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Abstract

Energy consumption of electronic devices has become a serious concern in recent years.

Energy efficiency is necessary to lengthen the battery lifetime in portable systems, as well

as to reduce the operational costs (e.g. cost of electricity) and the environmental impact

(e.g. cooling fan noise) of stationary systems. Optimization in design and utilization of

both hardware and software is needed in order to achieve more energy efficient systems.

In this thesis I first discuss power management algorithms that enable optimal utiliza-

tion of hardware at run time. Next, I discuss the new dynamic voltage scaling algorithm that

complements power management by scaling processor frequency and voltage depending on

the needs of the system. Finally, I develop a modular approach for design and simulation

of hardware and software energy consumption at the system level.

Dynamic power management (DPM) algorithms aim to reduce the energy consumption

at the system level by selectively placing components into low-power states. Two power

management algorithms will be presented that have been derived from the stochastic mod-

els of several realistic examples. Both algorithms are event-driven and give optimal results

verified by measurements. The first approach is based on renewal theory. This model as-

sumes that the decision to transition to low power state can be made in only one state.

Another method developed is based on the Time-Indexed Semi-Markov Decision Process

model (TISMDP). TISMDP model assumes that a decision to transition into a lower-power

state can be made upon each event occurrence from any number of states. On the other

hand, it is also more complex than the approach based on renewal theory. It is important

to note that the results obtained by renewal model are guaranteed to match results obtained

by TISMDP model, as both approaches give globally optimal solutions. I implemented

both power management algorithms on two different classes of devices: two different hard
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disks and client-server WLAN systems such as the SmartBadge or a laptop. The measure-

ment results show power savings ranging from a factor of 1.7 up to 5.0 with performance

basically unaffected.

Dynamic voltage scaling (DVS) algorithms reduce energy consumption by changing

processor speed and voltage at run-time depending on the needs of the applications run-

ning. In this work I extended the DPM model discussed above with a DVS algorithm, thus

enabling larger power savings. I tested my approach on MPEG video and MP3 audio al-

gorithms running on the SmartBadge portable device [51]. The results show savings of a

factor of three in energy consumption for combined DVS and DPM approaches.

Lastly, I present a modular approach for enhancing instruction level simulators with

cycle-accurate simulation of energy dissipation in systems. This methodology has tightly

coupled component models thus making the simulation more accurate. Performance and

energy computed by the simulator are within 5% tolerance of hardware measurements on

the SmartBadge portable device. The simulation methodology can be used for hardware

design exploration aimed at enhancing the SmartBadge with real-time MPEG video fea-

ture. In addition, a profiler that relates energy consumption to the source code has been

developed. The MP3 audio decoder software has been redesigned using the profiler and

the software design methodology to run in real time on the SmartBadge with low energy

consumption. Performance increase of 92% and energy consumption decrease of 77% over

the original executable specification have been achieved.
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Chapter 1

Introduction

A system is a group of devices or objects whose interaction serves a common purpose.

Many measures are used to evaluate how closely the design of electronic systems and sub-

systems meets the desired functionality and constraints. Some of the measures include

performance, energy and power consumption, reliability, design and manufacturing cost.

Power consumption is proportional to the frequency of execution and the square of the

operating voltage, while energy consumption also depends on the total execution time.

Energy consumption has become one of the primary concerns in electronic design due

to the recent popularity of portable devices and cost concerns related to desktops and

servers. The battery capacity has improved very slowly (a factor of 2 to 4 over the last

30 years), while the computational demands have drastically increased over the same time

frame. Heat extraction is a large issue for both portable and non-portable electronic sys-

tems. Finally, in recent time the operating costs for large electronic systems, such as data

warehouses, have become a concern.

At the system level, there are three main sources of energy dissipation: (i) processing

units; (ii) storage elements; (iii) interconnects and communication units. Energy efficient

system level design must minimize the energy consumption in all three types of compo-

nents, while carefully balancing the effects of their interaction. For example, optimizing

the micro-architecture of a computing element can affect the energy consumption of mem-

ory and memory-processor busses. The software implementation also strongly affects the

system energy consumption. For example, software compilation affects the instructions

1



CHAPTER 1. INTRODUCTION 2

used and thus the energy consumed by computing elements; software storage and data ac-

cess in memory affect the energy balance between processing and storage units; and the

data representation affects power dissipation of the communication resources.

Electronic systems are collections of components which may be heterogeneous in na-

ture. For example, a laptop has a digital VLSI component, an analog component (wireless

card), a mechanical part (hard disk drive), and an optical component (display). Peak per-

formance in electronic design is required only during some time intervals. As a result, the

system components do not always need to be delivering peak performance. The ability

to enable and disable components, as well as of tuning their performance to the workload

(e.g., user’s requests), is important in achieving energy efficient utilization.

In this work I will present new approaches for lowering energy consumption in both

system design and utilization. This work has been motivated by my experience in achiev-

ing energy efficient design and utilization of the SmartBadge and its components, and by

optimizing the utilization of the hard disks and the WLAN card used in a laptop and a

desktop computer.

1.1 SmartBadge

The SmartBadge, shown in Figure 1.1, is an embedded system consisting of Sharp’s dis-

play, wireless local area network (WLAN) card, StrongARM-1100 processor, Micron’s

SDRAM memory, FLASH memory, sensors, and modem/audio analog front-end on a

printed circuit board (PCB) powered by the batteries through a DC-DC converter. The

SmartBadge component diagram is shown in Figure 1.2. The initial goal in designing the

SmartBadge was to allow a computer or a human user to provide location and environmen-

tal information to a location server through a heterogeneous network. The SmartBadge

could be used as a corporate identity card, attached (or built in) to devices such as personal

digital assistants (PDAs) and mobile telephones, or incorporated in computing systems.

The SmartBadge operates as a part of a client-server system. Thus it initiates and termi-

nates each communication session. As the SmarteBadge is battery operated, minimizing

energy consumption via both careful design and utilization is critical. I used the prototype

implementation of the SmartBadge on a PCB to evaluate the results of my work.
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Figure 1.1: SmartBadge
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Figure 1.2: SmartBadge Components

The design goal is to enhance the prototype implementation of the SmartBadge so that

it can support real-time MPEG video and audio decode. Since the original hardware does

not meet either the performance or the energy consumption constraints when running the

MPEG decode algorithm, both the hardware and the software architectures needed to be

redesigned, while keeping the energy consumption under tight control. To address this,

new hardware and software design methodologies have been developed. Once the design

meets the performance constraints, it is important to consider the utilization of components.

When full performance is not needed from the SmartBadge, the processor frequency and

voltage can be scaled down using the dynamic voltage scaling algorithm presented in this

thesis. Finally, as the SmartBadge is not constantly used, the whole system, or some of its

components can be transitioned into low-power states using dynamic power management

policy that is discussed in Chapter 2.
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1.2 Sony Vaio Laptop

The Sony Vaio Laptop, shown in Figure 1.3 has been used daily in our lab. Its battery

life, when no communication devices are used and the screen is dimmed, is about 2.5

hours. When a communication device is added to the system, such as WLAN card [50], the

battery lifetime drops down by a factor of two. Most of energy consumption is taken by the

display, hard disk and the WLAN card. When the laptop is being used, the display needs

to be turned on. On the other hand, the hard disk and the WLAN card are not consistently

accessed, and thus can be transitioned by the power management policy into low-power

state when they are idle.

Figure 1.3: Sony Vaio Laptop (model PCG-F150)

The wireless card has multiple power states: two active states, transmitting, receiving,

and two inactive states, doze and off. Transmission power is 1.65W, receiving 1.4W, the

power consumption in the doze state is 0.045W [50] and in the off state it is 0W. Once

both receiving and transmission are done, the card automatically enters the doze state.

Unfortunately, savings of only 5-10% in power have been measured with this approach,

due to the overhead of having to be awake every 100ms to find out if any communication

needs to take place. In client-server systems, such as the laptop I used, it is clear when

communication is finished on the client side. Thus, the power manager can turn the card

off once the communication is finished, and turn in back on when the client wishes to

resume communication. As that transition takes on average 60 ms, the overhead of turning

the card off is not noticeable to the user.

In contrast, the performance overhead of transitioning the hard disk between active and
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sleep states is considerable, about 2.2 seconds for the whole transition. In addition, it takes

considerable power to spin up the disk - about 2.5 Watts. The average power consumption

in the active state is 0 � 95W , while in the sleep state, the disk consumes only 0 � 13W . Thus,

it is advantageous to place the disk into the sleep state only when the idle period between

successive accesses is long enough to justify the performance and energy overhead incurred

during the transitions. The dynamic power management algorithm I developed is able

to give policies that give globally optimal decisions on when the transition to sleep state

should occur. The new power management algorithm shows significant savings over the

standard timeout algorithm typically implemented in systems.

Even though design is completed before optimizing the system utilization, the remain-

der of this chapter is organized as follows. Section 1.3 discusses the different approaches

for energy efficient system utilization. Section 1.4 describes issues that are of concern

when designing systems for lower energy consumption. Section 1.5 is a summary of the

contributions of this thesis.

1.3 Energy Efficient System Utilization

While system design is concerned with selection and organization of system components,

the system utilization addresses the question of how those components should be used.

Electronic systems often consist of one or more microprocessors and a set of devices with

multiple low-power states. Many microprocessors support dynamic clock frequency ad-

justment, and some newer devices also support dynamic supply voltage setting [24]. Thus,

at the system level it is possible to reduce energy by transitioning components into low-

power states (dynamic power management) and by changing the frequency and voltage

level of the microprocessor (dynamic voltage scaling).

1.3.1 Dynamic Power Management

The fundamental premise for the applicability of power management schemes is that sys-

tems, or system components, experience non-uniform workloads during normal operation

time. Non-uniform workloads are common in communication networks and in almost any
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interactive system.

System-level dynamic power management [6] decreases the energy consumption by se-

lectively placing idle components into lower power states. System resources can be mod-

eled using state-based abstraction where each state trades off performance for power [35].

For example, a system may have an active state, an idle state, and a sleep state that has

lower power consumption, but also takes some time to transition to the active state. The

transitions between states are controlled by commands issued by a power manager (PM)

that observes the workload of the system and decides when and how to force power state

transitions. The power manager makes state transition decisions according to the power

management policy. The choice of the policy that minimizes power under performance

constraints (or maximizes performance under power constraint) is a constrained optimiza-

tion problem.

In the recent past, several researchers have realized the importance of power manage-

ment for large classes of applications. Chip-level power management features have been

implemented in mainstream commercial microprocessors [23, 17, 22, 24]. Techniques for

the automatic synthesis of chip-level power management logic are surveyed in [6].

The most common power management policy at the system level is a timeout policy

implemented in most operating systems. The drawback of this policy is that it wastes

power while waiting for the timeout to expire [43, 66].

Predictive policies for hard disks [15, 18, 26, 31, 49] and for interactive terminals [8,

34, 75] force the transition to a low power state as soon as a component becomes idle if

the predictor estimates that the idle period will last long enough. An incorrect estimate can

cause both performance and energy penalties. The distribution of idle and busy periods

for an interactive terminal is represented as a time series in [75], and approximated with a

least-squares regression model. The regression model is used for predicting the duration

of future idle periods. A simplified power management policy predicts the duration of an

idle period based on the duration of the last activity period. The authors of [75] claim

that the simple policy performs almost as well as the complex regression model, and it is

much easier to implement. In [34], an improvement over the prediction algorithm of [75]

is presented, where idleness prediction is based on a weighted sum of the duration of past

idle periods, with geometrically decaying weights. The policy is augmented by a technique



CHAPTER 1. INTRODUCTION 7

that reduces the likelihood of multiple mispredictions. All these policies are formulated

heuristically, then tested with simulations or measurements to assess their effectiveness.

In contrast, approaches based on stochastic models can guarantee optimal results. Stochas-

tic models use distributions to describe the times between arrivals of user requests (interar-

rival times), the length of time it takes for a device to service a user’s request, and the time

it takes for the device to transition between its power states. The system model for stochas-

tic optimization can be described either with just memoryless distributions (exponential or

geometric) [7, 14, 64, 65] or with general distributions [71, 72, 73, 74]. Power manage-

ment policies can also be classified into two categories by the manner in which decisions

are made: discrete time (or clock based) [7, 14] and event driven [64, 65, 71, 72, 73, 74].

In addition, policies can be stationary (the same policy applies at any point in time) or non-

stationary (the policy changes over time). All stochastic approaches except for the discrete

adaptive approach presented in [14] are stationary.

The optimality of stochastic approaches depends on the accuracy of the system model

and the algorithm used to compute the solution. In both the discrete and the event-driven

approaches optimality of the algorithm can be guaranteed since the underlying theoretical

model is based on Markov chains. Approaches based on the discrete time setting require

policy evaluation even when in low-power state [7, 14], thus wasting energy. On the other

hand, event-driven models based on the exponential distribution [64, 65] show little or no

power savings when implemented in real systems since the exponential model does not

describe well the request interarrival times [71, 72, 73, 74]. In this thesis, I present two

new approaches that combine the advantages of discrete and continuous models. The new

DPM algorithms are guaranteed to be globally optimal, while allowing event-driven policy

evaluation and providing a more flexible and accurate model for the user and the device.

1.3.2 Dynamic Voltage Scaling

Dynamic voltage scaling (DVS) algorithms reduce energy consumption by changing pro-

cessor speed and voltage at run-time depending on the needs of the applications running.

If only processor frequency is scaled, the total energy savings would be small as power is

inversely proportional to cycle time and energy is proportional to the execution time and
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power. Early DVS algorithms set processor speed based on the processor utilization of

fixed intervals and did not consider the individual requirements of the tasks running. There

has been a number of voltage scaling techniques proposed for real-time systems. The

approaches presented in [32, 33, 36, 86] assume that all tasks run at their worst case execu-

tion time (WCET). The workload variation slack times are exploited on task-by-task basis

in [68], and are fully utilized in [45]. Work presented in [62] introduces a voltage scheduler

that determines the operating voltage by analyzing application requirements. The schedul-

ing is done at task level, by setting processor frequency to the minimum value needed to

complete all tasks. For applications with high frame-to-frame variance, such as MPEG

video, schedule smoothing is done by scheduling tasks to complete twice the amount of

work in twice the allocated time.

In all DVS approaches presented in the past, scheduling was done at the task level,

assuming multiple threads. The prediction of task execution times was done either using

worst case execution times, or heuristics. Such approaches neglect that DVS can be done

within a task or for single-application devices. For, instance, in MPEG decoding, the vari-

ance in execution time on frame basis can be very large: a factor of three in the number of

cycles [5], or a range between 1 and 2000 IDCTs per frame [13] for MPEG video.

1.4 Energy Efficient System Design

Energy efficient system design requires the reduction of energy consumption in all portions

of a system. System level design of hardware is concerned with selection and organization

of the components. Software design is concerned with definition and selection of operating

system, application software and compilers. The interaction between software and hard-

ware components can greatly affect the energy consumption at the system level. Thus it is

of critical importance to have a fast and easy way to evaluate energy consumption of the

whole system during the design stages of software and hardware.
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1.4.1 Energy Efficient Hardware Design

When designing an electronic system a designer explores a limited number of architectural

alternatives and tests their functionality, energy consumption and performance. Tradition-

ally, the designers aimed to meet high performance targets with little regard to energy

consumption. Thus the whole design methodology aimed to deliver designs capable of de-

livering peak performance continually. Optimizing design for both performance and energy

consumption has become a priority in recent times. As a result, the design methodology

needs to be changed to include energy consumption criteria.

The most accurate way to evaluate the design is to build a prototype first, but this ap-

proach does not accurately model performance or energy consumption, is slow and very

expensive. Alternatively, performance can be evaluated using instruction-set simulators

(e.g., [1]), but there is limited or no support for energy consumption evaluation. Commer-

cial tools target mainly functional verification and performance estimation [11, 16, 54, 76],

but provide no support for energy-related cost metrics.

Processor energy consumption is generally estimated by instruction-level power anal-

ysis, first proposed by Tiwari et al. [78, 79]. This technique estimates the energy con-

sumed by a program by summing the energy consumed by the execution of each instruc-

tion. Instruction-by-instruction energy costs are pre-characterized once for all for each

target processors. The instruction-level power model can be augmented by considering

the effect of first-level caches and inter-instruction effects. An approach proposed recently

in [25] attempts to evaluate the effects of different cache and bus configurations using linear

equations to relate the main cache characteristics to system performance and energy con-

sumption. This approach does not account for highly non-linear behavior in cache accesses

for different cache configurations that are both data and architecture dependent.

A few research prototype tools that estimate the energy consumption of processor core,

caches and main memory in SOC design have been proposed [46, 42]. Memory energy

consumption is estimated using cost-per-access models. Processor execution traces are

used to drive memory models, thereby neglecting the non-negligible impact of a non-ideal

memory system on program execution. The final system energy is obtained by summing

over the contribution of each component. The main limitation of the approaches presented
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in [42, 46] is that the interaction between memory system (or I/O peripherals) and processor

is not modeled.

A more recent approach presented in [44] combines multiple power estimators into one

simulation engine thus enabling detailed simulation of some components, while using high-

level models for others. This approach is able to account for interaction between memory,

cache and processor at run time, but at the cost of potentially long run-times. Longer run-

times are caused by different abstraction levels of various simulators and by the overhead

in communication between different components. The techniques that enable significant

simulation speedup are presented, but at the cost of the loss of detail in software design and

in the input data trace.

Cycle-accurate register-transfer level energy estimation is presented in [83]. This tool

integrates RT level processor simulator with DineroIII cache simulator and memory model.

It is shown to be within 15% of HSPICE simulations. This approach is not practical for

component-based designs, as it requires knowledge of the internal design of system com-

ponents.

An alternative approach for energy estimation using measurements as a basis for es-

timation is presented in PowerScope tool [21]. PowerScope requires two computers to

collect the measurement statistics, some changes to the operating system source code and

a digital multimeter. Although this system enables accurate code profiling of an existing

system, it would be very difficult to use it for both hardware and software architecture ex-

ploration, as in the early design stages neither hardware nor operating systems or software

are available for measurements.

Finally, most previous approaches do not focus on battery life optimization, the ultimate

goal of energy optimization for portable systems. In fact, when the battery subsystem is not

considered in energy estimation significant errors can result [52]. Some analytical estimates

of the tradeoff between battery capacity and delay in digital CMOS systems are presented

in [60]. Battery capacity is strongly dependent on the discharge current as can be seen from

any battery data sheet [87]. Hence, it is important to accurately model discharge current as

a function of time in an embedded system.
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1.4.2 Energy Efficient Software Design

In the past, only performance and functionality of software were of concern. In recent

years, the design trade-off of performance versus energy consumption has received large

attention. Typically, for compatibility reasons, the degrees of freedom for modifying soft-

ware are larger than those for hardware.

Since software does not have a physical realization, it is important to analyze the soft-

ware impact on the hardware energy consumption. In addition, there is a need to evaluate

which of different choices for the software implementation, such as system-level software

or application-level software and their compilation into machine code, are most appropri-

ate. Finally, it is crucial to be able to optimize software for both performance and energy.

This can be done by changing the source code directly, and with the use of compilers.

Ideally, the goal is to develop energy-aware operating systems and applications, that

can signal to hardware when they are needed and thus enable the most optimal performance

and energy trade-off. Currently, the commercial software development tools only support

performance profiling of software. Since the effect software has on the energy consumption

is of critical importance, one of primary requirements for system design methodology is to

effectively support code energy consumption optimization.

Several techniques for code optimization have been presented in the past. Tiwari et

al. [78, 79] uses instruction-level energy models to develop compiler-driven energy opti-

mizations such as instruction reordering, reduction of memory operands, operand swapping

in the Booth multiplier, efficient usage of memory banks, and series of processor specific

optimizations. In addition, several other optimizations have been suggested, such as en-

ergy efficient register labeling during the compile phase [53], procedure inlining and loop

unrolling [46] as well as instruction scheduling [80]. Work presented in [41] applies a set

of compiler optimizations concurrently and evaluates the resulting energy consumption via

simulation. In [12] memory hierarchy is designed to better match software needs.

All the techniques discussed above focus on automated instruction-level optimizations

driven by the compiler. Unfortunately, currently available commercial compilers have lim-

ited capabilities. The improvements gained when using standard compiler optimizations

are marginal compared to writing energy efficient source code [70]. The largest energy
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savings were observed at the inter-procedural level that compilers have not been able to

exploit.

1.5 Thesis contribution

This thesis’ contributions are in the areas of energy efficient system design and utilization.

The system utilization is addressed with a combination of power management and voltage

scaling algorithms. I present two new algorithms that give globally optimal power manage-

ment policies for realistic component models. The policies have been implemented in real

systems and have large measured power savings. The dynamic voltage scaling algorithm

complements dynamic power management algorithms by changing processor frequency

and voltage as the demands for processing power change.

Energy efficient system design methodology consists of hardware and software design

methodologies. Energy conscious hardware design is done using a cycle-accurate energy

consumption simulator presented in this thesis. The simulator enables fast and accurate

evaluation of both hardware and software energy and performance. The simulator is com-

plemented with the energy profiler that gives accurate estimates of energy consumption for

each software function and by each hardware component. The software design methodol-

ogy consists of two parts: the general approach that can be implemented in any system, and

processor-specific examples that can be adopted to most systems.

More detailed overview of contributions of this thesis follows. First I start with the

description of dynamic power management algorithms. Next, I discuss the dynamic volt-

age scaling algorithm. Finally, I give a quick overview of energy efficient system design

techniques.

1.5.1 Dynamic Power Management

In this work I introduce two new models for power management at the system level that

enable modeling system transitions with general distributions, but are still event driven

and guarantee optimal results. The models assume that both devices and workloads for

devices can be modeled using stationary stochastic distributions and the states describing
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trade-offs in cost and performance. Thus, the applicability of these models is very general.

For systems that do not exhibit stationarity, adaptive methods, such as the ones presented

in [14] can be used.

In order to verify the models, I implemented the power management algorithms on

general purpose systems, such as laptops and desktops, and on a portable system such as the

SmartBadge [51]. On general purpose systems two main classes of devices were controlled

with power management policies: storage devices, such as hard disks, and communication

devices, such as the WLAN card. For each of these devices, I collected a sets of traces that

model well typical user behavior. I found the interarrival times between user requests are

best modeled with a non-exponential distribution (a Pareto distribution shows the best fit,

although my model applies to any distribution or direct data). These results are consistent

with the observations on network traffic interarrival times presented in [59]. In addition, I

measured the distributions of transition times between active, idle and low power states for

each of the systems and found non-exponential transition times into or out of a low power

state. Traditional Markov chain models presented in previous work do not apply to these

devices since user request arrivals and the transition times of a device are best modeled with

the non-exponential distributions that can occur at the same time. As a result, I formulated

the policy optimization problem using two different stochastic approaches. My models

are a generalization of discrete-time Markov decision process model (DTMDP) presented

in [7] and of continuous-time Markov decision process model presented in [64, 65]. Both

DTMDP and CTMDP approaches use memoryless distributions to model all of the system

behavior (geometric for DTMP and exponential for CTMDP).

The first approach I present is based on renewal theory [67, 77]. It is more concise,

but also is limited to systems that have only one decision state. The second approach is

based on Time-Indexed Semi-Markov Decision Process model (TISMDP). This model is

more general but also more complex. In both cases the policy optimization problem can

be solved exactly and in polynomial time by solving a linear program. Clearly, since both

approaches guarantee optimal solutions, they will give the same solution to a given opti-

mization problem. Note that both approaches can handle general user request interarrival

distributions, even though in the particular examples presented in this work we use Pareto
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distribution since it showed a good fit to the data collected experimentally. The policy de-

cisions are made only upon request arrival or upon finishing serving a request, instead of at

every time increment as in discrete-time model. Since policy decisions are made in event-

driven manner, more power is saved by not forcing policy re-evaluations as in discrete-time

models.

I implemented both policies in real systems and compared the resulting power con-

sumption. The measurement results show that the reduction in power can be as large as 2 � 4
times with a small performance penalty when power managing the laptop hard disk and 1 � 7
times for the desktop hard disk. My algorithms perform better than any other power man-

agement algorithms tested in [48]. The measurements of optimal policy implemented on a

laptop for the WLAN card show that the reduction in power can be as large as a factor of 5

with a small performance penalty. Finally, power management results on the SmartBadge

show savings of as much as 70% in power consumption.

1.5.2 Dynamic Voltage Scaling

In this work I extend the DPM model with a DVS algorithm, thus enabling larger power

savings. The DVS algorithm assumes that the exponential distributions can be used to

model the workload while the system is in the active state. In addition, it represents the

active state as a series of states characterized by varying degrees of performance and energy

consumption.

The algorithm is implemented for the SmartBadge portable device [51]. The Smart-

Badge processor can operate over a range of frequencies. For each frequency, there is a

minimum allowed voltage of operation. If the processor is run at the minimum frequency

and voltage required to sustain the performance level required by the application, it is pos-

sible to save power even when the system is active, in addition to the savings that can be

obtained by DPM during idle periods. This principle is exploited by the recently announced

Transmeta’s Crusoe processor [24].

A first contribution is to develop and verify a stochastic model for prediction of execu-

tion times for streaming multimedia applications on a frame-by-frame basis. Our model is
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based on the change-point detection theory used for ATM traffic detection among other ap-

plications [82]. We compare our model to prefect prediction and to the exponential moving

average used in [62]. The prediction algorithm developed is then used as a part of a power

control strategy that merges DVS and DPM.

A second contribution is to merge the DPM and the DVS approaches, by expanding the

active state definition to include multiple settings of frequency and voltage, thus resulting

in a range of performance and power consumptions available for tradeoff at run time. In

this way, the power manager can control performance and power consumption levels both

by using DVS when the system is active, and by transitioning components into low-power

states when the system is idle.

1.5.3 Energy Efficient System Level Design

The distinctive features of my approach are the following: (i) complete system level and

component energy consumption estimates as well as battery lifetime estimates (ii) abil-

ity to explore multiple architectural alternatives and (iii) easy estimation of the impact of

software changes both during and after the architectural exploration. The tool set is inte-

grated within the instruction set simulator (ISS) provided by ARM Ltd. [1]. It consists of

two components: a cycle-accurate system level energy consumption simulator with battery

lifetime estimation and a system profiler that correlates both energy consumption and per-

formance with the code. My tools have been tested on a real-life industrial application,

and have proven to be both accurate (within 5% of hardware measurements) and highly

effective in optimizing the energy consumption in embedded systems (energy consumption

reduced by 77%). In addition, they are very flexible and easy to adapt to different systems.

The tools contain general models for all typical embedded system components but the mi-

croprocessor. In order to adopt the tools to another processor, the ARM ISS needs to be

replaced by the ISS for the processor of interest.
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Energy Efficient Hardware Design

In contrast to previous approaches, in this work memory models and processor instruction

level simulator are tightly integrated together with an accurate battery model into cycle-

accurate simulation engine. Estimation results obtained with the simulator are shown to be

within 5% of measured energy consumption in hardware. In addition, the simulator accu-

rately models the battery discharge current. Since it has only one simulation engine, there

is no overhead in executing simulators at different levels of abstraction, or in the interface

between them. Thus, this approach enables fast and accurate architecture exploration for

both energy consumption and performance.

The tool has been used to redesign the hardware architecture of the SmartBadge. Ini-

tially the SmartBadge could execute MPEG video decode in seconds per frame. After the

hardware redesign, real time performance with a large reduction in energy consumption is

obtained. The tool presented in this thesis enabled fast evaluation of many different mem-

ory and processor architectures, together with identifying the appropriate battery and the

DC-DC converter. In addition, peak energy consumption due to large switching activity at

the CPU-memory bus has been significantly reduced.

Energy Efficient Software Design

Leveraging the estimation engine, I implemented a code profiling tool that gives percent-

ages of time and energy spent in each procedure for every system component. Thanks to

energy profiling, the programmer can easily identify the most energy-critical procedures,

apply transformations and estimate their impact not only on processor energy consumption,

but also on memory hierarchy and system busses.

Finally, with the simulator and the profiler, I developed a code transformation method-

ology that enables energy (and performance) optimization of software. The methodology

consists of three categories of source code optimizations: algorithmic changes, data rep-

resentation changes and instruction-level optimizations. In addition to a general method-

ology, processor specific optimizations are introduced that can be used to reduce energy

consumption.
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1.5.4 Summary of the thesis contribution

The main contributions of this thesis are in the areas of energy efficient system design and

utilization. The system utilization is addressed using two different approaches: dynamic

power management and dynamic voltage scaling. I also developed modular methodologies

for design and simulation of hardware and software energy consumption at the system level.

DPM algorithms reduce the energy consumption at the system level by placing idle

components into low-power states. Two algorithms are presented that are based on sta-

tionary stochastic models. They are event-driven and give optimal results verified by mea-

surements. The measured power savings range between a factor of 1.7 up to 5.0 with

performance basically unaffected. The main limitation of the algorithms is that they re-

quire stationary distributions. This problem can be addressed by using adaptive approach

such as the one presented in [14].

The DPM model has been extended with a DVS algorithm that reduces energy con-

sumption by changing processor speed and voltage at run-time depending on the needs of

the applications running. With a combined approach, savings of a factor of three in energy

consumption have been observed. The DVS algorithm assumes non-stationary exponential

distributions for the active states, and requires a discrete set of active states. An extension

to this work would generalize from the exponential distribution to a general distribution.

In addition, with an analog DC-DC converter, it is possible to have a continuous range of

active states.

In addition to addressing the utilization issues for energy efficiency, I also present a

modular approach for hardware and software design. This methodology is centered around

a cycle-accurate simulator of energy dissipation in systems. A profiler that relates energy

consumption obtained from the simulator to the source code has been developed. The

simulator and the profiler are used together with the software design methodology to guide

the design of both energy efficient hardware and software. Energy savings of as much as

77% with performance increase of 92% have been achieved. As the simulator consists

of high-level models for components, even more accurate results could be obtained with

more detailed component models. In addition, the software optimization methodology is

currently manual. Automating some of these optimizations via energy-aware compiler
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would speed up the software design.

1.6 Outline of the following chapters

The main contributions of my work are discussed in the rest of this thesis. Chapter 2

presents the dynamic power management algorithms, while Chapter 3 discusses the dy-

namic voltage scaling algorithm. These two chapters address energy efficient system uti-

lization issues. Energy efficient system design is addressed in Chapter 4 for hardware and

in Chapter 5 for software. Finally, the main contributions of this thesis are summarized in

Chapter 6.



Chapter 2

Dynamic Power Management

2.1 Introduction

Dynamic power management (DPM) techniques achieve energy efficient utilization of

systems by selectively placing system components into low-power states when they are

idle. The basic assumption of DPM is that systems and their components experience

non-uniform workloads whose variations can be predicted with some accuracy. A power

managed system contains a power manager (PM) that implements a control procedure (or

policy) based on observations of the workload. Policies can be implemented by different

means, such as a timer, a hardware controller or in software.

A power managed system can be modeled as a power state machine, where each state

is characterized by the power consumption and performance. In addition, state transitions

have power and delay cost. Usually, lower power consumption in a given state also implies

lower performance and longer transition delay. For example, a hard disk system can be

characterized with three states: active, where the disk can read and write, idle state that can

transition back to active immediately, and the sleep state that has a significant performance

penalty for the transition back into the active state.

When a component is placed into low-power state, it is unavailable for the time period

spent in the low-power state, in addition to the transition time between the active and the

low-power state. The break-even time, Tbe, is the minimum time a component should

spend in the low-power state to compensate the transition cost. The break-even time can be

19
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calculated directly from the power state machine of the component. A component should be

placed into low-power state only when the time spent in that state is longer than the break-

even time. With components where the transition cost into inactive state is minimal, the

power management policy is trivial (once in the idle state, shut off). In all other situations

it is critical to determine the most appropriate policy that the PM will implement. PM

policies can be classified into predictive, adaptive and stochastic.

Predictive techniques use past history of the workload in order to predict future idle

periods. The goal is to predict when the idle period will be longer than the break-even

time, so that the component can be placed into low-power state. The simplest form of

predictive techniques are timeout policies. Timeouts assume that the component is very

likely to remain idle if it has already been idle for the timeout time. When the timeout is

set to the break-even time of the component, the corresponding policy guarantees that the

energy consumption will be at worse twice the energy consumed by an ideal policy [43].

The drawback of the timeout policies is that they waste power while waiting for the timeout

to expire. Some predictive shut-down policies improve upon timeouts by transitioning

the component into low-power state as soon as a new idle period starts. Other predictive

policies perform predictive wakeup when they expect the idle time to expire. The main

issue with all predictive policies is the quality of prediction of the length and the timing of

the idle period. Since the workload is usually unknown a priori and is often non-stationary,

it is critical to be able to adapt to the changes in the workload. Several adaptive techniques

have been proposed to deal with non-stationary workloads [18, 31]. These techniques are

primarily concerned with adjusting the value of the timeout using heuristic measures.

Predictive and adaptive algorithms are heuristic in nature and thus their optimality can

only be gauged through comparative simulation and measurement. They assume determin-

istic response and transition times for the system, and typically only consider two-state

systems. In addition, predictive algorithms minimize power and do not control the per-

formance penalty. The stochastic control approaches formulate policy optimization as an

optimization problem under uncertainty.

Power management optimization problem can be formulated with the aid of controlled

Markov and renewal processes. Using these models it is possible to obtain a globally op-

timal solution of the performance-constrained power optimization problem that exploits
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multiple inactive states of multiple interacting resources under uncertainty. The problem of

finding a policy that minimized power consumption under given performance constraints

(or vice versa) can be cast as a linear program whose solution is a stationary and random-

ized policy. Such a policy associates a probability with each command. The command to be

issued is selected by a random trial based on the state-dependent probabilities. The policy

optimization for both Markov and renewal processes is exact and computationally efficient

since the solution is guaranteed to be globally optimal and can be solved in polynomial

time. One limitation of these techniques is that complete knowledge of the stochastic char-

acteristics of the system and its workload statistics is assumed. Even though it is possible

to construct a model for the system once for all, the workload is often non-stationary and

thus much more difficult to characterize in advance.

In this chapter I introduce two new models for power management at the system level

that enable modeling system transitions with general distributions, but are still event driven

and guarantee optimal results. I implemented the power management algorithms on lap-

top wireless local area network (WLAN) card and hard disk, desktop hard disk and the

SmartBadge [51]. For each of these devices, I collected a set of traces that model typical

user behavior well. I found the workload request interarrival times are best modeled with

a non-exponential distribution (a Pareto distribution shows the best fit, although the model

applies to any distribution or direct data). These results are consistent with the observations

on network traffic interarrival times presented in [59]. In addition, I measured the distribu-

tions of transition times between active, idle and low power states for each of the system

components and found non-exponential transition times into or out of a low power state.

Traditional Markov chain models presented in previous work do not apply to these devices

since user request arrivals and the transition times of a device are best modeled with the

non-exponential distributions. As a result, I formulated the policy optimization problem

using two different stochastic approaches.

The first approach is based on renewal theory [77, 67]. It is more concise, but also is

limited to systems that have only one decision state. The second approach is based on Time-

Indexed Semi-Markov Decision Process model (TISMDP). This model is more general

but also more complex. In both cases, the policy optimization problem can be solved

exactly and in polynomial time by solving a linear program. Both approaches guarantee
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optimal solutions. Note that both approaches can handle general user request interarrival

distributions, even though in the particular examples presented in this work we use the

Pareto distribution since it showed a good fit to the data collected experimentally. The

policy decisions are made only upon request arrival or upon finishing serving a request,

instead of at every time increment as in discrete-time model. Since policy decisions are

made in event-driven manner, more power is saved by not forcing policy re-evaluations as

in discrete-time models.

I also present simulation and, more importantly, measurement results on real hardware.

The results show that the reduction in power can be as large as 2 � 4 times with a small

performance penalty when power managing the laptop hard disk and 1 � 7 times for the

desktop hard disk. The algorithms perform better than any other power management al-

gorithms tested in [48]. The measurements of optimal policy implemented on a laptop for

the WLAN card show that reduction in power can be as large as a factor of 5 with a small

performance penalty. Finally, power management results on the SmartBadge show savings

of as much as 70% in power consumption.

The remainder of this chapter is organized as follows. Section 2.2 describes the stochas-

tic models of the system components based on the experimental data collected. I develop

the model for power management based on renewal theory in Section 2.3. Next, I present

the Time-Indexed Semi-Markov Decision Process model for the dynamic power manage-

ment policy optimization problem in Section 2.4. I show simulation results for the Smart-

Badge, measured results for power managing WLAN card on a laptop and both simulated

and measured results for power managing a hard disk on a laptop and a desktop running

Windows OS in Section 2.5.

2.2 System Model

The system can be modeled with three components: the user, device and the queue as shown

in Figure 2.1. While the methods presented in this work are general, the optimization

of energy consumption under performance constraints (or vice versa) is applied to and

measured on the following devices: WLAN card [50] on the laptop, the SmartBadge [51]

and laptop and desktop hard disks. The SmartBadge is used as a personal digital assitant
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(PDA). The WLAN card enables internet access on the laptop computer running Linux

operating system. The hard disks are both part of Windows machines, one in the desktop

and the other in the laptop. The queue models a memory buffer associated with each device.

In all examples, the user is an application that accesses each device by sending requests via

operating system.

User Queue

Power Manager

Device

Figure 2.1: System Model

The power management aims at reducing energy consumption in systems by selectively

placing components into low power states. Thus, at run time, the power manager (PM) ob-

serves user request arrivals, the state of the device’s buffer, the power state and the activity

level of the device. When all user requests have been serviced, the PM can choose to place

the device into a low power state. This choice is made based on a policy. Once the device

is in a low power state, it returns to active state only upon arrival of a new request from

a user. Note that a user request can come directly from a human user, from the operating

system, or even from another device.

Each system component is described probabilistically. The user behavior is modeled

by a request interarrival distribution. Similarly, the service time distribution describes the

behavior of the device in the active state. The transition distribution models the time taken

by the device to transition between its power states. Finally, the combination of interarrival

time distribution (incoming jobs to the queue) and service time distribution (jobs leaving

the queue) appropriately characterizes the behavior of the queue. These three categories of

distributions completely characterize the stochastic optimization problem. The details of

each system component are described in the next sections.
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2.2.1 User Model

As the user’s stochastic model is defined by the request interarrival time distribution, it

is of critical importance to collect a set of traces that do a good job at representing the

typical user behavior. I collected an 11hr user request trace for the PC hard disks running

a Windows operating system with standard software (e.g Excel, Word, Visual C++). In

the case of the SmartBadge, I monitored the accesses to the server during multiple long

sessions. For the WLAN card we used the tcpdump utility [40] to get the user request

arrival times for two different applications (telnet and web browser).
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Figure 2.2: User request arrivals in active state for hard disk

The request interarrival times in the active state (the state where one or more requests

are in the queue) for all three devices are exponential in nature. Figure 2.2 shows the

exponential cumulative distribution fitted to measured results of the hard disk. Similar

results have been observed for the other two devices in the active state. Thus, we can

model the user in active state with rate λU and the mean request interarrival time 1
λU

where

the probability of the hard disk or the SmartBadge receiving a user request within time
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interval t follows the cumulative probability distribution shown below.

FU � t ��� 1 � e � λU t (2.1)

The exponential distribution does not model well arrivals in the idle state. The model

we use needs to accurately describe the behavior of long idle times as the largest power

savings are possible over the long low-power periods. We first filter out short user request

interarrival times in the idle state in order to focus on the longer idle times. The filter

interval is based on the particular device characteristics and not on the pattern of user

access to the device. The filter interval is defined as a fraction of the break-even time of the

device. Break-even time is the time the device has to stay in the low-power state in order

to recuperate the cost of transitioning to and from the low-power state. Transitioning into

a low-power state during idle times that are shorter than the break-even time is guaranteed

to waste power. Thus it is desirable to filter out very short idle times. We found that filter

intervals from 0.5s to about 2s are most appropriate to use for the hard disk, while for the

SmartBadge and the WLAN card filter intervals are considerably shorter (50-200ms) since

these devices respond much faster than the hard disk.

We use the tail distribution to highlight the probability of longer idle times that are of

interest for power management. The tail distribution provides the probability that the idle

time is greater than t. Figure 2.3 shows the measured tail distribution of idle periods fitted

with the Pareto and the exponential distributions for the hard disk and Figure 2.4 shows the

same measurements for the WLAN card. The Pareto distribution shows a much better fit

for the long idle times as compared to the exponential distribution. The Pareto cumulative

distribution is defined in Equation 2.2. The Pareto parameters are a � 0 � 9 and b � 0 � 65 for

the hard disk, a � 0 � 7 and b � 0 � 02 for WLAN web requests and a � 0 � 7 and b � 0 � 06 for

WLAN telnet requests. SmartBadge arrivals behave the same way as the WLAN arrivals.

FU � t ��� 1 � at � b (2.2)
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Figure 2.3: Hard disk idle state arrival tail distribution

2.2.2 Portable Devices

Power managed devices typically have multiple power states. Each device has one active

state in which it services user requests, and one or more low-power states. The power

manager can trade off power for performance by placing the device into low-power states.

Each low power state can be characterized by the power consumption and the performance

penalty incurred during the transition to or from that state. Usually higher performance

penalty corresponds to lower power states.

SmartBadge

SmartBadge and its components are shown in in Figure 1.2. It supports three lower power

states: idle, standby and off. The idle state is entered immediately by each component in

the system as soon as that particular component is not accessed. The standby and off state

transitions can be controlled by the power manager. The transition from standby or off state

into the active state can be best described using the uniform probability distribution.
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Figure 2.4: WLAN idle state arrival tail distribution

Components in the SmartBadge, the power states and the transition times of each com-

ponent from standby (tsby) and off (to f f ) state into active state, and the transition times

between standby and off states (tso) are shown in Table 2.1. Note that the SmartBadge has

two types of data memory – slower SRAM (1MB, 80ns) from Toshiba and faster DRAM

(4MB, 20ns) from Micron that is used only during MPEG decode. Memory takes longer to

transition from off to active state as contents of RAM have to be downloaded from FLASH

and initialized. The power consumption of all components in the off state is 0mW .

Table 2.1: SmartBadge components

Component Active Idle Standby tsby to f f tso

Pwr (mW) Pwr (mW) Pwr (mW) (ms) (ms) (ms)

Display 1000 1000 100 100 240 110
RF Link 1500 1000 100 40 80 20
SA-1100 400 170 0.1 10 35 10
FLASH 75 5 0.023 0.6 160 150
SRAM 115 17 0.13 5.0 100 90
DRAM 400 10 0.4 4.0 90 75

Total 3.5 W 2.2 W 200 mW 110 ms 705 ms 455 ms
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WLAN card

The wireless card has multiple power states: two active states, transmitting, receiving, and

two inactive states, doze and off. Transmission power is 1.65W, receiving 1.4W, the power

consumption in the doze state is 0.045W [50] and in the off state it is 0W. When the card is

awake (not in the off state), every 100ms it synchronizes its clock to the access point (AP)

by listening to the AP beacon. After that, it listens to the TIM map to see if it can receive

or transmit during that interval. Once both receiving and transmission are done, it goes into

the doze state until the next beacon [19]. This portion of the system is fully controlled from

the hardware and thus is not accessible to the power manager that has been implemented at

the OS level.

The power manager can control the transitions between the doze and the off states.

Once in the off state, the card waits for the first user request arrival before returning back

to the doze state. We measured the transitions between the doze and the off states using

cardmgr utility. The transition from the doze state into the off state takes on average tave �
62ms with variance of tvar � 31ms. The transition back takes tave � 34ms with tvar � 21ms

variance. The transition between doze and off states are best described using the uniform

distribution.

Hard Disks

We considered two different hard disks in our experiments: the Fujitsu MHF 2043AT hard

disk in the Sony Vaio laptop and the IBM hard disk in VAResearch desktop. Service times

on the hard disks in the active state most closely follow an exponential distribution as shown

in Figure 2.5. We found similar results for the SmartBadge and the WLAN card. The aver-

age service time is defined by 1
λD

where λD is the average service rate. Equation 2.3 defines

the cumulative probability of the device servicing a user request within time interval t.

FD � t ��� 1 � e � λDt (2.3)

The power manager can control the transitions between the idle and the sleep state on

both of the hard disks. The power consumptions in the idle and sleep states, in addition
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Figure 2.5: Hard disk service time distribution

to the average transition times between those states are shown in Table 2.2. The transition

from sleep to active state requires spin-up of the hard disk, which is very power intensive.

While in the sleep state, the disk consumes much less power.

Model Psleep Pactive Tsleep Tactive

Watt Watt sec sec

IBM 0.75 3.48 0.51 6.97
Fujitsu 0.13 0.95 0.67 1.61

Table 2.2: Disk Parameters

Once in the sleep state, the hard disk waits for the first service request arrival before

returning to the active state. The transition between active and sleep states is best described

using the uniform distribution, where t0 and t1 can be defined as tave � ∆t and tave 	 ∆t

respectively. The cumulative probability function for the uniform distribution is shown
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below.

FD � t �
� ��� ��� 0 t � t0
t � t0
t1 � t0

t0 � t � t1

1 t � t1

(2.4)
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Figure 2.6: Hard disk transition from sleep to active state

Figure 2.6 shows the large error that would be made if the transition to the sleep state

were approximated using an exponential distribution. For example, the transition for Fu-

jitsu hard disk from the active state into the sleep state takes on average 0 � 67s with variance

of 0 � 1s. The transition back into the active state is much longer, requiring 1 � 6s on average

with 0 � 5s variance.

2.2.3 Queue

Portable devices normally have a buffer for storing requests that have not been serviced yet.

Since we did not have access to the detailed information about the real-time size of each
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queue, we measured the queue size of maximum 10 jobs with an experiment on a hard disk

using a typical user trace. Because the service rate in the SmartBadge and WLAN card is

higher, and the request arrival rate is comparable, we assume that the same maximum queue

size can be used. As the requests arriving at the hard disk do not have priority associated

with them, and the SmartBadge requests by definition do not have priority, our queue model

contains only the number of jobs waiting for service. Active and low-power states can be

differentiated then by the number of jobs pending for service in the queue.

2.2.4 Model Overview

Table 2.3 shows the probability distributions used to describe each system component de-

rived from the experimental results. User request interarrival times with at least one job in

the queue are best modeled with the exponential distribution. On the other hand, we have

shown that in all four applications, the Pareto distribution is best used to model the arrival

of the user’s requests when the queue is empty. Note that the queue is empty in either idle

state or a low power state. The device is in the active state when at least one job is wait-

ing to be serviced. We have also shown that the service times in the active state are best

modeled with the exponential distribution. The transitions to and from the low power states

are better modeled with a uniform distribution. The combination of these distributions is

used to derive the state of the queue. Thus in the active state two exponential distributions

define the number of jobs in the queue: the interarrival time and the service time distribu-

tions. During transitions, the queue state is defined by the transition distribution and the

distribution describing user request arrivals. During transitions and in the low-power states

the first arrival follows the Pareto distribution, but the subsequent arrivals are modeled with

the exponential distribution since for very short interarrival times the exponential distribu-

tion is very close to the Pareto distribution and the experimental results, as can be seen in

Figures 2.3 and 2.4.

Although in the experimental section of this paper we utilize the fact that the non-

exponential user and device distributions can be described with well-known functions

(Pareto or uniform), the models we present in the following sections are general in na-

ture and thus can give optimal results with both experimental distributions obtained at run
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Table 2.3: System Model Overview

System Component Distribution
Component State

User Queue not empty Exponential
Queue empty Pareto

Device Active Exponential
Transition Uniform

time or commonly used theoretical distributions. We found that in the particular examples

we present in this work the Pareto, and the uniform distributions enabled us to obtain the

optimal policy faster without sacrificing accuracy.

2.3 DPM Based on Renewal Theory

Renewal theory [77, 67] studies stochastic systems whose evolution over time contains a set

of renewals or regeneration times where the process begins statistically anew. Formally, a

renewal process specifies that the random times between system renewals be independently

distributed with a common distribution F � x � . Thus the expected time between successive

renewals can be defined as:

E � τ ����� ∞

0
xdF � x � (2.5)

Note that the Poisson process is a simple renewal process for which renewal times are

distributed with the exponential distribution. In this case, the common distribution between

renewals can be defined as F � x ��� 1 � e � λx, and the mean time between renewals (or

between the exponential arrivals) is defined as E � τ ��� 1 � λ. A process can be considered

to be a renewal process only if there is a state of the process in which the whole system

probabilistically restarts. This, of course, is the case in any system that is completely

described by the exponential or the geometric distributions, since those distributions are

not history dependent (they are memoryless).

In policy optimization for dynamic power management, the complete cycle of transition
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from the idle state, through the other states and then back into the idle state can be viewed as

one renewal of the system. When using renewal theory to model the system, the decision

regarding transition to a lower power state (e.g. the sleep state) is made by the power

manager in the idle state. If the decision is to transition to the lower power state, the

system re-enters the idle state after traversing through a set of states. Otherwise, the system

transitions to the active state on the next job arrival, and then returns to the idle state again

once all jobs have been serviced.

The general system model shown in Figure 2.1 defines the power manager (PM), and

three system components: user, device and the queue. To provide concreteness in our

examples, each component is completely specified by the probability distributions defined

in the previous section. With renewal theory, the search for the best policy for a system

modeled using stationary non-exponential distributions can be cast into a stochastic control

problem.

Decision

Arrival

Departure

Arrival

No Arrival

Arrival

Active State
Idle State

Sleep State

Transition to
Active State

Transition to
Sleep State

Figure 2.7: System states for renewal theory model

System states used in the formulation of the renewal model are shown in Figure 2.7.

In the active state the queue contains at least one job pending and the request arrivals and

service times follow the exponential distributions. Once the queue is emptied, the system



CHAPTER 2. DYNAMIC POWER MANAGEMENT 34

transitions to the idle state, which is also the renewal and decision point in this system.

Upon arrival of request, the system always transitions back into the active state. The PM

makes a decision on when the transition to a low-power state from the idle state should

occur. As soon as the command to place the system into the low-power state is given, the

system starts a transition between the idle and the low-power states. The transition state

highlights the fact that device takes a finite and random amount of time to transition into the

low power state (governed by a uniform distribution). If during the transition time a request

arrives from the user (first request follows the Pareto distribution, subsequent requests are

exponential), the device starts the transition to active state as soon as the transition to off

state is completed. If no request arrives during the transition state, the device stays in

a low-power state until the next request arrives (the Pareto distribution). Upon request

arrival, the transition back into the active state starts. Once the transition into the active

state is completed, the device services requests, and then again returns to the idle state

where the system probabilistically renews again.

2.3.1 Renewal Theory Model

We formulate the power management policy optimization problem based on renewal theory

in this section. We use upper-case bold letters (e.g., M) to denote matrices, lower-case bold

letters (e.g., v) to denote vectors, calligraphic letters (e.g., S ) to denote sets, upper-case

letters (e.g., S) to denote scalar constants and lower-case letters (e.g., s) to denote scalar

variables.

The problem of power management policy optimization is to determine the optimal

distribution of the random variable Γ that specifies when the transition from the idle state

to low-power state should occur based on the last entry into the idle state. We assume that

Γ takes on values in � 0 � h � 2h ��������� jh ��������� Nh � , where j is an index, h is a fraction of the break-

even time of the device, and N is the maximum time before the system goes to a low-power

state (usually set to an order of magnitude greater than break-even time). The solution to

the policy optimization problem can be viewed as a table of probabilities (Γ), where each

element p � j � specifies the probability of transition from idle to a low-power state indexed

by time values jh.
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We can formulate an optimization problem to minimize the average performance penalty

under the power constraint (Pconstraint ) using the results of the ratio-limit theorem for re-

newal processes [67], as shown in Equation 2.6. The average performance penalty is cal-

culated by averaging q � j � , the time penalty user incurs due to transition to low-power state,

over, t � j � , the expected time until renewal. The power constraint is shown as an equal-

ity as the system will use the maximum available power in order to minimize the per-

formance penalty. The expected energy (∑ j p � j � e � j � ) is calculated using p � j � , the prob-

ability of issuing command to go to low-power state at time jh, and e � j � , the expected

energy consumption. This expected energy has to equal the expected power constraint

(∑ j p � j � t � j � Pconstraint) calculated using t � j � , the expected time until renewal, Pconstraint , the

power constraint, and p � j � . The unknown in the optimization problem is p � j � , the proba-

bility of issuing a command to go to low-power state at time jh. The full derivation of all

the quantities follows.

min
∑ j p � j � q � j �
∑ j p � j � t � j � (2.6)

s.t. ∑
j

p � j ��� e � j ��� t � j � Pconstraint � � 0

∑
j

p � j �!� 1

p � j �#" 0 $ j

Computation of Renewal Time

Given the state space shown in Figure 2.7, we can define the expected time until renewal,

t � j � , as follows. We define β as the time at which the first job arrives after the queue has

been emptied. The first arrival is distributed using general probability distribution, P � jh � .
We also define the indicator function, I(jh), that is equal to one if we are in interval jh and

is zero otherwise.

Further, as we showed in Section 2.2, the subsequent user request arrivals follow a Pois-

son process with rate λU . Finally, the servicing times of the device also can be described

using the exponential distribution with parameter λD. We can now define the expected time

until renewal (τ j) for each time increment spent in the idle state as sum of expected time
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until renewal if arrival comes before the system starts transitioning into low-power state

jh (as shown by the first cycle in Figure 2.8 and the first half of Equation 2.7) and if the

arrival comes after the transitions has already started (the second parts of Figure 2.8 and

Equation 2.7).

E[Length of idle period] +
E[Time service request]

E[Length of idle period]+
E[Time to sleep] +
E[Length of sleep] +
E[Time to active] +
E[Time to service all requests]

IA

SSq
IA

Figure 2.8: Renewal Cycles

t � j ��� E � τ jI � β � jh �&%Γ � jh � 	 E � τ jI � β � jh �&%Γ � jh � (2.7)

Each of the two terms in Equation 2.7 is defined in Equations 2.8 and 2.10. Note that

Figure 2.8 shows the components of each of the two terms. The expected time until renewal

for arrival coming before transitioning to low-power state at time jh (the left portion of

Figure 2.8) is the expected time until arrival (the first term in Equation 2.8) and the time

needed to work off the request that just arrived (the second term). Note that the second term

is based on the results from M/M/1 queueing theory due to the fact that the time to work off

the request is governed by the exponential distribution with rate λD, while the arrivals in the

active state are described by the exponential distribution with rate λU . The job departure

rate has to be larger than the arrival rate (λD " λU ), otherwise the queue would overflow.

In all cases we studied, λD is at least order of magnitude larger than λU , leading to:

E � τ jI � β � jh �'%Γ � jh � � j

∑
k ( 1

khP � β � kh � 	 1
λD � λU

P � β � jh � (2.8)

If the arrival comes after time jh when the system starts the transition to low-power state

(the right portion of Figure 2.8), then the expected time until renewal is the sum of the time
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until arrival ( jh), with expected times for transition to low-power state and back to active

states (EU1 � EU2), expected length of the low-power period and the expected time to work

off requests that arrived during the renewal period:

E � τ jI � β � jh �&%Γ � jh � � (2.9)

P � β � jh �
)****+ jh 	 EU1 	 EU2 	

E � � β � jh 	 EU1 � I � β � jh 	 EU1 �,� 	
E � � jh 	 EU1 � β � I � jh � β � jh 	 EU1 �-� λD

λD � λU
	

1
λD � λU

	 EU2
λD

λD � λU

.0////1
Computation of Costs

We can define the performance penalty that the user experiences due to transition to low

power state (q � j � ) and the expected energy consumption (e � j � ) for each state using the

same set of equations, just with different values for constants (c) as shown in Table 2.4.

Each state is labeled on the left side, while the expected time spent in that state multiplied

by the constant c is on the right side.

The constants (c) equal the power consumption in a given state for energy consumption

computation. For the performance penalty the constants should be set to zero in low-power

state and idle state and to one in all other states. For example, the constant ci is set to power

consumption of the device while in the idle state when calculating energy consumption (the

first equation). Since there is no performance penalty to servicing users requests in the idle

state, the constant ci is set to zero for performance penalty calculation. On the other hand,

the transition to the active state causes performance degradation, thus the constant cta is

here set to one. The same constant is set to power required for the transition to the active

state when calculating energy consumption.

The expected times spent in each state outlined in Table 2.4 are calculated as follows:2 Idle State: The expected time spent in the idle state is the expected average of the idle

time until the first request arrival (∑ j
k ( 0 khP � β � kh � ) and the time spent in the idle

state when the transition to low power state occurs before the first arrival ( jhP � β "
jh � ).
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Table 2.4: Calculation of Costs

State Performance penalty or Energy consumption

Idle ci 3∑ j
k 4 0 khP 5 β 6 kh 798 jhP 5 β : jh 7<;

To Low Power cts 3 EU1P 5 β : jh 7<;
Low Power cs 3 E 3 β =>5 jh 8 EU1 7<; I 5 β ? jh 8 EU1 7 P 5 β : jh 7<;
To Active cta 3 EU2P 5 β : jh 7@;
Active ca 3 1

λD A λU
P 5 β B jh 7C8

EU2
λD

λD A λU
P 5 β : jh 7C8

1
λD A λU

P 5 β : jh 7C8
E 3 5 jh 8 EU1 = β 7 I 5 jh D β D jh 8 EU1 7@; λD

λD A λU
P 5 β : jh 7@;

2 Transition To Low Power State: The transition to low power state occurs only

if there has been no request arrival before the transition started (P � β " jh � ). The

expected average time of the transition to low power state is defined by the average

of the uniform distribution that describes the transition (EU1).2 Low Power State: Low power state is entered only if no request arrival occurred

while in the idle state (P � β " jh � ). The device stays in that state until the first request

arrives (E � β � � jh 	 EU1 �-� I � β � jh 	 EU1 � ).2 Transition To Active State: The transition to active state occurs only when there is

a successful transition to low power state (P � β " jh � ). The transition length is the

expected average of uniform distribution that describes the transition to active state
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(EU2).2 Active State: The device works off the request that arrived in the idle state if no

transition to low power state occurred ( 1
λD � λU

P � β � jh � ). If the transition to low

power state did occur (terms containing P � β " jh � ), then the system is in the active

state for the time it takes to work off all the requests that arrived while transitioning

between idle, low power and active states.

Problem Formulation

The optimization problem shown in Equation 2.6 can be transformed into a linear program

(LP) using intermediate variables y � j �!� p E j F
∑ j p E j F t E j F and z � j ��� 1 � ∑ j p � j � t � j � [10].

LP: min ∑
j

q � j � y � j � (2.10)

s.t. ∑
j
� e � j � y � j ��� t � j � z � j � PConstraint � � 0

∑
j

t � j � y � j ��� 1

z " 0

Once the values of intermediate variables y � j � and z � j � are obtained by solving the LP

shown above, the probability of transition to low-power state from idle state at time jh,

p � j � , can be computed as follows:

p � j �G� y � j �
z � j � (2.11)

2.3.2 Policy Implementation

The optimal policy obtained by solving the LP given in Equation 2.10 is a table of probabil-

ities p � j � . The policy can be implemented in two different ways. If probability distribution

defined by p � j � is used, then on each interval jh the policy needs to be re-evaluated until

either a request arrives or the system transitions to a low-power state. This implementation

has a high overhead as it requires multiple re-evaluations. An alternative implementation
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gives the same results, but it requires only one evaluation upon entry to idle state. In this

case a table of cumulative probabilities P � j � is calculated based on the probability distribu-

tion described with p � j � . Once the system enters the idle state, a pseudo-random number

RND is generated and normalized. The time interval for which the policy gives the cumula-

tive probability P � j � of going to the low-power state greater than RND is the time when the

device will be transitioned into the low-power state. Thus the policy works like a random-

ized timeout. The device stays in the idle state until either the transition to the low-power

state as given by RND and the policy, or until a request arrival forces the transition into the

active state. Once the device is in the low-power state, it stays there until the first request

arrives, at which point it transitions back into the active state.

Example 2.3.1 If a sample policy is given in Table 2.5, and the pseudo-random number

RND generated upon entry to idle state is 0.6, then the power manager will give a command

to transition the device to the low power state at time indexed by j � 3. Thus, if the time

increment used is 0.1 second, then the device will transition into low power state once it

has been idle for 0.3 seconds. If a user request arrives before 0.3 seconds have expired,

then the device transitions back to the active state.

Table 2.5: Sample Policy

Idle Transition
Time Probability
j P(j)

0 0
1 0.1
2 0.4
3 0.9
4 1.0
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2.4 DPM Based on Time-Indexed

Semi-Markov Decision Processes

In this section we present the power management optimization problem formulation based

on Time-Indexed Semi-Markov Decision Processes. This model is more general than the

model based on renewal theory as it enables multiple decision points (see Example 2.4.1).

Our goal is to minimize the performance penalty under an energy consumption constraint

(or vice versa). We first present the average-cost semi-Markov decision process optimiza-

tion problem [63] and then extend it to the time-indexed SMDP for modeling general inter-

arrival times.

Example 2.4.1 The SmartBadge has two states where decisions can be made: idle and

standby. The idle state has higher power consumption, but also a lower performance

penalty for returning to the active state as compared to the standby state. From the idle

state, it is possible to give a command to transition to the standby or the off states. From

standby, only a command to transition to the off state is possible. The optimal policy deter-

mines when the transition between idle, standby and off states should occur.

At each event occurrence, the power manager issues a command (or action) that de-

cides the next state to which the system should transition. In general, commands given are

functions of the state history and the policy. Commands are modeled by decisions, which

can be deterministic or randomized. In the former case, a decision implies issuing a com-

mand, in the later case it gives the probability of issuing a command. The decisions taken

by the PM form a discrete sequence � δ E 1 F � δ E 2 F ���H���I� . The sequence completely describes the

PM policy π which is the unknown of our optimization problem. Among all policies two

classes are particularly relevant, as defined next.

Definition 2.4.1 Stationary policies are policies where the same decision δ E i F � δ is taken

at every decision point ti, i � 1 � 2 �����H� , i.e., π �J� δ � δ �������K� .
For stationary policies, decisions are denoted by δ, which is a function of the system state

s. Thus, stationarity means that the functional dependency of δ on s does not change over

time. When s changes, however, δ can change. Furthermore, notice that even a constant
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decision does not mean that the same command is issued at every decision point. For

randomized policies, a decision is a probability distribution that assigns a probability to

each command. Thus, the actual command that is issued is obtained by randomly selecting

from a set of available commands with the probabilities specified by δ.

Definition 2.4.2 Markov stationary policies are policies where decisions δ do not depend

on the entire history but only on the state of the system s at the current time.

Randomized Markov stationary policies can be represented as a S L A decision matrix Pπ.

An element ps M a of Pπ is the probability of issuing command a given that the state of the

system is s. Deterministic Markov stationary policies can still be represented by matrices

where only one element for each row has value 1 and all other elements are zero. The

importance of these two classes of policies stems from two facts: first, they are easy to

store and implement, second, we will show that for our system model, optimal policies

belong to these classes. In the next sections, we will first present the average cost semi-

Markov model (SMDP), followed by the extension to time-indexed SMDP.

2.4.1 Semi-Markov Average Cost Model

Semi-Markov decision processes (SMDP) generalize Markov decision processes by allow-

ing the decision maker to choose actions whenever the system state changes, to model

the system evolution in continuous time and to allow the time spent in a particular state

to follow an arbitrary probability distribution. Continuous-time Markov decision pro-

cesses [71, 64] can be viewed as a special case of Semi-Markov decision processes in

which the inter-transition times are always exponentially distributed. Figure 2.9 shows a

progression of the SMDP through event occurrences, called decision epochs. The power

manager makes decisions at each event occurrence. The interevent time set is defined as T�ON ti � s.t. i � 0 � 1 � 2 �������P� imax Q where each ti is the time between the two successive event

arrivals and imax is the index of the maximum time horizon. We denote by si R Si the sys-

tem state at decision epoch i. Commands are issued whenever the system state changes.

We denote by ai R A an action that is issued at decision epoch i. When action ai is cho-

sen in system state si, the probability that the next event will occur by time ti is defined
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Figure 2.9: SMDP Progression

by the cumulative probability distribution F � ti % si � ai � . Also, the probability that the system

transitions to state si S 1 at or before the next decision epoch ti is given by p � si S 1 % ti � si � ai � .
The SMDP model also defines cost metrics. The average cost incurred between two

successive decision epochs (events) is defined in Equation 2.12 as a sum of the lump sum

cost k � si � ai � incurred when action ai is chosen in state si, in addition to the cost in state si S 1

incured at rate c � si S 1 � si � ai � after choosing action ai in state si. We define Si S 1 as the set of

all possible states that may follow si.

cost � si � ai �G� k � si � ai � 	 ∞�
0

� F � du % si � ai � ∑
si T 1 U Si T 1

u�
0

c � si S 1 � si � ai � p � si S 1 % ti � si � ai �-� dt (2.12)

We can define the total expected cost for policy π until time t as a sum of all lump sum

costs kv � s � a � up to time t and the costs incurred at the rate c � s � a � while in each state s until

time t:

vπ
t � s ��� Eπ

s

� � � t

0
c � s � a � u � du 	 vπ

t V 1

∑
v ( vπ

0

kv � s � a ��WYXZ (2.13)
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and then we can define the average expected cost for all s:

gπ � s ��� lim
t [ ∞

in f
vπ

t � s �
t

(2.14)

Theorem 2.4.1 Finding the optimal power management policy π minimizing Equation 2.14

is equivalent to solving the following problem:

h � s ��� min
a U A

N cost � s � a ��� g � s � y � s � a � 	 ∑
j U S

m � j % s � a � h � j � Q (2.15)

where h � s � is the so called bias (the difference between long term average cost and the

average cost per period for a system in steady state [63]), g � s � is the average cost, m � j % s � a � ,
the probability of arriving to state j given that the action a was taken in state s is defined

by:

m � j % s � a ��� ∞�
0

p � j % t � s � a � F � dt % s � a � (2.16)

and expected time spent in each state is given by:

y � s � a ��� ∞�
0

t ∑
s U S

p � j % t � s � a � F � dt % s � a � (2.17)

Proof of Theorem 2.4.1 is given in [63].

The following examples illustrate how the probability, the expected time and energy

consumption can be derived.

Example 2.4.2 In the active state with at least one element in the queue, we have two ex-

ponential random variables, one for the user with parameter λU and one for the device

with parameter λD. The probability density function of the jointly exponential user and de-

vice processes defines an M/M/1 queue and thus can be described by F � dt % s � a ��� λe � λtdt,

where λ � λU 	 λD. In the same way, the probabilities of transition in M/M/1 queue,

p � j % t � s � a � , are defined as λU � λ for request arrival and λD � λ for request departure.
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Using Equation 2.16 we derive that the probability of transition to the state that has an

additional element in the queue is λU � λ , while the probability of transition to the state with

one less element is given by λD � λ. Note that in this special case p � j % t � s � a �\� m � j % s � a � .
The expected time for transition derived using Equation 2.17 is given by 1 � λ, which is

again characteristic of M/M/1 queue. Energy consumption is given in Equation 2.12. For

this specific example, we define the power consumption in active state with Pa and we

assume that there is no fixed energy cost for transition between active states. Then the

energy consumption can be computed as follows: cost � s � a �]� ∞

0̂
λe � λtdt � t

0̂
PaλD � λdu 	

t

0̂
PaλU � λdu � which is equal to Pa

λ . Note that this solution is very intuitive, as we would

expect the energy consumption to equal the product between the power consumption and

the expected time spent in the active state.

The second example considers the transition from the sleep state into the active state

with one or more elements in the queue.

Example 2.4.3 The transition from the sleep to the active state is governed by two distribu-

tions. A uniform distribution describes device transitions: FU � dt % s � a �_� dt � � tmaxas � tminas � ,
where tmaxas and tminas are maximum and minimum transition times. The request arrival dis-

tribution is exponential: FE � dt % s � a �
� λU e � λU tdt. The probability of no arrival during the

transition is given by p � j % t � s � a �`� e � λU t .

The probability of transition from the sleep state with a set number of queue elements,

into an active state with the same number of elements in the queue is given by: m � j % s � a ���
tmaxas^
tminas

e V λU tE tmaxas � tminas F dt. The expected transition time, y � s � a � , is given by � tmaxas 	 tminas ��� 2,

which can be derived with Equation 2.17. Finally, the energy consumed during the tran-

sition is defined by cost � s � a ��� ∞

0̂

du
tmaxas � tminas

u

0̂
Psadt assuming that there is no fixed energy

consumed during the transition, and that the power consumption for the transition is given

by Psa. The energy consumption can further be simplified to be 2Psa
tmaxas S tminas

. This is again

equal to the product of power consumption with the expected transition time from the sleep

state into the active state.



CHAPTER 2. DYNAMIC POWER MANAGEMENT 46

The problem defined in Theorem 2.4.1 can be solved using policy iteration or by formu-

lating and solving a linear program. There are two main advantages of linear programming

formulation: additional constraints can be added easily, and the problem can be solved in

polynomial time (in S a A). The primal linear program derived from Equation 2.15 defined

in Theorem 2.4.1 can be expressed as follows:

LPP: min g � s � (2.18)

s.t. g � s � y � s � a � 	 h � s ��� ∑
j U S

m � j % s � a � h � j �b" cost � s � a �c$ s � a
where s and a are the state and command given in that state, g � s � is the average cost, h � s �
is the bias, y � s � a � is the expected time, cost � s � a � is the expected cost (e.g. energy), and

p � j % s � a � is the transition probability between the two states.

Because the constraints of LPP are convex in g � s � and the Lagrangian of the cost func-

tion is concave, the solution to the primal linear program is convex. In fact, the constraints

form a polyhedron with the objective giving the minimal point within the polyhedron. Thus,

the globally optimal solution can be obtained that is both stationary and deterministic. The

dual linear program shown in Equation 2.19 is another way to cast the same problem (in

this case with the addition of a performance constraint). The dual LP shows the formulation

for minimizing energy under performance constraint (opposite problem can be formulated

in much the same way).

LPD: min ∑
s U S

∑
a U A

costenergy � s � a � f � s � a � (2.19)

s.t. ∑
a U A

f � s � a ��� ∑
s d U S

∑
a U A

m � s M % s � a � f � s M � a ��� 0

∑
s U S

∑
a U A

y � s � a � f � s � a �
� 1

∑
s U S

∑
a U A

costper f � s � a � f � s � a � � Constraint

The A a S unknowns in the LPD, f � s � a � , called state-action frequencies, are the expected

number of times that the system is in state s and command a is issued. It has been shown

that the exact and the optimal solution to the SMDP policy optimization problem belongs
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to the set of Markovian randomized stationary policies [63]. A Markovian randomized

stationary policy can be compactly represented by associating a value x � s � a �G� 1 with each

state and action pair in the SMDP. The probability of issuing command a when the system

is in state s, x � s � a � , is defined in Equation 2.20.

x � si � ai ��� f � si � ai �
∑ai U A f � si � ai � (2.20)

2.4.2 Time-Indexed Semi-Markov Average Cost Model

The average-cost SMDP formulation presented above is based on the assumption that at

most one of the underlying processes in each state transition is not exponential in nature.

On transitions where none of the processes are exponential, time-indexed Markov chain

formulation needs to be used to keep the history information. Without indexing, the states

in the Markov chain would have no information on how much time has passed. As for

all distributions, but the exponential, the history is of critical importance, the state space

has to be expanded in order to include the information about time as discussed in [77].

Time-indexing is done by dividing the time line into a set of intervals of equal length ∆t.

The original state space is expanded by replacing one idle and one queue empty low-power

state with a series of time-indexed idle and low-power empty states as shown in Figure 2.10.

The expansion of idle and low-power states into time-indexed states is done only to aid in

deriving in the optimal policy. A time-indexed SMDP can contain non-indexed states. Once

the policy is obtained, the actual implementation is completely event-driven in contrast to

the policies based on discrete-time Markov decision processes. Thus all decisions are made

upon event occurrences. The decision to go to a low-power state is made once, upon entry

to the idle state as discussed in Section 2.3.2. Other events are user request arrivals or

service completions. Note that the technique we present is general, but in this work we will

continue to refer to the examples shown in Section 2.2.

If an arrival occurs while in the idle state, the system transitions automatically to the

active state. When no arrival occurs during the time spent in a given idle state, the power

manager can choose to either stay awake, in which case the system enters the next idle state

or to transition into the low-power state. When the transition to the low-power state occurs
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Figure 2.10: Time-indexed SMDP states

from an idle state, the system can arrive to the low-power state with the queue empty or

with jobs waiting in the queue. The low-power state with queue empty is indexed by the

time from first entry into idle state from active state, much in the same way idle states

are indexed, thus allowing accurate modeling of the first arrival. The LP formulation for

average-cost SMDP still holds, but the cost, the probability and the expected time functions

have to be redefined for time-indexed states in SMDP. Namely, for the time-indexed states

Equation 2.12 that calculates cost assigned to the state si with action ai is replaced by:

cost � si � ai �!� k � si � ai � 	 ∑
si T 1 U Si T 1

c � si S 1 � si � ai � y � si � ai � (2.21)
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and Equation 2.17 describing the time spent in the state si with action ai is replaced by:

y � si � ai �!� ti S ∆t�
ti

� 1 � F � t ��� dt
1 � F � ti � (2.22)

The probability of getting an arrival is defined using the time indices for the system state

where ti � t � ti 	 ∆t:

p � si S 1 % ti � si � ai �G� F � ti 	 ∆t ��� F � ti �
1 � F � ti � (2.23)

Equation 2.16 is replaced by the following set of equations. The probability of transition to

the next idle state is defined to be m � si S 1 % si � ai �
� 1 � p � si S 1 % ti � si � ai � and of transition back

into the active state is m � si S 1 % si � ai �b� p � si S 1 % ti � si � ai � . The general cumulative distribution

of event occurrences is given by F � ti � .
An example below illustrates how the time indexing is done.

Example 2.4.4 The cumulative distribution of user request arrival occurrences in the idle

state follows a Pareto distribution: F � ti �]� 1 � at � b
i . The transition from the idle to the

low-power state follows uniform distribution with average transition time tave � � tmaxas 	
tminas ��� 2. The time increments are indexed with j. Thus the probability of transition from

idle state at time increment j∆t into the low-power state with no elements in the queue is

given by: m � si S 1 % si � ai ��� 1 � F E j∆t S tave F
1 � F E j∆t F . This equation calculates the conditional probability

that there will be no arrivals up to time � j 	 1 � ∆t 	 tave given that there was no arrival up

to time j∆t 	 tave. Note that in this way we are taking history into account. Similarly, we

can define the probability of transition from the idle state into a low-power state with an

element in the queue by: m � si S 1 % si � ai �G� F E j∆t S tave F � F E j∆t F
1 � F E j∆t F .

The expected time spent in the idle state indexed with time increment N∆t can be defined

by: y � s � a ��� E N S 1 F ∆t

N̂∆t

E 1 � F E t F<F dt
1 � F E ti F , which after integration simplifies to:E<E N S 1 F ∆t F 1 V a � E N∆t F 1 V aE 1 � a FCE N∆t F V a . With that, we can calculate energy consumed in the idle state, again

assuming that there is no fixed energy cost and that the power consumption is defined by

PI:
PI E<E N S 1 F ∆t F 1 V a � E N∆t F 1 V aE 1 � a FCE N∆t F V a .
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TISMDP policies are implemented in a similar way to the renewal theory model, but

there are more possible decision points. Briefly, upon entry to each decision state, the

pseudo-random number RND is generated and normalized. The device will transition into

low-power state at the time interval for which the probability of going to that state as given

by the policy is greater than RND. Thus the policy can be viewed as randomized timeout.

The device transitions into active state if the request arrives before entry into low-power

state. Once the device is turned off, it stays off until the first request arrives, at which point

it transitions into active state. The detailed discussion of how the policy is implemented if

there is only one decision state has been presented in Section 2.3.2.

Example 2.4.5 As mentioned in Example 2.4.1,the SmartBadge has two states where deci-

sions can be made: idle and standby. From the idle state, it is possible to give a command

to transition to the standby or to the off state. From standby, only a transition to the off

state is possible. In this case, both the idle and the standby states are time-indexed. The

optimal policy gives a table of probabilities determining when the transition between the

idle, the standby and the off states should occur. For example, a policy may specify that

if the system has been idle for 50ms, then the transition to the standby state should occur

with probability of 0.4, the transition to the off state with probability of 0.2 and otherwise

the device would stay idle. Once in the standby state for another 100ms the policy may

specify that the transition into the off state should occur with probability of 0.9. When a

user request arrives, the system transitions back into the active state.

In this section, we presented a power management algorithm based on Time-Indexed

Semi-Markov Decision Processes. The TISMDP model is more complex than the SMDP

model, but is more accurate and is also applicable to a wider set of problems, such as

a problem that has more than one non-exponential transition occurring at the same time.

The primary difference between the TISMDP model and the renewal theory model is that

TISMDP supports multiple decision points in the system model, while renewal theory al-

lows for only one state in which the power manager can decide to transition the device to

the low power state. For example, in systems where there are multiple low-power states,

the power manager would not only have to make a decision to transition to low-power state,

but also could transition the system from one low-power state into another. Renewal theory
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cannot be used for this case as there are multiple decision states. The main advantage of

the renewal theory model is that it is more concise and thus computes faster. The renewal

theory model has only five states, as compared to O � N � 	 2 states in the TISMDP model

(N is the maximum time index). In addition, each of the O � N � states require evaluations of

one double and two single integrals, compared with a very simple arithmetic formulation

for the renewal theory model.

2.5 DPM Results

We perform the policy computation using the solver for linear programs [9] based on the

simplex method. The optimization runs in just under 1 minute on a 300MHz Pentium pro-

cessor. We first verified the optimization results using simulation. Inputs to the simulator

are the system description, the expected time horizon (the length of user trace), the num-

ber of simulations to be performed and the policy. The system description is characterized

by the power consumption in each state, the performance penalty, and the function that

defines the transition time probability density function and the probability of transition to

other states given a command from the power manager. Note that our simulation used both

probability density functions (pdfs) we derived from data and the original traces. When

using pdfs, we just verified the correctness of our problem formulation and solution. With

real traces we were able to verify that indeed pdfs we derived do in fact match well the data

from the real system, and thus give optimal policies for the real systems. The results of the

optimization are in close agreement with the simulation results.

In the next sections, we show large savings we measured on three different devices:

laptop and desktop hard disks and the WLAN card and the simulation results showing

savings in power consumption when our policy is implemented in a SmartBadge portable

system. As the first three examples (two hard disks and WLAN) have just one state in which

the decision to transition to low-power state can be made, the renewal theory model and the

TISMDP model give the same results. The last example (SmartBadge) has two possible

decision states - idle and standby state. In this case, the TISMDP model is necessary in

order to obtain the optimal policy.
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2.5.1 Hard Disk

We implemented the power manager as part of a filter driver template discussed in [47].

A filter driver is attached to the vendor-specific device driver. Both drivers reside in the

operating system, on the kernel level, above the ACPI driver implementations. Advanced

Configuration and Power Interface, ACPI [35], is industry-standard for OS-directed config-

uration and power management. Application programs such as word processors or spread-

sheets send requests to the OS. When any event occurs that concerns the hard disk, power

manager is notified. When the PM issues a command, the filter driver creates a power tran-

sition call and sends it to the device which implements the power transition using ACPI

standard. The change in power state is also detected with the digital multimeter that mea-

sures current consumption of the hard disk.

We measured and simulated three different policies based on stochastic models and

compared them with two bounds: always-on and oracle policies. Always-on policy leaves

the hard disk in the active state, and thus does not save any power. Oracle policy gives

the lowest possible power consumption, as it transitions the disk into sleep state with the

perfect knowledge of the future. It is computed off-line using a previously collected trace.

Obviously, the oracle policy is an abstraction that cannot be used in run-time DPM.

All stochastic policies minimized power consumption under a 10% performance con-

straint (10% delay penalty). The results are shown in Figures 2.11 and 2.12. These figures

best illustrate the problem we observed when user request arrivals are modeled only with

the exponential distribution as in the CTMDP model [64]. The simulation results for the

exponential model (CTMDP) show large power savings, but measurement results show no

power savings and a very high performance penalty. As the exponential model is memo-

ryless, the resulting policy makes a decision as soon as the device becomes idle or after a

very short filtering interval (filtered 1s columns in Figures 2.11 and 2.12). If the idle time is

very short, the exponential model gets a large performance penalty due to the wakeup time

of the device and a considerable cost in shut-down and wakeup energies. In addition, if the

decision upon entry to idle state is to stay awake, large idle times, such as lunch breaks,

will be missed. If the policy is forced to re-evaluate until it shuts down (exponential), then

it will not miss the long idle times. When we use a short timeout to filter out short arrival
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times, and force the power manager to re-evaluate its decision (filtered exponential), the

results improve. The best results are obtained with our policy. In fact, our policy uses 2.4

times less power than the always-on policy. These results show that it is critically impor-

tant to not only simulate, but also measure the results of each policy and thus verify the

assumptions made in modeling. In fact, we found that modeling based on simple Markov

chains is not accurate, and that we do require more complex model presented in this paper.
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Figure 2.11: Measured and simulated hard disk power consumption

Comparison of all policies measured on the laptop is shown in Table 2.6, and for the

desktop in Table 2.7. Karlin’s algorithm analysis [43] is guaranteed to yield a policy that

consumes at worst twice the minimum amount of power consumed by the policy computed

with perfect knowledge of the user behavior. Karlin’s policy consumes 10% more power

and has worse performance than the policy based on our time-indexed semi-Markov deci-

sion process model. In addition, our policy consumes 1 � 7 times less power than the default

Windows timeout policy of 120s and 1 � 4 times less power than the 30s timeout policy

on the laptop. Our policy performs better than the adaptive model [14], and significantly



CHAPTER 2. DYNAMIC POWER MANAGEMENT 54

0%

10%

20%

30%

40%

50%

60%

70%

80%

always on filter (1s) exponential filter (1s) &
exponential 

filter (1s) &
pareto

P
er

ce
n

t 
p

er
fo

rm
an

ce
 p

en
al

ty


Measured

Simulated

Figure 2.12: Measured and simulated hard disk performance

better than the policy based on discrete-time Markov decision processes (DTMDP). The

policy based on the simple continuous-time model (CTMDP) (implemented here without

re-evaluation and with initial 1s filter) performs worse then the always-on policy, primarily

due to the exponential interarrival request assumption. This policy both misses some long

idle periods, and tends to shut-down too aggressively, as can be seen from its very short

average sleep time. Similar results can be seen on the desktops. Better overall results can

be obtained by using re-evaluations with filtering.

Performance of the algorithms can be compared using three different measures. Nsd is

defined as the number of times the policy issued sleep command. Nwd gives the number

of times the sleep command was issued and the hard disk was asleep for shorter than the

time needed to recover the cost of spinning down and spinning up the disk. Clearly, it

is important to minimize Nwd while maximizing Nsd . In addition, the average length of

time spent in the sleep state (Tss) should be as large as possible while still keeping the

power consumption down. From our experience with the user interaction with the hard

disk, our algorithm performs well, thus giving us low-power consumption with still good
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Table 2.6: Laptop Hard Disk Measurement Comparison

Algorithm Pwr (W) Nsd Nwd Tss 5 s 7
Oracle 0.33 250 118
Ours 0.40 326 76 81
Adaptive 0.43 191 28 127
Karlin’s 0.44 323 64 79
30s timeout 0.51 147 18 142
DTMDP 0.62 173 54 102
120s timeout 0.67 55 3 238
always on 0.95 0 0 0
CTMDP 0.97 391 359 4

Table 2.7: Desktop Hard Disk Measurement Comparison

Algorithm Pwr (W) Nsd Nwd Tss 5 s 7
Oracle 1.64 164 0 166
Ours 1.92 156 25 147
Karlin’s 1.94 160 15 142
Adaptive 1.97 168 26 134
30s timeout 2.05 147 18 142
120s timeout 2.52 55 3 238
DTMDP 2.60 105 39 130
always on 3.48 0 0 0
CTMDP 3.90 326 318 4

performance.

As mentioned earlier, we filtered request arrivals using a fraction of hard disk break-

even time. The effect of filtering arrivals into the idle state is best shown in Figure 2.13 for

the policy with the performance penalty of the laptop hard disk limited to 10%. For very

short filter times the power consumption is very high since the overhead of transition to

and from the low-power state has not been compensated. The power consumption grows

for longer filter times since more time is spent in the idle state before transitioning to the

low-power state, thus wasting some power. Note that the best filtering intervals are on the

order of seconds since the hard disk break-even time is also on the order of seconds.

The event-driven nature of our algorithm, as compared to algorithms based on discrete

time intervals, saves considerable amount of power while in sleep state as it does not require
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Figure 2.13: Power consumption vs. filter size

policy evaluation until an event occurs. Waking up a 10 W processor every 1s for policy

re-evaluation that takes 100ms to execute would use 1800 J of energy during a normal 30

minute break. With an event-driven policy, the processor could be placed in a low-power

mode during the break time, thus saving a large portion of battery capacity.

2.5.2 WLAN card

For WLAN measurements we used Lucent’s WLAN 2Mb/s card [50] running on the laptop.

As a mobile environment is continually changing, it is not possible to reliably repeat the

same experiment. As a result, we needed to use a trace-based methodology discussed

in [56]. The methodology consists of three phases: collection, distillation and modulation.

We used tcpdump [40] utility to get the user’s trace for two different applications: web

browsing and telnet. During distillation we prepared the trace for the modeling step. We

had a LAN-attached host read the distilled trace and delay or drop packets according to the

parameters we obtained from the measurements. In this way, we were able to recreate the
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experimental environment, so that different algorithms can be reliably compared.

We implemented three different versions of our algorithm for each application, each

with different power (Pave) and performance penalty (Tpenalty). The algorithms are labeled

Ours a,b,c for web browser and Ours 1,2,3 for telnet. Since web and telnet arrivals behave

differently (see Figure 2.4), we observe through the OS what application is currently ac-

tively sending and use the appropriate power management policy. The performance penalty

for WLAN is a measure of the total overhead time due to turning off the card. Note that

for the hard disk we measured instead the average time in the sleep state, as the accurate

real overhead was difficult to obtain. In addition to measuring the energy consumption

Table 2.8: DPM for WLAN Web Browser

Policy Nsd Nwd Tpenalty Pave

(sec) (W)

Oracle 395 0 0 0.467
Ours (a) 363 96 6.90 0.474
Ours(b) 267 14 1.43 0.477
Karlin’s 623 296 23.8 0.479
Ours(c) 219 9 0.80 0.485
CTMDP 3424 2866 253.7 0.539

Default 0 0 0 1.410

(and then calculating average power), we also quantified the performance penalty using

three different measures. Delay penalty, Tp, is the time the system had to wait to service

a request since the card was in the sleep state when it should not have been. In addition,

we measure the number of shutdowns, Nsd and the number of wrong shutdowns, Nwd . A

shutdown is viewed as wrong when the sleep time is not long enough to make up for the

energy lost during transition between the idle and off state. The number of shutdowns is

a measure of how eager the policy is, while a number of wrong shutdowns tells us how

accurate the policy is in predicting a good time to shut down the card.

The measurement results for a 2.5hr web browsing trace are shown in Table 2.8. Our

algorithms (Ours a,b,c) show, on average, a factor of three in power savings with a low

performance penalty. Karlin’s algorithm [43] is guaranteed to be within a factor of two of

the oracle policy. Although its power consumption is low, it has a performance penalty that
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Table 2.9: DPM for WLAN Telnet Application

Policy Nsd Nwd Tpenalty Pave

(sec) (W)

Oracle 766 0 0 0.220
Ours(1) 798 21 2.75 0.269
Ours(2) 782 33 2.91 0.296
Karlin’s 780 40 3.81 0.302
Ours(3) 778 38 3.80 0.310
CTMDP 943 233 20.53 0.361

Default 0 0 0 1.410

is an order of magnitude larger than for our policy. A policy that assumes the exponential

arrivals only, CTMDP [64], has a very large performance penalty because it makes the

decision as soon as the system enters idle state.

Table 2.9 shows the measurement results for a 2hr telnet trace. Again our policy per-

forms best, with a factor of five in power savings and a small performance penalty. The

telnet application allows larger power savings because on average it transmits and receives

much less data then the web browser, thus giving us more chances to shut down the card.

2.5.3 SmartBadge

In contrast to the previous examples, where we implement and measure the decrease in

power consumption when using our power management policies, in this case we perform

a case study on the tradeoffs between power and performance for the SmartBadge. The

SmartBadge is a good example of a system that has more than one decision point and

thus requires the TISMDP model in order to obtain an optimal policy. We first study the

tradeoffs between power and performance for policies with just one decision state (idle

state), and then follow with an example contrasting policies with one state to policies that

have two decision states (idle and standby).

The results of simulation shown in Figure 2.14 clearly illustrate the tradeoff between

different policies for one decision state that can be implemented in the SmartBadge system.

The performance penalty is defined as the percent of the time system spends in a low-power

state with a non-empty queue. In general, the goal is to have as few requests as possible
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waiting for service. For systems with a hard real-time constraint, this penalty can be set

to large values to force less aggressive power management, thus resulting in less requests

queued up for service. In systems where it is not as critical to meet time deadlines, the

system can stay in a low-power state longer, thus accumulating more requests that can be

serviced upon return to the active state.

Because of the particular design characteristics of the SmartBadge, the tradeoff curves

of performance penalty and power savings are very close to linear. When the probability of

going to sleep is zero, no power can be saved, but the performance penalty can be reduced

by 85% as compared to the case where the probability is one. On the other hand, about

50% of the power can be saved when the system goes to standby upon entry to idle state.
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Figure 2.14: SmartBadge DPM results

In addition to analyzing power and performance tradeoffs for policies that have only

one decision state, we have also compared the one decision state (idle) policy to a policy

with two decision states (idle and standby) with the same performance penalty. The results

in Table 2.10 clearly show that considerably larger power savings with the same perfor-

mance penalty can be obtained when using a more complex policy optimization model
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that enables multiple decision points (TISMDP model) instead of just one decision point

(renewal theory model).

Table 2.10: Comparison of Policies by Decision State Number

No. Decision Power
States (W)

One state 1.84
Two states 1.47

2.6 Summary

Dynamic power management policies reduce energy consumption by selectively placing

components into low-power states. In contrast to heuristic policies, such as timeouts, poli-

cies based on stochastic models can guarantee optimal results. The quality of results of

stochastic DPM policies depends strongly on the assumptions made. In this chapter I

present and implement two different stochastic models for dynamic power management.

The measurement results show large power savings.

The first approach requires that only one decision point be present in the system. This

model is based on renewal theory. The second approach allows for multiple decision points

and is based on Semi-Markov Decision Process (SMDP) model. The basic SMDP model

can accurately model only one non-exponential transition occurring with the exponential

ones. I presented TISMDP model as the extension to SMDP model in order to describe

more than one non-exponential transition occurring at the same time. TISMDP model is

very general, but also is more complex. Thus, it should be used for very general systems

that have more than one decision point (and thus multiple states that trade-off power for

performance). One limitation of both techniques is that they assume a prior knowledge of

the stochastic characteristics of the system and the workload. Since the workload is often

non-stationary, it is important to adapt to the changes. The adaptation can be realized with

either model using an approach presented in [14]. Note that I have measured large savings

in power using my approaches although the traces used for measurements consisted of
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multiple users and applications.

Large power savings have been observed when using my approach on four different

portable devices: the laptop and the desktop hard disks, the WLAN card and the Smart-

Badge. The measurements for the hard disks show that my policy gives as much as 2 � 4
times lower power consumption as compared to the default Windows timeout policy. In

addition, my policy obtains up to 5 times lower power consumption for the wireless card

relative to the default policy. The power management results on the SmartBadge show

savings of as much as 70% in power consumption. Finally, the comparison of policies ob-

tained for the SmartBadge with the renewal model and TISMDP model clearly illustrate

that whenever there is more than one decision point available, the TISMDP model should

be used as it can utilize the extra degrees of freedom and thus obtain an optimal power

management policy.



Chapter 3

Dynamic Voltage Scaling

3.1 Introduction

Dynamic Voltage Scaling (DVS) algorithms adjust the device speed and voltage accord-

ing to the workload at run-time. Since most systems do not need peak performance at

all times, decreasing the device speed and voltage during less busy periods increases en-

ergy efficiency. Another approach is to only reduce clock frequency. Although this does

decrease the power consumption, it does not significantly alter the energy consumption

because the energy consumption is directly proportional to the execution time. It is also

possible to decrease voltage in addition to lowering the clock frequency. Lower voltage

also causes a decrease in the peak performance. Thus, the best savings can be obtained

with DVS algorithms that dynamically adjust both voltage and frequency to computational

load. Implementing a DVS algorithm for a processor requires both hardware and software

support that is not commonly available yet, even though there have been a few examples of

DVS implementation such as in [24].

In this chapter I extend the DPM model discussed in the previous chapter with a DVS

algorithm, thus enabling larger energy savings. The DVS algorithm assumes the same

stochastic system model that was assumed in previous chapter: a set of power states whose

transitions are described with stochastic distributions. In contrast to the DPM model, the

DVS model expands the active state into a set of states characterized by different energy

and performance trade-offs. In addition, the DVS model handles workload non-stationarity.

62
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The DVS algorithm is implemented for the SmartBadge portable device presented in

Chapters 1 and 2. All SmartBadge components have four main power states: active, idle,

standby and off. In addition, the processor can operate over a range of frequencies. For

each frequency, there is a minimum allowed voltage of operation. If the processor runs at

the minimum frequency and voltage required to sustain the performance level required by

the application, it is possible to save power even when the system is active, in addition to

the savings that can be obtained by DPM during idle periods. This principle is exploited by

the recently announced Transmeta’s Crusoe processor [24].

The first contribution of this work is to develop and verify a stochastic model for predic-

tion of execution times for streaming multimedia applications on a frame-by-frame basis.

My model is based on the change-point detection theory used for ATM traffic detection

among other applications [82]. I compare my model to ideal prediction (requires knowl-

edge of future) and to the exponential moving average used in [62]. The prediction algo-

rithm developed is then used as a part of a power control strategy that merges DVS and

DPM.

The second contribution of this work is to merge the DPM and the DVS approaches, by

expanding the active state definition to include multiple settings of frequency and voltage,

thus resulting in a range of performance and power consumptions available for tradeoff at

run time. In this way, the power manager can control performance and power consumption

levels both by using DVS when the system is active, and by transitioning components into

low-power states when the system is idle.

Section 3.2 describes the stochastic models of the system components. The models

are based on experimental observations. In Section 3.3 I present the theoretical basis for

detection of rate change together with dynamic selection of CPU frequency and voltage.

I show simulation and measurement results for MPEG2 CIF size video and MP3 audio

running on the SmartBadge in Section 3.4.

3.2 System Model

The system can be modeled with three components: the user (a source of external events),

the device (i.e. SmartBadge) and the queue (the buffer associated with the device) as shown
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in Figure 2.1. The power manager observes all event occurrences of interest and takes

decisions on what state the system should transition to next, in order to minimize energy

consumption for a given performance constraint. While the device is active, the power

manager selects the most appropriate execution frequency and voltage for the processor.

As our work was motivated by a real design of the SmartBadge, in all our examples we use

the SmartBadge hardware with MPEG2 video (CIF size) and MP3 audio.

Each system component is described probabilistically. The user behavior is modeled

by a request interarrival distribution. For streaming multimedia applications, requests rep-

resent frame arrivals from the network. Similarly, the service time distribution describes

the behavior of the device in the active state. In multimedia case, it represents the time

needed for processing a frame (decompressing it and sending to the output interface). The

transition time distribution models the time taken by the device to transition between its

power states. Finally, the combination of interarrival time distribution (incoming frame ar-

rivals) and service time distribution (frame decoding times) characterizes well the behavior

of the queue (frame buffer). The details of each system component are described in the

next sections.

3.2.1 Portable Device

Portable devices typically have multiple power states. Each device has one active state

in which it services user requests, and one or more inactive low-power states as shown in

Figure 3.1. The active state can further be characterized by a set of sub-states differentiated

by performance (e.g. CPU frequency) and power consumption (e.g. CPU voltage). The

power manager can trade off power for performance by placing the device into low-power

states or by scaling CPU frequency and voltage. Each low power state can be characterized

by the power consumption and the performance penalty incurred during the transition to or

from that state. Usually higher performance penalty corresponds to lower power states.

The SmartBadge Device

The SmartBadge embedded system is shown in Figure 1.2. Components in the Smart-

Badge, the power states and the transition times of each component from standby (tsby) and
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Figure 3.1: A set of active and low-power states

off (to f f ) state into active state are shown in Table 2.1.

The StrongARM processor on the SmartBadge can be configured at run-time by a sim-

ple write to a hardware register to execute at one of 10 different frequencies. Note that

the number of frequencies is predefined by the design of the StrongARM processor. We

measured the transition time between two different frequency settings at 150 microseconds.

Since typical decoding time for MPEG video or MP3 audio is much longer than the tran-

sition time, it is possible to change the CPU frequency without perceivable overhead. For

each frequency, there is a minimum voltage the SA-1100 needs in order to run correctly,

but with lower energy consumption. Figure 3.2 shows the frequency-voltage tradeoff.

In addition to the active state, the SmartBadge supports three lower power states: idle,

standby and off. The idle state is entered immediately by each component in the system as

soon as that particular component is not accessed. The standby and off state transitions can

be controlled by the power manager. The transition from standby or off state into the active

state can be best described using the uniform probability distribution.

The Active State Model

Service times (decoding times for video or audio frames) on the SmartBadge in the active

state are modeled by an exponential distribution. The average service time is defined by



CHAPTER 3. DYNAMIC VOLTAGE SCALING 66

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

100 120 140 160 180 200

Frequency (MHz)

Vo
lta

ge
 (V

)

Figure 3.2: Frequency vs. Voltage for SA-1100

1
λD

where λD is the average service rate (measured in frames/second for MPEG video and

MP3 audio) as discussed in Chapter 2. Equation 3.1 defines the cumulative probability of

the device servicing a user request within time interval t.

FD � t ��� 1 � e � λDt (3.1)

Figure 3.3 shows the tradeoff between performance and energy when running MP3

audio decode on the SmartBadge hardware at allowable frequency and voltage setting for

the SA-1100 processor, and Figure 3.4 shows the same results for MPEG video. The shape

of the performance curve versus processor frequency setting depends on the application

and on the underlying hardware. MP3 audio was decoded using slower SRAM on the

SmartBadge. Since memory access time does not depend on processor clock frequency,

performance improvements at high processor frequencies are memory-bound, and speedup

is not linear. MPEG video decode ran on much faster SDRAM and thus its performance

curve is almost linear as it is more limited by the processor speed. In both figures all values
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Figure 3.3: Performance and energy for MP3 audio

are normalized to the data points obtained for the fastest frequency.

The basic rationale for DVS is that for frames that take a shorter time to decode, pro-

cessor frequency and voltage can be lowered, and for longer frames, increased. In addition,

the decoding speed needs to be adjusted to frame arrival frequency, so that the frame buffer

does not contain too many or too few frames. The detection of changes in decoding speed

and arrival frequency are thus critical for optimal setting of CPU frequency and voltage.

We present an optimal way for detection in Section 3.3.

3.2.2 User Model

User is a source of external events to the device. The requests to the multimedia application

during the decoding are in form of audio or video frame arrivals through the WLAN. Thus,

the user’s stochastic model in the active state can be defined by the frame interarrival time

distribution. We measured MPEG2 video (CIF size) and MP3 audio frame arrival times by

monitoring the accesses to the WLAN card. Since the frames arrive through the wireless
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Figure 3.4: Performance and energy for MPEG video

network, the arrival times are not fixed. The frame interarrival times in the active state

for both applications can be approximated with an exponential distributions. Figure 3.5

shows the exponential cumulative distribution fitted to the measured results for the MPEG

video. Similar results have been observed for the MP3 audio. Frame arrival rate in the

active state is defined as λU and the mean frame interarrival time is 1
λU

. The probability of

the SmartBadge receiving a frame within time interval t follows the cumulative probability

distribution shown below.

FU � t ��� 1 � e � λU t (3.2)

Note that the exponential distribution is not used to model the arrivals in the idle state,

the same way as in the DPM model discussed in Chapter 2. In the idle state, audio or

video frames have all been decoded and no new requests have arrived yet from the user.

This is when the power manager can make a decision on what low-power state to place the

device in as discussed in [73]. The full optimization model should not only decide when
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Figure 3.5: MPEG video arrival time distribution

to transition the device into one of the low-power states (standby or off) but should also

perform dynamic voltage scaling in the active state.

3.2.3 Queue

Portable devices normally have a buffer for storing requests that have not been serviced yet.

For multimedia requests such as MPEG video and audio it is convenient to describe queue

in terms of the number of frames waiting in the frame buffer. As the frames arriving to

the SmartBadge do not have priority, our queue model contains only the number of frames

waiting service (decoding). In the active state, where the exponential distributions is used

to describe frame arrivals and service times, the behavior of the system can be modeled

using M/M/1 queue model. More details on this model and its application to dynamic

voltage scaling are given in the following section.
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3.3 Theoretical Background

In Chapter 2 the power manager’s only job is to decide when to transition the device into

one of the low-power states. Power management policies are obtained using one of two

models: renewal theory model and time-indexed semi-markov process model. It was ob-

served that in the idle state we need to accurately model the tail of the interarrival time

distribution, which does not follow a perfect exponential distribution. As a result, the time

elapsed since the last entry into the idle state had to be accounted for in the model in order

to obtain the optimal power management policy. Renewal theory naturally accounts for

the time elapsed in the idle state through formulation of the system renewal time. In the

TISMDP model, instead of the simple state model shown on the left in Figure 3.6, it was

necessary to expand the idle and the sleep states with time index representing elapsed time

since the last entry into the idle state as shown on the right. Note that in both renewal and

TISMDP models there is only one active state (with one or more elements in the queue).

In this work we have extended the function of power manager (PM) to include decisions

on the CPU frequency and voltage setting while in the active state. Thus, instead of having

only one active state as shown in Figure 3.6, now there is a set of active states, each charac-

terized by different performance (CPU frequency) and power consumption (CPU voltage)

as shown in Figure 3.7. Since TISMDP and renewal models both assumed that active state

can be described using the exponential distribution, the transformation from one active into

multiple active states is completely compatible with the rest of the model. As a result,

the power management policies we develop can make decisions for both dynamic voltage

setting and the transition into the low-power states.

At run-time, the PM observes user request arrivals and service completion times (in

our case frame arrivals and decoding times), the number of jobs in the queue (the number

of frames in the buffer) and the time elapsed since last entry into idle state. When in the

active state, the PM checks if the rate of incoming or decoding frames has changed, and

then adjusts the CPU frequency and voltage accordingly. Once the decoding is completed,

the system enters idle state. At this point the power manager observes the time spent in the

idle state, and depending on the policy obtained using either renewal theory or TISMDP

model, it decides when to transition into one of the sleep states. When a request from the
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Figure 3.6: Time-indexed SMDP states

user arrives for more audio or video decoding, the power manager transitions the system

back into the active state and starts the decoding process.

We next present the optimal approach for detecting a change in the frame arrival or

decoding times. Once a change is detected, a decision has to be made on how to set the

CPU frequency and voltage. We present results based on M/M/1 queue theory that enable

power manager to make this decision.

3.3.1 Dynamic Voltage Scaling Algorithm

The DVS algorithm consists of two main portions: detection of the change in request arrival

or servicing rate, and the policy that adjusts the CPU frequency and voltage. The detection
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Figure 3.7: Expansion of the active state

is done using maximum likelihood ratio that guarantees optimal detection for the expo-

nential distributions. Policy is implemented using M/M/1 queue results to ensure constant

average delay experienced by buffered frames.

Detecting the change in rate is a critical part of optimally matching CPU frequency

and voltage to the requirements of the user. For example, the rate of MP3 audio frames

coming via RF link can change drastically due to changes in the environment. The servicing

rate can change due to variance in computation needed between MPEG frames [5, 13],

or just by changing the audio source currently decoded by the MP3 audio. The request

(frame) interarrival times and servicing (decoding) times follow the exponential distribution

as discussed in the previous section. The two distributions are characterized by the arrival

rate, λU , and the servicing rate, λD.

The change point detection is performed using maximum likelihood ratio, Pmax, as
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shown in Equation 3.3. Maximum likelihood ratio computes the ratio between the proba-

bility that a change in rate did occur (numerator in Equation 3.3) and the probability that

rate did not change (denominator). The probability that the rate changed is computed by

fitting the exponential distribution with an old rate, λo, to the first k � 1 interarrival or de-

coding times (x j), and another exponential distribution with a new rate, λn, to the rest of

the points observed in window of size m (which contains the last m interarrival times of

user requests). The probability that the rate did not change is computed by fitting the inter-

arrival or decoding times with the exponential distribution characterized by the current (or

old) rate, λo.

Pmax � Πk � 1
j ( 1λoe � λox jΠm

j ( kλne � λnx j

Πm
j ( 1λoe � λox j

(3.3)

An efficient way to compute the maximum likelihood ratio, Pmax, is to calculate the

natural log of Pmax as shown below:

ln � Pmax �G� � m � k 	 1 � lnλn

λo
� � λn � λo � m

∑
j ( k

x j (3.4)

Note that in this equation, only the sum of interarrival (or decoding) times needs to be

updated upon every arrival (or service completion). A set of possible rates, Λ, where

λn � λo R Λ is predefined, as well as the size of the window m. Variable k is used to lo-

cate the point in time when the rate has changed. The change point detection algorithm

consists of two major tasks: off-line characterization and on-line treshold detection.

Off-line characterization is done using stochastic simulation of a set of possible rates

to obtain the value of ln � Pmax � that is sufficient to detect the change in rate. The results

are accumulated in a histogram, and then the value of maximum likelihood ratio that gives

very high probability that the rate has changed is chosen for every pair of rates under

consideration. In our work we selected 99.5% likelihood.

On-line detection collects the interarrival time sums at run time and calculates the max-

imum likelihood ratio. If the maximum likelihood ratio computed is greater than the one

obtained from the histogram, then there is 99.5% likelihood that the rate change occurred,

and thus the CPU frequency and voltage need to be adjusted. We found that a window of
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m � 100 is large enough. Larger windows will cause longer execution times, while much

shorter windows do not contain statistically large enough sample and thus give unstable

results. In addition, the change point can be checked every k � 10 points. Larger values

of k interval mean that the changed rate will be detected later, while with very small val-

ues the detection is quicker, but also causes extra computation. The same change point

detection algorithm can be used for any type of distribution, not only for the exponential

distributions.

The adjustment of frequency and voltage is done using M/M/1 queue model [77, 67].

Using this model we try to keep the average total delay for processing frames in the queue

constant (Equation 3.5). Note that when general distributions are used, M/M/1 queue model

is not applicable, so another method of frequency and voltage adjustment is needed.

Framedelay � λD

λU � λU � λD � (3.5)

When either interarrival rate, λU , or the servicing rate, λD, change, the frame delay is

evaluated and the new frequency and voltage are selected that will keep the frame delay

constant. For example, if the arrival rate for MP3 audio changes, Equation 3.5 is used

to obtain required decoding rate in order to keep the frame delay (and thus performance)

constant. The decoding rate can be related back to the processor frequency setting using

Figure 3.3 or an equivalent table. On the other hand, if a different frame decoding rate is

detected while processor is set to the same frequency, then piece-wise linear approximation

based on the application frequency-performance tradeoff curve (Figures 3.3 and 3.4) is used

to obtain the new processor frequency setting. In either case, when CPU frequency is set to

a new value, the CPU voltage is always adjusted according to Figure 3.2.

3.4 DVS Results

We implemented the change point detection algorithm as a part of the power manager for

both MPEG2 video (CIF size) and MP3 audio examples. During the times that the system

is idle, the DPM algorithms described in Chapter 2 decide when to transition the system

into a low-power state. When the system is in the active state (the state where audio and
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video decoding occur), the power manager (PM) observes changes in the frame arrival and

decoding rates using change point detection algorithm described in the previous section.

Once a change is detected, the PM evaluates the required value of the processor frequency

that would enable the frame delay expressed in Equation 3.5 to remain constant. The CPU

voltage is set using results shown in Figure 3.2. Figure 3.8 shows the relationship between

CPU frequency and MPEG video frame arrival and decoding rates for average buffered

frame delay of 0 � 1 seconds, which then corresponds to an average of 2 extra frames of

video buffered. This example is for a clip of football video decoded on the SmartBadge.

Similar results can be obtained for other clips, but with different decoding rates, as the rates

depend on the content and on the hardware architecture.
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Figure 3.8: MPEG Frame Rates vs. CPU Frequency

We compare our rate change detection algorithm to ideal detection and to the exponen-

tial moving average algorithm. Ideal detection assumes knowledge of the future; thus the

system detects the change in rate exactly when the change occurs. The exponential moving
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average can be defined as follows:

Ratenew
ave � � 1 � g � Rateold

ave 	 gRatecur (3.6)

where Ratenew
ave is the new average rate, Rateold

ave is the old average, Ratecur is the current

measured rate and g is the gain. Figure 3.9 shows the comparison results for detecting a

change from 10 fr/sec to 60 fr/sec. Our algorithm detects the correct rate within 10 frames

and is more stable than either of the two the exponential moving average algorithms (they

differ in the value of gain).
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Figure 3.9: Rate Change Detection Algorithms

In the following set of results we compare (i) the ideal detection algorithm, (ii) the

exponential average approximation used in previous work and (iii) the maximum processor

performance to (iv) the change point algorithm presented in this paper. For this purpose

we use six audio clips totaling 653 seconds of audio, each running at a different set of bit

and sample rates as shown in Table 3.1. We have found that there was very little variation

on frame-by-frame basis in decoding rate within a given audio clip, but the variation in

decoding rate between clips can be large as shown in Table 3.1 (the decoding rates are for

202.4MHz processor frequency).
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Table 3.1: MP3 audio streams

MP3 Audio Bit rate Sample Rate Decoding Rate
Clip Label (Kb/s) (KHz) (frames/s)

A 16 16 51.35
B 16 32 27.30
C 32 16 49.80
D 32 32 26.05
E 64 16 47.95
F 64 32 25.25

Table 3.2: MP3 audio DVS

MP3 Audio Change Exp.
Sequence Result Ideal Point Ave. Max

ACEFBD Energy 196 217 225 316
Fr.Delay 0.1 0.09 0.1 0

BADECF Energy 189 199 231 316
Fr.Delay 0.1 0.09 0.1 0

CEDAFB Energy 190 214 232 316
Fr.Delay 0.1 0.04 0.1 0

During decoding, the DVS algorithm detects changes in both arrival and decoding rates

for the MP3 audio sequences. The resulting energy (kJ) and average total frame delay (s)

are displayed in Table 3.2. Each sequence consists of a combination of six audio clips.

For all sequences, the frame arrival rate varied between 16 and 44 frames/sec. Our change

point algorithm performs well, its results are very close to the ideal, with no performance

loss as compared to the ideal detection algorithm that allows an average 0 � 1s total frame

delay (corresponding to 6 extra frames of audio in the buffer).

The next set of results are for decoding two different video clips. In contrast to MP3

audio, for MPEG video there is a large variation in decoding rates on frame-by-frame basis

(this has been shown in [5, 13] as well). We again report results for the ideal detection, the

exponential average, the maximum processor performance and our change point algorithm.

The ideal detection algorithm allows for 0.1s average total frame delay equivalent to 2 extra

frames of video in the buffer. The arrival rate varies between 9 and 32 frames/second.

Energy (kJ) and average total frame delay (s) are shown in Table 3.3. The results are
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Table 3.3: MPEG video DVS

MPEG Video Change Exp.
Clip Result Ideal Point Ave. Max

Football Energy 214 218 300 426
(875s) Fr.Delay 0.1 0.11 0.16 0
Terminator2 Energy 280 294 385 570
(1200s) Fr.Delay 0.1 0.11 0.16 0

similar to MP3 audio. The exponential average shows poor performance and higher energy

consumption due to its instability (see Figure 3.9). Our change point algorithm performs

well, with significant savings in energy and a very small performance penalty (0.11s frame

delay instead of allowed 0.1s).

Table 3.4: DPM and DVS

Algorithm Energy (kJ) Factor

None 4260 1.0
DVS 3142 1.4
DPM 2460 1.7
Both 1342 3.1

Finally, we combine the dynamic voltage scaling detection with power management

algorithms presented in [73, 74]. We use a sequence of audio and video clips, separated

by idle time. During longer idle times, the power manager has the opportunity to place the

SmartBadge in the standby state. The optimal power management policy can be obtained

by either of the two approaches presented in [73, 74] as the only decision point is upon the

entrance into the idle state. Table 3.4 shows the energy savings if we implemented only

dynamic voltage scaling (and thus did not transition into standby state during longer idle

times), or if only power management is implemented (and thus processor runs at maximum

frequency and voltage in the active state) and finally also for the combination of the two

approaches. We obtain savings of a factor of three when expanding the power manager to

include dynamic voltage scaling with our change point detection algorithm.
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3.5 Summary

A new approach for dynamic voltage scaling that can be used as a part of a power man-

aged system, such as systems presented in Chapter 2, has been presented in this chapter.

The dynamic voltage scaling algorithm is consists of two tasks: (i) change point detection

algorithm that detects the change in arrival or decoding rates, and (ii) the frequency setting

policy that sets the processor frequency and voltage based on the current arrival and de-

coding rates in order to keep constant performance. I tested the algorithm on MPEG video

and MP3 audio running on the SmartBadge portable device. The change point detection al-

gorithm is very stable as compared to the exponential moving average algorithm presented

previously. As a result, it gives large energy savings at a small performance penalty for both

MPEG video and MP3 audio applications. Finally, I implemented the DVS algorithm to-

gether with power management algorithms and showed factor of three savings in energy

due to the combined approach.



Chapter 4

Energy Efficient Hardware Design

4.1 Introduction

The overall objective of this thesis is to improve energy efficiency of systems with new

design and utilization techniques. In the previous two chapters I introduced two techniques

aimed at improving energy utilization of systems. Since dynamic power management and

dynamic voltage scaling can only improve how the system is used, there is a need for a

methodology that enables energy efficient design of hardware and software. In this chapter

I will present a methodology for energy efficient design of hardware, and in the next chapter

I will address the design of software.

Energy consumption and power dissipation are critical factors in system design. Peak

power dissipation sets constraints on thermal and power supply design for the system. Aver-

age power consumption is directly related to battery life, hence it may be the critical factor

that sets system weight and cost. CAD tool support is needed to evaluate performance and

energy consumption in system designs.

The primary motivation for this work comes from the experience with the redesign of

a SmartBadge. The SmartBadge is best described with a system model consisting of a

microprocessor with level-1 (L1) cache, off-chip memory and DC-DC converter connected

with the interconnect, which also represents the basic configuration of many electronic

systems. The design task was to enhance the prototype implementation of the SmartBadge

by adding other components such as real-time MPEG video decode. The original hardware

80
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did not meet either the performance or the energy consumption constraints when running

the MPEG decode algorithm. As a result, both the hardware and the software architectures

had to be redesigned, while keeping the energy consumption under tight control.

Design process for such a system starts with the selection of the commodity compo-

nents that may meet the performance and the energy consumption criteria based on the data

sheets. Typically only a few processor families can be evaluated due to resource and time

limitations. In addition, many companies often license an architecture and as a result prefer

to focus designs on the processor family licensed. In this example, the ARM processor fam-

ily [1] was selected to illustrate the methodology for cycle-accurate energy consumption

simulation used in the design of the SmartBadge.

Cycle-accurate instruction-level simulators are used for performance estimation of the

software portion of the design industry-wide. Whole system evaluation is often done on

prototype boards. Due to long design times and costs for prototype board design, only

a few hardware architectures can be tried. Moreover, power dissipation measurements

require board instrumentation: a time-consuming and error-prone process. The advantages

of the simulation-based methodology are that it is easy to explore many different hardware

and software architectures and thus obtain accurate performance and energy consumption

estimates. As a result, I extended the basic instruction-level simulator provided in the

ARM software development kit with the cycle-accurate energy consumption models for the

processor with the level 1 and the level 2 caches, the off-chip memories, the interconnect,

the DC-DC converter and the battery. The methodology presented in this work can be

applied to any cycle-accurate instruction-level simulator.

The rest of this chapter is organized as follows. The implementation of cycle-accurate

energy consumption simulator is presented in Section 4.2. Section 4.3 shows that the

simulation results of timing and energy dissipation using the methodology presented are

within 5% of the hardware measurements for the Dhrystone test case. Hardware architec-

ture trade-offs for SmartBadge’s real-time MPEG video decode design are explored using

cycle-accurate energy simulation in Section 4.4.
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4.2 Cycle-Accurate Energy Consumption

Simulator Implementation

The system used in this work to illustrate my methodology, the SmartBadge, has an ARM

processor. As a result, I implemented the energy models as extensions to the cycle-accurate

instruction-level simulator for the ARM processor family, called the ARMmulator [1]. The

ARMulator is normally used for functional and performance validation. Figure 4.1 shows

the simulator architecture. The typical sequence of steps needed to set up system simulation

can be summarized as follows. (i) The designer provides a simple functional model for

each system component other than the processor. (ii) The functional model is annotated

with a cycle-accurate performance model. (iii) Application software (written in C) is cross-

compiled and loaded in specified locations of the system memory model. (iii) The simulator

runs the code and the designer can analyze execution using a cross-debugger or collecting

statistics. A designer interested in using our methodology would only need to additionally

provide cycle-accurate energy models for each component during step (ii) of the simulation

setup. Thus, the designer can obtain power estimates with little incremental effort.

We developed a methodology for enhancing cycle-accurate simulator with energy mod-

els of typical components used in embedded system design. Each component is character-

ized with equivalent capacitance for each of its power states. Energy spent per cycle is

a function of equivalent capacitance, current voltage and frequency. The equivalent ca-

pacitance allows us to easily scale energy consumed for each component as frequency or

voltage of operation change. Equivalent capacitances are calculated given the information

provided in data sheets.

Internal operation of our simulator proceeds as follows. On each cycle of execution

the ARMulator sends out the information about the state of the processor (“cycle type”)

and its address and data busses. Two main classes of processor cycle types are processor

active, where active power is consumed, and processor idle, where idle power is consumed.

The processor idle state represents an off-chip memory request. The number of cycles

that the processor remains idle depends on L2 cache and memory model access times.

L2 cache, when present, is always accessed before the main memory and so is active on

every memory access request. On L2 cache miss, main memory is accessed. Memory
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model accounts for energy spent during the memory access. The interconnect energy model

calculates energy consumed by the interconnect and pins based on the number of lines

switched during the cycle on the data and address busses. The DC-DC converter energy

model sums all the currents consumed each cycle by other system components, accounts

for its efficiency loss, and gets the total energy consumed from the battery. The battery

model accounts for battery efficiency losses due to the difference between the rated current

and discharge current computed the current cycle.
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Figure 4.1: Simulator Architecture

The total energy consumed by the system per cycle is the sum of energies consumed

by the processor and L1 cache (ECPU ), interconnect and pins (ELine), memory (EMem),

L2 cache (EL2), the DC-DC converter (EDC) and the efficiency losses in the battery (EBat e ):
ECycle � ECPU 	 ELine 	 EMem 	 EL2 	 EDC 	 EBat (4.1)
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The total energy consumed during the execution of the software on a given hardware ar-

chitecture is the sum of the energies consumed during the each cycle. Models for energy

consumption and performance estimation of each system component are described in the

following sections.

4.2.1 Processor

The ARM simulator provides a cycle-accurate, instruction-level model for ARM processors

and L1 on-chip cache. The model was enhanced with energy consumption estimates based

on the information provided by the data sheets. Two power states are considered: active

state in which processor is running with the on-chip cache, and the state in which the

processor is executing NOPs while waiting to fill the cache.

Note that in the case of StrongARM processor used in this work, the data sheet values

for current consumption correspond well to the measured values. Wan [84] extended Stron-

gARM processor model with base current costs for each instruction. The average power

consumption for most of the instructions is 200mW measured at 170MHz. Load and store

instructions required 260mW each. Because the difference in energy per instruction is min-

imal, it can be expected that the average power consumption value from the data sheets is

on the same level of accuracy as the instruction-level model. Thus we can use data sheet

values to derive equivalent capacitances for the StrongARM. Note that for other processors

data sheet values would need to be verified by measurement, as often data sheet values

report the maximum power consumption, instead of typical.

When the processor is executing with the on-chip cache, it consumes the active power

specified in the data sheet Pm measured at given voltage Vm and frequency of operation fm.

Total equivalent active capacitance within the processor, CCPU M a, is estimated as:

CCPU M a � Pm

V 2
m fm

(4.2)

The amount of energy consumed by processor and L1-cache at specified processor cycle
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time Tcycle and CPU core voltage Vcc is:

ECPU M active � PCPU M aTcycle � CCPU M aV 2
cc (4.3)

When there is an on-chip cache miss, the processor stalls and executes NOP instructions

which consume less power. CCPU M NOP can be estimated from the power consumed during

execution of NOPs PCPU M NOP at voltage Vm and frequency fm:

CCPU M NOP � PCPU M NOP

V 2
m fm

(4.4)

The energy consumed within processor core per cycle while executing NOPs is:

ECPU M NOP � CCPU MNOPV 2
cc (4.5)

4.2.2 Memory and L2 cache

The processor issues an off-chip memory access when there is a L1 cache miss. The cache-

fill request will either be serviced by the L2 cache if one is present in the design or directly

from the main memory. On L2 cache miss, a request is issued to the processor to fetch data

from the main memory. Data sheets specify the memory and L2 cache access times, and

energy consumed during active and idle states of operation.

Memory access time, Tmem, is scaled by the processor cycle time, Tcycle, to obtain the

number of cycles the processor has to wait to serve a request, Nwait (Equation 4.6). Wait cy-

cles are defined for two different types of memory accesses: sequential and non-sequential.

Sequential access is at the address immediately following the address of the previous ac-

cess. In burst type memory the sequential access is normally a fraction of the first, non-

sequential, access.

Nwait � Tmem

Tcycle
(4.6)

Two energy consumption states are defined for each type of memory: active and idle. En-

ergy consumed per cycle while memory is in active state operating at supply voltage Vdd is
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a function of equivalent active capacitance, voltage of operation and number of total access

cycles (Nwait 	 1):

EMem M active � CmemV 2
dd

Nwait 	 1
(4.7)

Active memory capacitance, Cmem, can be estimated from the active power specified in the

data sheet, Pmem, measured at voltage Vm and frequency fm:

Cmem � Pmem

V 2
m fm

(4.8)

Multibank memory can be represented as multiple one-bank memories.

Idle state can be further subdivided into multiple states that describe modes of operation

for different types of memories. For example, DRAM might have two idle states: refresh

and sleep. The designer specifies the percentage of the time ρi memory spends in each idle

state. Total idle energy per cycle for memory is:

EMem M idle � Tcycle

n

∑
i ( 0

Piρi (4.9)

where Pi is power consumption in idle state i. Both RAM and ROM are represented with

the same memory model, but with different parameters.

The L2 cache access time and energy consumption are treated the same way as any

other memory. L2 cache organization is determined from the number of banks, lines per

bank, and words per line. Line replacement can follow any of the well-known replacement

policies. Cache hit rate is strongly dependent on its organization, which in turn affects the

total memory access time and the energy consumption. Note that we are simulating details

of the L2 cache access, and thus know the exact L2 cache miss rate.

4.2.3 Interconnect and Pins

The interconnects on the PCB can contribute a large portion of the off-chip capacitance.

Capacitance per unit length of the interconnect is a parameter in the energy model that can

be obtained from the PCB manufacturer. The length of an interconnect can be estimated by
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the designer based on the approximate placement of the selected components on the PCB.

Pin capacitance values are reported on the data sheets.

For each component the average length of the clock line, data and address buses be-

tween the processor and the component are provided as one of the input simulation param-

eters. Hence, the designer is free to use any wire-length estimate [20] or measurement. The

interconnect lengths used in our simulation of SmartBadge come from the prototype board

layout.

The total capacitance switched during one cycle is shown in Equation 4.10. It depends

on the capacitance of one interconnect line and the pins attached to it, Cswitch, and the

number of lines switched during the cycle, Nswitch.

Cline � NswitchCswitch (4.10)

The total energy consumed per cycle, EInterconnect , is a function of the voltage swing on the

lines that switched, Vdd , total capacitance switched, Cline, and the total time to access the

memory, Nwait 	 1:

ELine � ClineV 2
dd

Nwait 	 1
(4.11)

4.2.4 DC-DC Converter

DC-DC converter losses can account for a significant fraction of the total energy consump-

tion. Figure 4.2 from the datasheets shows the dependence of efficiency on the DC-DC

converter output current. Total current drawn from the DC-DC converter by the system

each cycle, Iout , is a sum of the currents drawn by each system component. A component

current, Ic, is defined by:

Ic � Ec

VcTcycle
(4.12)

where Ec is the energy consumed by the component during cycle of length Tcycle at operat-

ing voltage Vc.
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Figure 4.2: DC-DC Converter Efficiency

Total current drawn from the battery, Ibat can be calculated as:

Ibat � Iout

ηDC
(4.13)

Efficiency, ηDC, can be estimated using linear interpolation from the data points derived

from the output current versus efficiency plot in the data sheet. From our experience, a

table with 20 points derived from the data sheets gives enough information for accurate

linear estimation of values not directly represented in the table.

Total energy DC-DC converter draws from the battery each cycle is:

EDCbat � IbatVbatTcycle (4.14)

The energy consumed by the DC-DC converter, EDC, is difference between the energy

provided by the battery, EDCbat and the energy consumed from the DC-DC converter by all
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other components, Eout :

EDC � EDCbat � Eout (4.15)

4.2.5 Battery Model

The main battery characteristic is its rated capacity measured in mWhr. Since total available

battery capacity varies with the discharge rate, manufacturers specify plots in the datasheets

with discharge rate versus battery efficiency similar to the one shown below.
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Figure 4.3: Battery Efficiency

The discharge rate (or discharge current ratio) is given by:

RI � Iave

Irated
(4.16)

where Irated , the rated discharge current, is derived from the battery specification and Iave is

the average current drawn by the DC-DC converter. As battery cannot respond to instanta-

neous changes in current, a first order time constant τ is defined to determine the short-term
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average current drawn from the battery [88]. Given τ, and processor cycle time Tcycle, we

can compute Nbat , the number of cycles over which average DC-DC current is calculated:

Nbat � τ
Tcycle

(4.17)

then, Iave is computed as:

Iave � 1
Nbat

Nbat

∑
cycle ( 1

Isystem � cycle � (4.18)

where Isystem is the instantaneous current drawn from the battery. With discharge current

ratio, we estimate battery efficiency using battery efficiency plot such as the one shown in

Figure 4.3. The total energy loss of the battery per cycle, EBat , is the product of energy

drained from the battery by the system with the efficiency loss (1 � ηBat):

EBat � � 1 � ηBat � IaveVBatTcycle (4.19)

Given the battery capacity model described above, battery estimation is performed as

follows. First, the designer characterizes the battery with its rated capacity, the time con-

stant and the table of points describing the discharge plot similar to the one shown in Fig-

ure 4.3. During each simulation cycle discharge current ratio is computed from the rated

battery current and average DC-DC current calculated from the last Nbat cycles. Efficiency

is calculated using linear interpolation between the points from the discharge plot. Total

energy drawn from the battery during the cycle is obtained from Equation 4.19. Lower

efficiency means that less battery energy remains and thus the battery lifetime is propor-

tionally lower. For example, if battery efficiency is 60% and its rated capacity is 100mAhr

at 1V , then the battery would be drained in 12 minutes at average DC-DC current of 300mA

. With efficiency of 100% the battery would last 1 hour.
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4.3 Validation of the Simulation Methodology

We validated the cycle-accurate power simulator by comparing the computed energy con-

sumption with measurements on the SmartBadge prototype implementation. The Smart-

Badge prototype consists of the StrongARM-1100 processor, DC-DC Converter, FLASH

and SRAM on a PCB board. All the components except the CPU core are powered through

the 3.3V supply line. CPU core runs on 1.5V supply. DC-DC converter is powered by

the 3.5V supply. DC-DC converter efficiency table contains 22 points derived from the

plot shown in Figure 4.2. Stripline interconnect model is used with 1 � 6pF � cm capacitance

calculated based on the PCB board characteristics [58]. Table 4.1 shows other system com-

ponents. Average current consumed by the processor’s power supply and the total current

drawn from the battery are measured with digital multimeters. Execution time is measured

using the processor timer.

Table 4.1: Dhrystone Test Case System Design

Component Cycle T. Active P Idle P Pin Cap. Line L.
Units (ns) (mW) (mW) (pF) (cm)

SA-1100 5-20 400 170 5 N/A
FLASH (1MB) 80 74 0.5 10 2
SRAM (1MB) 90 55 0.01 8 3

Industry standard Dhrystone benchmark is used as a vehicle for methodology verifica-

tion. Measurements and simulations have been done for ten different operating frequencies

of SA-1100 and SA-110 processors. Dhrystone test case is run 10 million times, 445 in-

structions per loop. Simulations ran on HP Vectra PC with Pentium II MMX 300 MHz

processor and 128 MB of memory. Hardware ran 450 times faster than the simulations

without the energy models. Simulations with energy models were slightly slower (about

7%). Figure 4.4 show average processor core and battery currents. Average simulation cur-

rent is obtained by dividing the total energy consumed by the processor core or the battery

with their respective supply voltages and the total execution time.

Simulation results are within 5% of the hardware measurements for the same frequency
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of operation. The methodology presented in this paper for cycle-accurate energy consump-

tion simulation is very accurate and thus can be used for architecture design exploration in

embedded system designs. An example of such exploration is presented next.
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Figure 4.4: Average Processor Core and Battery Currents

4.4 Embedded MPEG Decoder System

Design Exploration

The primary motivation for the development of cycle-accurate energy consumption sim-

ulation methodology is to provide an easy way for embedded system designers to evalu-

ate multiple hardware and software architectures with respect to performance and energy

consumption constraints. In this section we will present an application of the simulation

methodology to embedded MPEG video decoder system design exploration. The MPEG

decoder design consists of the processor, the off-chip memory, the DC-DC converter, out-

put to the LCD display, and the interface to the source of the MPEG stream. The input and

output portions of the MPEG decoder design will not be considered at this point. We focus

on selection of memory hierarchy that is most energy efficient.

The characteristics of memory components considered are shown in Table 4.2. Two
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Table 4.2: Memory Architectures for MPEG Design

Name First Burst Actjve Idle Line Pin Manuf.
Acc. Acc. Pwr Pwr Cap. Cap.
(ns) (ns) (mW) (mW) (pF) (pF)

FLASH 80 N/A 75 0.5 4.8 10 Intel
BFLASH 80 40 600 2.5 4.8 10 TI
SRAM 90 N/A 185 0.1 8 8 Toshiba
BSRAM 90 45 365 1.7 8 8 Micron
BSDRAM 30 15 430 10 8 8 Micron

L2 cache 20 10 1985 330 3.2 5 Motorola

different instruction memories were evaluated – low-power FLASH and power-hungry

burst FLASH. We looked at three different data memories – low-power SRAM, faster

burst SRAM and very power-hungry burst SDRAM. Both instruction and data memo-

ries are 1MB in size. We considered using L2 cache in addition to L1 cache. Unified

L2 cache is 256Kb, 4-way set associative. The hardware configurations simulated are

shown in Table 4.3. The MPEG video decode sequence we used has 12 frames running

at 30 frames/second, with two I, three P and seven B-frames. We found that the results we

obtained with a shorter video sequence matched well the results obtained with the longer

trace.

Table 4.3: Hardware Configurations

Name Instruction Data L2 cache
Memory Memory Present

Original FLASH SRAM no
L2 cache FLASH BSDRAM yes

Burst SRAM BFLASH BSRAM no
Burst SDRAM BFLASH BSDRAM no

Figure 4.5 shows the amount of time each system component is active during the MPEG

decode and the amount of energy consumed. The original configuration is limited by the

bandwidth of data memory. L2 cache is very fast, but also consumes too much energy.

Burst SDRAM design fully solves the memory bandwidth problem with least energy con-

sumption. Instruction memory constitutes a very small portion of the total energy due to
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Figure 4.5: Performance and energy consumption for hardware architectures

the relatively large L1 cache in comparison to the MPEG code size. The DC-DC converter

consumes a significant amount of total energy and thus should be considered in system sim-

ulations. We conclude from this example that using faster and more power-hungry memory

can be energy efficient.

The analysis of peak energy consumption and the fine tuning of the architectures can

be done by studying the energy consumption and the memory access patterns over a period

of time. Figure 4.6 shows the energy consumption over time of the processor with burst

FLASH and SRAM. Peak energy consumption can reach twice the average consumption,

so the thermal characteristics of the hardware design, the DC-DC converter and the battery

have to be specified accordingly.

For best battery utilization, it is important to match the current consumption of the

embedded system to the discharge characteristic of the battery. On the other hand, the

more capacity battery has, the heavier and more expensive it will be. Figure 4.7 shows that

the instantaneous battery efficiency varies greatly over time with MPEG decode running on

the hardware described above.

Lower capacity batteries have larger efficiency losses. Figure 4.8 shows that the total

decrease in battery lifetime when continually running MPEG algorithm on a battery with

lower rated discharge current can be as high as 16%. The battery’s time constant was set to

τ � 1ms.
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Figure 4.6: Cycle-accurate Energy Plot

The design exploration example presented in this section illustrates how the methodol-

ogy for cycle-accurate energy consumption simulation can be used to select and fine-tune

hardware configuration that gives the best trade-off between performance and energy con-

sumption.

The main limitation of cycle-accurate energy simulator is that the impact of code op-

timizations is not easily evaluated. For example, in order to evaluate energy efficiency of

two different implementations of a particular portion of software, the designer would need

to obtain cycle-by-cycle plots and then manually relate cycles to the software portion of

interest. The profiling methodology presented next addresses this limitation.
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Figure 4.7: Battery Efficiency for MPEG Decoder

4.5 Summary

A methodology for cycle-accurate simulation of performance and energy consumption in

embedded systems has been presented in this chapter. Accuracy, modularity and ease of

integration with the instruction-level simulators widely used in industry make this method-

ology very applicable to the embedded system hardware and software design exploration.

Dhrystone benchmark has been used to verify accuracy of the energy and the perfor-

mance estimates. Simulation is found to be within 5% of the hardware measurements.

MPEG video decoder design exploration has been presented as an example of how the

methodology can be used in practice to aid in the selection of the best hardware and soft-

ware configuration.
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Chapter 5

Energy Efficient Software Design

5.1 Introduction

In an industrial environment, the degrees of freedom in hardware design are often very

limited but for software a lot more freedom is available. As a result, a primary requirement

for system-level design methodology is to effectively support code energy consumption

optimization. Several techniques for code optimization have been presented in the past [78,

79, 53, 46, 80]. All these techniques focus on automated instruction-level optimizations

driven by the compiler.

Unfortunately, currently available commercial compilers have limited capabilities. The

improvements gained when using standard compiler optimizations are marginal compared

to writing energy efficient source code [70]. The largest energy savings were observed at

the inter-procedural level that compilers have not been able to exploit. Thus, it is critical to

develop a software design methodology that enables fast and easy manual code redesign.

Code optimization requires extensive program execution analysis to identify energy-

critical bottlenecks and to provide feedback on the impact of transformations. Profiling is

typically used to relate performance to the source code for CPU and L1 cache [1]. Lever-

aging the cycle-accurate energy consumption simulator presented in the previous chapter, I

implemented a code profiling tool that gives percentages of time and energy spent in each

procedure for every system component, not only CPU and L1 cache. Thanks to energy

profiling, the programmer can easily identify the most energy-critical procedures, apply

98
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transformations and estimate their impact not only on processor energy consumption, but

also on memory hierarchy and system busses.

A profiler is only a tool that can be used during software design and optimization.

The profiler is a critical part of a general code transformation methodology I present next.

The methodology consists of three categories of source code optimizations: algorithmic

changes, data representation changes and instruction-level optimizations. In addition to the

general code optimization methodology, I present a series of suggestions in source code

writing style that can save from 1% to over 90% of energy developed specifically for the

ARM processors. Most of these optimizations can be implemented with small revisions to

other processors.

The profiling support is presented in Section 5.2. The general code optimization method-

ology is described in Section 5.3, and is applied to a full software design example of MP3

audio decoder for the SmartBadge. Extensive experimental results are given. Processor

specific code transformations are discussed in detail in Section 5.5. Simulation results for

this set of code transformations show large energy savings.

5.2 Profiling software energy consumption

The profiler architecture is shown in Figure 5.1. Shaded portion represents the extension

we made to the cycle-accurate energy simulator to enable code profiling. Profiling for

energy and performance enables designers to identify those portions of their source code

that need to be further optimized in order to either decrease energy consumption, increase

performance or both. Our profiler enables designers to explore multiple different hardware

and software architectures, as well as to do statistical analysis based on the input samples.

In this way the design can be optimized for both energy consumption and performance

based on the expected input data set.

The profiler operates as follows. Source code is compiled using a compiler for a target

processor (e.g. application or operating system code). The output of the compiler is the ex-

ecutable that the cycle-accurate simulator executes (represented in this figure as assembly

code that is input into the simulator) and a map of locations of each procedure in the exe-

cutable that a profiler uses to gather statistics (the map is correspondence of assembly code
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Figure 5.1: Profiler Architecture

blocks to procedures in ’C’ source code). In order to increase the simulation speed, a user-

defined profiling interval is set, so that the profiler gathers statistics only at predetermined

time increments. Usually an interval of 1µs is sufficient. Note that longer intervals will give

slightly faster execution time, with a loss of accuracy. Very short intervals (on the other of

a few cycles) have larger calculation overhead. For example, energy consumption calcula-

tion gives approximately 10% overhead to standard cycle-accurate performance simulation.

Profiling with an interval of 1µs gives negligible overhead over energy simulation (less then

1%), with still accurate results.
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During each cycle of operation, the cycle-accurate energy consumption simulator cal-

culates the current total execution time and energy consumption of all system components

as shown in Equation 4.1. The profiler works concurrently with the cycle-accurate sim-

ulator. It periodically samples the simulation results (using sample interval specified by

the user) and maps the energy and performance to the function executed using information

gathered at the compile time. Once the simulation is complete, the results of profiling can

be printed out by the total energy or time spent in each function.

Table 5.1: Sample Energy Profiling

Name Cumulative Self
(mWhr) (mWhr)

main 3.20E-01 2.52E-02
...
III hybrid 6.71E-02
SubBandSynthesis 3.72E-02
III stereo 2.75E-02
III reorder 2.02E-02
III antialias 1.45E-02
III dequantize sample 1.40E-02
III hufman decode 3.74E-03
III get scale factor 1.28E-04
decode info 3.20E-05
...

III hybrid 6.71E-02 6.36E-03
inv mdctL 6.07E-02

SubBandSynthesis 3.72E-02 1.95E-02
chendct32 scaled 1.77E-02

III stereo 2.75E-02 2.75E-02
III reorder 2.02E-02 2.02E-02
III antialias 1.45E-02 1.45E-02
III dequantize sample 1.40E-02 1.40E-02
III hufman decode 3.74E-03 1.53E-03

huffman decoder 2.17E-03
initialize huffman 1.03E-05
hsstell 3.20E-05

The main advantage of the profiler is that it allows designers to obtain energy consump-

tion breakdown by procedures in their source code after running only one simulation. This
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information is of critical importance when designing an embedded system, as it enables de-

signers to quickly identify and address the areas in the source code that will provide largest

overall energy savings. A good example of profiler usage is shown in Table 5.1. The table

shows a portion of energy profile for MP3 audio decode. The first column gives the name

of the top procedure, followed by its children. The next column gives the total energy

spent for that procedure. For example, the total energy spent running the program (main)

is 0 � 32mWhr. The final column gives the amount of energy spent only in that particular

procedure. For example, under main it is clear that III hybrid and its descendants

spend the most energy, 0 � 0671mWhr. Looking at the entry for III hybrid, it is easy

to see that the largest portion of energy is consumed by its child, inv mdctL. Therefore,

the procedures to focus optimization on are inv mdctL and SubBandSynthesis. Al-

though in this example we showed source code profile of total battery energy consumption,

the profiler can report energy consumption for any system component, such as SRAM or

the interconnect.

The profiler allows for fast and accurate evaluation of software and hardware architec-

tures. Most importantly, it gives good guidance to the designer during the design process

without requiring manual intervention. In addition, the profiler accounts for all embedded

system components, not just the processor and the L1 cache as most general-purpose pro-

filers do. In the next section I present a general source code optimization methodology that

uses the profiler to guide the code changes. The methodology is used to redesign the MP3

audio decoder running on the SmartBadge.

5.3 General Code Optimization Methodology

Code optimization is the process of translating a high-level specification in an imperative

language into optimized machine code for the target processor. Compilers are the tools

of choice for code optimization. Extensive research on optimizing compilers has been

carried out in last few years [55]). Prototype research compilers have shown impressive

results [28]. Most optimizing compilers target high-performance and/or general-purpose

computers, and relatively little effort has been dedicated to create powerful optimizing
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compilers for embedded processors. Even though several researchers are studying auto-

matic code optimization techniques for embedded processors [89], currently, most embed-

ded processors (or DSPs) are programmed directly in assembly by expert programmers and

code optimization is mostly based on human intuition and skill.

Our approach to code optimization for embedded systems is to complement the compil-

ers with manual code re-writing and optimization, as the compiler support is still limited.

The profiler discussed in the previous section is a critical part of our approach, as it enables

fast analysis of source code energy consumption. The main advantage of our approach is

that it enables designers to focus first on a very abstract view of the problem, find a good

solution, then move down in abstraction, and perform optimizations that are narrower in

scope. The complex problem of optimizing an executable specification is partitioned, and

its parts are more manageable than the complete problem. In the next subsections, we

will describe in detail the three optimization layers defined in out methodology, moving

from high to low abstraction. We will illustrate our methodology on optimization of MP3

code [57] for the SmartBadge [51].

5.3.1 Algorithmic optimization

The top layer in the optimization hierarchy targets algorithms. The original specification

is first profiled to identify all computational kernels, i.e., the procedures where most time

and power are spent. Alternative algorithms for implementing the same functionality are

considered and compared with the original one using high-level estimators of algorithmic

efficiency (such as number of basic operations). Profiler is utilized in both of these steps.

Most promising alternative algorithms are then analyzed in more detail and finally coded.

This step is mostly based on human intuition and knowledge, and is unlikely to be auto-

mated.

Algorithmic optimizations have high potential, but they also have risks. First, devel-

oping and testing algorithms is a time-consuming and error-prone task. Since human re-

sources are always scarce, it is unwise to dedicate too much effort to an activity where suc-

cess is often based on intuition. Second, asymptotic analysis and operation counts are often

misleading as estimators of algorithmic efficiency, hence marginal improvements should be



CHAPTER 5. ENERGY EFFICIENT SOFTWARE DESIGN 104

regarded with suspicion when considering algorithmic changes.

Our approach to algorithmic optimization in MP3 decoding has been conservative.

First, we focused on just one computational kernel where a large fraction of run time (and

power) was spent, namely the subband synthesis. Second, we did not try to develop new

original algorithms but we used previously published algorithmic enhancements [29, 30]

that are still fully compliant to the MPEG standard. The new algorithm incorporates an

integer implementation of the scaled Chen discrete cosine transform (DCT) instead of a

generic DCT in the polyphase synthesis filterbank. The use of a scaled DCT reduces the

DCT multiply count by 28%.

5.3.2 Data optimization

At a lower level of abstraction than the algorithmic level, we can optimize code by changing

the representation of the data manipulated by the algorithms. The main objective is to match

the characteristics of the target architecture with the processed data. Signal processing

algorithms are often specified by assuming double-precision floating point data to avoid

overflows and keep accuracy under control.

Floating point computations are usually more complex and power-hungry than their in-

teger counterparts [81]. As no hardware floating point support is available in the ARM SA-

1100 and the MPEG decoder specification performed most computations using doubles, we

tried to emulated floating point using ARM’s software library. The direct implementation

of the decoding algorithm, even after algorithmic optimization, was unacceptably slow and

power-consuming.

To overcome this problem, we developed a fixed-precision library and we implemented

all computational kernels of the algorithm using fixed precision numbers. The number of

decimal digits can be set at compile time. The ARM architecture is designed to support

computation with 32-bits integers with maximum efficiency. Little can be gained by re-

ducing data size below 32 bits. On the other hand, when multiplying two 32-bit numbers,

the result is a 64-bit number and directly truncating the result of a multiplication to 32

digits frequently leads to incorrect results because of overflow. To increase robustness, 64-

bit numbers have been used for fixed-point computation. This data type is supported by
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the ARM compiler through the definition of a long long integer type. Computing with

long long integers is less efficient than using 32-bit integers, but results are accurate

and the risk of overflow is minimized.

Data optimization produced significant energy savings and speedups for computational

kernels of MP3 without any perceivable degradation in quality. The fixed-point library de-

veloped for this purpose contains macros for conversion from fixed-point to floating point,

accuracy adjustment and elementary function computation. This optimization did not re-

quire extensive code rewriting, and it was implemented independently from algorithmic

optimization.

5.3.3 Instruction flow optimization

The third layer of optimizations targets low-level instruction flow. After extensive pro-

filing, the most critical loops are identified and carefully analyzed. Source code is then

re-written to make computation more efficient. Well-known techniques such as loop merg-

ing, unrolling, software pipelining, loop invariant extraction, etc. [55, 4] have been applied.

In the innermost loops, code can be written directly as inline assembly, to better exploit

specialized instructions.

Instruction flow optimizations have been extensively applied in the MP3 decoder, ob-

taining significant speedup. We do not describe these optimizations in detail because they

are common knowledge in the optimizing compilers literature [55, 4]. However, in our case

most optimizations were performed manually due to lack of support by the ARM compiler.

A simple example of this class of transformation is the use of the multiply-accumulate

instruction (MLAL) available in the ARM SA-1100 core. The inner loops of subband

synthesis and inverse modified cosine transform (the two key computational kernels of

MP3 decoder), contain matrix multiplications which can be implemented efficiently with

multiply-accumulate. In this case, we forced the ARM compiler to use the MLAL instruc-

tion by inlining it in assembly.
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5.3.4 General Code Methodology Summary

We described three code optimization layers that have been useful to optimize MP3 decod-

ing. We found that layering optimizations for decreasing levels of abstraction, and working

on each level separately, was a very effective way to tackle the non-trivial task of speed-

ing up and reducing the energy consumed in executing the original specification by more

than an order of magnitude. In principle, stepwise optimization may reduce optimality. In

practice, it often helps in finding better heuristic solutions in a shorter time. Many of the

optimizations we applied manually could be automated, even though automation becomes

more problematic as the level of abstraction raises. During code optimization, tool support

was essential: code profiling was by far the most useful source of information to direct

optimization, and assess its impact.

5.4 Optimizing MP3 audio decoder

The block diagram of the MPEG Layer III audio decoding algorithm (MP3) is shown in

Figure 5.2. It consists of three blocks: frame unpacking, reconstruction, and inverse map-

ping. The first step in decoding is synchronizing the incoming bitstream and the decoder.

Huffman decoding of the subband coefficients is performed before requantization. Stereo

processing, if applicable, occurs before the inverse mapping which consists an inverse mod-

ified cosine transform (IMDCT) followed by a polyphase synthesis filterbank. We obtained

the original MP3 audio decoder software from the International Organization for Standard-

ization [37]. Our design goal was to obtain real-time performance with low energy con-

sumption while keeping in full compliance with the MPEG standard.

Encoded
Bitstream

PCM audio
samplesFrame

Unpacking
Reconstruction

Inverse
Mapping

Figure 5.2: MP3 Audio Decoder Architecture



CHAPTER 5. ENERGY EFFICIENT SOFTWARE DESIGN 107

Table 5.2 shows the top three functions in energy consumption for each code revision

we worked on. The original code has a very large overhead due to floating point emulation

- about 80% of energy consumption. The next largest issue is the redesign of SubBandSyn-

thesis function that implements the polyphase synthesis filterbank. The details of each

optimization type, namely algorithmic, data and instruction-level optimizations, have been

presented above.

Table 5.2: Profiling for MP3 Implementations

MP3 Code Rev. 1st 2nd 3rd

Original Floating Pt. SubBandSynthesis III stereo
code 80.31% 10.31% 1.43%

Algorithmic Floating Pt. III stereo III reorder
Opts. 62.73% 6.12% 5.62%
Data & SubBandSynthesis inv mdctL III stereo

Instruction 34.32% 18.22% 7.32%
Combined inv mdctL III stereo main
Opts. 18.98% 8.61% 7.87%

We will use the SubBandSynthesis function redesign as a vehicle to illustrate the use

of our profiler. In the initial stage, we transferred all critical operations to fixed-point from

floating point. The transfer resolved the issue with floating-point operations, but at the same

time increased SubBandSynthesis fraction of total energy six times. Next we introduced a

series of instruction-level optimizations that resulted in 30% decrease of SubBandSynthesis

fraction of total energy, to 34.32% as shown in Table 5.2. In parallel we had decided to try

the algorithmic changes on the current code.

Profiling results in Table 5.2 show that the algorithmic optimizations considerably re-

duced the energy consumption of SubBandSynthesis function - it does not appear in the top

three functions, and in fact it is only 3.2% of the total energy consumption. The final step is

to combine the algorithmic changes with the data and instruction-level changes, resulting

in decrease of SubBandSynthesis fraction of energy consumption to 6% of total.

System and component energy consumptions are shown in Table 5.3 for different revi-

sions of source code optimization. Positive percentages show energy decrease with respect

to the original code. Table 5.4 shows the same results, but for performance measurements.
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Table 5.3: Energy for MP3 Implementations

MP3 Code Battery CPU Flash RAM DC-DC Lines
Revision (mWhr) (mWhr) (mWhr) (mWhr) (mWhr) (mWhr)

Original 0.446 0.089 0.005 0.178 0.045 0.129
code 0% 0% 0% 0% 0% 0%

Algorithmic 0.107 0.020 0.007 0.040 0.011 0.029
Opts. 76% 77% -44% 77% 76% 77%
Data & 0.130 0.025 0.004 0.051 0.013 0.037

Instruction 71% 71% 27% 71% 71% 71%
Combined 0.105 0.019 0.007 0.040 0.010 0.028
Opts. 77% 78% -41% 78% 77% 78%

Positive percentages show performance increase. Although the energy savings of algo-

rithmic versus data and instruction-level optimizations as compared to original code are

comparable, the performance improvement of data and instruction-level optimizations is

significant. Note that the increase in energy consumption and the decrease in performance

of Flash is due to the increase in code size with the algorithmic change in SubBandSyn-

thesis procedure. The total improvement in system performance and energy consumption

more than makes up for the degradation of Flash performance and energy consumption.

Combined optimizations give real-time performance for MP3 audio decode which is a pri-

mary constraint for this project. In addition, lower energy consumption enables longer

battery life. Note that faster implementation that is also more energy efficient might imply

higher power consumption, which can be an issue for thermal design of the device. In the

case presented in this paper, it was critical to get real-time performance with longer bat-

tery lifetime. The average and peak power consumption constraints are met with our final

design.

The final MP3 audio decoder compliance to the MPEG standard has been tested as a

function of precision for fixed-point computation. We used the compliance test provided

by the MPEG standard [38, 39]. The range of RMS error between the samples defines the

compliance level. Table 5.5 shows that results. Clearly, the larger number of precision bits

results in better compliance. In our final MP3 audio decoder we used 27 bits precision.

Using our design tools to guide software optimization process we have been able to

increase performance by 92% while decreasing energy consumption by 77%, with full
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Table 5.4: Performance for MP3 Implementations

MP3 Code System Flash RAM
Revision (s) (s) (s)

Original 68.490 0.396 6.309
code 0% 0% 0%

Algorithmic 34.562 0.746 2.776
Opts. 50% -88% 56%
Data & 9.185 0.381 4.186

Instruction 87% 4% 34%
Combined 5.193 0.718 2.093
Opts. 92% -81% 67%

Table 5.5: Fixed-point Precision and Compliance

Precision Compliance
# bits

15 None
20 Partial
27 Full

compliance to the MP3 audio decode standard.

5.5 Processor Specific Code Optimization

The previous section described a general code optimization methodology used to increase

energy efficiency of source code. The profiler is used to guide the source code optimiza-

tion process. As the general code optimization methodology is independent of the system

specifications, further optimizations may be possible when the specific characteristics of

system components are fully utilized. This section gives an overview of energy efficient

optimizations at the source code level that can be utilized for the ARM processor. Energy

profiling was done for each code transformation suggested in [3]. An overview of opti-

mizations that have shown significant energy savings follows below. Similar approach can

be used to develop source code optimizations aimed at increasing energy efficiency of other

processors.
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5.5.1 Integer division and modulo operation

The ARM compiler uses shift operation for modulo 2 division since it is much more effi-

cient than the standard division operation. In modulo 2 division unsigned number should be

used whenever possible as the unsigned implementation - div16u is 14.7% more efficient

than the signed version. This is because signed version requires sign extension correction

on the shift operation.

uint div16u (uint a) int div16s (int a)

{ return a / 16; } { return a / 16;}

Whenever possible a condition should be used to replace modulo operation, as it is

51.39% more energy efficient. In example shown below counter1 implements modulo

arithmetic, where counter2 uses an if operator.

uint counter1 (uint count) uint counter2 (uint count)

{ { if (++count >= 60)

return (++count % 60); count = 0;

} return (count); }

5.5.2 Conditional Execution

All ARM instructions can be conditionalized. Conditionalizing is done in two steps. First

a few compare instructions set the compare codes. Those instructions are then followed

by the standard ARM instructions with their flag fields set so that their execution proceeds

only if the preset condition is true. Grouped conditions should be used instead of separate

if statements since they help the compiler conditionalize instructions. In this way 1.25%

of energy can be saved. An example of a grouped condition is show below.

if (a > 0 && b > 0 && c < 0 && d < 0)

return a + b + c + d;

5.5.3 Boolean Expressions

A more energy efficient way to check if a variable is within some range is to use the ability

of the ARM compiler to conditionalize the arithmetic function. An example shown below

is 10.6% more efficient than if comparison was done on each coordinate separately.
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Conditionalized example Original Code

return ((p.x - r->xmin) return (p.x >= r->xmin &&

< r->xmax && p.x < r->xmax &&

(p.y - r->ymin) p.y >= r->ymin &&

< r->ymax); p.y < r->ymax);

5.5.4 Switch Statement vs. Table Lookup

Table lookup is 52.29% more energy efficient than the switch statement when the switch

statement codes are more than half of the range of the possible labels. When dense switch

statement is used, the table lookup is used to jump to the appropriate case statement. If the

case statement contains the call to another function or if it sets a variable, then the table

lookup of the address to jump to can be replaced by the code to be executed under the

case statement. A good example is shown below where all opcodes are assigned values 0

through 3 thus making the table lookup possible.

return "EQ\0NE\0CS\0CC\0" + 3 * cond;

5.5.5 Register Allocation

Usually a compiler cannot assign local variables to a register if their addresses are passed

to other functions. If the copy of the variable is made and the address of the copy is used

instead, then variable can be placed in the register thus saving memory access. As much as

9.54% energy savings are possible.

If global variables are used, it is beneficial to make a local copy so that they can be

assigned to registers. In this way 6.42% of energy can be saved as compared to using a

global copy. An example used is shown below.

int errs;

void globTest(void)

{ int localerrs = errs;

localerrs += f2();

localerrs += g2();

errs = localerrs; }
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When pointer chains are used, it is energy efficient to store a first reference into a

variable so multiple memory lookups are not needed. InitPos2 shown below saves 33.9%

of energy over InitPos1.

void InitPos1(Object *p) void InitPos2(Object *p)

{ { Point3 *pos = p->pos;

p->pos->x = 0; pos->x = 0;

p->pos->y = 0; pos->y = 0;

p->pos->z = 0; } pos->z = 0; }

5.5.6 Variable Types

The most energy efficient variable type for the ARM processor is integer, it saves 0.39%

more energy than short and 18.32% more energy than char. Compiler by default uses 32

bits in each assignment, so when either short of char are used sign or zero extending is

needed thus costing at most two extra instructions as compared to ints.

5.5.7 Function Design

By far the largest savings are possible with good function design. Function call overhead

on ARM is four cycles. Usually function arguments are passed on the stack, but when

there are four or less arguments, they can be passed in registers. A simple example showed

over 90% energy savings. Upon return from a function, structures up to four words can be

passed through registers to the caller. In this way 72.3% energy can be saved.

When the return from one function calls another, the compiler can convert that call to

branch to another function. Energy savings of 49.79% have been observed. An example of

such function is shown below.

int func1 (int a, int b)

{ if (a > b)

return (func2(a - b));

else

return (func2(b - a)); }
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Functions that return result that depends only on the value of their arguments and do

not have any side-effects can be declared pure. Such functions can then be optimized as

common subexpressions by the compiler. Savings of 70% have been shown on a simple

example using a square function. Similarly, a functions can be inlined and then no function

call overhead is incurred and more optimizations are possible. When square function was

inlined we observed 16.89% energy savings. The savings depend highly on the size of the

function inlined.

Interprocedural optimization can be done by placing a function definition before its

use. An example of that is shown below. Square function is defined before sumsquares, so

sumsquares knows what registers square will not use and thus can use those registers for

its needs resulting in 24% energy reduction.

int square(int x)

{ return x * x; }

int sumsquares(int x, int y)

{ return square(x) + square(y); }

5.5.8 A Complete Example

As a final test of the combined impact of source code optimization, we have manually opti-

mized example code provided by the ARM Inc. [3]. The original source code contained no

energy efficient optimizations. Table 5.6 shows that both the general and specific compiler

optimizations have a very small effect on the original source code in all categories - the

maximum savings are only 0 � 6%. Once energy efficient source code optimizations are im-

plemented, the savings are much larger – as much as 35% in execution time and 32 � 3% in

energy. Clearly the compiler optimizations make almost no difference in this case as well.

5.6 Summary

I have presented in this chapter a methodology for source code optimization and a tool

for profiling energy consumption and performance of software in embedded systems. The

profiler is based on the cycle-accurate energy consumption simulator that has been shown



CHAPTER 5. ENERGY EFFICIENT SOFTWARE DESIGN 114

Table 5.6: Complete Example

Energy General Spec. SIZE TIME ENERGY
Opt. Opt. Opt. %change %change %change

none Balance none 0.0 0.0 0.0
none Time none 0.0 - 0.2 - 0.2
none Size none 0.0 - 0.6 - 0.6
none Balance all 0.0 - 0.6 - 0.6
all Balance none -5.8 -35.0 -32.2
all Balance all -5.8 -35.0 -32.3

to give simulation results that are within 5% of hardware measurements. Three major cat-

egories of software optimizations have been presented: algorithmic, data and instruction-

level. Finally, a set of processor specific optimizations have been discussed that in some

cases offer up to 90% of reduction in energy consumption.

I gave an example of application of the software design methodology and the profiling

tool to the optimization of MP3 audio decoding for the SmartBadge [51] portable embed-

ded system. The original MP3 source code was obtained from the MPEG standard [37].

Profiling results enabled quick and easy redesign of the MP3 audio decoder software. In

addition, I showed the results of evaluating different hardware configurations using our

design tools.

The final MP3 audio decoder is fully compliant with the MPEG standard and runs in

real time with low energy consumption. Using the design tools and the methodology for

source code optimization I have been able to increase performance by 92% while decreas-

ing energy consumption by 77% (see Tables 5.3, 5.4).
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Conclusions

Energy consumption of electronic systems has grown to be of critical importance in the

recent years. Both the way systems are designed and the way they are used at run-time

significantly affect energy efficiency. In the past, system design was primarily concerned

with functionality and performance. Reduction of energy consumption is a relatively new

concern that introduces a new trade-off in design of both hardware and software. In this

work I introduced new methodologies for energy efficient design of both hardware and

software.

Once the system is designed, further energy savings can be obtained with prudent uti-

lization at run-time. As most systems do not need peak performance at all times, it is

possible to both transition some system components into low-power states when they are

idle (dynamic power management) and to adjust frequency and voltage of operation to the

workload (dynamic voltage scaling). In this work I presented two new power management

algorithms that enable optimal utilization of hardware at run time. In addition, I developed

an optimal dynamic voltage scaling algorithm that saves energy by adjusting processor fre-

quency and voltage according to the load. In the following sections I will summarize the

contributions of the thesis and discuss some ideas on what could be done in future.
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6.1 Thesis summary

6.1.1 Dynamic Power Management Algorithms

Dynamic power management policies reduce energy consumption by selectively placing

components into low-power states. In contrast to heuristic policies, such as timeout, poli-

cies based on stochastic models can guarantee optimal results. The quality of results of

stochastic DPM policies depends strongly on the assumptions made. In this work I present

and implement two different stochastic models for dynamic power management. The mea-

surement results show large power savings.

The first approach requires that only one decision point be present in the system. This

model is based on renewal theory. The second approach allows for multiple decision points

and is based on Semi-Markov Decision Process (SMDP) model. The basic SMDP model

can accurately model only one non-exponential transition occurring with the exponential

ones. I presented TISMDP model as the extension to SMDP model in order to describe

more than one non-exponential transition occurring at the same time. TISMDP model is

very general, but also is more complex. Thus it should be used for systems that have more

than one decision point.

Both algorithms show large power savings on four different devices: the laptop and the

desktop hard disks, the WLAN card and the SmartBadge. The measurements for the hard

disks show that my policy gives as much as 2 � 4 times lower power consumption as com-

pared to the default Windows timeout policy. In addition, my policy obtains up to 5 times

lower power consumption for the wireless card relative to the default policy. The power

management results on the SmartBadge show savings of as much as 70% in power con-

sumption. Finally, the comparison of policies obtained for the SmartBadge with renewal

model and TISMDP model clearly illustrate that whenever there is more than one decision

point available, the TISMDP model should be used as it can utilize the extra degrees of

freedom and thus obtain an optimal power management policy.
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6.1.2 Dynamic Voltage Scaling Algorithm

I presented a new approach for dynamic voltage scaling that can be used as a part of a power

managed system. The dynamic voltage scaling algorithm consists of: (i) change point de-

tection algorithm that detects the change in arrival or decoding rates, and (ii) the frequency

setting policy. The policy sets the processor frequency and voltage based on the current

arrival and decoding rates while keeping constant performance. I tested my approach on

MPEG video and MP3 audio algorithms running on the SmartBadge portable device [51].

The change point detection algorithm is very stable as compared to the exponential mov-

ing average algorithm presented previously. As a result, it gives large energy savings at a

small performance penalty for both MPEG video and MP3 audio applications. Finally, I

implemented the DVS algorithm together with power management algorithms and showed

a factor of three savings in energy due to the combined approach.

6.1.3 Energy Efficient Hardware and Software Design

I developed a methodology for cycle-accurate simulation of performance and energy con-

sumption in electronic systems. Accuracy, modularity and ease of integration with the

instruction-level simulators widely used in industry make this methodology very applicable

to the system hardware and software design exploration. Simulation is found to be within

5% of the hardware measurements for Dhrystone benchmark. I presented MPEG video

decoder embedded system design exploration as an example of how this methodology can

be used in practice to aid in the selection of the best hardware configuration.

I have also developed a tool for profiling energy consumption of software in embedded

systems. Profiling results enable quick and easy redesign of the MP3 audio decoder soft-

ware. The final MP3 audio decoder is fully compliant with the MPEG standard and runs

in real time with low energy consumption. Using my design tools and the software design

methodology I presented, performance has been increased by 92% while decreasing energy

consumption by 77%.
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6.2 Future Work

Although much research has been devoted to energy efficient system design and utilization,

this area has not yet reached complete maturity. There are still quite a few limitations to

overcome.

The dynamic power management algorithms I presented assume stationary workloads.

Although adaptation can be done using the methodology discussed in [14], another ap-

proach would be to develop a dynamic scheduler that adaptively changes the mode of oper-

ation of system components based on non-stationary workload, thermal control and battery

conditions. Such scheduler would need close communication of the energy consumption

and performance needs between the operating system, the applications and the hardware.

The scheduler would also address the limitation of my dynamic voltage scaling algorithm,

namely the need to model the general workload in the active state with the exponential dis-

tribution. Clearly better results would be obtained if the workload itself informed the DVS

algorithm of its characteristics and future needs. In effect, this approach requires energy-

aware operating system that allows the dynamic power manager to have close interaction

with the task scheduler and the process manager.

As system designers become more conscious of power dissipation issues and an in-

creasing number of power-optimized commodity components is made available, the new

generation of power optimization tools is needed to choose and manage such components,

and guide the system designer towards power-efficient implementation. The cycle-accurate

energy consumption simulator and profiler are just samples of what might be possible.

Similar tools, with many more component models (e.g. model of the wireless link) and

multiple abstraction levels are needed. More importantly, the methodology for energy ef-

ficient software design is still in its infancy. The compilers are just beginning to consider

energy consumption as a criterion in code optimization. The software design methodol-

ogy I presented is completely manual and would greatly benefit from automation. Some

optimizations can be automated at the compiler level, but for others it may be more appro-

priate to develop a system that can guide the designer in selection and implementation of

appropriate optimizations. Energy efficient design and utilization at the system level will

continue to be a critical research topic in the next few years as there are still many unsolved
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problems and open issues.
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