponents in state j. The strcss adjustment factor is:

4. STATE-DEPENDENT PARAMETERS

4. ,"0 mcintenance (s.v~te/1lS ,vithour maintenance)

(18)Pi} = Yi~1 . Yl~ . Y .-.,

The tran~i(ion-rate matrix is lower triangular. Due to
the s.dcpcndence a~sump(ion, the failure rate of each com-
ponent changes with the o~erative state. For each compo-
nent we need to specify 2M-' values for its failure rate. An
equi...;1lent way of supplying (he same information is to
sp~ci fy thc: rcfercnc-: f:lilurc: r:1tc A. ."1 and a set of stress ad-

justment factors (1., for :111 stat~ j in which component; is
good. U~u:llly thc refcren\:~ is the stilte in which all com-
ponents are good. Then A..'" - ~i'. and-

This assumption drastically reduces the amount of input
data from N(2N-' - 1) to N(N - 1); that is the exponential
groWth is reduced to polynomial groWth.

A matrix A = {air} can now be defined:

a. ~ {Of [orYi, = 1
.r 1. otherwise. (19)

{J ~A(;I / '.I'I
'1 I A , (15)

The number of stress adjustment factors is N(2N-1 - 1).
Th\."y C:1n be :trr3nged in a N)(. (1".1 - I) rcctangular matrix
B (the s-dr:.p:nJt:ncc matrix). IlS entries are 1 if there is
s.ind~pcndence. Ther~forc in practical applications many
Stress :ldjustment f.1CTOrS are cqual to one.

The B matrix is usu:1lly of large dimension and for our
purpose only the kno\loiedge of a proper submatrix of B is
ncc~J;ary. Defin: 3 square lV x N matrix r - {y;.} such
th3t-

We win refcr to it as the relation matrL'C. It can be vie\\'ed
as the adjacency matrix of a direct graph G(Y. A) without
self-loops that we C:1n consider as the relation graph of the
problem. The correspondence betw~n s-depend~nce
among components and the relation graph is:

. A verte.x n. of G is associated with component i. An ori:nted arc (n.. n.) is associated with s-dep~ndence
or component i railure rate on component r state.

Given a couple of venices n. and n. thr~ cases are possible:

I. No arc exists betw~n them.
2. There is one arc from n. to n. and another from n.

to n..v SlIt' ! IJr.,
'tr -,r,-' "0 for i. r = 1.2, ..., N (16)
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3. There is only one arc from n. to n. or from n. to n..

Case I corresponds to s-independence between com-
ponents ; and r; C3Se 2 corresponds to bilateral
.r-dependence, and C:1se J) corresponds to unilat~al
$-dependence. Case 3) is typical of standby problems. The
formulation of 1\ from th~ knowledge of AI/1 and from the
stress ~djustment f~ctors is presented as Theorems 4 and S.

A failure in one generator leaves the system working,
though the other generator is working harder. A failure in
the line (cutoff) causes .a system failure, but lowers the
gelle'rntors failure rates. Fig. lb shows the relation graph.

Th~orrm ., (Reliability ~ithout maintenance)

Let there be chain s-dependence among components,
and Ict

1 0
ai, '5

(20)
0 fir

rIC. lb. Rdatioa Ifaph.
be the reduced stress-adjustment matri~ of component i
w.r.t. component r. Then the transition-rate matrix of

. .
system IS:

Input data are:
(21) t

Examp/~ J

Find the A marrix for evaluating reliability without
maintenOlnce in the follo\ving problem. The system is com.
posed of two p~r3.llcl 10 kW electric generators supplying
power to a 10 kW lo:ld through a line (~e1: Fig. la).

I'll - 1'21 generator failure rates
1(31 electric line failure rate
112 - hi stress adjustnient factor representing the in-

creased failure rate of a generator due to the
failure of the other one

'" - 123 stress adjustment factor representing the

decreased failure rate of both generators due to
a failure (cutoff) of the line.

-1f" 0All) - , for; - I, 2, 3
Ifl) 0

0 0air - . (or (i. r) - (1. 2). (2. I)
(1. 3). (2. 3)0 '1.

O.Jl = 0:11 = fa
FiC. la. Powcor \YSl~ I:!.xk di~araal.

From (21):

-l'I'.l'l)-A'JI
l'J)

1'1)

0
1'))
0
0
0

-YJ,AIJ'Y'.JAI')

0

yuAIJI
0
Y'JAI"
0
0

-lC~) -rill CI)

lC~)

0
0
1121CI)
0

A-
-,,)'rllAII'

11)1

YzIllZI
0

-1 (J'

I(JI

-7.
0
0
0
7.

-Y2Ih~IIt
0
"Ilh.,.).I't 0

J1.

J1.

11(11

Iz1(1)
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Taking into account s-dependence implies managing a
large amount of data. A first step to reduce the managing
costs is through the chain-dependence assumption. A fur-
ther reduCtion is possible when the following assumption
can be made:

Unilateral s-dependence assumption

Let the relation graph of the problem be acyclic. Then
it is possible to define an order of the nodes (and then of
the components) such that no arc (n.. n.) exists if; < r. As a
consequence, if i < r, then y.. = 1 and G,. - 11.

In this C3.Se9 matrix A can be evaluated by means of
Theorem S.

Faa- 28. Electronic system block diagram.

Theorem oS (Reliability \vithout maintenance in urnlateral
s-dependence)

S. is the subsystem conta,ining the k first elements of
the sequence I, 2, ..., N. A. is the transition rate matrix
pertinent to S.. Under chain s-depcndence and unilateral
s-dependence, A can be written as-

Aa = ~-I ~Iz + Ou.-. ~l\li) k = ; = 2,3, ..., N (22a)
Fig. lb. Rdation graph.

AI = All)

0 -0.1 0
is the Stress ;1djustmc-nt matrix represc-t1ting the change in
llil duc to the f:1ilur: of sub~ystem S If there is no state
depcndence. (21:1) and (9) :ire equivalent. Because Oi,. ~ h.
for tlll ;. r = 1. 2. N we have-

xl 0-6. A(l) - xlO-6.A('. =
0 0.1 0

-0.05 0
413) - xlO-6.

AN = ~-, 0/z + la...01\"') = 0.05 0
-'::'V- Av-, . AI~I - "" Ali'

i.'. 01 1 0
011 = 0.11 = . GJ2 =

0 10 0 2
Exu"'ple 1

Then:

A1 = At 0/1 + G1t SAClt
Find thc A m3trix for ev:tlu3ting reliability without

maintcn~nce in thc fcllowing problt:m.
A currcnt.limito:d vnilag~ regulator 12. feeds a

micrOI:!cctrunic dt:vicc #1. v.hich I:ontains about ten chips;
the device might undergo a ~hort circuit. but does not fail
open~ircuit. .~ st:snd.,y i.i.d. regulator #3 is provided m
casc of failure nf v.r. #'1. 1,'1" = 1. )( 10-6/hour :tnd )..'.11 =
0.1 x Io-./hl>ur for the regul:ltor at fulllo3d (Fig. 1.a).

"ohcn rl:gu!ator '3 is in st:lndby (it is not wor'..:ing at
full In:ld bec:luse re;ul:ltl>r #2 is working) its failure rate
1,!," s O.OS )( IO'./hour: since the failure 3t full load IIJI =
0.1 )( IO-./hour thcn fl! = 2. rne failure rate of device ofl
does not dcp~d on the state of the regulators. When
device .1 is in ~hort circuit. A. 1%' and), IJI are !O-./hour. i.e.
1., = y" = 10. Fi2. :b sho\\'s the reiarion 2T3nh.

-2 0 0
04 +-

2 0 100

-0.1 0
~ X 10-6

0.1 0

-2-0.1

0.1
2
0

-2

0 -toxO.t
2 taxo.!o

x 10-0-
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0 -o.os 01 0 1-2.1
0.1
2
0 il

x lo-6/hour0 ee/z +
0 .10 0 2 0.05 0A.. =

In a system where transition failure rpctes are s-dependent
while the repair"rates are not, A is evaluated by means of
(24). where L is defined as in (21) and l\.f is now defined as
the transition matrix for the off-line maintainability prob-lem (14). . "

x lo-6/hourA=

-2.IS
O.OS -2.1

00.1 0 -2.1
0 0.1 0.1-2
2 000-6
0 2 0 0 S-1
0 0 2 0 t 0-10
0 0 0 2 0 t 10

4.2.1 Reliability with on-line multiple maintenanc~

Repairs on bad components are allowed only if the
system is good.

4.2 Systems with nztJintenance
77zeore,on 6 (Reliability with on-line maintenance)

The reliability o.r availability of a system with
maintenance n~s the solution of p(/) - Ap(/), where A
depends of failure 3nd repair rates. As stated in Property 1
in secrion 3, A can be a-decomposed into the sum of two
matrices:

0 Ilcn
Let Mi) E (28)

0 _,,(1)

and c be the structure vector of the S)'Stem. then
(24)A-L+l\{

(29)such that L is lower triangular and contains only failure
rates and M is upp~r triangular and contains only repair
rates. .\( is rcfcrrcd to ;IS repair-rate matri.". A similar
a-dccomposition yield~;

where diag {c} is a diagonal matrix whose entries are the
elements of c. The multiple on-line reliability transition
matrix" can be obtaincd from (24).

All) = L II) + .\-/';) \~I
4.2.2 A vailability with singlc on-line mainrenan,-e

This case is related to that of repairable system with
only one maintenance team. Order the components in 3,D
increasing priority list: viz. only the component with
higher index is repaired in a state with more than one bad
component. Consider the relation graph associated with
this problem. For all the couples of vertices i and r with i <
r there is no dependence of component r on component i.
Therefore there exists no arc (n.. no) for i < r. Asa conse-
quence the relation graph is acyclic [to}. In this C:lSe matrix
M is obtained by Theorem 7.

for e:lch component. The L can be regarded as the
tran~ition -r:1te m~trix of a system without maintenance
(viz. AIIII a 0, fur ani) :lnd it can be obt~ned by means of
the rulcs given in section 4.1. In general Land M are both
obt:lined by me:1ns of Kronecker products and matrix
sums; according to Property 1 and Theorem 3 this kind of
operation~ leads to (24).

A thcory of gencr:11 repair-rate s-dependence is possible
following the proccdure used for failure rates. Never-
thcless it is custom3ry to cnnsider only repair-rate
s-dept:ndcnce origin3ting from different maintenance
policic~ and sy~tem propc:rties (availability or reliability)
(9}. This Icad~ to ~n s-dependcnce such that in a given state
only two possibililic:s exist: repair or not rcpair. Therefore
tltl: repair r::tc 3dju~tmcnt factors are:

Theorenr 7 (Availability with single on-line mainten:tnce)

1 0
(3D)Let JV 5

0 0(26)a,; = ~:"IJA.11'

Then

M. = ~\f'-1 0 W + 12", eMIli, k = i = 2,3, ..., N
(31a)

(or 311 system states j in which component i is bad. ~.'il is
the rep~r rate of comptmcnt i in the system state in which
only compon~nt i is b3d.

ai; = { t. if a repair is allowed (27)

O. otherwise - MI = MIll (31b)

0
-2
0
2

0
0

-1
1
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And accordina to (4.1)-

M1 = M, ~ W + h ~ Mt.11

M. = Mtu

.0 IAC3)

-lAc,)

0

where .\-t. is related to subsystem S.. and ,\.1"1 is defined as
in (2~). '

4.2.3 Reliabilil)' ,,'ith single on-line maintenance
This ca.~ can be obtained by superimposing cases 4.2.1

and 4.2.2.

Theorem 8 (Reliability with single on-line maintenance)

let Mu be the rcpair rate mOltriX. then:
,,(2)
0

_,,(2)

0
]0

,,(31
_,,(31

Mz =
M..r - MN-diag {CJ (32)

.
MJ = MaeW + laeM"twhere .\{~ is obtained from recursive relation (31a).

'0 ,ACI) "CJ)

."CI) 0
_"CJI

0
0
~(I)

_~(II

~C2)
0
0
0

_~C21

0 0 0
0 0 0
0 0 0
0 0 0
lIt I) II(~ 0

-11(11 0 0
-lIfJ) IIfll

-lIfl)

M. = 1-11._1. If' + 12", ~Mt') k = ; = 2,3, ..., N
(33a)

M. = /.1". MJ =(33b)

0and c is the structure vector.
The proof follows immediately from Theorems 5 and

6. Matrix ,\ is evaluated by. means of (24).

E.\"Dmple J

Study the availability of the system in Figure 3

M=M.J
A - L + "-I.

The availability is obtained by integrating the equations-

A(t) - CT p(t)p(t) - Ap(t), (34)

The structure 'lector c is obtained from rhe foUo\v\ng Table I

TABLE I

I
I
0
0
I
I
0
0

COT

"'1. J. Ok)Ck di~m oJ( 3 ~yslml wilh single. on-line mainlenance.

0
.0

0
0
0

The compon~ts .1r~ s-indcpcndent with regard to failure.
The priority list 12. .#3. #1 is given; i.e. 11 is to be repaired
befure N3. anI.! #3 before .112. 0

Let
Let us now compute the reliability of the same system ~;th
the same priority list.

It 2, 3.
0 liCI'

L /,' z t j\rjl '5 . for i =
0 -lAC"

-1 (I) -1 II) -113)

11 I)

1(3)

0
111)
0
0
0

-l(~)-l(J)

0
l(J)

0
1(1)

0
0

-If

lC

0
0
It
0

L - 1:J = [L'" ~L'J') 0 L'lt -

.'
-l(J)

0
0
0
l(J)

-1'
II
II
0

-I(J)

0
1. f II

-ltll

1tll 0

-III

I
0
I
0
I
0
0
0

, I 0 I 01

1)-lIZ)
I)

Z)

I)-It))
I)

~)
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= MJ' diag c TABLE II

,,(21 0
0 0
0 0
0 0

_,,(21 0
0

0 1A(lt lAC)) 0
-IACII 0 0

-lAC)) 0
0

0 0
0 0
0 0
0 0
11(3) 0
0 0

-11(31 0
0

I
2
3
.

4
6
8

10
MRs =

1«1. In order to compute v and u, the values of .~;I in (11)
are the same for all the components i :P: ," while x<f) is 1 for
state v and 0 for state u. From (11) it follows that u> v.In
an analogous way it can be shown that u < v if A.. D a
repair transition rate. Q.E.D.

+ 1\1.S.

The reli3bility of the system is obtained by integrating the
equations:

Proof of 77aeorem 4
p(t) a /\pCt). R(/) = CT pC/). (35)

The zero/non-zero structure of A - {1..} depends on
the transition diagram [12] and therefore not on
$-dependence assumption. Then we can study the general
case of s-dependence beginning from the result obtained
from s-independent failure rates. Consider an
s-independent system. We recall that A ,t, . A 0A 0... 0A
(Kronecker power of -1) [6} and 1l~1 - 12,. Developing (9),
we get

,. COMPUTATIONAL REMARKS AND
E.'XPERIMENT AL RESULTS

We 3re developing a Inrge package for computer-aided
C\'aluation of system reliability where s-dependence is
taken into .1ccount. The results reported in this paper are
used in two ~'ays:

A = «__(AII) 01t + It 0A12) 0/1 + h 0A(21

8h + ...) + /IN-IISAI."

= All) 0/lN-11 + h 0AIl) 0/1,".11

1. Develop a computcr coc.le to build the system transi-
tion rate matrix from component data, s-dependence and
systcm structure.

2. Impicrn~nt ~n ~Jgorithm for numerical integration
of !\IIarkov equ:ltions b:l~ed on decomposition techniques
and using iniormiltinn about A matrix reported in the
previous sections.

+ - +/11-1) 01\(1) &/l,V-il + - + /1N-II 01\(,VI

_~=~N Din.-. ~
As to the prelimin;lry e:tperimentaJ results, a few examples
of diffcrcnt size h:tve bcen tested on UNIVAC 1100/80.
The follo\vins tablc rcports for each example the number
of componcnt~ IV. thc timt: I, for formulating A, the time I,
to build structure vector c. the time I. for integratingp = Ap
(using tr;lp~zojd.11 rulc). For :III the examples the mission
time h;1.~ bcen the S:lme (to' hour) ;lnd the solution has
bcen computed c:lch J()() hour. Tab'~ II shows that time for
computin~ A and c is ncgfigible compared with integration
time. In ('Ird~"T to rcduc~ mcmory rcquirements a suitable
datu ~tructure usin~ "parse matrix techniques has ~en im-
plcmented (II). Only non-It-TO values of A and c arc stored.
The u~e of ce;;omrn.~ition tcchniques will allow reduced in-
tegr;1tion timc, in somc ca~e5 drastically.

D'itil 3111-11 ~Alj) ~/lN-81

The meaning of the Kronecker product of Ati' with identity
matrices is to insert 11/' and -ll;j in :lit thc 2,V-t columns of
matn,'( A representing the system states in \vhich compo-
nent i is good. In a s-dependent syst~m..A m:ltrix keeps the
same structure and therefore it is still possible to express it
as a sum:

~N -" = A = Dli)
'w ;.1 IV

APPENDIX A
Assum~ r > i for example.

Proof of Thenreln J
Matrix D.!J' is obtained by a ret:1tion with the same struc-
ture as that used for D~il.Let v b~ the indcx of any syst~m state and u be the in-

dex of the system st3te related to v by the failure of compo-
nent i. Thcn .l. is a failure transition rate and its value is D~il = Jl,-I' 01\(" ~ /1 11 00., 0Jl~-'1

where matrix D!.l} is pertinent to component i and t3kes in-
to account now the s-dependence. Suppose first that com-
ponent i failure rate depends on the slate of component r.
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In 151.'1, matrix G" takes into account thes-dependence
between components i and r. This equation can be recast
as:

Proof of 77Ieorem 6

Let

DI.,II = D~ ~Gi, CSI/l,V-'1

M is the transition rate matrix for the off-line main-
tainability (see Theorem 2); (28) is equivalent to (14). M.
diag{c} is the off-line maintainability matnx where A... are
set t.o 0 in the failed system states; then by definition MN =
M. diag{c}

where D~". . /II-II ~At/l is the transition rate matrix of the
subsystem S-. that contains only s-independent com-
ponents.

Due to (20), D.~I) has among its entries the failure rate
1(/1 for the St:ltes in which i and r are good and 11,).(1) for
the states in which i is good and r is bad.

Let us turn now to the more general case in which com-
ponent i failure rate depends on more than one compo-
nent. Then-

Proof of Theorem 7

Unilateral $-dependence le2ds to a recursive relation for
the buildup of M. matrix as in the case of s-dependent
fail UTe rates. In addition, since adjustment factors air
values are now 0 or I, Wis a Boolean diagonal matrix.

Consider a Boolean matrix W. defined as-

We reach the general conclusion that a failure rate 1(1)
in a system state is multiplied by the stress adjustment fac-
tors Yi, (for r = 1,2, ... ; - .,; + 1, ..., N) if component r
is failed or by 1 if component r is good. Equation above
allows to compute D !.,il for any component; and any
s-dependence. The whole matrix A is eventually obtained
by summing D.VI matrices. Q.E.D

""'110w=
W220

The relation-

AI. = M._. 18> W + 12--.I8>MfI) i = k = 2, 3, ..., NProof of Theorem 5

MI = /0.1"(1)RCC:lII that G., - la if i < r; we get from (21):

gives the multiple-maintenance matrix in the particular
case that W = I. In the general case, let-

~ =M.-,SW.

It is simple matter to see that M~ contains the repair rates
of the components belonging to S.-I. Two st:ltes in sub-
system S. correspond to each state of S According to
(II), the odd States (i.e. those repre.c;ented in matrix .\tf~ by
odd numbered columns) are good states for component;
and conversely the even ones. More detail is given below inthe expanded matrix for M.. .

- A~-1 01, + Gvsw..eAc,V).

Q.E.D.

W,Imt-II.1 W11m~-II.z

-w m ..,., t-ll.1.0 0 0
"if;" llm.-II.2 W IJm.-11.i-t0 0 0M~ ~ {In;.,: z .\.1.., 0 W =

W11m.-1u 0 -. -.
W11mt-tu0

0

W urn k -12'" .t"'0
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where M._. . {m.-'iJ}.

With th~ assumption that component i is to be repaired
before :my other component belonging to S.-,. the repair
transition rates from even states are related only to compo-
nent i. Therefore :lit repo1.ir r&1te5 for subsystem .SOr' are set
to 0 in the even numbered states. This means that:
- ,
W ZZm.-'i.r - O. for each r odd

for each r even
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