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Abstract—This paper formulates the differential equations typical of
a Markov problem in system-rcliability theory in 2 systematic way in
order to generate computer-oricnicd procedures. The coefficient matrix
of these equationg (the transition rate matrix) ¢an be obtained for the
whole system through aizehruic nperations on compoacnt transition-rate
matrices. Such slgebraic aperations are performed according to (he rules
of Kronecker Algebra. We comider system reliability and availability
with stress dependence and inaintenance policies.

Thenrems are given for constructing the system matrix in four cases:

¢ Reliability and availability with on-line multiple or single
maintenance.

* Reliabiiity and availability with system-stiate dependent failure
rates.

* Reliabilitly and availahility with standhy components.

* Off-iine maingzinability,

The results are expressed in aluchraic terms and as 3 consequence their
implementation by a computer program is straightforward. We also ob-
tain information about the structure of the matrices invelved. Such infor-
mation can comiderably improve computational efficiency of the com-
puter codes hecause it allows introduciog special ideas and techaiques
develoned for Lurge-system analvsis such as sparsity, decomposition, and
tearing.

1. INTRODUCTION

The purposc of this paper is to describe 2 computer-
oriented approach to reliability analysis of complex
systems. It is rectricted to systems modeled as Markov pro-
cesses. The Markov model leads to a set of linear
homogencous differential equations, such as p(r) = Ap().
The main result of this paper is a set of rules concerning
the structure of the coetficient matrix of such a system.
Thesc rules are the starting point for a number of pro-
cedures to obtain the system matrix from the knowledge of
cach component failure and repair rate, system structure,
maintenance policy, and stress dependence of failure rates.

The main feature of our procedures is their suitability
for computer implementation; the overall matrix is built
on an initial component matrix by an iterative procedure
which, step by step, adds to the existing one the matrices
pertinent to the other components of the system. This
special result and the general computer oriented formula-
tion of the problem are made possible by the use of
Kronecker Algebra. Kronecker Algebra is an easy language
for formal descripticn of reliability problems. A few
results from graph theory are used here in connection with
the concept of relation graph for the purpose of decom-
position. A computer program has not been written.

The method of building the transition rate matrix using
Kronecker Algebra was proposed for the first ime in {1]
and was extended by [2]. We begin with the results in [1]
and extend them to various cases involving s-dependence
using Kronecker Algebra.

2. PRELIMINARY CONSIDERATIONS

2.1 Notation (Adapted from {3])

N number of components in the system
) superscript, component index, i = 1, ..., N
k  subscript, subsystem index, denotes the cardinal-

ity of the subsystem comprising the first & com-
ponents (according to index order i)
J subscript, system-state index, j = 1, ..., 2" and
. subsystem-state index j = 1, ..., 2%
S denotes a system or a subsystem
xio state of component i; 1 is the good state, 0 the bad

state

Xx; state of the system (or subsystem)

p'(f) column vector, top clement is Pr{x® = 1}, bot-
tom element is the complement )

p(H column vector, element is p,(f) = Pr{x, = 1}

c structure vector, element is¢; = 1if x;, = 1, other-
wisec, = 0

At Yt transition rates of element i

A transition-rate matrix, elementisd, w, v = 1, ...,
2¥

A(), R(7) availability and reliability at time ¢

R,, linear space of k x f real matrices

2.2 Kronecker Algebra

For a complexe.cxp!anation see {4-6].

Direct (Kronecker) Product

Let A € Ri,and B € R.... The Direct Product of 4 and
B, is the partitioned matrix [4]
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anB | Laaad | G“B
: |
A®B= : i i m
auB | i ‘uB
Kronecker Sum

Let A € R.. and B € R.... The Kronecker Sum of A
and B is '

AeB=(ARL) + (1.,8B) @

where /, is the unit matrix of order k.
Property 1

a. (A + BY®C = A®C + BOC (3a)
b. A®(B+ () =A®B + A®C

Property 2

(A ®B)x(COD) = (A x C) ®(B* D) @

The dimensions of the matrices are such as to give meaning
to the various terms.

Property 3

Z2=ExOy (5a)
dz dy dx
—=x® - + __© 5b)
dt dt dt Y ¢

x and y are differenriabie time-dependent vectors.

Property 4

A, and 4, are dccomposable (o-decomposition),
namcly

A. = L. + U.;Ag =L1+ Uz;L5L|®L;;

U=Uu,9U0, ©
where L., L, arc lower triangular matrices and U, U, are
upper triangular matrices.

ASA24, =L+ U )

are lower and upper triangular respectively.
The property obviously extends to the sum of more

than two matrices. In other words o-decomposition and
Kronecker-sum commute.
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3. STATE-INDEPENDENT PARAMETERS

We summarize our main results from {1} in the follow-
ing two theorems and refer to [1] for details and proofs.

Theorem 1

®

This is well-known in probability theory [7]; it is stated
here in terms of Kronecker Algebra.

(= gt. PO =p () ®p (1) ®... p (1)

Theorem 2
A= §:|A“’ =AMV AP .2 AW ®)
or, in a recursive way,
A=A &A™ (10a)
A =AM (10b)
Remark 1

Kronecker Sum provides a unique binary ordering of
system states; index j for a state is related to component
state by the relation: : -

j=2=3 xn2-_] an

Property 1

In general any entry A,. of tramsition-rate matrix
depends both on the set of A" and u‘. Nevertheiess
among all the possible ordering of system states, there exist
some for which the following property holds:

A.. depends only on the set of At? (') foru > v (W< V)

Theorem 3

Property 1 holds for the ordering of system states in-
troduced by (11).

Remarks 2

Another ordering of system states {8] for which proper-
ty 1 holds is that defined by an increasing number of failed
components.

The following three problems can be treated.

N

i. Reliabiiity without maintenance

—l(l) 0
A = (12)
0
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ii. Availability with multiple on-line maintenance

e L)
AW = (13)
A0 _“U)
iii. Maintainability off-line
o "lﬂ
Ao = 19
0 _“("

Theorem 2 allows the transition-rate matrix to be bui!d ina
systematic way. We get for instance:
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where 12|, . is the failure rate of component i in the
system state in which only component r is failed. [ is the
reduced s-dependence matrix. In other words I is obtained
from B by selecting the N columns related to the states with

only one component failed. From (11), (15), (16) it follows
that: -

Yie ™ B, an

The knowledge of I' is enough for our purpose, if the
following assumption is made.

—Atn “u) -1 “(z)
AV = A =
p (L] ...“u) A _"(z)
-1 =12 "m "u) o
1(1) ._l(ll _"ﬂ) o “(l)
A=A g AV =
A0 0 -l‘“) -2 '_‘(z)
0 A(l) 1(3) _“m_.“m

Theorem 1 allows the probabilistic behaviour of the system
to be computed without requiring the knowledge of A. It is
only necessary to integrate N differential systems p'"(s) =
A" p'(2) and to perform N - 1 Kronecker Products.

. STATE-DEPENDENT PARAMETERS
4. No mcintenance (systems without maintenance)

The transition-rate matrix is lower triangular. Due to
the s-dependence assumption, the failure rate of each com-
ponent changes with the operative state. For each compo-
nent we need to specify 2% values for its failure rate. An
equivilent way of supplying the same information is to
specify the reference failure rate A* and a set of stress ad-
justment factors 3, for all states j in which component i is
good. Usually the reference is the state in which all com-
ponents are g3ood. Thea 1¢9 = A, and—
B, =1 /3%, (15)
The number of stress adjustment factors is N2V - 1).
They can be arranged in a vV x (2¥°' - 1) rectangular matrix
B (the s-depsandencs matrix). Its entries are 1 if there is
s-independence. Therefore in practical applications many
stress adjustment factors are cqual to one.

The 8 matrix is usuaily of large dimension and for our
purpose only the knowiedge of a proper submatrix of B is

necessary. Define a square &' % N matrix [ s {y,,} such
that—

=A@l N forir=1,2,..,N (16)

Chain s-dependence assumption: The stress effect on
component i due to the failure of a set of components is
representable as the chain product of the stress adjustment
factors of component i pertinent to the failed componenis

Let H = {h,, hi, ..., h,} be the subset of the failed com-
ponents in state j. The stress adjustment factor is:

By=vir,* (18)

This assumption drastically reduces the amount of input
data from N(2""' - 1) to N(N - 1); that is the exponcnual
growth is reduced to polynomial growth.

A matrix A = {a,.} can now be defined:

a.= {O, for)';, = l
1, otherwise.

Yin, *Yin,

(19)

We will refcr to it as the relation marrix. 1t can be viewed
as the adjacency matrix of a direct graph G(V, A) without
self-loops that we can consider as the relation graph of the
problem. The correspondence between s-dependence
among components and the relation graph is:

« A vertex n, of G is associated with component §
« An oriented arc (n,, n,) is associated with s-dependence
of component i failure rate on component r state.

Given a couple of vertices 7, and n, three cases are possible:

1. No arc exists between them.

2. There is one arc from 2. to n. and another from a.
to n..
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3. There is only one arc from #, to n, or from 2. to n,.

Case 1 corresponds to s-independence between com-
ponents i and r; case 2 corresponds to bilateral
s-dependence, and case 3) corresponds to unilateral
s-dependence. Case 3) is typical of standby problems. The
formulation of A from the knowledge of A'” and from the
stress adjustment factors is presented as Theorems 4 and 5.

Theorem 4 (Reliability without maintenance)

Let there be chain s-dependence among components,
and let

1 0
G.= 20

o ri 4

be the reduced stress-adjustment matrix of component i
w.r.t. component r. Then the transition-rate matrix of
system is:

A= z':l [(g:: G") DA e(';'::ot G")]' (21)
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A failure in one generator leaves the system working,
though the other generator is working harder. A failure in
the line (cutoff) causes a system failure, but lowers the
generators failure rates. Fig. 1b shows the relation graph.

) - €

Fig. 1b. Reiation graph.

Input data are:

A" = A0 generator failure rates

Example 1 A electric line failure rate
Y2 ™y Sstress adjustnient factor representing the in-
Find the A matrix for evaluating reliability without ' tf:relasec ?’:‘"‘-c rate of a generator duc to the
maintenance in the following problem. The system is com- - ailure o dE ¢ other one .
posed of two parallel 10 kW electric generators supplying 7*2 = Y1  Stress adjustment factor representing the
power to a 10 kW load through a line (sec Fig. 1a). decreased failure rate of both generators due to
a failure (cutoff) of the line.
1 -1 0
' AP = ,fori=1,23
Generator 0
3
. 0 0
5 Line G.,= s for(i, n=(1,2), (2, 1
o r" (lo 3)0 (20 3)
Generatoer
G.n = G.u = ’1
Fig. 1a. Power system tlock diagram.
From (21):
_A(tl _l()i _A(ll
A ‘)'nlu'rul'“
A 0 N N [ '
0 o (L] A “Y13Y1At"
A= | am 0 0 0 -y Ppadth
0 YAt ) 0 A “Yaynd®
0 . 0 Y12d'Y 0 Y2.A® -A»
0 0 0 Y1371 2A 0 Yy d'® A» 0
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Taking into account s-dependence implies managing a
large amount of data. A first step to reduce the managing
costs is through the chain-dependence assumption. A fur-
ther reduction is possible when the following assumption
can be made: :

Unilateral s-dependerce assumption

Let the relation graph of the problem be acyclic. Then
it is possible to define an order of the nodes (and then of
the components) such that no arc (n,, n,) existsif i<r. Asa
consequence, if i<z, theny, = land G, = I,.

In this case, matrix A can be evaluated by means of
Theorem 5.

Theorem 5 (Reliability without maintenance in unilateral
s-dependence)

S, is the subsystem containing the k first elements of
the sequence 1, 2, ..., N. A, is the transition rate matrix
pertinent to S.. Under chain s-dependence and unilateral
s-dependence, A can be written as—

A=AL8L + Gy @AYk = i=2,3,..,N (2a)
A=A

G, =11, .

is the stress adjustment matrix representing the change in
A due 10 the failurs of subsysiem S.... If there is no state
depcndence, (22a) and (9) are equivalent. Because G, = £,
foralli,r =1, 2, ..., N we have—

Av = Ayer ®Fy + [ OA™ =

= At @AM = T A
9

Example 2

Find the A matrix for evaluating reliability without
maintenance in the fellowing probiem. '

A curreat-limited voitage regulator #2, feeds a
microclectronic device #1. which contains about ten chips;
the device might undergo a short circuit, but does not fail
open-circuit. A standhy i.i.d. regulator #3 is provided in
case of tailure of v.r, 2. 44" = 2 x 10"%hour and A =
0.1 x 10-*/hour for the regulator at full load (Fig. 2a).

When regulator #3 is in standby (it is not working at
full load because rezulator #2 is working) its failure rate
AP = 0.05 % 10°*/hour: since the failure at full Joad A =
0.1 x 10-*/hour then vy, = 2. The failure rate of device §1
does not depend on the state of the regulators. When
device #1 is in short circuit, A'** and A*® are 10-*/hour, i.c.

= = < W

2
regulator

3
regulator

Fig. 2a. Electronic system block diagram.

device

Fig. 2b. Relation graph.

-2 0
AD = x]0~¢ A =
[ 2 0

- -0.05 0
A = x10-*
0.05 0

G, =Gy, = »y G =

Then:
A=A BOL + Gy, A
-2 0 0
= @[3 +
20 0 10
[ -0.1 0
® | x 10
L 0.1 0

-2-0.1
0.1 -2

= 2 0 -10x0.1
0 2 10x%0.10

-0.1 0
010

x 10~
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x107*
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=21 0 0 O 1 0 1
01-2 0 O oL + ®
A= 2 0-1 0 0 10 0
0 210
-2.15 i
0.05 -2.1
0.1 0 -2.1
A=1] 0 0.1 0.1-2 x 10~¢/hour
2 0 0 O0-6
0 2 0 0 51
0 0o 2 0 1 o0-10
Y 0 0 2 0 110 0

4.2 Systerns with muintenance

The reliability or availability of a system with
maintenance needs the solution of p(f) = Ap(f), where A
depends of failure and repair rates. As stated in Property 1
in section 3, A can be o-decomposed into the sum of two
matrices:

A=L+ M (24)
such that L is lower triangular and contains only failure
rates and M is upper triangular and contains only repair
rates. M is referred to as repair-rate matrix. A similar
o-decomposition yields: '
A(l) - L(l) + “,’h" wd)
for each component. The L can be regarded as the
transition-rate matrix of a system without maintenance
(viz. A1® = 0, for all /) and it can be obtained by means of
the rules given in section 4.1. In general L and M are both
obtained by mcans of Kronecker products and matrix
sums; according to Property 1 and Theorem 3 this kind of
operations leads 1o (24).

A theory of general repair-rate s-dependence is possible
following the procedure used for failure rates. Never-
theless it is customary to consider only repair-rate
s-dependence originating from different maintenance
policics and system properties (availability or reliability)
{9]. This lcads to an s-dependcence such that in a given state
only two possibilitics exist: repair or not repair. Therefore
the repair rate adjustment factors are:
a, =yttt (25
for all system states j in which component i is bad. u*'? is
the repair rate of component i in the system state in which
only componsnt / is bad.

o, = { 1, if a repair is allowed en

0, otherwise
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( -0.05 0

® x 107%/hour
b 005 O

In a system where transition failure rates are s-dependent
while the repair rates are not, A is evaluated by means of

.(24), where L is defined as in (21) and M is now defined as

the transition matrix for the off-line maintainability prob-
lem (14). ; ’

4.2.1 Reliability with on-line multiple maintenance

Repairs on bad components are allowed only if the
system is good.

Theorem 6 (Reliability with on-line maintenance)

0 u

Let M = (28)
0 _“m

and ¢ be the structure vector of the system, then

M, = [, M) diag {c} 29)

where diag {c} is a diagonal matrix whose entries are the
elements of ¢. The multiple on-line reliability transition
matrix A can be obtaincd from (24).

4.2.2 Availability with single on-line mainienance

This case is related to that of repairable system with
only one maintenance team. Order the components in an
increasing priority list: viz. only the component with
higher index is repaired in a state with more than one bad
component. Consider the relation graph associated with
this problem. For all the couples of vertices fand r with i <
r there is no dependence of component r on component £.
Therefore there exists no arc (., n,) for i < r. As'a conse-
quence the relation graph is acyclic [10}]. In this case matrix
M is obtained by Theorem 7.

Theorem 7 (Availability with single on-line maintenance)

1 0
Let W= 30)
00
Then
M=M_ OW+ [-®M k=i=23,..,N
(3la)
M, = M

G1b)
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where .V, is related to subsysiem 3., and M is defined as

in (28%).

4.2.3 Reliability with sinzle on-line maintenance

5

This case can be obtained by superimposing cases 4.2.1

and 4.2.2.

Theorem 8 (Reliability with singie on-line maintenance)

Let My be the repair rate matrix, then:

M.; = Mn'diag {C}

32

where VM, is obtained from recursive relation (31a).

M =M. OW+ [~OMPk =i=23,

M| = A{'"

and c is the structure vector.

s N
(33a)

(33b)

The proof follows immediately from Theorems 5 and

6. Matrix A is evaluated by means of (24).

Example 3

Study the availability of the system in Figure 3

Fig. 3. Block diagram uf a system with single. on-line maintenance.

The components are s-independent with regard t

o failure.

The priority list #2, #3, #1 is given; i.e. #1 is to be repaired

before #3, and #3 before 72.

Let

At 0':
, M=

o "(ﬂ
th =

L OJ 0 -u®

AtH

A

L= z: =[L'"OLP)OL" = 0
[ A

0

i 0

. 0

,fori ="'

Y LIS LS (3]

A
0
Pl
0
L
0
0

And according to (4.1)—
M, =MOW + I, ®A™
M, = MV
0 “(J) "(1) 0
-{»M 0 o
M, = o -
O -p»
M, = M,®W + I, oM™
i) “'m u» 0 u®» 0 0
(0 0 0 0 0
_“(3) "(l) 0 0 o
M, = w0 0 0
-utd gy
_u(l) 0
L
M = M_]
A=L + M,
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The availability is obtained by integrating the equations—

p(=Ap(), A = c"p(r)

(34)

The structure vector ¢ is obtained from the following Table |

TABLE |

Xllf x(l) r(!
t 1

1 0

0 1

0 0

0 1 1
0 1 [
0 0 0
0 0 0
=ittt 11010

Let us now compute the reliability of the same system with

the same priority list.

. 2, 3.
A
LI (0
A At
0 0 A
0 0 aw A
P 0 At® 0 BUt
0 A 0 ) LLINS CLIINY
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~ 0 [TULLIE u? 0 0 0 j
-0 0 0 0 0 o
w0 0 0 0 O
o 0 0 0 o
My = -u® 0 u» 0
O THES
-4 0
L 0 -
+ lw.s.

The reliability of the system is obtained by integrating the
equations:

PO=Ap(t). R(t)=c"p(). (35)

S. COMPUTATIONAL REMARKS AND
EXPERIMENTAL RESULTS

We are developing a large package for computer-aided
evaluation of system reliability where s-dependence is
taken into account. The results reported in this paper are
used in two ways:

1. Develop a computer code to build the system transi-
tion rate matrix from component data, s-dependence and
system structure,

2. Impicment an algorithm for numerical integration
of Markov equations based on decomposition techniques
and using information about A matrix reported in the
previous sections.

As to the preliminary experimental results, a few examples
of different size have been tested on UNIVAC 1100/80.
The following tabie reports for each example the number
of componcnts V, the time ¢, for formulating A, the time ¢,
to build structure vector ¢, the time ¢, for integrating p = Ap
(using trapczoidal ruie). For all the examples the mission
time has been the same (10* hour) and the solution has
been computed cach 100 hour. Table 1l shows that time for
computing A and ¢ is negfigible compared with integration
time. In order to reduce memory requirements a suitable
data structure usinyg sparse mairix techniques has been im-
plemented [11]. Only non-zero values of A and ¢ are stored.
The use of decomposition technigues will allow reduced in-
tegration time, in some cases drasticaily.

APPENDIX A
Proof of Thearein 3
Let v be the index of any system state and u be the in-

dex of the system siate related to v by the failure of compo-
nent /. Then A, is a failure transition rate and its value is
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TABLE 1
Example Number of t L. 2
components (sec) (sec) (sec)
1 4
2 6
3 8
4 10

A", In order to compute v and u, the values of X' in (11)
are the same for all the components i # i while x"is 1 for
state v and O for state ». From (11) it follows that u > v. In
an analogous way it can be shown that u < vif A, is a
repair transition rate. Q.E.D.

Proof of Theorem 4

~ The zero/non-zero structure of A = {A,.} depends on
the transition diagram {12] and therefore not on
s-dependence assumption. Then we can study the general
case of s-dependence beginning from the result obtained
from s-independent failure rates. Consider an
s-independent system. We recall that A" 2 4 ®4 ®... ®A4
(Kronecker power of A4) [6] and I*! = [ .. Developing (9),

“we get

A= ((."(A(l) @I; + I) SAD @I] + I; QA

L + ..) + AV RAWM

= A(l) QEN-II + I, ®A(1) @I;Noll

+ v + 114-1] @A(l) @n.\l—il + . + HN-!I @A(.‘V)

= AN = z:l D;‘”
D}vﬂ = Ill-ll @AU) @I;N—i]
The meaning of the Kronecker product of A with identity
matrices is to insert ' and -1 in all the 2V columns of
matrix A representing the system states in which compo-
nent i is good. In a s-dependent system, A matrix Keeps the

same structure and therefore it is still possible to express it
as a sum:

N =
= = ()
A=AN=2_ D
where matrix DL" is pertinent to component i and takes in-
to account now the s-dependence. Suppose first that com-
ponent i failure rate depends on the state of component r.

Assume r 2 i for example.

Matrix D¢ is obtained by a relation with the same struc-
ture as that used for D{".

B&n = [ QAP @~ G, N7
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In D", matrix G,, takes into account the s-dependence
between components { and r. This equation can be recast
as:

Dy = D¥, G, 8"

where DI\ = [1='1 @AY is the transition rate matrix of the
subsystem S., that contains only s-independent com-
ponents. _ ,

Due to (20), D¢ has among its entries the failure rate
A? for the states in which i and r are good and y.A*? for
the states in which / is good and r is bad. :

Let us turn now to the more general case in which com-

ponent i failure rate depends on more than one compo-
nent. Then—

DY =G,9G.®...9G,,

Qi=1

= ([;_l G”) AW Q(g

®AY ®G,,,®...

G.).

reidl

We reach the general conclusion that a failure rate 1¢?
in a system state is multiplied by the stress adjustment fac-
torsy. (forr=1,2,...i = 1,i + 1, ..., N)if component r
is failed or by 1 if component r is good. Equation above
allows to compute D4’ for any component i and any
s-dependence. The whole matrix A is eventually obtained
by summing D4? marrices. Q.E.D
Proof of Theorem §

Recall that G, = 1, if i < ; we get from (21):

A=AM @Y +_+ 1;1:: G. ®AD ® [0
+~+ rl:' Gl" QA(:"
= [Am @ %1 +_+ r;:: G. @A @[ +.+
+!I:’ G..OA™" @f, + l'lo: G. ®A™

= Avey O1, + Gus,, OAM,

Proof of Theorem 6
Let
M=3" Mo
[ J

M is the transition rate matrix for the off-line main-
tainability (see Theorem 2); (28) is equivalent to (14). Af -
diag{c} is the off-line maintainability matrix where 1., are
set to O in the failed system states; then by definition M, =
M - diag{c}

Proof of Theorem 7

Unilateral s-dependence leads to a recursive relation for
the buildup of M, matrix as in the case of s-dependent
failure rates. In addition, since adjustment factors a,,
values are now 0 or 1, Wis a Boolean diagonal matrix.

Consider a Boolean matrix W, defined as—

W.0 ']
0 Wz:

The relation—

W =

M, =M ®W + [~OM" i=k=213,. N
M, = M

gives the multiple-maintenance matrix in the particular
case that W = [, In the general case, let—

M. =M, OW.

It is simple matter to see that M, contains the repair rates
of the components belonging to S..,. Two states in sub-
system S, correspond to each state of S._,. According to
(11), the odd states (i.e. those represented in matrix M by
odd numbered columns) are good states for component
and conversely the even ones. More detail is given below in

Q.E.D. the expanded matrix for M,. :
- W"m""ll 0 W"m"'hz 0 —W“mk_”.z,,‘ 0 <
-— _”-;"mk -1 Wllmk._ 1 W,um‘ — 1y =t
M= {m )} = M., W = Y o 0 12 0 12
Wllmk—lu o
0 Wam, ~t22
W“m‘-lf..z..' 0
- o Wum,, -|2~-|:-|
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where th = {m.-.u,.

With the assumption that component i is to be repaired
before any other component belonging to S..., the repair
transition rates from even states are related only to compo-
nent {. Therefore all repair rates for subsystem S.., are set
to 0 in the even numbered states. This means that:

Wami.,, =0, for each r odd

Waunie,, = Muy_,,_,, for each r even

and therefore

_ 10
W = Q.E.D.
00
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