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ABSTRACT: Tumniog simulatioa is a simplificd form ef
circuit simnulitiou in which the circuit cquaticas are
decoupled al cach nude Lo lake advanlage of the rela-
tive inaclivity of large sigital networks. Conveulional
integraticn schemes applied to Lightly-couplcd, bidirce-
tional circuit clemiculs either exhibil significant
regioas of in:labilily or inaccuracy, or do not provide
the necessary node decoupling. This paper examines a
variely of imglicit-expliciL bybeid algorithima, classificd
as varisblo-in-timu or variwblic-in-apace, which are suit-
ablc for titning ximulalion. The Noaling capacitor, com-
pion in MOS circuily, is uscd a3 a test problem.

1. INTRODUCTION

While circuit simuiators (e.g. {11.[2]) can pro-
vide accurale tlime.domain currenl and voltage
wavelorms from a dcvice level descriplion of sn
integrated circuit, as the size of the circuit
increases the cost and memory requiremsenty of
such an analysis bccome prohibitive. For small cir-
cuits, the siinulation timc is gencrally dominated
by the time rcquired to cvaluate device medel
equalions [3] but as circuil size increases, or if
morc efficient modcling tecihniques are used, an
increasing fraction of tinc is speat solving the
sparse-matrix circuil equations [1].

Tnmmg simulators decouple thc ciccuil equa.
tions using nonlinear simullanecus displacernent
[4) or succcssive displacement [5].[6] methods.
For most circuils. Lhix decoupling maeintains a
linear rclationship befween the number of circuil
elements and the simulalion tiunc required per
timepoint of the analyris. An addecd sdvanloge of
the decoupled analysis is that evert-driven sclec-
live trace nlgorithtns may be used easily and
indcpendent control of tue limestep ot any node of
the circuit is alxo possible. These techniques can
provide subsluntial savings in large digital circuits
whgre often only a small fraction of the circuit
nodes are actively changing state at any one time

(7).

A major drawback with the use of timing
analysis is that tightly-coupled feecback loops, or
bidirectional circuit clcmenls, can cause severe

inaccuracies and even instability during the
analysis. For lhis reuson, speciul techniques must
be used to process such clements. One such ele-
meat that hes limited the applicslion of timing
Unalysis is Lhe floating capacitor {8].

2. ALGORITIINS FOI: FLOATING CAPACITORS

Floating capacitors play an important role in
the analysis of MOS circuits. Often, Lhe solution of
nctworks containing artitrary interconnections of
a large numbcer of fioaling capacilers is require”
Such an analysis pcrformed with ordinary implinit
methods [9] would be extremely Litne consumirg,
because it rcquires Lhe solulion of a s=t of cqua-
tions at cach timeslep. The use of evplicit miclhods
would reduce the computationsl effort.’ but
requircs small stepsizc for stability reasons. The
use of mixed implicit-explicit algorithms rcduces
the computational clfort and allowy, under cerlain
condilions, the choice of optimal slepsiic with
regard to accuracy coansiderations while easuring
stability.

Two classes of algorithins are described here
and referred to &sx ‘“variable-in-space” and
“variable-in-time” algorithms. We dcfine an algo-
rithin to be “variable.in-space” if dilferent iypes of
inlegration (implicit or explicit) are uscd for
different comnpoaents of the circuit at the same
timepoint. We define an algorithm to be "variable-
in-time” if diffcrent types of integralion arc used
for the whole circuil at different Litncepoints. In the
general case an algorithm can be both variable in
space and lime and dif"erent timesteps arc uscd
for implicit and explicit integration.

In the circuit thalt we ure Lo test the algorithm
we suppose thal capucitors and conductances are
linear for ease of proviag slgorithmic propertics.
For MOS circuits, where cach node is assumed to
have a capacitance Lo ground [7]. the nodc cqua-
tions are of Lhe form:

Cx=Cr 2(0)=x4 ztR™ C.CcR™™) (1)

wherz z is the veclor of node voltages. Eq.(1) can
be rewritien in normal ferm{10):

2=Az AP (2



with A=C-IC. In order Lo sludy stabilily, we associ-
ate Lo cach slgorithm a companion matrix MeR™™)
such that:

Taep=M,yx, (3)
Then to ensurc stability of the mcthod we require

the spectral radius ! r(i,)51 being ull eigenvalues
of modulus uuity simple {11].

There are two basic approaches Lo “variablc-
in-space’ algorilhms. “partitioning of variables” or
"guess of variables”. The former requires an impli-
cit integration on a subsel of variables and an
explicit integration for the rewmaining oncs [12].
The lalter is based on the guess al step L+1 of
some quantilics which are related to the values
they had at the previous sleps kk~:,... .k~q. [In thiy
paper we concentratc on the “guess of variables™
method. Suppose we are integraling the sct of
equations deiined by Eq.(2) using an implicit
method such as Backward Euler (U.E.). At edch
step we have to sotve the lincar system:

(7=t ])xy =30 (4)
To solve Eq.(4) we nced a L.U. !aclorm\ho.l of
{t=m ). which is very time consuining il we are
dcaling with a large system. Let us decompose A
into the sum of two malrices

AmA +A, (s)
being 4, either lower or upper triangular. Eq.(4) in
equivalent Lo

{1-Ai)zre: = 2 +Ac 100, (e)
Uf we make the “guess” A, x,.1=A,2, we must solve:
[I ~h4, lxkol‘.'[l +hd, JEN (7)

where we do nol nced any faclorization siace
{f/-a4,] is triangular. The companion matrix is
M=l =M, )+ ra )

We will now restrict our analysls to the unit.
cell which models s MOS transisior for timing
analysis. From the circuil point of vicw we cau
refer to voltage guess methods and current guess
methods:
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(a) Let us consider first the most simplc vol-
tage guess method. let us use B.E. inlegration,
substitule the companion inodel for capacitors and
apply nodal analysic lo the circuit of Fig (1). Oy
takine A=C-'C in Eq.(4) aund multiplying bolh

members by —: we oblain:
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The mcthod is absolulely stable for the test circuit.
Fig.(2) shows the root locus and all roots stay
withic the unit circle for all values of circuil
paramelers

it ¢, and C, are small with respect to C,, C3>0
and lhe stepsize is increased. a pair of comglex:
conjugale roots appears. These roots nay cause an
oscillatory crror componenl in the recxulting circuit
wavclorins, and therefore dcgrade the accuracy of
the analysis. As it can be seen fromn the rool locus,
Lhere exists a critical maximuin Llimestep Ay
under wiiich the roots arce rcal and Lhe solution is
accurate.

(b) Another vollage guess method described in
[8] can be achieved by decoupling Eq.(8) by taking
the voltage al node (2) one step back in time to
solve Lhe first equalion. This correspunds Lo guezs
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Fig.2 Root Locus for Method (a)

and counsidering the
floating capacitor as

curreat
given by

Cg";‘.l = G;r,-"
through the

Ca

[('-nu -l )= (v=-22,)) Stability considera-

uons are similar to method (a) though riiing
appcars in the case C3=0, and A, has diflerent

values. Fig(?) shows the rool locus versus A [or
differcnt valucs of the fNoating capacitor.

(c) To avoid the ringing in the golutions given
by methods (a) and (b) we can performn a so called
“double crossed voitage gucss™. We refer ncw to
Eq.'s{2).(4) and (5) applied lo the test circuit. The
method has two steps, modceled us Eq.(6). In the
first one, A; = A; Is lower triangular and the guess
Ay v,‘., = A, ,vf is used in the first equation Lo solve
for vl andvl,. In the second step Ay =4, is
upper triangular and the guess dgpvtes = 4,00, is
used in the second ecuation to solve for
vlg snd vl,;. "The compenion matrix is :

Mol =RAL T [T 40A,2] [1 =M 7Y (1 +04y,) (10)
The mnethod is stable for the test circuit and the

cigenvalucs are real for all values of circuit param-
elers.

Now we consider current guesses.

'(d) The first approach is Lo remove the floating
elecments and substituic them with a current
source, whose value is determined by an explicit
predictor. fi.t.. integration scheme in used lor node
voltages, and lcads Lo the set of decoupled cqua-
tions:
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The simplesl predictor we can use iz 2., =%, wherc
iy is the currenl computed [rom the circuit cqua-
tion at timestep k. Another method consisls of
predicling the voltage on the ficating element v{,,
by means of a Forward Fuler (F.E.) integration step
and then soiving for if.,. Al each timneslep the
current i ir cvaluated and compared with 2, if
jiz=ifi>c the step is reiecled and 32 is computed:
agair: with sinaller stepsize. A more formal way of
viewing the problein is to use modified ncdol
analysis for the circuil using i as appended vari.
able and gucssing its value as equnl to Lhe previous
onc. Using B.E. as lthe integration rule, we oblain:
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The method has proved lo be unstable if C, is large
with respecl to C; and Cq, but stabdility does not
depend on stepsize.

(e) We now take advantage of the possibility of
computing ‘exaclly the time derivatives of Lhe node
volltagcs at each timestep and add Lhesc equations
to the inlegrating equations for node vollages.
Using B.E. integralion scheine for the test circuit
of Fig(1) we obtain:
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then:
Azroy = [/ +Ay)x, (14)

and ¥=4;"'(7+4,]. The stability of the method is
oot aflected by the value of C; but the stepsize
must be larger than a critical value. The major
drawbacks are larger matrix dimension and the
loss of accuracy if A is forced to be large. This
might lcad to the loss of fust transicnts when €,
and C, are small wilth respect to Ce. In Lhe casc
C3=0 only the guess ¥/, = 3! is performed which
corresponds to guessing the current through Ch.

As a final remark, for the current-guess
methods it should be pointed out that the best
stratcgy as far as slasbility and accuracy arc con-
cerned is to guess the current through the smal-
lest capacitor. :

The following table summuarizes stability con-
siderations for Lhe mctlinds described aboves .

Next wc focus our attenticn now on the
"variable-in-lime” algorithins. “Variable.in-titne”
slgorithms have the advantage of reducing the
total numbcr of implicit integralion sleps and
therclore the number of factorizations. In this
case we combine a striclly stable algorithm (B.E)
with an explicit onc (F.L.). We refer now Lo Eq.(2)
and consider first the case where we have each

methadl
|~ T}

La stoepsire 2 slahbili
"L FR S [ M1 1o 1 Tageo DALY

£ any LLkh3 h<h. o .

Le lany | any | A>h., e8|

| A 0 any any | yes |

_'.:__ ARY | LY h<h,, ns

- any AELY L] |

_ E ‘.ri_:. :rlk

d i Caely any

&t U (Cpla ] any

| & | O B any hah ___¥es ]
[e e any heh, no no

® for no ringing .
Table 1. Stability and accuracy of guess methods

implicit step with stepsize A, followed by an expli-
cil one with stepsize A, The companion malrix is:

Map=(l +h, A [F-H A" (15)
By the spectral mapping theorem [13):
1+h, A
oM=L 1aeo(a)) (16)

- and slability is ensured if p(Mp)<1. The slgorithin is

stable if:

h.~h,>2§-f,'\- IAco(A) (17)

This condition requires Lhe knowledge of the cigen.
valucs A of A . [t is casy Lo see Lhal by taking
hyZh,. condition (17) is always salisfied, previded
we deal with a stable system. As a furlher gencrali-
zation of this class of algorithms let r implicit
steps wilh stepsize hy; be mixed with s explicit
stepe with stepsize hyy, where s+r=p and s, r
coprime. In Lhis case:
L ]

‘n(l#h,,k)
a(M,) = it
,H'(l-hu")

| Aea(4 )} (18)

and slability iz ensured by p(M,) < 1

3. SUMMARY

Thiz briel overview of mixed algorithms is far from
exhaustive. Its purpcse is only to point oul the
potential reduction in total computaliona! effort
provided by these methods and Lhe rclated
stability problems. Thc stability analyses musl be
exicnded to more general nelworks typical of large
intcgrated circuits. Al present, some cf the olgo-
rithms are under test in a Liming sinulator and will
be uzcd for the analysis of lnrge MOS circuily.
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