
GENOMIC DATA MINING ENHANCED BY SYMBOLIC

MANIPULATION OF BOOLEAN FUNCTIONS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL

ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Sungroh Yoon

October 2005

c© Copyright by Sungroh Yoon 2006

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

Giovanni De Micheli Principal Advisor

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

Russ B. Altman

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

Luca Benini

Approved for the University Committee on Graduate Studies.

iii

To Hyeyoung

iv

Abstract

Today, more and more large-scale genomic data sets are being produced by various

high-throughput technologies, and genomic data mining has never been more impor-

tant. Clustering is an unsupervised learning technique that has been popular in data

analysis. Although there is mature statistical literature on clustering, new types of

genomic data such as gene expression data have sparked development of multiple new

methods. Specifically, the technique of biclustering refers to a method that performs

simultaneous clustering of rows and columns in a data matrix identifying patterns

that appear in the form of (possibly overlapping) submatrices. Although this method

has some clear advantages over conventional clustering techniques, it has been chal-

lenging to develop an efficient biclustering algorithm, since the problem of biclustering

is inherently intractable and hard to approximate.

In the first part of this dissertation, a novel biclustering algorithm based upon

the symbolic manipulation of Boolean functions is presented. This algorithm exploits

the zero-suppressed binary decision diagrams (ZBDDs) to implicitly represent and

manipulate massive intermediate data that occur in the biclustering process. Lever-

aged by the ZBDDs, the proposed algorithm can find all the biclusters that satisfy

specific input parameters. The second part discusses the application of this algorithm

to various genomic data mining tasks such as analyzing gene expression data, linking

clinical traits with related genes, and predicting microRNA regulatory modules. The

experimental results demonstrate that the proposed method outperforms the alterna-

tive techniques tested – in terms of response time, the number of biclusters that can

be found, and more importantly, how accurately the discovered biclusters conform to

the known biological knowledge.

v

Acknowledgments

First and foremost, I would like to thank my advisor Professor Giovanni De Micheli.

From the very first moment when I knocked his door as a fresh PhD student, to

the present day when I am planning my future career, he has never denied me his

guidance, support and encouragement. I am greatly privileged to have him as my

advisor.

I would also like to thank Professor Russ Biagio Altman for serving as my co-

advisor and Professor Luca Benini for serving on my dissertation committee. Without

the interaction with these two great mentors, my PhD research would have been

severely compromised.

In addition, I gratefully acknowledge Professor Edward J. McCluskey for super-

vising my research for the Master’s degree and Professor Yoshio Nishi for serving as

the chair of my oral defense committee. Special thanks also go to Professor and Mrs.

Creger for their continuous encouragement.

Additional thanks go to Stanford CAD group members, EPFL LSI people, aca-

demic collaborators, and friends. In particular, I would like to thank Eui-Young,

Byung-Gon, and Nahmsuk for their invaluable help. I am also greatly indebted to

Jerry Yang and Akiko Yamazaki for their vision and generous grant that supported

my PhD research.

Last but not least, I would like to thank my wife Hyeyoung and my family (espe-

cially Hongseop, Young, Byungsoh, Keumgyou, Hanyoung, Hyejin and Yeonsoo) for

their never-ending love and support.

vi

Contents

Abstract v

Acknowledgments vi

1 Introduction 1

1.1 Motivations . 1

1.2 Contributions . 5

1.3 Assumptions and limitations . 6

1.4 Perspectives . 7

1.5 Organization . 8

2 Background 9

2.1 Biological foundations . 9

2.1.1 The flow of genetic information 10

2.1.2 Gene regulation . 13

2.1.3 Small non-coding RNAs . 15

2.2 High-throughput biology . 17

2.2.1 DNA sequencing . 17

2.2.2 Gene expression measurement 17

2.2.3 Miniaturized biochips . 18

2.3 Biological data analysis and mining 20

2.3.1 Overview of machine learning 20

2.3.2 Challenges in large-scale data analysis 21

2.3.3 Previous work on biclustering 23

vii

2.4 Symbolic manipulation of Boolean functions 25

2.4.1 Representations of Boolean functions 25

2.4.2 Zero-suppressed BDDs . 26

3 A ZBDD-based Biclustering Algorithm 29

3.1 Preliminaries . 30

3.1.1 Characterization of biclusters 30

3.1.2 Definitions . 31

3.1.3 Formal definition of a bicluster and problem statement 32

3.2 Pairwise maximal biclusters (PMBs) 33

3.2.1 Definition of PMBs . 35

3.2.2 Generation of PMBs . 36

3.2.3 Representation of vertical seeds 39

3.3 Properties of biclusters . 40

3.3.1 Relationship between G, E, and seeds 40

3.3.2 Relationship between G and E 41

3.4 Our biclustering algorithm . 42

3.4.1 Predicting the experiment set E 43

3.4.2 Calculating the gene set G . 50

3.4.3 Considerations for very large-scale expression data 55

3.4.4 Algorithm complexity . 56

3.5 Summary . 57

4 Finding Nested Biclusters 58

4.1 Definitions and overview . 59

4.1.1 Definition of nested biclusters 59

4.1.2 Biology behind the definitions of biclusters 65

4.1.3 Problem Statement . 66

4.1.4 Overview of our approach . 66

4.1.5 Notation . 67

4.2 Finding atomic biclusters . 67

4.2.1 Finding Type 1 atomic biclusters 67

viii

4.2.2 Finding Type 2 atomic biclusters 70

4.2.3 Finding Type 3 atomic biclusters 72

4.3 Our bicluster mining algorithm . 74

4.3.1 Overview . 74

4.3.2 Representation and implementation of the function J 75

4.3.3 Finding nested biclusters . 83

4.3.4 Remarks . 91

4.4 Summary . 92

5 DNA Microarray Data Analysis 93

5.1 Experiment design . 93

5.1.1 Data preparation . 93

5.1.2 Evaluation criteria . 96

5.1.3 Implementation . 98

5.2 Experimental results . 99

5.2.1 Algorithm performance evaluation 99

5.2.2 Bicluster quality evaluation 104

5.3 Summary . 106

6 Linking Gene Expression and Clinical Traits 107

6.1 Introduction . 107

6.2 Method . 110

6.2.1 Data preparation . 111

6.2.2 Correlation matrix computation 111

6.2.3 Defining co-clusters . 117

6.2.4 Discovering pairwise co-clusters 120

6.2.5 Deriving co-clusters . 122

6.2.6 Remarks . 125

6.3 Experimental results . 126

6.3.1 Experiment procedure . 126

6.3.2 Results and discussion . 127

6.4 Summary . 134

ix

7 Prediction of MicroRNA Regulatory Modules 135

7.1 Introduction . 135

7.2 Method . 137

7.2.1 Identification of miRNA target sites 139

7.2.2 Relation graph representation 140

7.2.3 Finding seeds . 141

7.2.4 Deriving MRMs from seeds 145

7.2.5 Post-processing . 148

7.3 Experimental results . 149

7.3.1 Experiment procedure . 150

7.3.2 Prediction and analysis of an oncogenic module 150

7.3.3 Supporting evidence from the literature 154

7.4 Discussions . 155

7.4.1 A strategy for biological validation 155

7.4.2 Extension of our computational method 156

7.5 Summary . 157

8 Conclusions 158

8.1 Dissertation summary . 158

8.2 Future work . 161

Bibliography 163

x

List of Tables

3.1 Notations for PMB and seed . 35

3.2 Example PMBs . 38

4.1 Classification of nested biclusters . 61

4.2 Step 1 - finding atomic biclusters . 66

4.3 Step 2 - deriving non-atomic biclusters 66

4.4 Notations . 68

5.1 The bicluster mining methods tested in the experiments 99

5.2 The algorithm parameters used for the experiments 99

6.1 Definitions of the score rij . 113

6.2 Parameters and statistics . 127

6.3 Genes included in co-cluster #15 . 133

6.4 Further details on an enriched GO term in Figure 6.12 133

7.1 Example seeds . 144

7.2 Example of MRMs . 148

7.3 The parameters used for the experiment and some statistics obtained 150

7.4 A predicted human MRM . 152

7.5 Details on an enriched GO term . 154

xi

List of Figures

1.1 Growth of GenBank database . 2

1.2 Informal comparison between clustering and biclustering 4

2.1 The flow of genetic information . 11

2.2 DNA and its building blocks . 12

2.3 The genetic code . 14

2.4 Mode of action of miRNAs in plants and animals 16

2.5 Manufacturing GeneChipr arrays . 19

2.6 The curse of dimensionality . 22

2.7 Difference between clinical and genomic studies 23

2.8 Representations of a Boolean logic function f = (a + b)c 26

2.9 Representation of a set of combinations 27

3.1 Characterization of biclusters . 30

3.2 A running example . 32

3.3 Qualitative analysis of dependency on δ 34

3.4 Pairwise maximal biclusters (PMBs) 35

3.5 Algorithm 3.1 . 37

3.6 ZBDD representation of vertical seeds 39

3.7 Relationship between G and E . 41

3.8 Overview of the algorithm . 43

3.9 Overall flow . 44

3.10 Algorithm 3.2 . 45

3.11 Step 1 example . 46

xii

3.12 The trie representation of horizontal seeds and predicted E sets . . . 48

3.13 Trie example . 50

3.14 Algorithm 3.3 . 52

3.15 Trie example . 52

3.16 The operators ∪ and ⊗ on ZBDDs 54

3.17 Dividing a large data matrix . 55

4.1 Example biclusters . 60

4.2 Example of Type 1 biclusters . 62

4.3 Example of Type 2 biclusters . 63

4.4 Example of Type 3 biclusters . 64

4.5 A flowchart of the algorithm . 67

4.6 Algorithm 4.1 . 69

4.7 Example: Algorithm 4.1 . 69

4.8 Algorithm 4.2 . 70

4.9 Example: Algorithm 4.2 . 71

4.10 Algorithm 4.3 . 73

4.11 Example: Algorithm 4.3 . 74

4.12 Decomposition of K4 . 80

4.13 ZBDD representation of atomic biclusters 83

4.14 The process to find the biclusters presented in Figure 4.4(b) 84

4.15 Algorithm 4.4 . 86

4.16 Example: Algorithm 4.5 . 89

4.17 Algorithm 4.5 . 90

5.1 Biclusters found from the renal cell carcinoma data [42] 95

5.2 MSR scores as a measure of bicluster quality 97

5.3 Performance comparison using synthetic data sets 100

5.4 Performance comparison using biological data sets 102

5.5 Box plots for MSR comparison . 103

5.6 Correspondence plot and ROC curves 105

xiii

6.1 An example of co-clustering genes and clinical traits 109

6.2 A flowchart of the method . 110

6.3 Construction of the correlation matrix 112

6.4 lin-dev versus the Pearson correlation coefficient 118

6.5 Defining co-clusters . 119

6.6 Algorithm 6.1 . 121

6.7 Algorithm 6.2 . 124

6.8 Prefix tree example . 125

6.9 Composition of each images in Figure 6.10(d) 126

6.10 Data from an adult acute myeloid leukemia (AML) study [17] 128

6.11 SAM plots obtained from the AML data set 129

6.12 Annotations for co-cluster #15 . 131

7.1 MicroRNAs and targets [54] . 138

7.2 Example of the relation graph and MRM 142

7.3 Algorithm 7.1 . 143

7.4 Algorithm 7.2 . 146

7.5 Trie representation of the seeds . 147

7.6 Visualization of input data . 151

7.7 Annotation of the human MRM with GO terms 153

xiv

Chapter 1

Introduction

1.1 Motivations

High-throughput biology technologies such as DNA sequencing and gene expression

measurement by DNA microarrays are producing a vast amount of biological informa-

tion every day, and many researchers agree that biology is becoming an information

science. In traditional biology, researchers usually pose a precise hypothesis and per-

form well-defined experiments to test the hypothesis. In contrast, in high-throughput

biology, discoveries are data-driven, and data lead a hypothesis rather than the re-

verse.

Breakthroughs in high-throughput biotechnologies have already led to a rapid

growth of biological data, both in size and complexity. For example, in recent years

the rate at which the GenBank database1 has grown exceeds the pace set by Moore’s

Law2 [73], as seen in Figure 1.1. As more and more biological data emerge, the

emphasis progressively switches from the accumulation of data to its interpretation.

The science of extracting useful information from large data sets or databases is

known as data mining, which is one component in the area of machine learning and

adaptive computation [37]. Defined more specifically, data mining is the analysis of

1http://www.ncbi.nlm.nih.gov/Genbank
2The empirical observation that at our rate of technological development, the complexity of an

integrated circuit, with respect to minimum component cost, will double in about 18 months.

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Growth of GenBank database. The growth rate exceeds the pace set by
Moore’s Law [73].

(often large) observational data sets to find unsuspected relationships and to sum-

marize the data in novel ways that are both understandable and useful to the data

owner [37].

Large databases of biological information create both challenging data mining

problems and opportunities for researchers in the field. In this regard, conventional

computer science algorithms have been useful, but are increasingly unable to address

many of the most interesting analysis problems. This is due to the inherent complexity

of biological systems as well as our lack of a comprehensive theory of life’s organization

at the molecular level [7]. Machine learning approaches, on the other hand, are ideally

suited for domains characterized by the presence of large amounts of data, “noisy”

patterns, and the absence of general theories [7]. The fundamental idea behind these

approaches is to learn the theory automatically from the data, through a process of

inference, model fitting, or learning from examples.

The field of machine learning typically distinguishes three cases: supervised, un-

supervised, and reinforcement learning [85]. Cluster analysis, or clustering, is an

unsupervised learning technique that has been one of the most popular in a variety

CHAPTER 1. INTRODUCTION 3

of disciplines including statistics, computer science, electrical engineering, biology,

social science, and many others. Clustering is to group a set of objects into subsets,

or clusters, such that those within each cluster are more closely related to one another

than objects assigned to different clusters [41].

Although there is mature statistical literature on clustering, high-throughput ge-

nomic data sets have sparked the development of multiple new methods [78]. First

of all, genomic data sets can have very high dimensions. When we analyze high-

dimensional data, it is more difficult for a cluster to form, because we lose the meaning

of clusters due to many irrelevant attributes. Also, it is harder to find a cluster due

to the curse of dimensionality or lack of data separation in high-dimensional space.

In addition, typical genomic data sets often exhibit different characteristics from tra-

ditional clinical data sets. For instance, the number of variables involved in a typical

genomic study is far more than the number of the observations, in contrast to a typ-

ical clinical study where there are normally more observations than variables [52].

Thus, in typical genomic studies we often encounter the curse of dimensionality as

well as the problem of identifying a highly underdetermined system.

Among the methods that have been proposed to handle this challenge, one of the

most natural and effective approaches is to focus only on subsets of the entire data

set [6]. Furthermore, by performing simultaneous clustering of rows and columns in

a data matrix, some clustering techniques can discover important local structures

appearing in the form of (possibly overlapping) submatrices of the matrix. In the

literature [10,18,21,35,51,56,74,90,98,107,113,115,120], this method has been referred

to as many different names such as biclustering, co-clustering, conjugate clustering,

module finding, block clustering, or the information bottleneck method, to name just a

few3. In this dissertation, only the terms biclustering and co-clustering will be used.

As informally compared in Figure 1.2, an object involved in biclustering can be-

long to multiple biclusters, unlike in conventional clustering. Thus, the biclustering

technique may provide additional biological insight that has been overlooked by tra-

ditional clustering approaches. For example, biclustering is more compatible with

3The interested reader is directed to [65] for a comprehensive review of the biclustering technique
for biological applications.

CHAPTER 1. INTRODUCTION 4

(a) Clustering (b) Biclustering

Figure 1.2: Informal comparison between conventional clustering and biclustering.
(a) Objects are partitioned into mutually exclusive groups. (b) Objects are allowed
to belong to multiple groups.

our understanding of cellular processes: we expect subsets of genes to be co-regulated

and co-expressed under certain experimental conditions, but to behave almost inde-

pendently under other conditions [10]. The biclustering method may be useful in

recognizing reusable genetic “modules” that are mixed and matched in order to cre-

ate more complex genetic responses [6]. In gene expression analysis, the biclustering

technique is therefore more suitable for cases where genes have multiple functions and

experimental conditions are diverse.

Despite its potential effectiveness, the problem of biclustering is often computa-

tionally challenging. Let A be a matrix with row set R and column set C4. The

matrix A can be converted to a weighted bipartite graph G = (V,E), where the ver-

tex set V = R ∪ C and the edge set E consists of edge {i, j} connecting row i ∈ R

and column j ∈ C with weight aij. A submatrix of A then corresponds to a biclique

in the graph G. To find not just any submatrix but a useful one, we need to consider

individual elements of a submatrix, or equivalently the edge weights of a biclique.

Moreover, in order to avoid redundancy, we usually focus on finding maximal sub-

matrices. Therefore, the problem of discovering patterns with certain semantics is at

least as difficult as that of finding the maximum edge biclique in a bipartite graph, a

4For instance, in a gene expression data set, R and C typically correspond to a set of genes and
a set of experimental conditions, respectively.

CHAPTER 1. INTRODUCTION 5

problem known to be NP-complete [65, 76]. Additionally, there is evidence that the

maximum edge biclique problem is difficult to approximate [33].

To cope with this computational challenge, this dissertation proposes a novel

biclustering method that exploits the techniques for the symbolic manipulation of

Boolean functions. These techniques have been intensively studied in the field of

design and verification of very large-scale integration (VLSI) digital circuits and

reported to be useful for solving many practical instances of intractable problems

[15, 16, 26, 67, 88]. In particular, the proposed method employs the zero-suppressed

binary decision diagrams (ZBDDs) [69, 70] to implicitly represent and manipulate

massive intermediate data occurring in the data mining process. This dissertation

will describe this ZBDD-based biclustering method as well as its application to sev-

eral computational genomics problems.

1.2 Contributions

The objective of this study was to develop an efficient and flexible biclustering method

that can be applied to various types of large-scale data mining problems in genomics.

Compared with previous biclustering approaches (see Section 2.3.3 for related work),

the proposed method is unique in that it is an exact and scalable approach. More

specifically, the contributions of this dissertation include the following:

• A unified problem formulation that can encompass a large spectrum of biclusters

[115]: It was first discovered by this study that many definitions of biclusters

in the literature share a common property. A bicluster is nested if any sub-

bicluster of this bicluster is yet another bicluster under the same definition and

condition. On top of this formulation, this dissertation describes a biclustering

method that can find any type of nested biclusters. Many types of biclusters

(see [10, 18, 61, 74, 112, 113] for some examples of nested biclusters) are in fact

nested biclusters and can thus be found by the proposed method with minor

modifications. Furthermore, this unifying method can find nested biclusters

more efficiently than alternative techniques.

CHAPTER 1. INTRODUCTION 6

• A ZBDD-based biclustering algorithm that is flexible, scalable, and exact [115,

119, 120]: This dissertation describes a novel biclustering method that exploits

the ZBDD, a compact data structure to represent massive sets. As stated above,

this algorithm is flexible in that it can be applied to a variety of biclustering

problems. In addition, this method is scalable to real genomic data sets of non-

trivial size. Moreover, the proposed technique is exact in that it can find all the

biclusters that satisfy specific input conditions.

• Applications in computational genomics: The proposed biclustering method

was successfully applied to several genomic data mining tasks, including ana-

lyzing gene expression data [116,119,120], linking gene expression with clinical

traits [114], and predicting microRNA (miRNA) regulatory modules [117,118].

The experimental results demonstrate that the proposed method outperforms

the alternative techniques tested – in terms of response time, the number of bi-

clusters that can be found, and more importantly, how accurately the discovered

biclusters conform to the known biological knowledge.

1.3 Assumptions and limitations

This work assumes that the input data set is represented by a two-dimensional matrix

of real numbers. Although not every biological data set can be represented by a

matrix, this assumption can often be justified. After readout and preliminary data

processing, biological data produced by high-throughput technologies are typically

arranged in a matrix. For example, DNA microarray data sets are one of the most

well-known and widely available data sets in a matrix format. Chapter 2 covers more

examples of genomic data represented by a matrix.

As shown by the experimental studies in Chapters 5, 6, and 7, the response time of

the proposed algorithm run on typical benchmarks is practical. However, the problem

investigated by this study is inherently intractable, meaning that it is unlikely that

an efficient algorithm to find an optimal solution in polynomial time exists.

Finally, the experiments presented in this dissertation were performed and verified

CHAPTER 1. INTRODUCTION 7

in silico. Further investigation through “wet lab” experiments may be needed. To

this end, some experiment design strategies are included in Section 7.4.1.

1.4 Perspectives

Essentially, the proposed method performs clustering on two distinct sets of objects

simultaneously and finds hidden local patterns. Each pattern is represented by two

sets, each of which corresponds to a subset of one of the two input sets. The two sets

in a pattern are linked to each other with respect to a given input condition.

From a computer science perspective, the proposed technique is unique in the sense

that it aims at finding all the possible patterns without sacrificing its scalability to

practical problems. From a biomedical research perspective, this method can also be

a versatile tool for quantitative analysis.

For instance, in gene expression data analysis, the two input sets consist of a set

of genes and a set of experimental conditions. The computational method proposed

in this dissertation allows us to find out which genes are related to the experimen-

tal conditions of specific interest. Given that DNA microarray technology [27, 62]

allows us to monitor transcription levels of thousands of genes simultaneously, our

method can help researchers perform a variety of analysis tasks such as annotating

gene functions, diagnosing disease conditions, and characterizing effects of medical

treatments.

Depending upon what the two input sets are, the proposed technique can provide

various kinds of insight. For example, when the two input sets consist of a set of genes

and a set of clinical traits, the approach explained here can help us understand how

the specific clinical traits and the potentially responsible genes are linked. This can

contribute to medical diagnosis and prognosis. As another example, when the two

input sets consist of a set of messenger RNA (mRNA) and a set of its regulator, the

proposed method can allow us to find a group of mRNAs and their regulators that

are believed to participate in biological processes cooperatively. This may provide

critical information for reconstructing gene regulatory networks. The application of

the proposed computational method is not limited to these examples, and many other

CHAPTER 1. INTRODUCTION 8

interesting problems in computational genomics can be approached by the various

techniques explained in this dissertation.

1.5 Organization

This dissertation consists of three major parts. First, Chapter 2 covers the back-

ground materials. This chapter is intended to help the reader better understand the

subsequent development of algorithms and applications as well as to put the work

described in this thesis in a proper context.

The second part contains Chapters 3 and 4, and these chapters describe the pro-

posed computational method at length. Chapter 3 covers the ZBDD-based biclus-

tering algorithm for gene expression data analysis. Chapter 4 presents a generalized

version of this algorithm. This extended algorithm can be applied to a wide variety

of data sets.

The last part covers the applications of the proposed method. Chapter 5 describes

an application to gene expression data analysis. The proposed method and alternative

techniques are compared in various criteria. Discovered biclusters are evaluated in

terms of biological and statistical significance. Chapter 6 describes how to link clinical

traits with the genes possibly responsible for these traits using the proposed method.

An intermediate data set is constructed from a gene expression matrix and a matrix

of clinical traits. Biclusters are found from this intermediate data set. A survey of

the literature and validation with Gene Ontology suggest that these biclusters can

provide meaningful biological insight. Chapter 7 covers the prediction of microRNA

regulatory modules. MicroRNAs are a novel class of gene products that repress

mRNA translation or mediate mRNA degradation in a sequence-specific manner [8].

Using the proposed method, we can predict groups of miRNAs and target mRNAs

that are believed to participate cooperatively in post-transcriptional gene regulation.

Finally, Chapter 8 concludes this dissertation. This chapter presents a summary

and directions for future research.

Chapter 2

Background

This chapter aims at providing some background knowledge helpful to understand

the algorithms and their applications to be presented in subsequent chapters. In

Section 2.1, fundamentals of basic molecular biology are reviewed. In particular,

this section explains the building blocks of genetic information flow in cells and how

the flow is controlled. Section 2.2 presents high-throughput biological data acquisi-

tion technologies that have caused a focus of research in biology to move from the

realm of traditional experimental science to that of information science. Section 2.3

shows computational means to interpret a large volume of accumulated biological data

and extract useful information. Especially, an overview of data mining and machine

learning approaches is provided. Typically, mining large-scale data is computationally

intensive. To cope with this challenge, a method that exploits the symbolic manipula-

tion of Boolean functions will be developed in later sections. In order to facilitate the

explanation of this method, Section 2.4 introduces fundamental concepts and some

examples of the symbolic Boolean function representation and manipulation.

2.1 Biological foundations

This section begins with a brief overview of fundamental concepts in molecular biology

with emphasis on the flow of genetic information and its regulation. More details on

this subject can be found in [3, 12, 39,63].

9

CHAPTER 2. BACKGROUND 10

2.1.1 The flow of genetic information

The flow of genetic information in normal cells is from deoxyribonucleic acid (DNA) to

ribonucleic acid (RNA) to protein (Figure 2.1). The synthesis of RNA from a DNA

template is called transcription, whereas the synthesis of a protein from an RNA

template is termed translation. This two-step process has been called the central

dogma of molecular biology.

DNA DNA is a linear polymer made up of four different monomers. As shown in

Figure 2.2, each unit of the polymeric structure is composed of a sugar (deoxyribose),

a phosphate, and a variable base (adenine, cytosine, guanine or thymine) that is

attached to the sugar-phosphate backbone. The bases can be arranged in any order

along a strand of DNA. The sequence of bases constitutes the genetic information

that specifies which proteins an organism will make as well as when and where protein

synthesis will occur.

Two single strands of DNA typically combine to form a double helix, in which

the sugar-phosphate backbones of the two chains are intertwined and the bases form

specific base pairs (bp). By hydrogen bonds, adenine pairs with thymine (A-T) and

guanine pairs with cytosine (G-C).

The DNA regions that encode proteins are called genes, and chromosomes are

organelles that package and manage the storage, duplication, expression, and evolu-

tion of DNA. The entire collection of chromosomes in each cell of an organism is its

genome.

RNA RNA is an intermediate1 in the flow of genetic information from DNA, the

hereditary material, to protein, the primary functional molecules of the cell. The

DNA is first transcribed into messenger RNA (mRNA), which is then translated into

protein. In addition to the role as the intermediate in the flow of information, RNA

has many critical roles within a cell. For example, ribosomal RNA (rRNA) is one

of the structural components of the molecular machinery called ribosomes, in which

1Some viruses use RNA as the genetic material.

CHAPTER 2. BACKGROUND 11

DNA RNA Protein
Transcription Translation

(a)

(b)

Figure 2.1: (a) The central dogma of molecular biology states the flow of genetic
information in its simplest form, which is from DNA via RNA to protein. (b) A more
realistic illustration of the flow of genetic information in a cell [63].

CHAPTER 2. BACKGROUND 12

building blocks of DNA

double-stranded DNA DNA double helix

DNA strand

nucleotide

sugar

phosphate

base

sugar
phosphate

5’ 3’+

sugar-phosphate

backbone

hydrogen-bonded

base pairs

5’ 5’

5’
5’

3’
3’

3’
3’

G G

C

G

A

T

G

G
G

G

G

G

G G

G

G

C

C

C

CC

C

C

C

C

C

A

AA

A

A A

A
A

A

A T

T

T T

T

T

T

(a) (b)

(c) (d)

Figure 2.2: DNA and its building blocks [3]. DNA is made of four types of nucleotides,
which are linked covalently into a polynucleotide chain (a DNA strand) with a sugar-
phosphate backbone from which the bases (A, C, G, and T) extend. A DNA molecule
is composed of two DNA strands held together by hydrogen bonds between the paired
bases. The arrowheads at the ends of the DNA strands indicate the polarities of
the two strands, which run antiparallel to each other in the DNA molecule. In the
diagram at the bottom left of the figure, the DNA molecule is shown straightened
out; in reality, it is twisted into a double helix, as shown on the right.

CHAPTER 2. BACKGROUND 13

the translation process takes place. Recently, a new class of RNA called small non-

coding RNA (ncRNA) has been identified and reported to play a crucial role in gene

regulation. Section 2.1.3 provides more details.

The structure of RNA is similar to that of DNA. RNA is a linear polymer composed

of a sugar-phosphate backbone and four types of bases are attached to it. The sugar

in RNA is ribose, and one of the bases is uracil instead of thymine. In contrast to

DNA, an RNA molecule typically exists as a single strand, although double-stranded

segments can appear with the intrastrand base-pairing of A-U and G-C.

Protein Proteins are the building blocks of cells and participate in virtually all

processes within cells. Proteins are linear polymers formed from a selection of 20

building blocks, called amino acids. Three bases along a DNA strand encode a single

amino acid according to the genetic code. The complete genetic code and 20 amino

acids are shown in Figure 2.3. The genetic code is redundant but not ambiguous.

The amino acid sequence of a protein entirely dictates its three-dimensional struc-

ture, which determines the functional properties of the protein. The self-folding na-

ture of proteins enables the transition from the one-dimensional world of sequence

information to the three-dimensional world of biological function.

2.1.2 Gene regulation

Gene activity is controlled first and foremost at the level of transcription. Much of

this control is achieved through the interplay between proteins that bind to specific

DNA sequences and their DNA-binding sites.

In prokaryotes2, many genes are clustered into operons, which are units of coordi-

nated genetic expression. An operon consists of regulatory elements (an operator and

a promoter3) and structural genes. In addition, regulator genes encode proteins that

interact with the operator and promoter sites to stimulate or inhibit transcription.

Some proteins activate transcription by directly contacting RNA polymerase.

2Unicellular organisms such as bacteria, which lack a nucleus.
3DNA sequences near the beginning of genes that indicates where to begin transcription

CHAPTER 2. BACKGROUND 14

F
ir
st
 l
et
te
r

Second letter

T
h
ir
d
 l
et
te
r

U

C

A

G

U C A G

UUU

UUC

UUA

UUG

CUU

CUC

CUA

CUG

AUU

AUC

AUA

GUU

GUC

GUA

GUG

UCU

UCC

UCA

UCG

CCU

CCC

CCA

CCG

ACU

ACC

ACA

ACG

GCU

GCC

GCA

GCG

UAU

UAC

CAU

CAC

CAA

CAG

AAU

AAC

AAA

AAG

GAU

GAC

GAA

GAG

UGU

UGC

UGG

CGU

CGC

CGA

CGG

AGU

AGC

AGA

AGG

GGU

GGC

GGA

GGG

Phenyl-

alanine

Leucine

Leucine

Isoleucine

Methionine;

start codon

Valine Alanine

Threonine

Proline

Serine

Tyrosine

Stop codon

Histidine

Glutamine

Asparagine

Lysine

Aspartic acid

Glutamic acid

Cysteine

Stop codon

Tryptophan

Arginine

Serine

Arginine

Glycine

U

C

A

G

U

C

A

G

U

C

A

G

U

C

A

G

Figure 2.3: The universal genetic code. Genetic information is encoded in mRNA in
three-letter units (codons) made up of the bases uracil (U), cytosine (C), adenine (A)
and guanine (G).

CHAPTER 2. BACKGROUND 15

The greater complexity of genomes in eukaryotes4 requires elaborate mechanisms

for gene regulation. For example, cis-acting regulatory elements are regions of DNA

sequence that lie nearby to the gene they control. Because these sequences are always

on the same molecule of DNA as the gene they regulate, they are referred to as cis-

acting elements. The promoter is a cis-acting element typically lies directly adjacent

to the gene that it controls. Enhancers are another class of cis-acting elements that

can sometimes lie thousands of base pairs away from a gene. Besides, trans-acting

genetic elements encode protein products called transcription factors, which interact

with cis-acting elements. A trans-acting element is called trans-acting because it may

be encoded by a gene on a DNA molecule other than that containing the gene being

regulated.

Gene expression can also be regulated at the level of translation. Attenuation is

a prokaryotic mechanism for regulating transcription through modulation of nascent

RNA secondary structure. In eukaryotes, genes encoding proteins that transport and

store iron are regulated at the translational level.

2.1.3 Small non-coding RNAs

In addition to the traditional gene regulatory mechanisms previously explained, recent

discoveries indicate that a class of small non-coding RNAs (ncRNAs) may control gene

expression at the post-transcriptional level. These small ncRNAs mainly consist of

two types, small interfering RNAs (siRNA) and microRNAs (miRNAs), and mediate

gene regulation through RNA interference (RNAi) pathways. This section provides

a short introduction to microRNAs. The interested reader is directed to [8].

MicroRNAs are endogenous 21-22-nucleotide ncRNAs that can play crucial regula-

tory roles in animals and plants by targeting transcripts for cleavage or translational

repression. In contrast to the conventional mRNAs which will be translated into

proteins, miRNAs do not generate proteins. Instead, they regulate the expression

of protein-coding genes by binding to partially complementary 3’ untranslated re-

gion (UTR) of their mRNAs and suppressing their translation without degrading the

4Most organisms that have a well-defined nucleus within each cell.

CHAPTER 2. BACKGROUND 16

mRNA degradation Translational regulation Transcriptional regulation

Common in plants Common in animals
Common in yeast, plants,

and possibly animals

mRNA mRNA
Active chromatin

Histone methylation

Silent chromatin

RISC

RISC

RISC

RISC

3’
5’3’

3’

3’

3’

3’

3’
3’

3’

5’
5’

5’

5’ 5’

5’
5’

5’

5’

3’

Figure 2.4: MicroRNAs are evolutionarily conserved, small noncoding RNA molecules
found in eukaryotes that regulate gene expression at the level of translation. (http:
//ambion.com/techlib/resources/miRNA/mirna fun.html)

target mRNAs. Figure 2.4 illustrates the mode of action of miRNAs in plants and

animals.

MicroRNAs have been shown to play important roles in animal and plant devel-

opment. In mammals, some miRNAs have been shown to regulate hematopoietic

lineage differentiation, insulin secretion, and adipocyte differentiation. Hundreds of

different miRNAs have now been isolated or computationally predicted in complex

eukaryotes, and it has been estimated that microRNAs constitute nearly 1% of the

genes in the worm, mouse, and human genomes. Given the abundance and evolution-

ary conservation in sequences in animal and plant genomes, miRNA are expected to

play important roles in a wide range of gene regulatory pathways.

Some details on bioinformatics approaches to miRNA studies can be found in

Section 7.2.1.

CHAPTER 2. BACKGROUND 17

2.2 High-throughput biology

This section provides examples of high-throughput biology such as DNA sequencing

and gene expression measurement by DNA microarrays.

2.2.1 DNA sequencing

DNA sequencing is the determination of the precise sequence of bases in a sample of

DNA. Sequencing has yielded a wealth of information concerning gene architecture,

the control of gene expression, as well as protein structure. One major challenge is

that there is no machine that takes long DNA as input and provides the complete

sequence as output. That is, a typical system can only sequence a few hundred up

to a thousand bases at a time. To sequence the entire genome, the DNA is first

cut into smaller pieces, and each piece is sequenced separately. The resulting set of

sequences are then computationally assembled into one contiguous genome. Today

DNA sequencing is highly automated, and it has become almost routine to sequence

whole genomes.

A related technology is the polymerase chain reaction (PCR), which leads to a

billionfold amplification of a segment of DNA [12]. One molecule of DNA can be

amplified to quantities that permit characterization and manipulation. This powerful

technique is being used to detect pathogens and genetic disease.

2.2.2 Gene expression measurement

Most genes are present in the same quantity in every cell. However, the level at

which a gene is expressed, as indicated by mRNA quantities, can vary widely. Gene-

expression patterns vary from cell type to cell type. Even within the same cell, gene

expression levels may vary as the cell responds to changes in physiological circum-

stances. Using our knowledge of complete genome sequences, it is now possible to

analyze the pattern and level of expression of all genes in a particular cell type or

tissue.

One of the most powerful methods for this purpose developed to date is based

CHAPTER 2. BACKGROUND 18

on DNA hybridization and is called the DNA microarray or gene chip [27, 62]. This

technique enables us to monitor the expression levels of a large number of genes

simultaneously, providing a global view of gene expression information of the or-

ganism under study [6, 52, 78]. Depending upon the specific technology used, DNA

microarrays can reflect either absolute expression levels (e.g., Affymetrix GeneChipr

arrays [62]) or relative expression ratios (e.g., cDNA microarrays [27]).

A DNA microarray consists of a solid substrate and arrays of probes arranged in

grids. Each probe is composed of many identical copies of single-stranded DNAs with

a specific gene sequence. In the cDNA microarray technology, probes are fabricated

by depositing cDNAs or previously synthesized oligonucleotides. These probes are

then chemically processed to keep them unfolded. In Affymetrix GeneChipr arrays,

probes are synthesized directly on the substrate by light-directed chemical synthesis

carried out with photolithographic microfabrication techniques used in the semicon-

ductor industry (see Figure 2.5 for a detailed explanation of the probe synthesis in

Affymetrix GeneChipr arrays). The messenger RNA extracted from a particular bi-

ological sample under study is transformed into synthetic DNA called complementary

DNA (cDNA). These cDNA molecules, termed targets, are labeled with fluorescent

tags and hybridize with the probes on a DNA microarray. The amount of fluorescence

emitted by each spot on the DNA microarray will be proportional to the amount of

mRNA produced from the gene with the DNA sequence identical to the sequence in

the spot. Finally, the hybridized microarray is scanned to create an image, and the

light intensity of each spot on the image is converted into a numerical value, which

represents the expression level of a gene under a given condition.

2.2.3 Miniaturized biochips

Microfluidics-based biochips are becoming increasingly popular for DNA analysis, clin-

ical diagnostics, and the detection and manipulation of bio-molecules. These systems

automate highly repetitive laboratory tasks by replacing cumbersome equipment with

miniaturized and integrated systems. Thus, they are able to provide ultra-sensitive

detection at significantly lower costs per assay than traditional methods. For instance,

CHAPTER 2. BACKGROUND 19

Wafer

Mask

Light
(deprotection)

Repeat

GeneChip
Microarray

25-mer

OOOOO OOOOO OHOHOOO T T OOO

T

T TOOOT TOHOHO

C

OCCTTT T CC G
AGC T G
CA T A T

: : : : :
GA T C G

Figure 2.5: Affymetrix uses a combination of photolithography and combinato-
rial chemistry to manufacture GeneChipr arrays (https://www.affymetrix.com/
technology/manufacturing/index.affx). Probe synthesis occurs in parallel, re-
sulting in the addition of an A, C, T, or G nucleotide to multiple growing chains
simultaneously. To define which oligonucleotide chains will receive a nucleotide in
each step, photolithographic masks, carrying 18 to 20 square micron windows that
correspond to the dimensions of individual features, are placed over the coated wafer.
The windows are distributed over the mask based on the desired sequence of each
probe. When ultraviolet light is shone over the mask in the first step of synthesis, the
exposed linkers become deprotected and are available for nucleotide coupling. Critical
to this step is the precise alignment of the mask with the wafer before each synthesis
step. The nucleotide attaches to the activated linkers, initiating the synthesis process.
In the following synthesis step, another mask is placed over the wafer to allow the
next round of deprotection and coupling. The process is repeated until the probes
reach their full length, usually 25 nucleotides.

CHAPTER 2. BACKGROUND 20

CMOS-based integrated biosensor arrays [40,89] have been recently developed for gene

expression measurement, and the scale of integration will continue to grow.

Another technique called the tissue microarray (TMA) enables researchers to ex-

tract small cylinders of tissue from histological sections and arrange them in a matrix

configuration on a recipient paraffin block such that hundreds can be analyzed simul-

taneously [20, 91]. TMA thus allows the rapid and cost effective validation of novel

markers in multiple pathological tissue specimens.

Another example, the protein microarray, is a crucial biomaterial for the rapid

and high-throughput assay of many biological events where proteins are involved.

In contrast to the DNA microarray, it has not been sufficiently established because

of protein instability under the conventional dry conditions [50]. However, protein

microarrays will eventually reveal vast amount of information essential to the under-

standing of gene functions and products.

Other examples include the fluorescence-based multiplexed cytokine immunoas-

says [106] and ligand chips [84]. In particular, using the cytokine chip, cytokine

expression in breast cancer cells were examined and the chemokines associated with

human cervical cancers were successfully identified [106].

2.3 Biological data analysis and mining

In this section, an overview of machine learning technique is provided, followed by

discussions on the challenges encountered when we analyze large-scale genomic data

sets. Previous work on biclustering is also presented. More details on the material

covered in this section can be found in [5, 7, 37,41,85].

2.3.1 Overview of machine learning

The field of machine learning typically distinguishes three cases: supervised, unsuper-

vised, and reinforcement learning [85]. The problem of supervised learning involves

learning a function from examples of its inputs and outputs. It makes sense to think

of using the inputs to predict the output. The distinction in output type has led to

CHAPTER 2. BACKGROUND 21

a naming convention for the prediction task: regression when we predict quantita-

tive outputs, and classification when we predict qualitative outputs. These two tasks

have much in common, and in particular both can be viewed as a task in function

approximation.

In unsupervised learning, we concern about learning patterns in the input when

no specific output values are supplied. The aim is to find the regularities in the

input. There is a structure to the input space such that certain patterns occur more

often than others, and we want to see what generally happens and what does not.

In statistics, this is called density estimation. One method for density estimation

is cluster analysis or clustering where the aim is to decompose or partition a data

set into groups so that the points in one group are similar to each other and are as

different as possible from the points in other groups. Besides this, association rule

analysis has emerged as a popular tool for mining commercial databases. The goal is

to find joint values of the variables that appear most frequently in the database.

The task of reinforcement learning is the most general of the three categories.

Rather than being told what to do by a teacher, a reinforcement learning agent must

learn from reinforcement or reward. In some applications, the output of the system

is a sequence of actions. In such a case, a single action is not important; what is

important is the policy that is the sequence of correct actions to reach the goal. The

machine learning program should be able to assess the goodness of policies and learn

from past good action sequences to be able to generate a policy.

2.3.2 Challenges in large-scale data analysis

One of the most frequently encountered problems is the curse of dimensionality [9].

In essence, this means that the amount of data needed to sustain a given spatial

density increases exponentially with the dimensionality of the input space. Figure 2.6

shows an example [41] of the curse of dimensionality, in which we are considering a

subcubical neighborhood for uniform data in a unit cube. When the number of

dimension is one (d = 1 in Figure 2.6(b)), covering 10% of the range of the input

variable is sufficient to capture 10% of the data to form a local average. However,

CHAPTER 2. BACKGROUND 22

1

0

1

Unit Cube

Neighborhood

(a)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

Distance

Fr
ac

tio
n

of
 V

ol
um

e
C

ov
er

ed

103d =1 2

(b)

Figure 2.6: The curse of dimensionality is well illustrated by a subcubical neighbor-
hood for uniform data in a unit cube [41]. The plot in (b) shows the fraction of
the volume of the data captured by considering the side-length of the subcube for
different dimensions d.

when d = 10, we must cover nearly 80% of the range of each input variable in order

to capture 10% of the data. Such neighborhoods are no longer “local,” and this

will adversely impact any method based on spatial density (e.g., k-nearest-neighbor

averaging and many others), and algorithms as well as our intuition breaks down in

high dimensions, unless the data follows certain simple distributions.

In addition to the curse of dimensionality, we often encounter in typical genomic

studies the problem of identifying a highly underdetermined system [52], as already

mentioned in Chapter 1. Typical genomic data often exhibit different characteristics

from traditional clinical data. For instance, as seen in Figure 2.7, the number of

variables involved in a typical genomic study is far more than that of the observations,

in contrast to a typical clinical study where there are normally more observations than

variables [52]. This may be one reason why multiple new methods have been newly

proposed to analyze genomic data despite the mature literature on traditional clinical

data analysis.

CHAPTER 2. BACKGROUND 23

Variables
(10K - 100K)

Cases
(10 - 100)

Cases (1K - 1M)

Variables
(10 - 100)

Typical
Genomic
Data

Typical Clinical Data

Figure 2.7: A major difference between classic clinical studies and genomic stud-
ies [52]. In contrast to clinical data, genomic data often results in a highly underde-
termined system.

2.3.3 Previous work on biclustering

As introduced in Section 1.1, biclustering is a clustering method that can find local

structures appearing in the form of (possibly overlapping) matrices in an unsupervised

fashion. The elements of a bicluster show similar behavior. Depending upon the

biclustering method used, the definition of this “similar behavior” varies. According

to Madeira and Oliveira [65], we can identify four major classes of biclusters: (1)

biclusters with constant values; (2) biclusters with constant values in rows (genes) or

columns (experiments); (3) biclusters with coherent values; and (4) biclusters with

coherent evolutions.

Califano et al. [18] modeled a bicluster with constant rows by the δ-valid kj-

pattern, a k×j matrix in which the maximum and minimum values of each row differ

by less than δ. Wu et al. [112] proposed a similar definition of biclusters in which

every gene is expressed within a small range δ across all experimental conditions.

Both methods aimed at finding maximal biclusters, in the sense that they are not

contained by other biclusters of the same type.

CHAPTER 2. BACKGROUND 24

The δ-biclustering approach by Cheng and Church [21] employed the concept of

a residual to find a bicluster with coherent values. In analysis of variance (ANOVA)

models, a residual is the difference between an actual value and the mean score for

the group or category from which that value was taken [80,93]. Thus, a low value of

residual can show a high degree of coherence, while a high value reveals the opposite.

The residual of element aij in the matrix A denoted by a pair of sets (I, J) is

rij = aij − ai• − a•j + a••, (2.1)

where ai• is the mean of the ith row, a•j the mean of the jth column, and a•• the

mean of all elements in A. The pair (I, J) specifies a δ-bicluster if the following mean

squared residual (MSR) of the elements in A is lower than δ, a given threshold:

MSR(I, J) =
1

|I||J |
∑

i∈I,j∈J

r2
ij. (2.2)

The pClustering technique by Wang et al. [107] also aimed at finding a bicluster

with coherent values. The matrix A denoted by pair (I, J) is called a δ-pCluster if

the value of |x− z− y + w| is lower than some δ for any 2× 2 submatrix
[

x y
z w

]
in A.

Some biclustering algorithms seek to find biclusters with coherent evolutions across

the rows regardless of their exact numerical values. Ben-Dor et al. [10] looked for

order-preserving submatrices (OPSMs), in which the expression levels of all genes

induce the same linear ordering of the experiments. An OPSM represents a biclus-

ter with coherent evolutions on its columns, and they wanted to find large OPSMs.

Murali and Kasif [74] proposed a representation for gene expression data called con-

served gene expression motifs (xMOTIFs). A xMOTIF is a subset of genes that is

simultaneously conserved across a subset of experimental conditions. They assumed

that the expression level of a gene is conserved across some experimental conditions

if the gene is in the same “state,” or a range of expression levels, under each different

condition. They aimed at finding the largest xMOTIF.

As already stated in Chapter 1, the biclustering problem is inherently intractable.

CHAPTER 2. BACKGROUND 25

Thus, most biclustering approaches employ some heuristics to reduce this computa-

tional burden. However, these algorithms can provide only a partial solution in that

only some of the possible biclusters from a given data set can be found. In contrast,

some biclustering methods are exact algorithms in that they aim at finding all possible

biclusters. However, these exact approaches suffer from the problem of combinatorial

explosion and are typically not scalable to practical data sets. To address this issue,

Chapters 3 and 4 will describe a novel biclustering method that are exact as well as

scalable to large problems.

2.4 Symbolic manipulation of Boolean functions

Machine-learning methods are computationally intensive and benefit greatly from

progress in computer speed. Chapters 3 and 4 will describe a method to implic-

itly represent and manipulate massive data represented by Boolean functions. This

method is based upon an efficient data structure called the zero-suppressed binary

decision diagram (ZBDD) [70]. To facilitate further explanation in these chapters,

the fundamentals of ZBDDs and related concepts are explained here. More extensive

background material on this subject can be found in [26,67,69,70,88].

2.4.1 Representations of Boolean functions

A Boolean function is a function whose range is B = {0, 1}. It can be understood to

evaluate the truth or falsity of each element of its domain. Boolean functions play

a role in questions of complexity theory as well as the design of digital circuits and

cryptography.

Boolean functions can be represented in several ways. For example, Figure 2.8(a)

and 2.8(b) show the truth table and the binary decision diagram (BDD) of f =

(a + b)c, respectively. Decision diagrams, which are arranged so that variables are

in any given order, can be reduced and made into a canonical representation of the

function [15]. Reduction rules are (1) merge equivalent sub-graphs and (2) remove

vertices with identical sub-graphs. For example, we can apply the first rule to the

CHAPTER 2. BACKGROUND 26

(a)

b b

c c cc

0 1 00 1 100

a

0

0000

0

1

1111

1 0 1

(b)

b b

cc

0 1

a

0

0

1

1

0 10 1

0 1

(c)

b

c

0 1

a

0

0

0

1

1

1

(d)

Figure 2.8: Representations of a Boolean logic function f = (a+ b)c. (a) Truth table.
(b) BDD for the variable order (a, b, c). (c) After applying the first reduction rule.
(d) After applying the second reduction rule. This corresponds to the ROBDD for
the variable order (a, b, c).

BDD in Figure 2.8(b) and obtain the BDD in Figure 2.8(c). Applying the second

rule to the BDD in Figure 2.8(c) finally gives the reduced ordered BDD (ROBDD)

representation in Figure 2.8(d).

ROBDDs have found widespread use in the optimization and verification of VLSI

design [16] since they provide a canonical representation of Boolean functions. Fur-

thermore, when ROBDDs are used, the computational complexity of a problem de-

pends on the size of its ROBDD representations, which often have mild growth with

the problem size [15, 26].

2.4.2 Zero-suppressed BDDs

Zero-suppressed BDDs (ZBDDs) are a variant of ROBDDs that represent a set of

combinations [69,70]. A combination of n elements is an n-bit vector (x1, x2, . . . , xn) ∈
Bn, where B = {0, 1}. The i-th bit reports whether the i-th element is contained in the

combination. Thus, a set of combinations can be represented by a Boolean function

f : Bn → B. A combination given by the input vector (x1, x2, . . . , xn) is contained in

the set if and only if f(x1, x2, . . . , xn) = 1.

In most combinatorial applications, sets of combinations are sparse, which is de-

fined as follows [67]:

• The sets contain only a small fraction of the 2n possible bit vectors;

CHAPTER 2. BACKGROUND 27

b

c

0 1

a

0 1

1

01

b

d

0

1 0

1 0

(abcd):{1000,0100}

(a)

(abcd):{1000,0100}

(abcdefg):{1000000,0100000}

b

0 1

a

0

10

1

(b)

0

2000

4000

6000

8000

10000

0 10 20 30 40 50 60 70 80 90 100

Number of 1's in a combination

(# node)

ROBDD

ZBDD

(c)

Figure 2.9: Representation of a set of combinations. (a) ROBDD representation. (b)
ZBDD representation. (c) Comparison of ROBDD and ZBDD [70].

• Each bit vector in the sets has many zeroes.

The ZBDD is an efficient data structure used to represent and manipulate a set of

combinations [69,70]. Minato proposed two reduction rules to reduce ordinary BDDs

to ZBDDs [69,70]: (1) merge equivalent sub-graphs, and (2) if the 1-edge of a node v

points to the 0-terminal vertex, then eliminate v and redirect all incoming edges of v

to the 0-successor of v. Consequently, ZBDDs can exploit both of the aforementioned

sparsity and provide an efficient representation for manipulating large-scale sets of

combinations [67].

For instance, the ROBDD in Figure 2.9(a) represents a set of combinations {1000,

0100} for four input variables (abcd). Each path from the root vertex to the 1-leaf

corresponds to a combination. By applying the ZBDD reduction rules, we can reduce

the BDD in Figure 2.9(a) to the ZBDD in Figure 2.9(b), which is more compact in

terms of the number of vertices. As shown in Figure 2.9(c), Minato [70] compared the

size of a ZBDD with that of an ROBDD for a large set of combinations and showed

that ZBDDs provide a much more compact representation of sets of combinations in

most cases.

ZBDD representations are independent of the number of input variables as long

as the combination remains the same, which is due to the “zero-suppression” effect.

Consequently, we do not need to fix the number of input variables before generating

graphs, and ZBDDs automatically suppress the variables that never appear in any

CHAPTER 2. BACKGROUND 28

combination [70]. For example, a set of combinations {1000000, 0100000} for seven

variables (abcdefg) is represented by the same ZBDD in Figure 2.9(b). This property

does not hold for other types of BDDs.

Chapter 3

A ZBDD-based Biclustering

Algorithm

As already stated in the previous chapter, the cluster search problem is in general

NP-hard [97], and the problem of biclustering is no exception [21, 98, 107]. This

chapter describes a biclustering algorithm that exploits a compact data structure

called zero-suppressed binary decision diagrams (ZBDDs) [67, 69, 70] to cope with

this computational challenge.

This chapter focuses on the description of an algorithm to analyze gene expression

data sets. This is for simplicity of explanation, and the proposed method is not limited

to gene expression analysis. Chapter 4 will provide a more generalized description of

the algorithm, which can analyze a variety of biological data sets. The experimental

results obtained by applying the proposed method to gene expression data sets can

be found in Chapter 5.

The organization of this chapter is as follows. Section 3.1 explains how to charac-

terize a bicluster and provides a precise definition of biclusters the proposed algorithm

aims to find. Section 3.2 introduces a special type of biclusters that act as a “seed”

and explains an efficient algorithm to find them. Section 3.3 shows several properties

every bicluster in our definition has. These properties are essential to understand the

proposed biclustering method. Section 3.4 describes the ZBDD-based biclustering

approach at length.

29

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 30

Coherence

Fluctuation

high

high

low

Figure 3.1: Characterization of biclusters. In some applications, such as gene co-
regulation analysis, the biclusters in area A are most interesting. On the other hand,
the biclusters in area C are important in other applications, such as marker gene
identification.

3.1 Preliminaries

3.1.1 Characterization of biclusters

We can characterize a bicluster by several criteria. The most common method is

to measure the degree of coherence, or similarity in behavior, among the objects

in a bicluster. One way to measure coherence is to use the mean squared residue

(MSR) score described in Section 2.3.3. As shown in the examples in Figure 5.2

of Chapter 5, a low value of MSR typically means a high level of coherence, and

vice versa [21]. In addition to coherence, it may be helpful to characterize biclusters

by the degree of fluctuation in gene expression levels, which cannot be captured by

coherence measurement. For instance, the lowest MSR value (zero) indicates that the

gene expression levels fluctuate in unison (e.g., Figure 5.2(a)). However, flat biclusters

with no fluctuation can also have an MSR value of zero (e.g., Figure 5.2(b)). Taken

together, Figure 3.1 shows a plot in which biclusters can be placed according to their

degree of coherence and fluctuation.

In some applications, such as gene co-regulation analysis, the biclusters in area

A would be the most interesting because similar behavior between highly-expressed

genes is much more important than that between two poorly-expressed genes [35].

On the other hand, the “flat” biclusters in area C are important and need to be

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 31

considered in other applications, such as the identification of marker genes. Suppose

that we are interested in correlating the activity of one or more genes to specific sub-

phenotypes. If specific genes are expressed in some phenotypes and not in others, and

if we eliminate the genes whose expression levels do not change much over the range

of experimental conditions, then the emerging biclusters will be flat. Qualitatively

speaking, the biclusters in area B are less interesting because they have a lower level

of coherence than those in areas A or C.

Many techniques have been proposed to find biclusters with a high level of coher-

ence, particularly those that can be placed in areasA or C on the characterization plot.

Some methods define a bicluster in a way such that any sub-bicluster of the bicluster

is yet another bicluster under the same definition and input parameters. Examples

include the δ-valid kj-patterns [18], OPSMs [10], xMOTIFs [74], δ-pClusters [107],

and GEMS [112]. By measuring coherence with fine granularity, these biclusters can

potentially exhibit high degrees of coherence [107]. Our approach also takes advantage

of this property to find coherent biclusters.

When removing flat biclusters is beneficial, we can employ the following average

row variance (ARV) to eliminate them:

ARV (I, J) =
1

|I||J |
∑
i∈I

∑
j∈J

(aij − ai•)2. (3.1)

3.1.2 Definitions

Let UG = {g0, g1, . . . , gn−1} and UE = {e0, e1, . . . , em−1} represent a set of genes and a

set of experimental conditions involved in gene expression measurement, respectively.

The result can be represented by the matrix D ∈ R|UG|×|UE |, with the set of rows

UG and set of columns UE. Each element dij in D corresponds to the expression

information of gene gi in experiment ej. We can denote D by the pair (UG, UE).

Depending on the microarray technology used, the information reflects either abso-

lute expression levels (e.g., Affymetrix GeneChips) or relative expression ratios (e.g.,

cDNA microarrays) [51]. Our method is applicable to both.

A bicluster is defined to be a subset of genes that exhibit similar behavior under a

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 32

e0 e1 e2 e3 e4 e5

g0 2.0 2.0 9.0 2.0 3.0 4.0

g1 3.0 7.0 3.0 1.0 9.0 3.0

g2 2.0 2.0 7.0 2.0 6.0 3.0

g3 3.0 2.0 3.0 2.0 1.0 3.0

g4 2.0 1.0 5.0 1.0 0.0 4.0

g5 3.0 5.0 5.0 8.0 2.0 3.0

(a)

G E

0 {g0, g2, g3, g4} {e0, e1, e3}
1 {g0, g2, g3} {e1, e3, e5}

(b)

Figure 3.2: A running example. (a) Gene expression data matrix D = (UG, UE),
where UG = {g0, g1, g2, g3, g4, g5} and UE = {e0, e1, e2, e3, e4, e5}. (b) Two maximal
biclusters on D we are going to find. The parameters (see Section 3.1.3) used are
δ = 1 and MG = ME = 3.

subset of experimental conditions, and vice versa. Thus, in the gene expression data

matrix D, a bicluster will appear as a submatrix of D. We denote this submatrix by

pair B = (G,E), where G ⊆ UG and E ⊆ UE. We specify the size of bicluster B by

|G| × |E|.

Example 3.1. An example of data matrix D = (UG, UE) and biclusters on D are

shown in Figure 3.2(a) and 3.2(b), respectively. Throughout this chapter, it will be

explained how to find these two biclusters from the matrix D.

3.1.3 Formal definition of a bicluster and problem statement

Definition 3.1. For the gene expression matrix D ∈ R|UG|×|UE |, let the pair B =

(G,E) represent a submatrix of D. That is, G ⊆ UG and E ⊆ UE. The matrix B is

called a bicluster if the value of |x − z − y + w| is less than or equal to some δ for

any 2× 2 submatrix
[

x y
z w

]
in B.

Definition 3.2. Given the gene expression data matrix D, the objective is to find

every submatrix B = (G,E) of D that is: (1) a bicluster with respect to a given δ; (2)

not too small, namely |G| ≥ MG and |E| ≥ ME for given values of MG and ME; and

(3) maximal, or not contained by other biclusters that satisfy the previous conditions.

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 33

Example 3.2. The two maximal biclusters in Figure 3.2(b) are found in the data

matrix in Figure 3.2(a) by our algorithm with the parameters δ = 1, MG = ME = 3.

In essence, our definition of a bicluster is equivalent to that of the δ-pCluster [107].

The rationale of choosing this particular bicluster model is that δ-pClusters can have

multiple desirable properties. According to Wang et al. [107], δ-pClusters are more

resilient to outliers and more coherent than alternatives. Another very important

property is that a sub-bicluster of a δ-pCluster is yet another δ-pCluster, which often

results in a high level of coherence.

However, our algorithm is significantly different from the pClustering technique.

The experimental results in Chapter 5 will show that a substantial speed-up is possible

by our method even with a reasonably optimized method such as the pClustering

algorithm. Furthermore, our algorithm can find biclusters that can be placed in area

A as well as area C (see Figure 3.1), whereas the biclusters found by pClustering tend

to be located mainly in area C [119]. The next paragraph explains this reasoning.

The threshold parameter δ affects many aspects of the biclustering problem, as

shown in Figure 3.3. First, the difficulty of a biclustering problem depends to some

extent on the value of δ, since the amount of intermediate data is proportional to

the size of this threshold value. Second, as the value of δ grows, the capability of

the algorithm to find coherent patterns decreases. In contrast, the wide dynamic

range exhibited by fluctuating patterns can better be captured by a larger value of

δ. Figure 3.3(a) and 3.3(b) depict these observations. Consequently, as shown in

Figure 3.3(c), a large value of δ typically results in biclusters in area A, whereas a

small value usually produces biclusters in area C. According to our experiments, our

algorithm can handle larger values of δ than the pClustering algorithm. Consequently,

our algorithm can find biclusters in area A as well as those in area C.

3.2 Pairwise maximal biclusters (PMBs)

In this section, we introduce a special kind of bicluster called pairwise maximal biclus-

ters, which play a crucial role in our method. Although the biclustering problem is, in

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 34

Problem difficulty

large

high

(a)

Coherence

Fluctuation

Capture ability

large

high

(b)

Coherence

Fluctuation

large

smallC

A

B

(c)

Figure 3.3: Qualitative analysis of dependency on δ. (a) A larger value of δ means a
more difficult problem. (b) The ability to capture fluctuation is roughly proportional
to the value of δ, whereas the ability to capture coherence decreases as the parameter
δ becomes larger. (c) A small value of δ tends to find biclusters in area C, while a
large value of δ typically finds biclusters in areas A or B.

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 35

D

g
j

g
i

e
m

e
n

g
j

g
i

e
m
e
n

Horizontal seed

Vertical seed

=

=

Gene expression

pattern

Horizontal PMB

Vertical PMB

G{em,en}max

E{gi,gj}max

Figure 3.4: Pairwise maximal biclusters (PMBs).

Table 3.1: Notations for PMB and seed.

Notation Meaning

E
{gi,gj}
max Horizontal seed for genes {gi, gj}

{E{gi,gj}
max } Set of all horizontal seeds for {gi, gj}

({gi, gj}, E{gi,gj}
max) Horizontal PMB

G
{em,en}
max Vertical seed for experiments {em, en}

{G{em,en}
max } Set of all vertical seeds for {em, en}

(G
{em,en}
max , {em, en}) Vertical PMB

general, intractable [21,107], these special biclusters can be discovered in polynomial

time.

3.2.1 Definition of PMBs

We refer to 2 × |E| or |G| × 2 maximal biclusters as pairwise maximal biclusters

(PMBs). As shown in Figure 3.4, a horizontal PMB is a bicluster that consists of two

genes and a maximal (but not necessarily unique) set of experiments in which the

two genes show a similar behavior. We refer to this maximal set as a horizontal seed

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 36

for the two genes. More formally, horizontal PMBs and seeds are defined as follows.

Definition 3.3 (Horizontal PMB and seed). Assume B = ({gi, gj}, E) is a 2 × |E|
bicluster. If there does not exist E ′ ⊃ E such that ({gi, gj}, E ′) is also a 2 × |E ′|
bicluster, then the set of experiments E is called a horizontal seed and is denoted by

E
{gi,gj}
max . In this case, we call B a horizontal PMB for two genes {gi, gj}, and denote

it by B =
(
{gi, gj}, E{gi,gj}

max

)
.

As will be shown shortly, multiple instances of E
{gi,gj}
max can exist for a given pair

{gi, gj}. We denote the set of all E
{gi,gj}
max as

{
E
{gi,gj}
max

}
.

By switching the roles of genes and experiments, vertical PMBs and vertical seeds

are similarly defined. Table 3.1 summarizes the notations defined in this section.

3.2.2 Generation of PMBs

Wang et al. [107] proposed a biclustering method called pClustering. The first step

of their algorithm is to find all the maximal n×2 biclusters that satisfy specific input

conditions in polynomial time. In order to generate PMBs, we use a similar approach.

Our biclustering method then differs completely in the remaining steps.

Algorithm 3.1 describes how to generate vertical seeds for a given pair of ex-

periments. An algorithm to generate horizontal seeds is similar but is not shown

here. The worst-case time complexity of Algorithm 3.1 is O(nlogn) [107], where n is

the number of genes in the input gene expression matrix. Moreover, the maximum

number of vertical seeds that can be generated by the algorithm for each pair of

experiments is (n − 1). Consequently, Algorithm 3.1 is efficient, and the number of

seeds discovered by this algorithm does not grow exponentially.

Example 3.3. Tables 3.2(b) and 3.2(c) show the vertical seeds and the horizontal

seeds generated from the data set in Figure 3.2(a), which is repeated in Table 3.2(a)

for convenience.

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 37

Algorithm 3.1: Generating vertical seeds
input : Xi, gene expression values in experiment ei

input : Xj , gene expression values in experiment ej

input : δ, cluster threshold
input : MG, minimum number of genes in a seed
output: G

{ei,ej}
max , vertical seeds for ei and ej

for k = 0 to |X| − 1 do1

s[k].v := Xi[k]−Xj [k];2

s[k].i := k;3

Sort array s in ascending order with respect to the field v;4

start := 0; end := 1;5

new := TRUE;6

repeat7

v := s[end].v − s[start].v;8

if (|v| ≤ δ) then9

if (end− start ≥ MG AND new = TRUE) then10

Report11

{s[start].i, s[start + 1].i, . . . , s[end− 1].i};
end := end + 1;12

new := TRUE;13

else14

start := start + 1;15

new := FALSE;16

until (end ≥ |X|);17

if (end− start ≥ MG AND new = TRUE) then18

Report {s[start].i, s[start + 1].i, . . . , s[end− 1].i};19

Figure 3.5: Algorithm to find vertical seeds.

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 38

Table 3.2: Example. (δ = 1,MG = ME = 3)

(a) Data matrix

e0 e1 e2 e3 e4 e5

g0 2.0 2.0 9.0 2.0 3.0 4.0

g1 3.0 7.0 3.0 1.0 9.0 3.0

g2 2.0 2.0 7.0 2.0 6.0 3.0

g3 3.0 2.0 3.0 2.0 1.0 3.0

g4 2.0 1.0 5.0 1.0 0.0 4.0

g5 3.0 5.0 5.0 8.0 2.0 3.0

(b) Horizontal PMBs

Genes Horizontal seed: E
{gi,gj}
max

{g0, g2} {e0, e1, e3, e5}
{g0, g3} {e0, e1, e3},{e1, e3, e5}
{g0, g4} {e0, e1, e3, e5}
{g1, g3} {e0, e2, e3, e5}
{g2, g3} {e0, e1, e3, e5}
{g2, g4} {e0, e1, e3},{e1, e2, e3}
{g3, g4} {e0, e1, e3, e4}
{g3, g5} {e0, e4, e5}

(c) Vertical PMBs

Experiments Vertical seed: G
{em,en}
max

{e0, e1} {g0, g2, g3, g4}
{e0, e3} {g0, g2, g3, g4},{g1, g3, g4}
{e0, e4} {g3, g4, g5}
{e0, e5} {g0, g2, g4},{g1, g2, g3, g5}
{e1, e3} {g0, g2, g3, g4}
{e1, e5} {g0, g2, g3}
{e2, e5} {g1, g3, g4}
{e3, e5} {g0, g1, g4},{g0, g1, g2, g3}
{e4, e5} {g0, g3, g5}

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 39

0

g
0

0 1

1

0
1

g
2

0

1
0

G{e0,e3}

g
1

g
3

g
4

1

1
0

max

(a)

g
0

0
1

1

0
g
1

0

10

G{e3,e5}

g
1

g
2

g
3

10

max

g
3

g
4

10

1

10

0
1

G{e2,e5}
max

(b)

Figure 3.6: ZBDDs for vertical seeds.

3.2.3 Representation of vertical seeds

Details on the representation of horizontal seeds will be provided in Section 3.4.1. Here

we explain how to represent vertical seeds. In particular, we utilize zero-suppressed

binary decision diagrams (ZBDDs) [69], an efficient data structure for large-scale

sets. This ZBDD-based representation is crucial to keeping the entire algorithm

computationally manageable.

The key observation is that a set of vertical seeds can be regarded as a set of

combinations and thus represented compactly by the ZBDDs. The set of verti-

cal seeds
{

G
{em,en}
max

}
normally has much fewer elements than 2|UG|. In addition,

|G{em,en}
max | ¿ |UG| for typical G

{em,en}
max . In other words, both types of sparsity intro-

duced in Section 2.4.2 hold true. Hence, the symbolic representation using ZBDDs is

more compact than the traditional data structures for sets. Furthermore, as shown

in Section 3.4.2, the manipulation of vertical seeds, such as union and intersection,

is implicitly performed on ZBDDs, thus resulting in high efficiency. Refer to Section

2.4.2 for details on how to construct ZBDDs.

Example 3.4. In Table 3.2(c) we showed the vertical seeds for our running exam-

ple. The ZBDD in Figure 3.6(a) represents the set of vertical seeds
{

G
{e0,e3}
max

}
=

{{g0, g2, g3, g4}, {g1, g3, g4}}.
Example 3.5. The ZBDD representation of

{
G
{e3,e5}
max

}
= {{g0, g1, g2, g3}, {g0, g1, g4}}

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 40

is shown in Figure 3.6(b), along with that of
{

G
{e2,e5}
max

}
= {{g1, g3, g4}}.

3.3 Properties of biclusters

Recall that a bicluster is composed of gene set G and experiment set E. We first

show how G and E are related to vertical and horizontal seeds, respectively. Then,

we present the property that reveals how G and E are mathematically related to each

other.

3.3.1 Relationship between G, E, and seeds

For the gene set G in bicluster (G,E), G is a subset of a certain vertical seed. More

formally, the following proposition holds.

Proposition 3.1. Let (G,E) be a bicluster. If E ⊇ {em, en}, then there exists

Gs ∈
{

G
{em,en}
max

}
such that G ⊆ Gs.

Proof. Assume G ⊃ Gs for all Gs ∈
{

G
{em,en}
max

}
. Since (G,E) is a bicluster and

E ⊇ {em, en}, its sub-bicluster (G, {em, en}) is also a bicluster for a given value

of δ. By definition, if Gs ∈
{

G
{em,en}
max

}
, then there exists no G′ ⊃ Gs such that

(G′, {em, en}) is yet another bicluster for the given value of δ. We have reached a

contradiction and thus our original assumption that G ⊃ Gs for all Gs ∈
{

G
{em,en}
max

}

must be false. Therefore, there must be at least one instance of Gs ∈
{

G
{em,en}
max

}
such

that G ⊆ Gs.

Example 3.6. Consider bicluster #1 in Figure 3.2(b), in which G = {g0, g2, g3} and

E = {e1, e3, e5}. From Table 3.2(c),
{

G
{e3,e5}
max

}
= {{g0, g1, g4}, {g0, g1, g2, g3}}. There

exists Gs ∈
{

G
{e3,e5}
max

}
such that G ⊆ Gs. That is, G ⊆ Gs = {g0, g1, g2, g3}.

Similarly, for any experiment set E in bicluster (G,E), the set E is a subset of a

certain horizontal seed, as formally stated in the following proposition. (Its proof is

similar to the proof of Proposition 3.1.)

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 41

Experiment set E

Gene set G

Bicluster B=(G,E)

g
0

g
2

g
3

e
1
e
3
e
5

(a) Definitions

g
0

g
4

g
2

g
3

e
1
e
3
e
5

G{e1,e3}
max

G{e3,e5}
max

G{e1,e5}
max

g
0

g
2

g
3

U U
=

g
0

g
1

g
3

g
0

g
2
g
3

= =

E =

G

=

g
2

(b) Deriving G from E

Figure 3.7: Relationship between G and E in a bicluster B = (G,E).

Proposition 3.2. Let (G,E) be a bicluster. If G ⊇ {gi, gj}, then there exists Es ∈{
E
{gi,gj}
max

}
such that E ⊆ Es.

Example 3.7. Consider bicluster #0 in Figure 3.2(b), in which G = {g0, g2, g3, g4}
and E = {e0, e1, e3}. From Table 3.2(b),

{
E
{g0,g3}
max

}
= {{e0, e1, e3}, {e1, e3, e5}}.

There exists Es ∈
{

E
{g0,g3}
max

}
such that E ⊆ Es. That is, E ⊆ Es = {e0, e1, e3}.

3.3.2 Relationship between G and E

We first define ⊗, a pairwise intersection operator on two sets of subsets A and B:

A⊗ B = {I|I = A ∩B, ∀A ∈ A and ∀B ∈ B}. (3.2)

For instance, {{0, 1, 2}, {2, 3, 4}} ⊗ {{0, 2}, {4, 5}} = {{0, 2}, {2}, {4}}.
Now we use an example to reveal the relationship between G and E by Proposition

4.1. We use bicluster #1 in Figure 3.2(b), which is depicted in Figure 3.7(a). By

Proposition 4.1, there exists G1 ∈
{

G
{e1,e3}
max

}
such that G ⊆ G1. Similarly, there

exists G2 ∈
{

G
{e3,e5}
max

}
such that G ⊆ G2. Also, there exists G3 ∈

{
G
{e1,e5}
max

}
such

that G ⊆ G3. Thus, G ⊆ G1 ∩ G2 ∩ G3. If we assume that bicluster B is maximal,

then there is no G′ such that G′ ⊃ G and G′ ⊃ G1 ∩ G2 ∩ G3. Therefore, as shown

in Figure 3.7(b), G = G1 ∩ G2 ∩ G3, assuming that we know the sets G1, G2, G3. In

practice, there can be multiple G1, G2, G3, and we need to use the operator ⊗ instead

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 42

of the operator ∩. That is,

G = {all G derivable from E}
=

{
G{e1,e3}

max

}⊗ {
G{e3,e5}

max

}⊗ {
G{e1,e5}

max

}
.

In general, the following equation holds:

G = {all G derivable from E} (3.3)

=
⊗

∀(em,en)∈E

{
G{em,en}

max

}
, (3.4)

and by symmetry,

E = {all E derivable from G} (3.5)

=
⊗

∀(gi,gj)∈G

{
E{gi,gj}

max

}
. (3.6)

In this work, we use Eqn. 3.4 but not Eqn. 3.6 because, in most gene expression data,

|UE| ¿ |UG|, which makes the evaluation of Eqn. 3.4 much faster.

3.4 Our biclustering algorithm

We first repeat the problem statement presented in Section 3.1.3. For the given gene

expression matrix D ∈ R|UG|×|UE |, the objective is to find every matrix B = (G,E)

such that (i) G ⊆ UG and E ⊆ UE and (ii) the value of |x − z − y + w| ≤ δ for any

2 × 2 submatrix
[

x y
z w

]
in B for a given δ ≥ 0. In particular, we are interested in

finding B such that (i) B is not too small, namely |G| ≥ MG and |E| ≥ ME and (ii)

B is maximal in the sense that it is not contained by others that satisfy the previous

conditions.

Our approach is to generate the horizontal and vertical PMBs from a data matrix

and then to derive other biclusters from them, as shown informally in Figure 3.8.

Sections 3.3.1 and 3.3.2 together suggest a way to derive biclusters from PMBs: we

first determine E from the horizontal seeds and then compute G by Eqn. 3.4 with

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 43

D

|U
E
|

|U
G
|

e
0
e
1
e
3
e
5

g
0
g
2

{G{e1,e3}
max
 } {G{e3,e5}

max
 } {G{e1,e5}

max
 }

g
0

g
2

g
3

g
4

g
0
g
2
g
3

g
0
g
2
g
3

e
1
e
3
e
5

e
1
e
3
e
5

(1)

(1)

(2)

(3)

(G{em,en}max
 , {e

m
,e
n
})

({g
i
,g
j
}, E{gi,gj}

max
)

g
1

:

Figure 3.8: Overview. (1) Generating horizontal and vertical PMBs: Section 3.2.2.
(2) Predicting the experiment set E: Section 3.4.1. (3) Calculating the gene set G
from E: Section 3.4.2.

reference to the vertical seeds. This idea is elaborated upon in this section.

Figure 3.9 shows a flowchart of the proposed method. As described in Section

3.2.2, Algorithm 3.1 is used to find vertical and horizontal PMBs. Section 3.2.3

already presented how to represent vertical seeds by ZBDDs. The representation for

horizontal seeds will be explained in Section 3.4.1. Algorithm 3.2, presented in Section

3.4.1, is used to predict E from horizontal seeds. Section 3.4.2 describes Algorithm

3.3, which can derive G from E by Eqn. 3.4. For very large-scale gene expression

data, we can optionally split input data by the method introduced in Section 3.4.3

before starting Algorithms 3.2 and 3.3 in order to reduce computational burden.

3.4.1 Predicting the experiment set E

For bicluster B = (G,E), assume that G ⊇ {gi, gj}. Then, E ⊆ E
{gi,gj}
max by Propo-

sition 3.2 in Section 3.3.1. In the current setup, what we have is E
{gi,gj}
max and what

we are finding is E. Examining every subset of E
{gi,gj}
max could eventually allow us to

find E. However, it is time-consuming to probe every subset. Thus, we present a

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 44

Generate horizontal seeds

Generate vertical seeds

Remove extra elements from

horizontal seeds

Represent horizontal seeds by

trie

Predict E from horizontal

seeds

Eliminate invalid predictions

Collect exposed biclusters

Pre-processing Compute G from

predicted E

Collect biclusters

Post-processing

Split data matrix (optional)

Represent vertical seeds by

ZBDDs

Figure 3.9: Overall flow of the proposed method.

technique to avoid exhaustive enumeration of subsets in Algorithm 3.2. This algo-

rithm considers multiple instances of E simultaneously. Next we show each step in

detail and with examples using the data matrix and the seeds in Table 3.2 with the

parameters δ = 1 and MG = ME = 3.

Step 1: Removing the extra elements in a horizontal seed

We only consider the subsets of horizontal seeds that are valid, according to the

following definition, in order to find E.

Definition 3.4. Let V be a subset of the horizontal seed E
{gi,gj}
max . The set V is called

valid if the following conditions are both met: (1) |V | ≥ ME and (2) for all {em, en}
in V , there exists at least one1 set G

{em,en}
max such that G

{em,en}
max ⊇ {gi, gj}.

The invalid subsets need not be examined, because they either contain too few

elements (Condition 1) or they cannot produce any gene set by applying Eqn. 3.4 to

them (Condition 2).

Example 3.8. Let E1 and E2 be the two instances of the seed E
{g2,g4}
max in Table

3.2(b). In particular, assume that E1 = {e0, e1, e3} and E2 = {e1, e2, e3}. E1 is valid

1Although it seems that any G
{em,en}
max always has to contain at least gi and gj , the set G

{em,en}
max

may not exist for some {em, en}. This is because Algorithm 3.1 does not generate G
{em,en}
max at all if

it has less than MG elements.

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 45

Algorithm 3.2: Predicting experiment set E

input : Horizontal seeds; minimum bicluster size (MG,ME)
output: Candidates for experiment set E

/* Step 1: removing extra elements */1

foreach E
{gi,gj}
max do2

V = E
{gi,gj}
max ;3

E = {};4

foreach (em, en) in V do5

if ∃G{em,en}
max ⊇ {gi, gj} then E = E ∪ {(em, en)};6

Construct an undirected graph (V,E);7

E
{gi,gj}
max = V− {the vertices with the degree less than ME − 1};8

if E
{gi,gj}
max has less than ME experiments then9

Remove E
{gi,gj}
max ;10

/* Step 2: representing horizontal seeds by trie */11

foreach E
{gi,gj}
max do12

Sort the elements in E
{gi,gj}
max ;13

Locate node n whose path is specified by the ordered elements;14

n.G = n.G ∪ {gi, gj};15

n.E = E
{gi,gj}
max ;16

/* Step 3: predicting experiment set E from horizontal seeds */17

foreach node n in the post-order traversal of the trie do18

Set m.G = m.G ∪ n.G for every node m in which19

|m.E| = |n.E| − 1 and |m.E| ≥ ME ;

/* Step 4: eliminating invalid predictions */20

foreach node n in the pre-order traversal of the trie do21

if |n.G| < MG then Remove n and its subtrie rooted at n;22

/* Step 5: collecting exposed biclusters */23

foreach node n in the pre-order traversal of the trie do24

if (n.G, n.E) is a bicluster then Collect (n.G, n.E);25

Figure 3.10: Algorithm to predict experiment set E.

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 46

e
1

e
3

e
0

(a) E
{g2,g4}
max = {e0, e1, e3}

e
2

e
3

e
1

(b) E
{g2,g4}
max = {e1, e2, e3}

Genes Horizontal seed: E
{gi,gj}
max

{g0, g2} {e0, e1, e3, e5}
{g0, g3} {e0, e1, e3},{e1, e3, e5}
{g0, g4} {e0, e1, e3, e5}
{g1, g3} {e0, e3, e5}
{g2, g3} {e0, e1, e3, e5}
{g2, g4} {e0, e1, e3}
{g3, g4} {e0, e1, e3}
{g3, g5} {e0, e4, e5}

(c) Horizontal seeds after Step 1

Figure 3.11: Example for Step 1.

because there is at least one instance of each G
{e0,e1}
max , G

{e1,e3}
max , and G

{e0,e3}
max containing

{g2, g4}. In contrast, E2 is not valid because G
{e1,e2}
max and G

{e2,e3}
max do not exist.

We can identify valid subsets using the notion of cliques on an undirected graph.

Suppose we construct an undirected graph in which the vertices are the elements in

E
{gi,gj}
max and the edges exist according to the following: the edge between two vertices

em and en exists if there is at least one set G
{em,en}
max such that G

{em,en}
max ⊇ {gi, gj}, as

described in Lines 3–7 of Algorithm 3.2. Then a valid subset of E
{gi,gj}
max corresponds

to a clique (or complete subgraph) of at least ME vertices.

Example 3.9. Figure 3.11(a) and 3.11(b) present the graphs for the sets E1 and E2

in the previous example, respectively. Only the former represents a valid subset.

However, the clique finding problem cannot in general be solved in polynomial

time [24]. Thus, we instead remove the elements that cannot belong to a clique on

the graph as an efficient heuristic. These elements are represented by vertices with

a degree (the number of incident edges) less than ME − 1. Line 8 of the algorithm

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 47

is to remove these elements. If removing them from the set E
{gi,gj}
max makes it contain

fewer than ME elements, then we eliminate the whole E
{gi,gj}
max (Lines 9-10).

Example 3.10. In Figure 3.11(b), all vertices should be removed because none of

them can belong to a clique of at least ME = 3 vertices. Removing them makes the

set E2 empty and we therefore eliminate E2 from further consideration.

Removing unnecessary elements from the seed E
{gi,gj}
max is beneficial because the

resulting set will have fewer elements, thus allowing us to examine a smaller number of

subsets. Note that this heuristic aims at reducing the amount of data to be processed

while preserving the quality of the biclustering results.

Example 3.11. Figure 3.11(c) lists our running example of the horizontal seeds

from which unnecessary elements have been removed. In this simple example, only a

few elements have been removed. However, in practical data, there exist many extra

elements, and this step is helpful for improving the response time.

Step 2: Representation of horizontal seeds by a trie

In Lines 12–16 of Algorithm 3.2, the horizontal seeds are collectively represented by

a trie, a data structure used to represent sets of character strings [2]. Many overlaps

occur between horizontal seeds, and the trie provides compact representations.

In a trie, each path from the root to a leaf corresponds to one word or character

string in the represented set. This way, the nodes of the trie correspond to the prefixes

of words in the set. For each seed E
{gi,gj}
max found in the previous step, we first sort its

elements assuming a total order among the elements, such as e0 ≺ e1 ≺ · · · ≺ en. Now

the sorted seed can be regarded as a word made up of the characters e0, e1, . . . , en,

and we can insert it into the node whose path is specified by the ordered elements.

Suppose that the seed E
{gi,gj}
max is into be inserted to node n. In Lines 15–16, we

associate two sets n.G and n.E with the node n. We let the gene set n.G = {gi, gj}
and the experiment set n.E = E

{gi,gj}
max . (If the node n already exists, we let n.G =

n.G ∪ {gi, gj}.)
Example 3.12. Figure 6.8(a) shows the trie representation of the horizontal seeds

in Figure 3.11(c). For instance, E
{g0,g2}
max = {e0, e1, e3, e5} and E

{g2,g3}
max = {e0, e1, e3, e5}

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 48

0 1

1 34

3
3

5 5 5

5

{g
0
,g
2
,g
3
,g
4
}

{g
1
,g
3
}

{g
0
,g
2
,g
3
,g
4
}

{g
3
,g
5
} {g

0
,g
3
}

(a) Horizontal seeds

0 1

5

1 34

3
3

5 5 5

5

{g
0
,g
2
,g
3
,g
4
}

{g
0
,g
2
,g
3
,g
4
} {g

0
,g
1
,g
2
,g
3
,g
4
}

{g
0
,g
2
,g
3
,g
4
}

{g
3
,g
5
}{g

0
,g
2
,g
3
,g
4
}

(b) Predicted E sets

Figure 3.12: The trie representation of horizontal seeds and the experiment sets
predicted from them. The edge labeled with i corresponds to the experiment ei. The
path from the root to node n represents the set of experiments n.E. The set associated
with each node is the set of genes n.G. (a) Horizontal seeds from Figure 3.11(c). (b)
The trie has been expanded to examine possible experiment sets. ME = 3.

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 49

are inserted into the leftmost leaf by following the path “0,1,3,5.” Hence, n.G =

{g0, g2}∪ {g2, g3} and n.E = {e0, e1, e3, e5}, assuming that this node is denoted by n.

Step 3: Predicting E from horizontal seeds

In Lines 18–19, the algorithm predicts the experiment set E by examining subsets

of horizontal seeds. To this end, we exploit the property of the trie: for each node n

encountered in the post-order traversal of the trie, the gene set n.G is distributed to

every node m in which |m.E| = |n.E| − 1 and |m.E| ≥ ME. Figure 6.8(b) shows the

trie representation after Step 3 is performed on the trie in Figure 6.8(a) with ME = 3.

After Step 3, the set n.G represents an upper bound of the gene set that can form

a bicluster with the experiment set n.E.

Step 4: Eliminating invalid predictions

In Lines 21–22, every node n in which |n.G| < MG is deleted. This step can be

performed efficiently by a pre-order traversal of the trie. Genes were distributed in

post-order in Step 3, and thus node n in the trie always has a superset of the genes its

children have. Thus, if the node n has less than MG genes, then none of its children

can have more. For this reason, we can safely remove the entire subtree whose root

is located at the node n. Figure 6.8(c) shows the trie after this step for the running

example.

Step 5: Collecting exposed biclusters

After Step 4, it is possible that the pair (n.G, n.E) can already be forming a bicluster

for a certain node n. That is, for any 2× 2 submatrix
[

x y
z w

]
in the matrix denoted

by the pair (n.G, n.E), |x − z − y + w| ≤ δ for the parameter δ. In Lines 24–25,

these biclusters are collected (and the node n is removed if it is a leaf). Figure 3.13(b)

presents the trie after this step. Bicluster #0 in Figure 3.2(b) is found here.

The biclusters found in this step are only a by-product of our algorithm to predict

experiment sets. In Section 3.4.2, we describe our main approach that derives gene

set G from experiment set E by Eqn. 3.4.

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 50

0 1

5

1 3

3
3

5 5

5
{g
0
,g
2
,g
3
,g
4
} {g

0
,g
1
,g
2
,g
3
,g
4
}

{g
0
,g
2
,g
3
,g
4
}

{g
0
,g
2
,g
3
,g
4
}

{g
0
,g
2
,g
3
,g
4
}

(a)

0 1

5

1 3

3
3

5 5

5
{g
0
,g
2
,g
3
,g
4
} {g

0
,g
1
,g
2
,g
3
,g
4
}

{g
0
,g
2
,g
3
,g
4
}

{g
0
,g
2
,g
3
,g
4
}

(b)

Figure 3.13: Continuation of the trie example in Figure 7.5. (a) After eliminating
invalid predictions (Step 4). MG = 3. (b) After collecting the exposed bicluster
({g0, g2, g3, g4}, {e0, e1, e3}) from the parent node of the leftmost leaf (Step 5). This
corresponds to bicluster #0 in Figure 3.2(b).

3.4.2 Calculating the gene set G

After completing Steps 1–5 of Algorithm 3.2, we apply Eqn. 3.4 to the experiment

set n.E of each remaining node n in the trie in order to find G, thus finalizing the

biclustering process.

The worst-case complexity of the entire biclustering algorithm is due to the series

of ⊗ operations in Eqn. 3.4. The scalability of the algorithm thus depends on how

much the total number of ⊗ operations can be reduced and how efficiently a single

⊗ operation can be performed.

To reduce the number of ⊗ operations, we take an approach similar to dynamic

programming. That is, the repetitive calculations are minimized by storing and re-

using previously obtained partial results. For an efficient implementation of the op-

erator ⊗, we take advantage of the ZBDDs, by which we can symbolically represent

vertical seeds and implicitly perform ⊗ operations on them without enumerating all

of the intermediate results.

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 51

Reducing the number of
⊗

operations

We use the following example to introduce this idea.

Example 3.13. Suppose that Eqn. 3.4 is applied to E = {e0, e1, e3, e5}. We then

need to perform the ⊗ operations
(
4
2

)− 1 = 5 times:

G =
{
G{e0,e1}

max

}⊗ {
G{e0,e3}

max

}⊗ {
G{e1,e3}

max

}⊗ {
G{e0,e5}

max

}⊗ {
G{e1,e5}

max

}⊗ {
G{e3,e5}

max

}
.

In contrast, if we had already applied Eqn. 3.4 to E ′ = {e0, e1, e3} and saved the

result into G ′, then we only need the following three ⊗ operations:

G ′ ⊗ ({
G{e0,e5}

max

}⊗ {
G{e1,e5}

max

}⊗ {
G{e3,e5}

max

})
. (3.7)

In general, when applying Eqn. 3.4 to E with N elements, we can reduce the

number of ⊗ operations from
(

N
2

) − 1 to (N − 1) by exploiting previous results.

This idea can be realized efficiently by the trie, since it has a hierarchical structure.

Algorithm 3.3 shows the outline of our approach.

In the algorithm, each node n is associated with n.G, a set of gene sets. For

each node n visited in the pre-order traversal of the trie, we perform the following

procedure. If the set n.E has only two elements em, en, then the set n.G is made equal

to the set of vertical seeds G
{em,en}
max in Lines 2–3. This is the base case. Otherwise,

the intermediate result is computed in Lines 5–9, which corresponds to Eqn. 3.7({
G
{e0,e5}
max

}
⊗

{
G
{e1,e5}
max

}
⊗

{
G
{e3,e5}
max

})
in Example 3.13. If any intermediate result is

empty or has fewer than MG elements, we stop and remove the entire subtree rooted

at n.

Example 3.14. In Figure 3.15(a), the intermediate results for the leaves are indi-

cated by G0135, G015, G035, and G135. Here, G0135 =
{

G
{e0,e5}
max

}
⊗

{
G
{e1,e5}
max

}
⊗

{
G
{e3,e5}
max

}

= {{g0}, {g0, g2}, {g2, g3}}. However, all the sets in G0135 have less than MG ele-

ments. Thus, we set G0135 = ∅ and remove the leftmost leaf. Similarly, G015 = ∅,
and its corresponding leaf is deleted. On the other hand, G035 = {{g1, g2, g3}} and

G135 = {{g0, g2, g3}} (after the sets with too few elements are removed). Figure

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 52

Algorithm 3.3: Calculating gene set G

input : The trie from Algorithm 3.2; Vertical seeds
output: Maximal biclusters

foreach node n in the pre-order traversal of the trie1

do
if |n.E| == 2 then2

n.G = {G{n.E}
max };3

else4

E = n.E;5

E′ = n′.E, where n′ is the parent node of n;6

en = E − E′;7

foreach e in E′ do8

n.G = n.G ⊗ {G{e,en}
max };9

n.G = n.G ⊗ n′.G;10

if n.G = ∅ then11

Remove n and its subtrie rooted at n;12

else if |E| ≥ ME then13

foreach G in n.G do14

Collect (G,E);15

Report maximal biclusters;16

Figure 3.14: Algorithm to calculate gene set G.

0135

0 1

5

1 3

3

3

5 5

5

015 035 135

(a)

0 1

3
3

5 5

{g
1
,g
2
,g
3
} {g

0
,g
2
,g
3
}

(b)

1

3

5

{g
0
,g
2
,g
3
}

(c)

Figure 3.15: Continuation of the trie example in Figure 3.13. Bicluster #1 in Figure
3.2(b) is found from the trie in (c).

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 53

3.15(b) finally shows the trie in which the two left leaves are removed from the trie

in Figure 3.15(a).

In Line 10, the resulting Gn, corresponding to Eqn. 3.7 itself, is calculated. If

this set Gn is empty, we prune the entire subtree rooted at n (Lines 11–12). We

otherwise collect biclusters (Lines 13–15). Figure 3.15(c) presents the final trie in

which bicluster #1 in Figure 3.2(b) is found at the leaf node.

Efficient implementation of ⊗

The operator ⊗ is implemented using the basic set operators on ZBDDs, such as

∩ and ∪. Typically, these operators are recursively defined on ZBDDs with trivial

terminal cases, such as P ∩ ∅ = ∅ or P ∪ ∅ = P . Thus, the operator ⊗ is also

recursively defined on ZBDDs. That is, the initial ZBDDs are recursively partitioned

into two smaller ZBDDs until the terminal cases are encountered. Then, by merging

the solutions to smaller subproblems in a bottom-up manner, we can obtain the result

of the ⊗ operation on the original ZBDDs.

We first show how to partition a set of subsets into two smaller sets. Let P be a

set of subsets. We partition P into P1 and P0 with respect to the variable x in such

a way that P1 contains all of the subsets that include x, while P0 includes all of the

other subsets.

Example 3.15. Let P =
{

G
{e0,e5}
max

}
= {{g0, g2, g4}, {g1, g2, g3, g5}}, from the exam-

ple in Table 3.2(c). Then P1 = {{g0, g2, g4}} and P0 = {{g1, g2, g3, g5}}, assuming

x = g0.

With respect to the topmost vertex of a ZBDD, we can perform this partitioning

by simply recognizing two subgraphs – the subgraphs connected by the 1-edge and

0-edge correspond to P1 and P0, respectively.

Based on this partitioning, we can recursively perform various operations on ZB-

DDs. For example, P∪Q = (P0∪P1) ∪ (Q0∪Q1) = (P0∪Q0) ∪ (P1∪Q1), as shown

in Figure 3.16(a) . The problem of P ∪ Q can now become two smaller problems,

(P0 ∪Q0) and (P1 ∪Q1).

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 54

P
0

P
1

P
0

P
1

Q
0

Q
1

⊗
⊗

=

Q
0

Q
1

U =

P
0
Q
0

P
1
Q
1

U U

x x x

x x x

⊗(P
0
Q
0
) U

⊗⊗(P
1
Q
0
) U (P

0
Q
1
)

P
1
Q
1

(a)

Q={{g
1
,g
3
,g
4
}}

{{g
0
,g
2
,g
4
}}{{g

1
,g
2
,g
3
,g
5
}} {{g

1
,g
3
,g
4
}}

topmost = g
0

P
0

P
1

Q
0

Q
1

={{g
4
}}P

1
Q
0

= {{g
1,
g
3
}}P

0
Q
0

{O}

⊗ ⊗

00 1 1

P={{g
1
,g
2
,g
3
,g
5
},{g

0
,g
2
,g
4
}}

(b)

Figure 3.16: The operators ∪ and ⊗ on ZBDDs. (a) The set operators are recursively
defined on the ZBDDs. The operator ∩ is defined in the same way as the operator ⊗
but is not shown here. (b) An example.

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 55

D

|UE|
Vertical seeds

a b c d e

|UE|

Figure 3.17: Dividing a large data matrix into submatrices of manageable sizes.

We can similarly compute P ⊗ Q by recursively solving and merging four sub-

problems: (P0 ⊗ Q0), (P1 ⊗ Q0), (P0 ⊗ Q1), and (P1 ⊗ Q1). Figure 3.16(b) depicts

the decomposition with respect to the topmost variable. The right subgraph includes

(P1 ⊗Q1), and the left subgraph contains the others, since only (P1 ⊗Q1) can have

a subset with the topmost variable. Further implementation details can be found

in [14,15,69,70].

Example 3.16. Let P =
{

G
{e0,e5}
max

}
= {{g0, g2, g4}, {g1, g2, g3, g5}} andQ=

{
G
{e2,e5}
max

}

= {{g1, g3, g4}} from the examples in Table 3.2. Then P⊗Q = (P0⊗Q0) ∪ (P1⊗Q0)

= {{g1, g3}, {g4}}, as shown in Figure 3.16(b), where we partition the sets with re-

spect to the variable g0. Both (P0 ⊗Q1) and (P1 ⊗Q1) are empty sets and are not

shown in the figure.

3.4.3 Considerations for very large-scale expression data

We present a divide-and-conquer technique that is useful in the analysis of very large-

scale data sets. This technique enables us to split the whole expression data matrix

into submatrices, without any compromise in cluster discovery. (Thus, we can still

find all maximal biclusters on the data matrix.) The resulting submatrices will be

small enough to apply our algorithm as explained in the previous sections, even if the

original data matrix is so huge that the algorithm is not applicable.

The basic idea is to split the data matrix into submatrices specified by
(
G
{em,en}
max , UE

)

for all {em, en} in UE.

Example 3.17. In Figure 3.17, we assume that five vertical PMBs exist in data

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 56

matrix D. For each vertical PMB, we can expand it and generate a submatrix in

which the rows are the genes in the PMB and the columns are UE.

The rationale is that for any bicluster (G,E), G is always a subset of a certain ver-

tical seed G
{·}
max. Thus, the biclusters found from all possible submatrices (G

{·}
max, UE)

are equivalent to those discovered from the whole matrix (UG, UE). Moreover, this

split can be done very quickly, since G
{·}
max generation is trivial even for large-scale

data, as explained in Section 3.2.2. For most gene expression data, G
{·}
max ¿ |UG|

and |UE| ¿ |UG|, so the size of each submatrix is manageable. We summarize our

approach as follows:

(1) All vertical PMBs are discovered from data matrix D.

(2) A submatrix (G
{·}
max, UE) is created for each G

{·}
max in a vertical PMB.

(3) The biclustering procedure presented in the previous sections is executed on

each submatrix.

3.4.4 Algorithm complexity

The problem of biclustering is inherently intractable [21, 98, 107], and the worst-case

complexity of our algorithm is exponential in the number of columns in the input

data matrix. However, the execution time on typical benchmarks is practical, as

will be shown in Chapter 5. Furthermore, our algorithm can find all the biclusters

that satisfy specific input conditions. This is due to efficient techniques such as the

ZBDD-based manipulations and the dynamic programming approach, which enable us

to avoid the exhaustive and explicit enumeration of the intermediate results. When

ZBDDs are used, the computational complexity of a problem depends on the size

of its ZBDD representation, which often has mild growth with the problem size.

Thus, it has been reported by numerous independent research studies that ZBDDs

may be used to efficiently solve many practical instances of intractable problems

[15,16,26,67,69,70,88].

Additionally, our algorithm works in polynomial time if the input data matrix

and parameters satisfy a certain condition. Suppose that, for any bicluster (G,E)

CHAPTER 3. A ZBDD-BASED BICLUSTERING ALGORITHM 57

defined under a specific input parameters, there always exist at least one G
{·}
max and

at least one E
{·}
max such that G

{·}
max = G and E

{·}
max = E. Then, we can perform biclus-

tering by simply seeing if each pair
(
G
{·}
max, E

{·}
max

)
is a legitimate bicluster without

invoking Algorithms 3.2 and 3.3. Then, the entire biclustering process can be done

in polynomial time. We refer the interested reader to [119] for further details.

3.5 Summary

In this chapter, we investigated the problem of finding biclusters from gene expres-

sion data sets. We mathematically characterized this problem and proposed a suite

of new algorithms to find biclusters with coherent values. The proposed method em-

ployed dynamic programming and a divide-and-conquer technique, as well as efficient

data structures such as the trie and zero-suppressed decision diagrams (ZBDDs). In

particular, the use of ZBDDs enabled us to substantially extend the scalability of

the method. We conducted experimental studies including statistical and biological

validations of the biclusters produced by our method. The results, which will be

covered in Chapter 5, demonstrates the effectiveness of our ZBDD-based biclustering

approach.

Chapter 4

Finding Nested Biclusters

Chapter 3 described a ZBDD-based biclustering algorithm. There, a bicluster was

modeled by a matrix in which every 2 × 2 submatrix satisfies a constraint. Con-

sequently, any sub-bicluster of a bicluster in this definition is yet another bicluster

satisfying the same constraint. In general, suppose that D is a certain condition under

which a bicluster, P , is defined. Let the bicluster P be called nested if any legitimate

sub-bicluster of P also satisfies the condition D. Then, many biclusters appearing

in the literature are in fact nested biclusters. Examples of nested biclusters in the

literature include xMOTIFs [74], δ-valid kj-patterns [18], GEMS [112], OPSMs [10],

OP-Clusters [61], and δ-pClusters [107], just to name a few.

This chapter describes an algorithm to find nested biclusters. This algorithm is a

generalized version of the algorithm presented in Chapter 3 and also depends upon the

ZBDDs to represent and manipulate massive data. We will see that biclusters having

different definitions can be found in a unified framework as long as these biclusters

are nested.

This chapter is organized as follows. Section 4.1 presents the formal definition

of nested biclusters our method can find. In Sections 4.2 and 4.3, we explain at

length the proposed method, which consists of essentially two stages. The first stage,

which is detailed in Section 4.2, is to find special nested biclusters called atomic

biclusters. Section 4.3 presents the second stage of our method, which derives general

(non-atomic) nested biclusters from the atomic biclusters previously found. Our

58

CHAPTER 4. FINDING NESTED BICLUSTERS 59

experimental results can be found in the subsequent chapters.

4.1 Definitions and overview

Within a unified framework, our approach can find various types of nested biclusters.

In particular, we focus on finding three specific types of nested biclusters in this

chapter. Their formal definitions are provided in Section 4.1.1. Some biological

intuition behind these definitions is presented in Section 4.1.2. The problem statement

and an overview of our approach will follow in Sections 4.1.3 and 4.1.4, respectively.

4.1.1 Definition of nested biclusters

Let A denote an input data matrix of real numbers with set of rows R = {1, 2, . . . , n}
and set of columns C = {1, 2, . . . , m}. That is, A ∈ Rn×m. We also denote the matrix

A by pair (R,C). We first provide a formal definition of a nested bicluster.

Definition 4.1. Given A = (R, C), an input matrix, and D, a certain condition

defined on a matrix, let pair P = (I, J) denote a submatrix of A, namely, I ⊆ R and

J ⊆ C. The submatrix P is called a bicluster appearing in A under D, if P satisfies

the condition D.

Example 4.1. Figure 4.1(a) presents matrix A ∈ R4×4 with R = C = {1, 2, 3, 4}.
Let D define a matrix in which the values on each row are constant. Figure 4.1(b)

shows P1, P2, P3, some biclusters appearing in the matrix A under the condition D.

Definition 4.2. Let P be a bicluster appearing in matrix A under condition D. The

bicluster P is called nested, if any subset (or submatrix) of P is also a bicluster

appearing in the matrix A under the condition D.

Example 4.2. In Figure 4.1(b), it can be easily verified that any submatrix of P1,

P2, and P3 is another bicluster appearing in the matrix A under the same condition

D, since the values on each row of such a submatrix remain constant. Thus, P1, P2,

and P3 are all nested biclusters.

CHAPTER 4. FINDING NESTED BICLUSTERS 60

1 2 3 4

1

2

3

4

1.0 1.0 1.0 1.0

1.0 1.0 1.0 3.0

2.0 2.0 3.0 2.0

3.0 3.0 2.0 3.0

(a) Input matrix A

P
2

P
3

P
1

1 2 3

1

2

1.0 1.0 1.0

1.0 1.0 1.0

1 2 4

1

3

4

1.0 1.0 1.0

2.0 2.0 2.0

3.0 3.0 3.0

1 2

1

2

3

4

1.0 1.0

1.0 1.0

2.0 2.0

3.0 3.0

(b) Biclusters P1, P2, and P3

Figure 4.1: Example of an input matrix and some biclusters appearing in the matrix.
The condition D here defines a matrix in which the values on each row are constant.

CHAPTER 4. FINDING NESTED BICLUSTERS 61

Table 4.1: Classification of nested biclusters.

Bicluster Definition Property Example Related biclusters in the literature

Type 1 Definition 4.4 Property 4.1 Figure 4.1, 4.2 xMOTIFs [74], δ-valid kj-pattern [18], GEMS [112]

Type 2 Definition 4.5 Property 4.2 Figure 4.3 OPSM [10], OP-Cluster [61]

Type 3 Definition 4.6 – Figure 4.4 δ-bicluster [21], δ-pCluster [107,119], FLOC cluster [113]

We introduce three types of nested biclusters that can be found by our bicluster

mining method. Table 4.1 is for a quick lookup of related information. In what

follows, the term bicluster always means a nested bicluster, unless otherwise stated.

Type 1 biclusters

Definition 4.3. For any set S on R, the range of S, denoted by range(S), is the

difference between the largest and the smallest elements of S.

Definition 4.4. Given matrix A = (R,C) and threshold τ ≥ 0, a Type 1 bicluster

is a matrix denoted by (I, J) such that (1) I ⊆ R and J ⊆ C; and (2) for each i ∈ I,

range({aij|∀j ∈ J}) ≤ τ .

Example 4.3. Figure 4.2 presents an input matrix and some Type 1 biclusters ap-

pearing in the matrix with respect to the parameter τ = 0.5.

Type 1 biclusters are a representative example of the biclusters that have a one-

row-based or one-column-based definition. Examples include a bicluster with constant

values on rows, as seen in Figure 4.1, or with constant values on columns. In the

literature, biclusters such as xMOTIFs [74], δ-valid kj-patterns [18] and GEMS [112]

belong to this type.

The reader can easily verify that any Type 1 bicluster is nested. Furthermore, the

following property holds for Type 1 biclusters.

Property 4.1. If (I1, J1) and (I2, J2) are both Type 1 biclusters with respect to τ ,

then the bicluster (I1 ∪ I2, J1 ∩ J2) is also Type 1 with respect to τ .

CHAPTER 4. FINDING NESTED BICLUSTERS 62

1 2 3 4

1

2

3

4

1.0 1.8 1.2 1.4

2.0 2.2 1.6 2.4

3.0 3.4 5.2 1.0

2.5 2.7 4.1 3.1

(a) Input matrix A

P
2

P
3

P
1

1 2

2

4

2.0 2.2

2.5 2.7

2 4

1

2

4

1.8 1.4

2.2 2.4

2.7 3.1

1 3

1

2

1.0 1.2

2.0 1.63 3.0 3.4

P
4

1 4

1

2

1.0 1.4

2.0 2.4

(b) Type 1 biclusters P1, P2, P3 and P4

Figure 4.2: Type 1 biclusters appearing in the input matrix A (the parameter τ = 0.5).

Example 4.4. The biclusters shown in Figure 4.1(b) satisfies Definition 4.4 with

respect to τ = 0, and thus P1, P2, and P3 are all Type 1 biclusters. Let P1 = (I1, J1),

P2 = (I2, J2), and P3 = (I3, J3). Then, I3 = I1 ∪ I2 and J3 = J1 ∩ J2. Thus,

Property 4.1 holds for these biclusters.

Type 2 biclusters

Definition 4.5. Given matrix A = (R, C), let J ⊆ C be a set of size k ≥ 2 and let

〈o1, o2, . . . , ok〉 be a linear ordering of J . A Type 2 bicluster is a matrix denoted by

(I, J) such that (1) I ⊆ R; and (2) for each i ∈ I, aio1 > aio2 > · · · > aiok
.

Example 4.5. Figure 4.3 presents a data matrix and Type 2 biclusters appearing in

it. The order of the values on each row is preserved. For example, for i ∈ I = {1, 2}
in P1, ai1 > ai4 > ai2; for i ∈ I = {1, 2, 3} in P4, ai3 > ai4 > ai2.

Type 2 biclusters are a representative example of the biclusters in which the order

of the values (or some states defined by them) on a row or column is preserved for

CHAPTER 4. FINDING NESTED BICLUSTERS 63

1 2 3 4

1

2

3

3.0 1.0 4.0 2.0

4.0 1.0 3.0 2.0

2.0 1.0 4.0 3.0

(a) Input matrix A

P
2

P
3

P
1

1 2

1 3.0 1.0

2 4.0 1.0

P
4

4

2.0

2.0

2 3

1 1.0 4.0

2 1.0 3.0

4

2.0

2.0

2 3

2 1.0 3.0

3 1.0 4.0

4

2.0

3.0

2 3 4

1

2

3

1.0 4.0 2.0

1.0 3.0 2.0

1.0 4.0 3.0

(b) Type 2 biclusters P1, P2, P3 and P4

Figure 4.3: An example of Type 2 biclusters.

the other rows or columns as well. Examples in the literature include OPSMs [10]

and OP-Clusters [61].

It can easily be verified that a Type 2 bicluster is nested. In addition, the following

property holds for Type 2 biclusters.

Property 4.2. If both (I1, J1) and (I2, J2) are Type 2 biclusters, then the bicluster

(I1 ∪ I2, J1 ∩ J2) is also Type 2.

Example 4.6. Property 4.2 holds for the biclusters shown in Figure 4.3(b). For

example, let P2 = (I2, J2), P3 = (I3, J3), and P4 = (I4, J4). Then, it can be verified

that I4 = I2 ∪ I3 and J4 = J2 ∩ J3.

Type 3 biclusters

Definition 4.6. Given matrix A = (R,C) and threshold τ ≥ 0, a Type 3 bicluster

is a matrix denoted by P = (I, J) such that (1) I ⊆ R and J ⊆ C; and (2) for any

2× 2 submatrix
[

e f
g h

]
in P , |e− g − f + h| ≤ τ .

CHAPTER 4. FINDING NESTED BICLUSTERS 64

1 2 3 4

1

2

3

4

6.0 9.0 2.0 5.0

2.0 3.0 4.0 3.0

2.0 2.0 3.0 6.0

3.0 4.0 5.0 2.0

5

4.0

6.0

7.0

6.0

5 4.0 7.0 3.0 1.0 4.0

(a) Input matrix A

2

4

5

P
2

P
2

P
3

P
1

3 5

1

5

2.0 4.0

3.0 4.0

1 2

2 4.0 6.0

4 5.0 6.0

3

2

3

4

2.0 3.0 4.0

2.0 2.0 3.0

3.0 4.0 5.0

4

3.0

2.0

5

6.0

6.0

1.0 4.0

(b) Type 3 biclusters P1, P2, and P3

Figure 4.4: An example of Type 3 biclusters (the parameter τ = 1).

CHAPTER 4. FINDING NESTED BICLUSTERS 65

Example 4.7. Figure 4.4 shows a data matrix and some Type 3 biclusters appearing

in the matrix with respect to the parameter τ = 1.

Type 3 biclusters are used to model a matrix in which the elements exhibit some

coherent behavior. Examples include a matrix in which the value of the elements

fluctuate in harmony and a matrix in which all elements have the same value. Type

3 biclusters in Definition 4.6 are in essence equivalent to δ-pClusters [107] and closely

related to δ-biclusters1 [21] and FLOC clusters [113].

The reader can verify that Type 3 biclusters are nested. However, Properties 4.1

and 4.2 do not necessarily hold for Type 3 biclusters. Also note that the same set

of Type 3 biclusters can be found from input A and the transpose of A. This is

because two matrices
[

e f
g h

]
and

[
e g
f h

]
are indistinguishable in the definition since

|e− g − f + h| = |(e− g)− (f − h)| = |(e− f)− (g − h)|.

4.1.2 Biology behind the definitions of biclusters

The three types of nested biclusters were defined in such a way that they can effec-

tively capture important biological phenomena involved in various applications. For

example, in gene co-regulation analysis, researchers are often interested in recogniz-

ing common fluctuations in the expression levels of multiple genes. Finding Type

2 and Type 3 biclusters from gene expression data matrices may be useful in this

application. Discovering Type 1 biclusters can provide some biological insight for

applications such as the task of marker gene identification, where we are interested

in correlating the activity of one or more genes to specific subphenotypes and thus

finding genes expressed only in some phenotypes. For more examples, the reader can

refer to [65] as well as the references listed in Table 4.1.

1δ-biclusters are not nested biclusters, since a subcluster of a δ-bicluster is not necessarily a
δ-bicluster [21, 107]. However, δ-biclusters are included here because they also aim at modeling
coherent behavior of matrix elements, and it has been reported that δ-biclusters are closely related
to δ-pClusters in many aspects [107,119].

CHAPTER 4. FINDING NESTED BICLUSTERS 66

4.1.3 Problem Statement

Given an input data matrix A = (R,C), a specific definition D ∈ {Definition 4.4,

Definition 4.5, Definition 4.6}, and the parameters specified in D, the problem of

bicluster mining is to find all maximal nested biclusters P = (I, J) appearing in

A under D. We search only maximal2 biclusters or those that are not contained

by other biclusters as a submatrix, since non-maximal biclusters contain redundant

information. Optionally, we can specify the minimum size of biclusters in order not

to generate too small biclusters.

4.1.4 Overview of our approach

Our bicluster mining algorithm consists of essentially two steps. The first step is to

find special biclusters called atomic biclusters. The second step is to derive other

general (non-atomic) biclusters from the atomic biclusters previously found. These

two steps are detailed in Sections 4.2 and 4.3, respectively. Fig 4.5 provides a flowchart

of our method, and Tables 4.2 and 4.3 list related information for a quick reference.

Table 4.2: Step 1 - finding atomic biclusters.

Atomic bicluster Definition Algorithm Example

Type 1 Definition 4.7 Algorithm 4.1 Figure 4.7

Type 2 Definition 4.8 Algorithm 4.2 Figure 4.9

Type 3 Definition 4.9 Algorithm 4.3 Figure 4.11

Table 4.3: Step 2 - deriving non-atomic biclusters from atomic biclusters.

Method Details Algorithm Based upon

Breadth-first Section 4.3.3 Algorithm 4.4 Corollary 4.1

Depth-first Section 4.3.3 Algorithm 4.5 Corollary 4.2

2Formally, a bicluster P = (I, J) is called maximal if there is no bicluster P ′ = (I ′, J ′) such that
I ⊆ I ′ and J ⊆ J ′ under the identical input conditions.

CHAPTER 4. FINDING NESTED BICLUSTERS 67

Pre-processing

Post-processing

Algorithm 4.1

 (Type 1)

Algorithm 4.2

 (Type 2)

Algorithm 4.3

 (Type 3)

Algorithm 4.4

(Breadth-first Method)

Algorithm 4.5

(Depth-first Method)

Figure 4.5: A flowchart of our method. The first step (Algorithms 4.1, 4.2, and 4.3)
is to find atomic biclusters. The second step (Algorithms 4.4 and 4.5) is to derive
non-atomic biclusters.

4.1.5 Notation

Table 4.4 lists some important notations that will be used throughout the chapter,

especially in Section 4.3.

4.2 Finding atomic biclusters

Informally, an atomic bicluster is represented by a matrix that has only one row (Type

1) or two rows (Types 2 and 3) but as many columns as possible. In this section,

we provide the formal definition of atomic biclusters and specific algorithms to find

them.

4.2.1 Finding Type 1 atomic biclusters

Definition 4.7. Given input matrix A = (R,C) and threshold τ ≥ 0, a Type 1

atomic bicluster for row i ∈ R is a one-row matrix, denoted by pair P = ({i}, J),

that satisfies the following: (1) P is a Type 1 bicluster on A; and (2) there is no J ′

such that J ′ ⊃ J and ({i}, J ′) is also a Type 1 bicluster.

CHAPTER 4. FINDING NESTED BICLUSTERS 68

Table 4.4: Notations.

Notation Meaning

A = (R, C) Input matrix A with row set R and column set C; A ∈ R|R|×|C|.
P = (I, J) Bicluster P with row set I and column set J ; I ⊆ R and J ⊆ C.

J Set of column index sets.

v Vertex in the lattice graph (Algorithms 4.4 and 4.5).

v.I Row index set associated with vertex v.

v.J Set of column index sets associated with vertex v.

J Function J (Definition 4.11).

J(I) Image of set I under function J; essentially, set of column index sets.

J1, J2, J3 Function J with explicit type specification.

The condition (2) in the above definition is to avoid generating those atomic

biclusters that are contained by others, since such biclusters are redundant.

Algorithm 4.1 details our approach to find Type 1 atomic biclusters of Defini-

tion 4.4. The key idea of this algorithm is simple: when the elements of a set S

are sorted and arranged in the corresponding order, range(S) is simply the absolute

difference between the first and the last elements of S. The worst-case complexity of

the algorithm is polynomial in |C|, and the maximum number of atomic biclusters

found per row by Algorithm 4.1 is (|C| − 1).

In Lines 1–4, the column indices are sorted in ascending order according to the

value of the corresponding elements. The variables begin and end in Lines 5–6 are to

point to the first and the last elements of the sub-array under consideration at some

point. Inside the while loop in Lines 7–16, J , the column set of an atomic bicluster,

is generated as the variables begin and end are incremented. Note that multiple J can

exist per row and overlap with each other. Since the array D is sorted, the algorithm

only needs to compare in Line 8 the first element (D[begin]) and the last element

(D[end]), in order to see if all the elements in the sub-array are similar. In Lines

8–9, the variable end is extended as long as D[end].val − D[begin].val ≤ τ . The

algorithm reports J in Line 11 or Line 13. Lines 14–16 are to adjust the variable

begin appropriately after one instance of J is found, because multiple overlapping

CHAPTER 4. FINDING NESTED BICLUSTERS 69

Algorithm 4.1: Finding Type 1 atomic biclusters for one row
input : A = (R,C), a data matrix
input : i ∈ R, a row index
input : τ , a threshold
output: J ⊆ C, ({i}, J) is a Type 1 atomic bicluster

foreach j ∈ C do1

D[j].val := aij ;2

D[j].ind := j;3

Sort array D in ascending order with respect to the field val;4

begin := 1;5

end := 2;6

while (end ≤ |C|) do7

if (D[end].val −D[begin].val ≤ τ) then8

end := end + 1;9

if (end > |C|) then10

Report J = {D[begin].ind, . . . , D[end− 1].ind};11

else12

Report J = {D[begin].ind, . . . ,D[end− 1].ind};13

repeat14

begin := begin + 1;15

until (begin = end) or16

(D[end].val −D[begin].val ≤ τ);

Figure 4.6: Algorithm to find Type 1 atomic biclusters.

1 2 3 4

1

2

3

4

1.0 1.8 1.2 1.4

2.0 2.2 1.6 2.4

3.0 3.4 5.2 1.0

2.5 2.7 4.1 3.1

(a)

Row i ∈ R Column set J ∈ 2C

1 {1, 3, 4}, {2, 4}
2 {1, 2, 4}, {1, 3}
3 {1, 2}
4 {1, 2}, {2, 4}

(b)

Figure 4.7: (a) Input matrix A. (b) Type 1 atomic biclusters found from A by
Algorithm 4.1 (τ = 0.5).

CHAPTER 4. FINDING NESTED BICLUSTERS 70

Algorithm 4.2: Finding Type 2 atomic biclusters for pair of rows
input : A = (R, C), a data matrix
input : q, r ∈ R, row indices (q 6= r)
input : minJ ≥ 0, minimum column size
output: J ⊆ C, ({q, r}, J) is an atomic Type 2 bicluster

foreach j ∈ C do1

X̂[j].val := aqj ;2

Ŷ [j].val := arj ;3

X̂[j].ind := Ŷ [j].ind := j;4

Sort arrays X̂ and Ŷ in descending order with respect to the field val;5

Construct sequence X = 〈x1, x2, . . . , x|C|〉 such that xi = X̂[i].ind;6

Construct sequence Y = 〈y1, y2, . . . , y|C|〉 such that yi = Ŷ [i].ind;7

Find Z = {Z|Z is an MCS of X and Y , |J | >= minJ};8

foreach Z ∈ Z do9

Convert Z = 〈z1, z2, . . .〉 to J = {z1, z2, . . .};10

Return J ;11

Figure 4.8: Algorithm to find Type 2 atomic biclusters.

instances of J can be found for each row.

Example 4.8. Figure 4.7(b) presents the Type 1 atomic biclusters discovered by Al-

gorithm 4.1 from the data matrix in Figure 4.2(a), repeated here in Figure 4.7(a) for

convenience. The parameter used is τ = 0.5.

4.2.2 Finding Type 2 atomic biclusters

Definition 4.8. Given input matrix A = (R,C), a Type 2 atomic bicluster for rows

i, k ∈ R (i 6= k) is a two-row matrix, denoted by pair P = ({i, k}, J), that satisfies the

following: (1) P is a Type 2 bicluster on A; and (2) there is no J ′ such that J ′ ⊃ J

and ({i, k}, J ′) is also a Type 2 bicluster.

Our approach to find Type 2 atomic biclusters is outlined in Algorithm 4.2. The

main problem is to find a largest two-row matrix in which the order of the values on

each row is preserved. The key is to exploit algorithms to solve the problem of finding

maximal common subsequences (MCS) of two sequences [24, 36].

Besides an input data matrix, Algorithm 4.2 takes an additional input parameter,

CHAPTER 4. FINDING NESTED BICLUSTERS 71

1 2 3 4

1

2

3

3.0 1.0 4.0 2.0

4.0 1.0 3.0 2.0

2.0 1.0 4.0 3.0

(a)

2413

2

4

3

1

1 1 2 30

1 1 2 20

1 1 1 10

0 1 1 10

0 0 0 00

(b)

Row set {q, r} Column set J ∈ 2C

{1, 2} {1, 2, 4}, {2, 3, 4}
{2, 3} {2, 3, 4}
{1, 3} {1, 2, 3}, {2, 3, 4}

(c)

Figure 4.9: (a) Input data. (b) Finding MCS for rows 1 and 2. (c) Type 2 atomic
biclusters found by Algorithm 4.2 (minJ = 3).

minJ , to specify the minimum cardinality of the column set of an atomic bicluster.

This is to limit the total number of atomic biclusters per pair of rows.

In Lines 1–5, the elements of each row are sorted with respect to their value,

and the column indices are ordered accordingly. Lines 6–7 are to convert arrays of

column indices to sequences. In Line 8, an MCS-search algorithm is invoked. In

Lines 9-11, each MCS found is converted to a set and returned.

The MCS problem has been extensively studied in the literature, and the typical

solution relies on dynamic programming [24, 36]. The worst-case complexity of an

algorithm to solve the MCS problem is polynomial in the length of sequences [24,36].

Some details of an MCS algorithm can be found in the following example.

Example 4.9. Figure 4.9(c) presents the Type 2 atomic biclusters discovered by Al-

gorithm 4.2 from the data matrix in Figure 4.3(a), repeated here in Figure 4.9(a) for

convenience. The parameter used is minJ = 3. We can solve the MCS problem by

modeling it as a sequence alignment problem [36]. In a sequence alignment problem,

CHAPTER 4. FINDING NESTED BICLUSTERS 72

the scores for a match, a mismatch, and a space should first be assigned. For the MCS

problem, the scores for a match, a mismatch, and a space are one, zero, and zero,

respectively [36]. Figure 4.9(b) shows the dynamic programming table for computing

the MCS of two sequences X = 〈3, 1, 4, 2〉 and Y = 〈1, 3, 4, 2〉, derived from rows 1

and 2 of the input matrix A, respectively. We denote the entry in the i-th row and the

j-th column by D[i, j]. We index the topmost row by i = 0 and use j = 0 to indicate

the leftmost column. Let xi and yj denote the i-th and the j-th element of X and Y ,

respectively. Then, the optimal substructure of the MCS problem gives the following

recursive formula [24]

D[i, j] =

0 : if i = 0 or j = 0,

D[i− 1, j − 1] + 1 : if i, j > 0 and xi = yj,

max(D[i− 1, j], D[i, j − 1]) : if i, j > 0 and xi 6= yj,

In addition, we place a traceback pointer (↖, ↑,←−) in every entry D[i, j] for i > 0

and j > 0, indicating where the value in the entry D[i, j] originated (i.e., D[i−1, j−1],

D[i−1, j], or D[i, j−1]). Each MCS corresponds to a traceback path from the largest

element in the table, and this path is obtained by following the traceback pointers,

which are indicated by the bold arrows in Figure 4.9(b). In this particular example,

two MCS exist, namely, 〈3, 4, 2〉 and 〈1, 4, 2〉. More details on this procedure can be

found in [24,36].

One possible improvement of Algorithm 4.2 would be to consider ‘noisy ordering.’

That is, we can devise an algorithm that can rearrange elements with similar values

in such a way that a longer MCS can emerge. This heuristic will help to find atomic

biclusters with more columns, from which larger Type 2 biclusters can potentially be

derived.

4.2.3 Finding Type 3 atomic biclusters

Definition 4.9. Given input matrix A = (R,C) and threshold τ ≥ 0, a Type 3

atomic bicluster for rows i, k ∈ R (i 6= k) is a two-row matrix, denoted by pair

CHAPTER 4. FINDING NESTED BICLUSTERS 73

Algorithm 4.3: Finding Type 3 atomic biclusters for pair of rows
input : A = (R, C), a data matrix
input : q, r ∈ R, row indices (q 6= r)
input : τ , a threshold
output: J ⊆ C, ({q, r}, J) is an atomic Type 3 bicluster

foreach j ∈ C do1

D[j].val := aqj − arj ;2

D[j].ind := j;3

Sort array s in ascending order with respect to the field val;4

begin := 1;5

end := 2;6

while (end ≤ |C|) do7

if (D[end].val −D[begin].val ≤ τ) then8

end := end + 1;9

if (end > |C|) then10

Report J = {D[begin].ind, . . . , D[end− 1].ind};11

else12

Report J = {D[begin].ind, . . . ,D[end− 1].ind};13

repeat14

begin := begin + 1;15

until (begin = end) or (D[end].val −D[begin].val ≤ τ);16

Figure 4.10: Algorithm to find Type 3 atomic biclusters.

P = ({i, k}, J), that satisfies the following: (1) P is a Type 3 bicluster on A; and (2)

there is no J ′ such that J ′ ⊃ J and ({i, k}, J ′) is also a Type 3 bicluster.

Algorithm 4.3 details our approach to find Type 3 atomic biclusters defined in

Definition 4.6. This algorithm is equivalent to Algorithm 4.1, except for Line 2. An

informal explanation is as follows. Algorithm 4.1 is used to find a Type 1 atomic bi-

cluster, or a one-row matrix in which the elements have similar values. Algorithm 4.3

is used to find a two-row matrix in which any 2 × 2 submatrix
[

e f
g h

]
has similar

values of (e− g) and (f − h), since |e− g − f + h| = |(e− g)− (f − h)| ≤ τ . Thus,

we can use Algorithm 4.1 to find Type 3 atomic biclusters, simply by subtracting the

values in one row from the values in another and considering the result as a one-row

matrix. This subtraction occurs in Line 2 of Algorithm 4.3. Some details helpful for

understanding our informal proof can be found in [107].

CHAPTER 4. FINDING NESTED BICLUSTERS 74

1 2 3 4

1

2

3

4

6.0 9.0 2.0 5.0

2.0 3.0 4.0 3.0

2.0 2.0 3.0 6.0

3.0 4.0 5.0 2.0

5

4.0

6.0

7.0

6.0

5 4.0 7.0 3.0 1.0 4.0

(a)

Row set {q, r} Column set J ∈ 2C

{1, 2} {3, 5}
{1, 3} {3, 4}
{1, 4} {1, 4}, {3, 5}
{1, 5} {1, 2}, {3, 5}
{2, 3} {1, 5}, {1, 2, 3}
{2, 4} {1, 2, 3, 5}, {4, 5}
{2, 5} {3, 4, 5}
{3, 4} {1, 2, 3}
{3, 5} ∅
{4, 5} {3, 4, 5}

(b)

Figure 4.11: (a) Input matrix A. (b) Type 3 atomic biclusters found from A by
Algorithm 4.3 (τ = 1).

Example 4.10. Figure 4.11(b) presents the Type 3 atomic biclusters found by Algo-

rithm 4.3 from the data in Figure 4.4(a), repeated in Figure 4.11(a). The parameter

used is τ = 1.

4.3 Our bicluster mining algorithm

4.3.1 Overview

We can formulate the bicluster mining problem in terms of a binary relation.

Definition 4.10. Given A = (R, C), an input data matrix, and D, a specific defini-

tion of a bicluster, RD is a binary relation on 2R × 2C:

RD = {(I, J)|The pair (I, J) forms a bicluster appearing in A under the definition D}.
(4.1)

Under this definition, the objective of bicluster mining is to find the elements of

the relation RD. We aim at finding only maximal biclusters, as stated in Section 4.1.3.

CHAPTER 4. FINDING NESTED BICLUSTERS 75

Assume that we can find a function, denoted by J, that accepts as input I ∈ 2R

and produces all maximal J ∈ 2C such that (I, J) ∈ RD. Then, we may devise a

naive algorithm that can provide all elements of RD: First enumerate every I ∈ 2R

and then feed it to the function J. Obviously, this approach is not feasible for a data

matrix of non-trivial size since the powerset 2R grows exponentially. Here we explain

how to improve this idea of exploiting the function J so that we can apply it to mining

nested biclusters appearing in large-scale data matrices. Formally, the definition of J

is as follows.

Definition 4.11. Given matrix A = (R,C), J is a function that maps I ∈ 2R to the

image J(I), where

J(I) = {J ∈ 2C |(I, J) ∈ RD and @J ′ ⊃ J s.t. (I, J ′) ∈ RD}.

In Section 4.3.2, we first explain how to define the function J using the atomic

biclusters previously developed. In addition, we propose a ZBDD-based technique

to implement the function efficiently. Section 4.3.3 then presents how to exploit

the function J to find nested biclusters, avoiding the exhaustive enumeration of I ∈
2R. We propose two algorithms: One uses a breadth-first approach and the other

employs a depth-first approach. Finally, Section 4.3.4 provides remarks on algorithm

complexity and other issues.

4.3.2 Representation and implementation of the function J

We first introduce the operator ¯, which is essentially equivalent to the operator ⊗
defined in Chapter 3 but does not contain redundant subsets.

Definition 4.12. Let T and U be two sets of subsets. Also let Q = {T ∩ U |∀T ∈
T , ∀U ∈ U}. Then, the binary operator ¯ on T and U is defined as follows:

T ¯ U = Q− {Q|∃Q′ ∈ Q s.t. Q′ ⊃ Q}. (4.2)

Theorem 4.1. Let T ,U ,W be sets of sets. Then, (T ¯ U)¯W = T ¯ (U ¯W).

CHAPTER 4. FINDING NESTED BICLUSTERS 76

Proof. We can prove the theorem by showing that (1) (T ¯ U)¯W ⊇ T ¯ (U ¯W)

and (2) (T ¯U)¯W ⊆ T ¯(U¯W). We first prove (1). For the sake of contradiction,

assume that (T ¯ U) ¯ W ⊂ T ¯ (U ¯ W). This means that there exists a set S

such that S ∈ T ¯ (U ¯W) and S 6∈ (T ¯ U)¯W . Assume that S = T ∩ (U ∩W),

where T ∈ T , U ∈ U , and W ∈ W . Since S 6∈ (T ¯ U) ¯ W , there must exist

W ′ ∈ W such that (T ∩ U) ∩W ⊂ (T ∩ U) ∩W ′. By the associative law for basic

set intersection, T ∩ (U ∩ W) = (T ∩ U) ∩ W ⊂ (T ∩ U) ∩ W ′ = T ∩ (U ∩ W ′).

In other words, if S 6∈ (T ¯ U) ¯ W , then there must exist W ′ ∈ W such that

(U ∩W) ⊂ (U ∩W ′). However, since S ∈ T ¯ (U ¯W), there cannot exist W ′ ∈ W
such that (U ∩ W) ⊂ (U ∩ W ′). We have reached a contradiction and thus our

original assumption that (T ¯ U) ¯ W ⊂ T ¯ (U ¯ W) must be false. Therefore,

(T ¯U)¯W ⊇ T ¯(U¯W). By symmetry, we can prove (T ¯U)¯W ⊆ T ¯(U¯W)

in a similar way.

We have shown that (T ¯U)¯W ⊇ T ¯(U¯W) and (T ¯U)¯W ⊆ T ¯(U¯W),

which completes the proof.

The associative law thus holds for the operator ¯, and it is trivial to show that

the commutative law, T ¯ U = U ¯ T , holds. Consequently, we can develop the

following notation.

Definition 4.13. The pairwise intersection of the k sets of sets T1, T2, . . . , Tk is de-

noted by

T1 ¯ T2 ¯ · · · ¯ Tk =
k⊙

i=1

Ti. (4.3)

In addition, we define the operator cover(S) for a set S in order to facilitate

further explanation.

Definition 4.14. Given a set S = {s1, s2, . . . , sk} with k ≥ 2, cover(S) is a mini-

mum edge cover of Kk, the complete graph with k vertices, in which the set of vertices

corresponds to S.

Example 4.11. {{0, 1, 2}, {2, 3, 4}} ¯ {{0, 2}, {4, 5}} = {{0, 2}, {4}}. Let S1 =

{1, 2, 3, 4} and S2 = {10, 11, 12}. Then, a possible instance of cover(S1) = {{1, 3},
{2, 4}}, and an example of cover(S2) = {{10, 11}, {10, 12}}.

CHAPTER 4. FINDING NESTED BICLUSTERS 77

Re-defining J in terms of atomic biclusters

The image J(I) defined in Definition 4.11 can be re-defined using atomic biclusters

by the following theorem.

Theorem 4.2. Let J1, J2, and J3 denote the function J for Types 1, 2, and 3,

respectively. Given input data A = (R, C), the image of I ∈ 2R, or J(I), can be

represented as follows.

• When the set I has only one or two elements:

J1({r}) = {J |({r}, J) is a Type 1 atomic bicluster for r ∈ R} (4.4)

J2({q, r}) = {J |({q, r}, J) is a Type 2 atomic bicluster for q, r ∈ R}(4.5)

J3({q, r}) = {J |({q, r}, J) is a Type 3 atomic bicluster for q, r ∈ R}(4.6)

• Otherwise:

J1(I) =
⊙

∀i∈I

J1({i}) (4.7)

J2(I) =
⊙

∀I′∈cover(I)

J2(I
′) (4.8)

J3(I) =
⊙

∀{i,k}⊆I

J3({i, k}) (4.9)

To evaluate Equations 4.7,4.8, and 4.9, we need to invoke the operator ¯ at most

(|I| − 1), (d |I|
2
e − 1), and

(|I|
2

)
times, respectively.

Example 4.12. To find the bicluster P1 in Figure 4.4(b), we can use Theorem 4.2

CHAPTER 4. FINDING NESTED BICLUSTERS 78

and the atomic biclusters presented in Figure 4.11(b) as follows:

J3({1, 2, 4, 5}) = J3({1, 2})¯ J3({1, 4})¯ J3({1, 5})
¯J3({2, 4})¯ J3({2, 5})¯ J3({4, 5})

= {{3, 5}} ¯ {{1, 4}, {3, 5}} ¯ {{1, 2}, {3, 5}}
¯{{1, 2, 3, 5}, {4, 5}} ¯ {{3, 4, 5}} ¯ {{3, 4, 5}}

= {{3, 5}}.

Proof of Theorem 4.2

The derivation of Equations 4.4, 4.5, and 4.6 is straightforward from the definition

of atomic biclusters. If the set I has only one row (Type 1) or two (Types 2 and 3),

the image J(I) simply consists of the column set of atomic biclusters for the row(s)

in I. Equations 4.7 and 4.8 can be derived from the generalization of Properties 4.1

and 4.2, respectively, by replacing the operator ∩ with the operator ¯ defined in

Section 4.3.2.

Here we focus on the derivation of Equation 4.9. To this end, we first propose the

following lemma.

Lemma 4.1. Let (I, J) be a nested bicluster. If {i, k} ⊆ I, then there exists at least

one set J ′ ∈ J3({i, k}) such that J ⊆ J ′.

Proof. Assume J ⊃ J ′ for all J ′ ∈ J3({i, k}). Since (I, J) is a nested bicluster

and I ⊇ {i, k}, its sub-bicluster ({i, k}, J) is also a nested bicluster under the same

definition. By definition, if J ′ ∈ J3({i, k}), then there exists no J ′′ ⊃ J ′ such that

({i, k}, J ′′) is yet another nested bicluster under the same definition. We have reached

a contradiction and thus our original assumption that J ⊃ J ′ for all J ′ ∈ J3({i, k})
must be false. Therefore, there must be at least one instance of J ′ ∈ J3({i, k}) such

that J ⊆ J ′.

Now we derive Equation 4.9. Let P = (I, J) be a maximal nested bicluster. Then,

by Lemma 4.1, for each {i, k} ⊆ I, there exists at least one set J{i,k} ∈ J3({i, k}) such

CHAPTER 4. FINDING NESTED BICLUSTERS 79

that J ⊆ J{i,k}. For the sake of explanation, assume for now that only one such J{i,k}
is contained in each J3({i, k}). Then, it follows that

J ⊆
⋂

∀{i,k}⊆I

J{i,k}. (4.10)

Moreover, since the bicluster P is maximal, there is no J ′ such that J ′ ⊃ J and

J ′ ⊆ ⋂
∀{i,k}⊆I J{i,k}. Thus, the following equation holds for J :

J =
⋂

∀{i,k}⊆I

J{i,k}. (4.11)

In general, each J3({i, k}) can have multiple instances of J{i,k}, not only one as pre-

viously assumed. Thus, we can have multiple instances of Equation 4.11, which can

be compactly represented using the operator ¯ defined in Section 4.3.2:

J ∈
⊙

∀{i,k}⊆I

{
J{i,k}|J{i,k} ∈ J3({i, k}), J ⊆ J{i,k}

}
. (4.12)

Finally, suppose that we replace the operands of¯ in Relation 4.12 with {J{i,k}|J{i,k} ∈
J3({i, k})} = J3({i, k}), removing the constraint on J . Then, we can find not only

the set J but also the other column sets that can form a nested bicluster with the

row set I:

{all column sets that can form a Type 3 bicluster with I} =
⊙

∀{i,k}⊆I

J3({i, k}). (4.13)

By definition, the operator ¯ gives only maximal sets. Therefore, Equation 4.13 is

equivalent to Equation 4.9. We have derived Equation 4.9, and this completes the

proof of Theorem 4.2.

Enhancement by dynamic programming

We can reduce the number of the ¯ operations required to evaluate the equations

in Theorem 4.2 by storing and re-using intermediate results. This idea is similar to

CHAPTER 4. FINDING NESTED BICLUSTERS 80

4

1

2

5

(a) Example 4.12: Theorem 4.2

4

5

1

2

I - {4}

I - {5}
{4,5}

(b) Example 4.13: Corollary 4.1

4

1

2

5

I - {5}
{4,5}

{1,5}

{2,5}

(c) Example 4.14: Corollary 4.2

Figure 4.12: Decomposition of the complete graph K4.

the concept of dynamic programming. In the equations in Theorem 4.2, we can see

that the optimal substructure [24] appears, which is a hallmark of the applicability of

dynamic programming.

For example, the process of realizing J3 can be compared to that of decomposing

a complete graph into its cliques. We start our explanation with revisiting Example

4.12. Let Kk denote the complete graph with k graph vertices. Suppose that we

have the graph K4, in which the vertices represent the elements of I = {1, 2, 4, 5} as

shown in Figure 4.12(a). In this figure, we can decompose the graph K4 into
(
4
2

)
= 6

different K2. This decomposition corresponds to evaluating Equation 4.9. We thus

evaluated J3({1, 2, 4, 5}) using J3({1, 2}), J3({1, 4}), . . . , J3({4, 5}) in Example 4.12.

Alternatively, we can decompose K4 into two different K3 and one K2 as shown

in Figure 4.12(b). The shaded triangle represents the set I − {5} = {1, 2, 4} and the

triangle indicated by bold lines represents I−{4} = {1, 2, 5}. This suggests a different

way of evaluating J3({1, 2, 4, 5}), namely, the evaluation using J3({1, 2, 4}), J3({1, 2, 5}),
and J3({4, 5}).

The alternative decomposition of J1 and J2 corresponding to Figure 4.12(b) is

simpler. Since I = (I − {4}) ∪ (I − {5}), Jt(I) is merely Jt(I − {4}) ¯ Jt(I − {5}),
for each t ∈ {1, 2}.

Corollary 4.1. Given input data A = (R, C), let set I ∈ 2R and suppose that i, k ∈ I

CHAPTER 4. FINDING NESTED BICLUSTERS 81

and i 6= k. Then, the image Jt(I) for each type t ∈ {1, 2, 3} can be represented as

follows:

J1(I) = J1(I − {i})¯ J1(I − {k}) (4.14)

J2(I) = J2(I − {i})¯ J2(I − {k}) (4.15)

J3(I) = J3(I − {i})¯ J3(I − {k})¯ J3({i, k}) (4.16)

When applying Corollary 4.1, we need to call the operator ¯ only once (Types 1

and 2) or twice (Type 3), as long as the intermediate results J(I−{i}) and J(I−{k})
are available. In Section 4.3.3, we explain how to store and re-use intermediate results

efficiently using a breadth-first search algorithm.

Example 4.13. We can apply Corollary 4.1 to the previous example as follows:

J3({1, 2, 4, 5}) = J3({1, 2, 4})¯ J3({1, 2, 5})¯ J3({4, 5})
= {{3, 5}} ¯ {{3, 5}} ¯ {{3, 4, 5}}
= {{3, 5}}.

Figure 4.12(c) shows another method to decompose the graph K4 for Type 3

biclusters. Here K4 is decomposed into one K3 and three different K2. The shaded

triangle represents the set I − {5} = {1, 2, 4} and the dotted lines the sets {1, 5},
{2, 5}, and {4, 5}. This suggests a different way of evaluating J3({1, 2, 4, 5}) using

J3({1, 2, 4}), J3({1, 5}), J3({2, 5}), and J3({4, 5}). The decomposition of J1 and J2

corresponding to Figure 4.12(c) remains in essence the same as the previous case.

Corollary 4.2. Given input data A = (R, C), let set I ∈ 2R and suppose that k, l ∈ I

and k 6= l. Then, the image Jt(I) for each type t ∈ {1, 2, 3} can be represented as

CHAPTER 4. FINDING NESTED BICLUSTERS 82

follows:

J1(I) = J1(I − {k})¯ J1({k}) (4.17)

J2(I) = J2(I − {k})¯ J2({k, l}) (4.18)

J3(I) = J3(I − {k})¯
{ ⊙

∀i∈I,i6=k

J3({i, k})
}

(4.19)

In order to apply Corollary 4.2, we need to execute the operator ¯ twice (Types 1

and 2) or at most (|I|−1) times (Type 3), as long as the result of J(I−{k}) is available.

The number of ¯ operations involved in the computation of J3 in Corollary 4.2 is thus

more than that in Corollary 4.1. However, it is easier to manage the partial results

in Corollary 4.2, thus compensating for the larger number of ¯ operations required.

Section 4.3.3 presents a depth-first search algorithm, which exploits Corollary 4.2 to

evaluate J efficiently.

Example 4.14. We can apply Corollary 4.2 to Example 4.12 as follows:

J3({1, 2, 4, 5}) = J3({1, 2, 4})¯ J3({1, 5})¯ J3({2, 5})¯ J3({4, 5})
= {{3, 5}} ¯ {{1, 2}, {3, 5}} ¯ {{3, 4, 5}} ¯ {{3, 4, 5}}
= {{3, 5}}.

Efficient implementation of the operator ¯ using ZBDDs

In order to use ZBDDs to implement the operator ¯, we first need to represent the

operands of ¯ by ZBDDs. The operand of ¯ is a set of column sets, J(I), and each

column set J ∈ J(I) can easily be converted to a combination (see Section 2.4) as

follows. Given input data A = (R, C), assume C = {1, 2, . . . , m}. Then, the set J

corresponds to an m-bit vector 〈b1, b2, . . . , bm〉, where bi = 1 if i ∈ J , and bi = 0

otherwise. Representing this m-bit vector by ZBDDs is a standard procedure and is

thus beyond the scope of this chapter. Further details can be found in Sections 2.4

and 3.4.2 as well as in [67,69,70].

Example 4.15. In Figure 4.11(b), J3({2, 5}) = {{3, 4, 5}}. The set {3, 4, 5} can be

CHAPTER 4. FINDING NESTED BICLUSTERS 83

0

3

1

1

0

4

0

1

0

{{3,4,5}}

5

1

1

(a)

0 1

1

0 1

1

0

1 4

0

1

0

{{1,4},{3,5}}

3

5
1

(b)

0

1

1

1

0

2

01

0

{{1,2},{3,5}}

5

1

1

3

1

4

0

0
0

0 1

1

{{1,4},{3,5}}

(c)

Figure 4.13: ZBDD representation of atomic biclusters. (a) J3({2, 5}) = {{3, 4, 5}}.
(b) J3({1, 4}) = {{1, 4}, {3, 5}}. (c) J3({1, 4}) = {{1, 4}, {3, 5}} and J3({1, 5}) =
{{1, 2}, {3, 5}}.

converted to 5-bit vector (00111) and represented by the ZBDD in Figure 4.13(a). In

the same example, J3({4, 5}) = J3({2, 5}). Thus, J3({4, 5}) can be represented by the

identical ZBDD for J3({2, 5}) without creating a new one.

Example 4.16. In Figure 4.11(b), J3({1, 4}) = {{1, 4}, {3, 5}}. This corresponds

to the set of combinations {10010, 00101} and can be represented by the ZBDD in

Figure 4.13(b). Also, J3({1, 5}) = {{1, 2}, {3, 5}} can share the part of the ZBDD for

J3({1, 4}), as shown in Figure 4.13(c).

Next, we implement the operator ¯ by directly manipulating the ZBDDs repre-

senting the operands. This allows us to avoid explicit enumeration of the intermediate

results, thus providing a large speed-up over the conventional methods to represent

and manipulate sets [69, 70]. As is often the case with the operators defined on ZB-

DDs, we define the operator ¯ recursively. The implementation of ¯ is essentially

equivalent to that of ⊗, and more details can be found in Section 3.4.2.

4.3.3 Finding nested biclusters

We present two methods to find nested biclusters. Both methods utilize the function

J previously developed. Before providing the details of these methods in Sections

4.3.3 and 4.3.3, we present an example to explain the fundamental ideas common in

both methods.

CHAPTER 4. FINDING NESTED BICLUSTERS 84

123 124 125 134 135 145 234 235 245 345

12 13 14 15 23 24 25 34 35 45

1234 2345134512451235

12345

(a)

123 124 125 134 135 145 234 235 245 345

12 13 14 15 23 24 25 34 35 45

1234 2345134512451235

12345

(b)

123 124 125 134 145 234 245

12 13 14 15 23 24 25 34 45

1234 1245

(c)

124 125 145 234 245

12 13 14 15 23 24 25 34 45

1245

(d)

Figure 4.14: The process to find the biclusters presented in Figure 4.4(b). This is
only for explanation of the idea, and in practice, we do not need the graph in its
entirety all the time. Refer to Algorithms 4.4 and 4.5 for more details.

An example of finding Type 3 biclusters

Figure 4.14 shows the process to find the biclusters in Figure 4.4(b) from the data

matrix in Figure 4.4(a), in which the set of rows R = {1, 2, 3, 4, 5}. In the graphs

shown in the figure, each vertex v has two associated fields, namely v.I and v.J . The

field v.I is to save a set of rows, and the field v.J is to store the image J(v.I). The

level of the vertex v is defined as the cardinality of v.I. Also, we connect vertex v1 at

level l and vertex v2 at level l + 1 by an edge if v1.I ⊂ v2.I.

Figure 4.14(a) presents a graph in which each vertex represents an elements in 2R

and a vertex is connected to others by the above rule. For example, v.I = {1, 2} for

the vertex v indicated by “12”. This vertex is connected to the vertices indicated by

“123”, “124”, and “125”.

We can make two key observations in the graph constructed as above. First, not

all vertices need to be examined. Thus, we can avoid exhaustive enumeration of

I ∈ 2R. Second, the intermediate results required to apply Corollaries 4.1 and 4.2 are

available from the vertices at the previous level.

The first observation is based upon the following fact: If J(I) = ∅, then J(I ′) = ∅

CHAPTER 4. FINDING NESTED BICLUSTERS 85

for all I ′ ⊇ I. This is because if the pair (I, J) does not represent a nested bicluster,

then the pair (I ′, J) with I ′ ⊇ I cannot be a nested bicluster either. For example,

in Figure 4.11(b) we know that J3({3, 5}) = ∅. Thus, it is possible to conclude that

J3(I) = ∅ for all I ⊇ {3, 5}. Consequently, we can eliminate any vertex v such that

v.I ⊇ {3, 5}. In the graph in Figure 4.14(b), the vertices to be deleted are indicated.

The example in Figure 4.14(c) shows that another vertex elimination process is

possible, starting from the vertices at level 3, namely, “123” and “134”. The vertex

“123” should be deleted because J3({1, 2, 3}) = J3({1, 2})¯J3({1, 3})¯J3({2, 3}) = ∅.
We can remove the vertex “134” similarly. Thus, any vertex v such that v.I ⊇ {1, 2, 3}
or v.I ⊇ {1, 3, 4} can be deleted. Finally, the graph in Figure 4.14(d) shows the

vertices that remain undeleted. It is these vertices to which we apply the function J

to find nested biclusters. Since the remaining vertices correspond to all I ∈ 2R that

can potentially be the row set of a nested bicluster, applying the function J to these

vertices enables us to find all the nested biclusters that satisfy the input parameters

specified.

To exploit the intermediate results stored in the vertices at the previous level, the

breadth-first algorithm in Section 4.3.3 starts with the vertices at level 2 and proceed

to level l + 1 from level l only after no vertex at level l is left. This is compatible

with the decomposition of J in Corollary 4.1. In contrast, the depth-first algorithm in

Section 4.3.3 starts with vertex v at level 2 and proceeds until the algorithm examines

all the vertices whose I set contains v.I. Then the algorithm starts with another

vertex at level 2. This algorithm fits with the decomposition of J in Corollary 4.2.

Both algorithms find the same nested biclusters, although one can be faster than the

other, depending upon the specific input data matrix and parameters used.

One important comment is in order. Obviously, it is not realistic to construct

the graph like the one in Figure 4.14(a) in its entirety, especially when the set R has

many elements. The examples in Figure 4.14 are only for explanation. As will be

described in Algorithms 4.4 and 4.5, the breadth-first and the depth-first algorithms

do not need to examine all the vertices simultaneously.

CHAPTER 4. FINDING NESTED BICLUSTERS 86

Algorithm 4.4: Breadth-first bicluster mining algorithm
input : A = (R,C), a data matrix
input : type ∈ {1, 2, 3}, bicluster type
input : parameters for atomic bicluster generation
output: nested biclusters

Generate atomic biclusters (see Section 4.2);1

foreach {q, r} ⊆ R do2

if type = 1 then3

J := J1({q})¯ J1({r});4

else5

J := Jtype({q, r});6

if J 6= ∅ then7

Create vertex v;8

v.I := {q, r};9

v.J := J ;10

v.level := 2;11

maxLevel := |R|;12

for l = 2 to maxLevel do13

for i = 1 to numVertices in level l do14

vi := i-th vertex in level l;15

foreach J ∈ vi.J do16

Collect bicluster (vi.I, J);17

if l < maxLevel then18

for j = i + 1 to numVertices in level l do19

vj := j-th vertex in level l;20

I := vi.I ∪ vj .I;21

if |I| 6= l + 1 then next;22

if a vertex for I exists then next;23

if type = 3 then24

ei := the element in I − vi.I;25

ej := the element in I − vj .I;26

J := vi.J ¯ vj .J ¯ J3({ei, ej});27

else28

J := vi.J ¯ vj .J ;29

if J 6= ∅ then30

Create vertex v;31

v.I := I;32

v.J := J ;33

v.level := l + 1;34

Remove vi;35

Remove redundancy and return remaining biclusters;36

Figure 4.15: Breadth-first algorithm

CHAPTER 4. FINDING NESTED BICLUSTERS 87

Breadth-first algorithm

Algorithm 4.4 details our breadth-first approach to find nested biclusters. The input

is a data matrix, bicluster type, and parameters for atomic bicluster generation. The

output are nested biclusters found from the input data matrix.

In Line 1, atomic biclusters are generated by the algorithms explained in Sec-

tion 4.2 with the input parameters.

In Lines 2–11, the base vertices at level 2 are generated. Each vertex v has

three associated data fields. The fields v.I and v.J are the same as explained in the

previous section. The field v.level is to store the level of the vertex v. For Type 2

or Type 3 biclusters, a new vertex is created for each pair of rows, unless no atomic

bicluster exists for the pair. The base vertices for Type 1 biclusters also start at level

2 by merging two atomic biclusters.

In Lines 13–34, the algorithm iterates for each level and performs the following

for each vertex at level l. In Lines 16–17, the algorithm reports any candidate

biclusters obtained from the previous iteration. In Lines 18–34, new vertices ap-

pearing at level l +1 are generated. To this end, the algorithm examines two vertices

vi and vj at level l. Lines 21–22 are to test if the two vertices are qualified to create

a new vertex at level l + 1. As long as the sets vi.I and vj.I have the same elements

but one, the vertices vi and vj can create a new vertex at the next level. Since a vertex

at level l + 1 should have only one more row than a vertex at level l, if the union of

vi.I and vj.I has more than l + 1 elements, the two vertices vi and vj cannot spawn

a new vertex in the next level. For example, if vi.I = {1, 2, 3} and vj.I = {1, 2, 4}
then these two vertex can create a new vertex, v, at level 4 with v.I = {1, 2, 3, 4}.
In contrast, if vi.I = {1, 2, 3} and vj.I = {1, 4, 5}, then they cannot generate a new

vertex at level 4, because the row sets differ by two elements. This way of creating

new vertices avoids exhaustive enumeration. In Line 23, if the two vertices vi and vj

are eligible for creating a new vertex, the algorithm sees whether the corresponding

vertex already exists or not. If not, the algorithm computes the set J for this new

vertex by Corollary 4.1 in Lines 24–29. In Lines 30–34, the new vertex v is actu-

ally created and stored for further reference in the next iteration, if the set J is not

empty. Otherwise, no new vertex is created. This corresponds to removing all the

CHAPTER 4. FINDING NESTED BICLUSTERS 88

downstream of the vertex v in which v.J = ∅ (e.g., Figure 4.14(b) and 4.14(c)).

In Line 35, a vertex is deleted as soon as it becomes of no use. Thus, the algorithm

can keep at most two levels of the vertices at a time, rather than the entire graph.

In Line 36, any redundant biclusters are removed and the remaining biclusters

are returned.

Depth-first algorithm

In Section 4.3.3, we explained our breadth-first approach. In this section, we introduce

an alternative bicluster mining algorithm using a depth-first approach. We start the

description with the examples in Figure 4.14 and 4.16. In order to visit the vertices

in the depth-first sense, we need to restructure the graph. In particular, we remove

some edges from the graph in Figure 4.14(a) so that the graph becomes the trie in

Figure 4.16(a). A trie [2] is a special structure for representing sets of words. Here

we regard the set I ∈ 2R as a word assuming a total order among the elements in

R. For instance, we can assume the total order 1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 for the set

R = {1, 2, 3, 4, 5}. Hence, the set I = {1, 2, 3} corresponds to the word “123”. This

word is inserted in to the trie as the descendant of the word “12” and as the parent

of the words “1234” and “1235”, as shown in Figure 4.16(a).

Algorithm 4.4 provides the details of our depth-first approach. In Lines 2–6,

the algorithm traverse the trie in preorder. More precisely, our algorithm constructs

the trie in preorder rather than traverses it. In other words, the algorithm creates

vertices whenever necessary and deletes them afterwards rather than keeping the trie

in its entirety all the time. In Line 7, the algorithm reports the nested biclusters

produced after removing redundant biclusters, if any.

For each vertex v encountered in this preorder construction of the trie, the algo-

rithm performs the following (Lines 8–36). The algorithm computes v.J by Corol-

lary 4.2 in Line 18–24. If the set v.J is empty, the algorithm does not proceed to

examining the descendant vertices and returns to the parent vertex (Line 25). This

is equivalent to deleting all the descendant vertices in Figure 4.16(b). If the set v.J
is not empty, the algorithm produces nested biclusters (v.I, J) for all J ∈ J(v.I) in

Lines 26–27. Then the algorithm creates a list of the descendant vertices in Lines

CHAPTER 4. FINDING NESTED BICLUSTERS 89

123 124 125 134 135 145 234 235 245 345

12 13 14 15 23 24 25 34 35 45

1234 2345134512451235

12345

1 2 3 4 5

/

(a)

123 124 125 134 135 145 234 235 245 345

12 13 14 15 23 24 25 34 35 45

1234 2345134512451235

12345

1 2 3 4 5

/

(b)

124 125 135 145 234 235 245 345

12 13 14 15 23 24 25 34 35 45

23451245

1 2 3 4 5

/

(c)

124 125 145 234 245

12 13 14 15 23 24 25 34 45

1245

1 2 3 4 5

/

(d)

Figure 4.16: An example to explain the depth-first bicluster mining algorithm.

CHAPTER 4. FINDING NESTED BICLUSTERS 90

Algorithm 4.5: Depth-first Bicluster Mining Algorithm
input : A = (R,C), a data matrix
input : type ∈ {1, 2, 3}, bicluster type
input : parameters for atomic bicluster generation
output: nested biclusters

Generate atomic biclusters (see Section4.2);1

foreach {q, r} ⊆ R do2

Create vertex v;3

v.I := {q, r};4

ConstructTrieInPreorder(v);5

delete v;6

Remove redundancy and return remaining biclusters;7

procedure ConstructTrieInPreorder (vertex v)8

begin9

if |v.I| = 2 then10

if type = 1 then11

v.J := J1({q})¯ J1({r});12

else13

v.J := Jtype(v.I);14

else15

vertex p := v.parent;16

k := the element in v.I − p.I;17

if type = 1 then18

v.J := p.J ¯ J1({k});19

else if type = 2 then20

k′ := any element in p.I;21

v.J := p.J ¯ J2({k, k′});22

else23

v.J := p.J ¯ (¯∀i∈p.I J3({i, k}));24

if v.J = ∅ then return;25

foreach J in v.J do26

Collect bicluster (v.I, J);27

l := the “largest” element in v.I wrt a total order ≺;28

I := {i|i ∈ R and l ≺ i};29

foreach i ∈ I do30

create vertex w;31

w.I := v.I ∪ {i};32

w.parent := v;33

ConstructTrieInPreorder(w);34

delete w;35

end36

Figure 4.17: Depth-first algorithm

CHAPTER 4. FINDING NESTED BICLUSTERS 91

28–29. This step is necessary because the algorithm does not keep the entire trie all

the time, and thus the vertex v is not already connected to its children. The “largest”

element in Line 28 means the “largest” element in the total order we are assuming

among the elements of R. For example, the largest element of the set {1, 2, 4} is

the element “4”, assuming 1 ≺ 2 ≺ 4. In Lines 30–35, the algorithm creates the

descendant vertices and visits them to repeat the steps performed in Lines 8–36.

4.3.4 Remarks

The bicluster mining problem addressed in this dissertation is related to the problem

of finding the maximum edge biclique in a bipartite graph, a problem known to be

NP-complete [65, 76]. Although the worst-case complexity of Algorithms 4.4 and 4.5

is exponential in the number of rows in the input data matrix, the execution time

on typical benchmarks is practical, as will be shown in subsequent chapters. This is

due to the efficient techniques such as the ZBDD-based symbolic manipulations and

the dynamic programming approach, which enable us to avoid the exhaustive and

explicit enumeration of the intermediate results. In particular, the role of the ZBDDs

is crucial in this study. Without using ZBDDs, it would not be possible to achieve

the efficiency that the current implementation of our algorithm shows.

The bicluster mining algorithms discussed so far are exact in the sense that they

can find all the biclusters that satisfy specific input parameters. If desired, it is

possible to employ a heuristic algorithm that runs quickly but can find only a subset

of the possible biclusters. For example, we can implement a “greedy” ¯ operator that

reports only k largest (in terms of cardinality) sets, which will make the cardinality of

J decrease. We can also utilize a measure of overlap such as Jaccard’s coefficient [66]

to avoid generating “similar-looking” atomic biclusters, thus reducing the number of

atomic biclusters considered in later steps.

CHAPTER 4. FINDING NESTED BICLUSTERS 92

4.4 Summary

This chapter has proposed an effective computational method that can be useful for

a variety of data mining applications. Given a data matrix, the proposed method

can find biclusters appearing as a submatrix of the data matrix. In particular, we

introduced the notion of nested biclusters and formulated the problem of finding three

types of nested biclusters frequently encountered in the literature. We also mathemat-

ically characterized the problem and developed a novel method applicable to large-

scale biological data. The proposed method employs dynamic programming as well as

efficient data structures such as zero-suppressed decision diagrams (ZBDDs), which

were particularly useful in extending the scalability of our method. Consequently,

given a data matrix of practical scale, our approach can find with great efficiency all

the nested biclusters that satisfy specific input parameters. The application of this

method to several genomic data mining problems will follow in subsequent chapters.

Chapter 5

DNA Microarray Data Analysis

Chapters 3 and 4 described a ZBDD-based biclustering technique. This computa-

tional method was tested with large-scale genomic data sets, and the experimental

results are presented in the remaining chapters. This chapter shows the details of an-

alyzing gene expression data sets obtained from DNA microarray [27,62] experiments.

DNA microarray technology allows us to monitor transcription levels of thousands

of genes simultaneously and helps us to annotate gene functions, reconstruct gene

regulatory networks, diagnose disease conditions, and characterize effects of medical

treatments.

Section 5.1 explains the data preparation and evaluation criteria, and Section 5.2

presents the experimental results.

5.1 Experiment design

5.1.1 Data preparation

To verify the correctness of the proposed method, it was first tested with synthetic

data sets that contain pre-defined embedded biclusters. Then, actual gene expression

data sets were used for performance evaluation.

93

CHAPTER 5. DNA MICROARRAY DATA ANALYSIS 94

Synthetic data

The synthetic data were prepared as follows. I first created null matrices of 100 rows

and 5 different numbers of columns (1K, 3K, 6K, 9K and 12K). I then replaced the

elements of each matrix with random numbers ranging from 0 to 500. For the matrix

of n = 100 rows and m ∈ {1K, 3K, 6K, 9K, 12K} columns, we embedded 0.05m

pre-defined biclusters that have at least 0.1n rows and at least 0.01m columns. Each

pre-defined bicluster was created in such a way that the values in every row or column

fluctuate in harmony1 and that all the methods involved in the experiment can detect

the bicluster.

Biological data

Three different gene expression data sets were prepared for experiments. One was

the yeast Saccharomyces cerevisiae cell cycle expression data [22, 99] produced by

Affymetrix gene chip experiments. This data set contains the expression information

of 2,884 genes under 17 experimental conditions. The second data set was the cDNA

microarray data for renal cell carcinoma [42], which represents the expression levels

of 1,876 genes under 27 different experimental conditions. The third was the B-cell

lymphoma data set [4], which contains normal and cancerous cell-line samples from

119 patients for 4,026 genes.

Usually, gene expression data is arranged in a data matrix, in which each row

corresponds to one gene and each column to one experimental condition. For more

information on gene expression data, we refer the interested to [52]. For example,

Figure 5.1 shows the heat map of the renal cell carcinoma data set as well as some

biclusters found by our method.

1Every row or column is a shifted version of each other; examples are shown in Figure 5.2(a)
and 5.2(b).

CHAPTER 5. DNA MICROARRAY DATA ANALYSIS 95

(a) Renal cell carcinoma data [42]

Down-regulation Up-regulation

(b) Example biclusters

Figure 5.1: The heat map of the renal cell carcinoma data [42] and some biclusters
found by our method. The legend for the heat map is also presented in the upper
right corner. The red color indicates up-regulation whereas the green color represents
down-regulation. The black color means no change in regulation level. (a) The entire
data matrix with 1,876 rows (genes) and 27 columns (experimental conditions). (b)
Some biclusters (submatrices) discovered by our method.

CHAPTER 5. DNA MICROARRAY DATA ANALYSIS 96

5.1.2 Evaluation criteria

Basic performance indicators

The performance of the algorithm was evaluated in terms of response time, the number

of biclusters discovered, and the input data size that can be handled.

Coherence in terms of MSR scores

As mentioned in Section 2.3.3, the mean squared residue (MSR) scores can measure

the degree of coherence exhibited by the elements in a matrix. There, a residue was

defined for each element in a matrix as the difference between the element and the

mean of all elements of the matrix. The residue of element aij of a matrix denoted

by pair (I, J) is rij = aij − ai• − a•j + a••, where ai• is the mean of the ith row, a•j

the mean of the jth column, and a•• is the mean of all elements in A. The MSR of

the matrix was then defined as

MSR(I, J) =
1

|I||J |
∑

i∈I,j∈J

r2
ij. (5.1)

Thus, a low value of residue typically means a high level of coherence, and vice

versa [21]. For example, the MSR score of the biclusters depicted in Figure 5.2(a)

and 5.2(b) is zero, since the values fluctuate in harmony. In contrast, the bicluster

shown in Figure 5.2(d) is very noisy and thus has a higher MSR score. The bicluster

in Figure 5.2(c) has an intermediate MSR score. Consequently, the MSR scores can

be useful to evaluate the quality of biclusters of all types defined in this study.

Statistical significance

To assess the statistical significance and biological meaning of discovered biclusters,

I employed a technique [98] that can compute the p-value of each bicluster with

respect to known (putatively correct) biological knowledge. Suppose prior knowledge

classifies N genes into M classes, H1, H2, . . . HM . Let P be a bicluster with g genes

and assume that out of those g genes, gj genes belong to class Hj. Assuming the

CHAPTER 5. DNA MICROARRAY DATA ANALYSIS 97

0

50

100

(a) MSR = 0

0

50

100

(b) MSR = 0

0

50

100

(c) MSR = 103

0

50

100

(d) MSR = 946

Figure 5.2: MSR scores as a measure of bicluster quality. A low MSR value typically
means a high level of coherence, and vice versa [21].

CHAPTER 5. DNA MICROARRAY DATA ANALYSIS 98

most abundant class for the genes in P is Hi, the hypergeometric distribution is used

to calculate p, the p-value of the bicluster P :

p =

g∑

k=gi

(|Hi|
k

)(
N−|Hi|

g−k

)
(

N
g

) . (5.2)

That is, the p-value corresponds to the probability of obtaining at least gi elements

of the class Hi in a random set of size g. As the known biological knowledge for the

experiments, the categories of yeast genes proposed by Tavazoie et al. [99] and the

human genes classes reported by Higgins et al. [42] were used.

Receiver operating characteristic curve

As will be seen in Figure 5.6(b), a receiver operating characteristic (ROC) curve is

a plot of the true positive rate
(

TP
TP+FN

)
versus the false positive rate

(
FP

FP+TN

)
of a

screening test, where the different points on the curve correspond to different cut-off

points used to designate test positives [30, 83]. The two axes of the ROC curve thus

represent trade-offs between errors (false positives) and benefits (true positives) that

a classifier makes between two classes [32].

The area under the ROC curve (AUC) is a reasonable summary of the overall

diagnostic accuracy of the test [83]. Consequently, the closer the curve follows the

left-hand border and then the top border of the ROC space, the more accurate the

test. Likewise, the closer the curve comes to the 45-degree diagonal of the ROC space,

the less accurate the test.

5.1.3 Implementation

The proposed algorithm was implemented in ANSI C++ with the ZBDD libraries

provided by the CUDD2 and EXTRA3 packages. For comparison, four different bi-

clustering techniques were implemented as listed in Table 5.1. The experiments were

conducted on a 3.02 GHz Linux machine with 4 GB RAM. The specific algorithm

2http://vlsi.colorado.edu/∼fabio/CUDD/cuddIntro.html
3http://www.ee.pdx.edu/∼alanmi/research/extra.htm

CHAPTER 5. DNA MICROARRAY DATA ANALYSIS 99

Table 5.1: The bicluster mining methods tested in the experiments.

ID Name/description Algorithm employed

method 1 δ-biclustering [21] Greedy iterative search
method 2 δ-pClustering [107] Exhaustive enumeration
method 3 GEMS [112] Gibbs sampling
method 4 Our method implemented without ZBDDs Algorithms 4.4, 4.5

Our method Our method fully implemented Algorithms 4.4, 4.5

Table 5.2: The algorithm parameters used for the experiments.

Experiments Algorithms and parameters

Our method method 1 method 2 method 3
Figure Data τ α δ δ nr nc a w

5.3 Synthetic 0 1.2 1000 0 10 10–120 0.01 250

5.4(a), 5.5(a), 5.6(a) Yeast [22,99] 75–80 1.2 300 10–15 80 10–12 0.25 15–30

5.1, 5.4(b), 5.5(b) Kidney [42] 20–25 1.2 150 20–25 10–14 18–20 0.01–0.1 25–75

5.6(b) B-cell [4] 70–75 1.2 1200 10–20 45–55 4–7 – –

parameters used for the experiments are shown in Table 5.2.

5.2 Experimental results

5.2.1 Algorithm performance evaluation

Response time and the number of discovered biclusters

We started our experiments with synthetic data sets to validate the correctness of

our method. In addition, synthetic data sets can serve as convenient benchmarks to

compare different algorithms. We invoked the methods listed in Table 5.1 with the

parameters specified in Table 5.2. Figure 5.3(a) shows the response time spent by

each method in order to find all the embedded biclusters. Figure 5.3(b) shows the

plot of the total number of biclusters discovered by each method given the same time

as spent by our method implemented with ZBDDs.

We then tested the algorithms with the actual gene expression data sets listed in

Table 5.1, using the parameters specified in Table 5.2. In the plots in Figure 5.4(a)

and 5.4(b) we compared the time to find the first k biclusters from the yeast cell

CHAPTER 5. DNA MICROARRAY DATA ANALYSIS 100

1

10

100

1000

10000

METHOD 1 METHOD 2 METHOD 3 METHOD 4 Our method

T
im

e
(s

ec
.)

12K

9K

6K

3K

1K

(a)

1

10

100

1000

1K 3K 6K 9K 12K

Data size

pa

tt
er

ns
 f

ou
nd

Our method

METHOD 4

METHOD 3

METHOD 2

METHOD 1

(b)

Figure 5.3: Performance comparison using synthetic data sets. The missing points on
the plots mean that the corresponding experiment could not be finished in reasonable
time. (a) The response time spent by each method in order to find all the embedded
biclusters from the synthetic data sets of various sizes. (b) The number of biclusters
found by each method within the same time spent as our method.

CHAPTER 5. DNA MICROARRAY DATA ANALYSIS 101

cycle data and the renal cell carcinoma data, respectively. The x-axis is the number

of biclusters produced and the y-axis is the response time to find these biclusters. Our

methods as well as method 2 and method 4 do not take as input the exact number

of biclusters to find. Thus, we ran these algorithms multiple times with different

parameter values to find approximately k biclusters. For method 1 and method 3,

the exact number of biclusters to find was specified as input parameters.

We can see in the experiments that it takes less time for our method to find all

the embedded biclusters and that our method can find more biclusters given the same

time, compared with the other methods tested. Especially, we observed that the use

of ZBDDs indeed provides a substantial speed-up over the alternative implementation

without ZBDDs.

Coherence in terms of MSR scores

Figure 5.5(a) and 5.5(b) show box plots that compare the MSR scores of the biclusters

discovered from the yeast cell cycle and the renal cell carcinoma data, respectively.

A box plot is a plot that represents graphically several descriptive statistics such as

median and percentiles of a data sample [29]. The reader can refer to the caption of

Figure 5.5 to find out how to read a box plot.

As is evident from the box plots, the biclusters found by our method have the

lowest median MSR scores in our experiments. To quantitatively establish this ob-

servation, we performed the Wilcoxon rank sum test [29] to compare the biclusters

discovered by our method with the others. We generated approximately 500 biclus-

ters per method for each data set and compared a group of biclusters found by our

method with another group of biclusters detected by an alternative method. In all

the cases we tested, the difference in the median was statistically significant at 0.01%

level (P < 0.0001). This result shows that our method tends to find better biclusters

with respect to the MSR scores.

CHAPTER 5. DNA MICROARRAY DATA ANALYSIS 102

0.1

1

10

100

1000

0 50 100 150 200 250 300

patterns discovered

T
im

e
(s

ec
.)

METHOD 1
METHOD 2
METHOD 3
METHOD 4
Our Method

(a) Yeast cell cycle data [22,99]

1

10

100

1000

10000

0 500 1000 1500 2000 2500 3000

patterns discovered

T
im

e
(s

ec
.)

METHOD 1
METHOD 2
METHOD 3
METHOD 4
Our Method

(b) Renal cell carcinoma data [42]

Figure 5.4: Performance comparison using biological data sets. The missing points on
the plots mean that the corresponding experiment could not be finished in reasonable
time.

CHAPTER 5. DNA MICROARRAY DATA ANALYSIS 103

METHOD 1 METHOD 2 METHOD 3 Our Method

100

150

200

250

300

350

M
SR

 s
co

re
s

(a) Yeast cell cycle [99]

METHOD 1 METHOD 2 METHOD 3 Our Method

0

50

100

150

200

250

300

350

400

450

M
SR

 s
co

re
s

(b) Renal cell carcinoma [42]

Figure 5.5: Box plots for MSR comparison. The line in the middle of a box indicates
the position of the median. The upper and lower boundaries of the box represent the
location of the 75th and 25th percentiles, respectively. The symbol ‘x’ outside the
ends of the tails corresponds to outliers.

CHAPTER 5. DNA MICROARRAY DATA ANALYSIS 104

5.2.2 Bicluster quality evaluation

The experiments presented so far have demonstrated that our method outperforms

the alternatives in terms of efficiency and the number of biclusters found. Here we

present more experimental results to show that our method can produce statistically

more significant and biologically more meaningful biclusters, thus suggesting that our

method can be helpful to the researchers in biomedicine as well.

To this end, we let each algorithm find biclusters from the biological data sets

used and then calculated the p-value of each biclusters by the method explained in

Section 5.1.2. Figure 5.6(a) presents the correspondence plot [98] for the biclusters

generated by several different methods from the yeast data set. The plot presents

the fraction of biclusters whose p-value is at most P out of the n best biclusters

discovered, for each p-value P on the plot. In this plot, early departure of a curve

from the x-axis indicates the existence of biclusters with low p-values. Consequently,

the area under a curve approximately shows the degree of statistical significance of

the biclusters used to draw the curve. Figure 5.6(a) includes randomly generated

biclusters. This plot indicates that the biclusters shown are all far from the random

noise. It also demonstrates that the biclusters generated by our algorithm tend to be

more statistically significant than the others, meaning that our biclusters conform to

the known classification more accurately.

For additional bicluster quality evaluation, we produced ROC curves based upon

the biclustering results from the B-cell lymphoma data set. Figure 5.6(b) presents

the results.

Since any clustering algorithm corresponds to the unsupervised learning method, I

associated each bicluster with known classes in order to draw an ROC curve. Suppose

prior knowledge classifies M samples into two classes, P and N . Let B be a bicluster

in which mP samples belong to the class P and mN samples belong to the class N .

The class of bicluster B is set to P if mN

mP +mN
< t for a given threshold t. Otherwise,

the class of B is set to N . Determining the class of a bicluster thus corresponds to a

test. Each sample is classified into one of (TP, TN, FP, FN) as usual, and the ROC

curve is drawn varying the parameter t.

This result shows that our algorithm has a better characteristic in the ROC space

CHAPTER 5. DNA MICROARRAY DATA ANALYSIS 105

0.0

0.5

1.0

-20 -15 -10 -5 0

p-value (log)

F
ra

ct
io

n
of

 p
at

te
rn

s

METHOD 1

METHOD 2

Our Method

Random

(a) Correspondence plot

0

0.5

1

0 0.5 1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

METHOD 1

Our method

Random

METHOD 2

(b) ROC curve

Figure 5.6: (a) The correspondence plot depicts the distribution of p-values of the
produced biclusters with respect to a known classification of experimental conditions
or gene annotations. The plot presents the fraction of biclusters whose p-value is at
most P out of the n best biclusters discovered, for each p-value P on the plot. We
used the yeast cell cycle data [99]. (b) In a receiver operating characteristic (ROC)
curve, the abscissa is the false positive rate, FP/(FP + TN), and the ordinate is the
true positive rate, TP/(TP + FN). We used the B-cell lymphoma data [4].

CHAPTER 5. DNA MICROARRAY DATA ANALYSIS 106

than the alternative methods tested. Consequently, the biclusters produced by our

method tend to represent a more accurate classification of the genes or samples in-

volved.

5.3 Summary

We performed experimental studies to analyze the performance of our algorithm on

several benchmarks, including both synthetic and real expression data sets. It was

observed that the proposed method outperforms some alternative methods not only

in terms of efficiency but also with respect to the total number of biclusters discov-

ered. In particular, it was confirmed that the use of ZBDDs can greatly enhance the

scalability of our approach and enable the users to apply it to large-scale data sets.

In addition, the biclusters discovered by the proposed technique tend to conform with

the prior biological knowledge more closely.

Microarray analysis is improving our understanding of biomedical diagnosis and

prognosis. For instance, transcription profiling using DNA microarrays has great

potential as a systematic approach for discovering new classes of diseases and for

assigning known diseases to classes in order to predict response to therapy. Thus, it

is perceived that gene expression monitoring could provide new insights into many

aspects of disease pathology, and the method described in this dissertation can be an

invaluable tool for this.

Chapter 6

Linking Gene Expression and

Clinical Traits

This chapter introduces a computational method to link clinical traits with genes that

are potentially responsible for these traits. This method is based upon the biclustering

algorithm explained in Chapter 4.

6.1 Introduction

The invention of DNA microarray technologies has enabled researchers to simultane-

ously monitor the expression level of virtually all known genes [29,52]. Thus, for the

purpose of finding genes related to a certain clinical trait (or parameter) of interest,

it has become feasible to examine all the genes available and then select only those

whose expression is consistently correlated with the trait over many samples. Al-

though correlation does not always imply causality, this approach has been successful

in many studies as an attempt to understand genetic mechanisms underlying clinical

observations [17,102,109,111].

To measure correlation between a gene and a clinical trait, existing approaches

obtain a vector of the expression level of the gene over a number of samples and

another vector of the value of the clinical trait over the same samples and then

calculate statistical correlation between two vectors. By applying this procedure to

107

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 108

many genes, we can identify some genes correlated to the clinical trait of interest.

Proceeding one step further from prior methods that can reveal one-to-many re-

lationships between a single trait and multiple genes (or vice versa), this chapter in-

troduces a method that can find many-to-many relationships between multiple genes

and traits using the co-clustering method proposed in Chapter 4.

Given gene expression data and clinical parameter values, we first create a ma-

trix called correlation matrix that can collectively represent the degree of correlation

between genes and clinical traits. Each row and column of this matrix corresponds

to a gene and a clinical trait, respectively. Then, our method searches co-clusters or

submatrices (with some semantics to be defined) covering the correlation matrix. As

will be clear shortly, these co-clusters can be found by the algorithm to find Type 3

nested biclusters explained in Chapter 4.

Example 6.1. Figure 6.1 shows an example of co-clustering genes and clinical traits.

Figure 6.1(a) is a matrix of imaging traits (e.g., tumor size) derived from the brain

image shown in Figure 6.1(b). An example of a gene expression matrix is shown in

Figure 6.1(c). In this matrix, the arrangement of the columns (patients) should be

identical to the arrangement of the columns in Figure 6.1(a). Then, it is possible to

calculate the Pearson correlation coefficient [83] between two row vectors, one from

the trait matrix and the other from the gene expression matrix. Figure 6.1(d) shows

a plot of the coefficients for every pair of rows. This plot can be represented by a

matrix shown in Figure 6.1(e). This matrix is an example of the correlation matrix,

and co-clusters of genes and clinical traits can be found from this matrix. In this

particular example, Genes 2, 3, and 4 were found to be linked to Traits 1 and 2.

We tested our method with the acute myelogenous leukemia (AML) data set

[17], which consists of a DNA microarray data matrix and a parameter matrix for

119 patients, 15 parameters, and 6283 genes. We identified 43 co-clusters using the

proposed method. To justify the grouping of certain genes and clinical traits by the

co-clusters found from the AML data, we present some supporting evidence of co-

clustered genes and traits from the literature. In addition, we show that certain gene

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 109

Patients

Patients

(a) (b)

(c) (d) (e)

: :

0.4 0.5 0.6 0.5 0.4Trait 2

0.6 0.7 0.8 0.9 1.0Trait 1

0.5

0.5 0.4 0.3 0.2 0.2

0.1 0.2 0.3 0.4 0.5

0.6 0.7 0.8 0.5

0.8 0.7 0.6 0.4 0.5

1.0 1.1 1.2 1.3 1.4

Gene 1

Gene 2

: :

-1 0 +1

-0.2 -0.9

0.0 1.0

0.7 0.2

-0.2 -0.9

0.0 1.0

: :

T
ra
it 2

T
ra
it 1

Gene 1

Gene 2

: :

Gene 3

Gene 4

Gene 3

Gene 4

Figure 6.1: An example of co-clustering genes and clinical traits. (a) A matrix of
clinical traits over a set of patients. This matrix was derived from the brain image
shown in (b). Trait 1 can be, for instance, the size of a tumor. (b) The brain image.
(c) A gene expression matrix. Here the columns are arranged in the same order as in
(a). (d) A plot showing the correlation coefficient between two rows in the matrices
in (a) and (b). (e) A correlation matrix from which co-clusters are found.

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 110

Data preparation

Correlation matrix computation

Finding pairwise co-clusters

Deriving co-clusters

Step 1 (Section 6.2.2)

Step 2 (Section 6.2.4)

Step 3 (Section 6.2.5)

(Section 6.2.1)

Figure 6.2: A flowchart of the method to find co-clusters of genes and clinical traits.

ontology (GO) [100] terms annotating genes in some co-clusters are significantly over-

represented. Taken together, these experimental studies suggest that our method can

reveal biologically meaningful connections between gene expression and clinical traits.

The remainder of this chapter is organized as follows. Section 6.2 explains at

length our method to find co-clusters of genes and clinical traits. Experimental results

and discussions are presented in Section 6.3, followed by a summary in Section 6.4.

6.2 Method

The input of our method consists of two data matrices. One is a gene expression data

matrix, and the other is a matrix of clinical parameter values. The output is a set of

co-clusters. A co-cluster is composed of a subset of the genes in the gene expression

data and a subset of the clinical parameters in the parameter matrix. Informally, a

co-cluster is a group of genes and traits that are closely related to each other, given

the input matrices. A formal definition will be presented in Section 6.2.3.

As seen in Figure 6.2, the proposed method performs three major steps excluding

data preparation.

Step 1 (Section 6.2.2) An intermediate data matrix called correlation matrix is

constructed from the input matrices.

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 111

Step 2 (Section 6.2.4) A special type of co-clusters called pairwise co-clusters are

found in the correlation matrix.

Step 3 (Section 6.2.5) Co-clusters are derived from the pairwise co-clusters previ-

ously discovered.

6.2.1 Data preparation

Let S represent a set of clinical samples. For each sample in S, gene expression levels

are measured by the DNA microarray technology of choice, and we let G be the set

of genes in the measurement. In addition, certain clinical traits are recorded for each

sample, and we let T be the set of the recorded traits.

The input of our method consists of two data matrices constructed from the above

experiments. One is a gene expression data matrix denoted by pair A = (G,S). That

is, A ∈ R|G|×|S|, and the element aik of the matrix A represents the expression level

of gene i for sample k. The other matrix is denoted by pair B = (T, S), where

the element bjk of the matrix B corresponds to the value of trait j for sample k.

Depending upon the type of trait j, bjk may be quantitative, categorical, or others,

as listed in Table 6.1. We arrange the columns of A and B in the same order.

6.2.2 Correlation matrix computation

The first step of our method is to construct a correlation matrix by combining the

input matrices A and B. As illustrated in Figure 6.3, the row set and the column

set of the correlation matrix C are G and T , respectively. Each element cij of C

indicates the degree of correlation between gene i and trait j. To calculate cij, we

take advantage of an existing statistical method. More precisely, the element cij is

the statistic defined in significance analysis of microarrays (SAM) [102], namely,

cij =
rij

sij + s0

. (6.1)

In this statistic, rij is a score that measures the degree of correlation between the

expression level of gene i and the value of clinical trait j, sij is the “gene-specific

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 112

A

B

C

samples

g
e
n
e
s

tr
a
it
s

gene i

trait j

traits

g
e
n
e
s

cij

samples

Figure 6.3: Construction of the correlation matrix. A co-cluster appears as a subma-
trix of the correlation matrix C.

scatter” or the standard deviation of repeated expression measurements, and s0 is a

“fudge” factor to prevent the computed statistic from becoming too large when sij is

close to zero [29]. Intuitively, cij is a correlation coefficient over a standard deviation

and is very similar to the t-statistic [83] for hypothesis testing.

This particular statistic was chosen over more conventional ones because cij is

defined for various data types such as quantitative, categorical, and others. Table 6.1

lists the types of clinical traits that can be handled by the SAM procedure and high-

level descriptions of how rij is defined for each type.

Although the details on computing the statistic cij is beyond the scope of this

dissertation and is available elsewhere (e.g., [29, 102]), we provide in this section an

outline of computing cij and assessing its statistical significance, for completeness and

clarity.

Computing cij The specific definition of rij varies depending upon the type of

clinical trait j. For example, if clinical trait j has quantitative values then rij is

defined in terms of the Pearson correlation coefficient [83] between the i-th row vector

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 113

Table 6.1: Types of clinical traits and the corresponding definitions of the score
rij [102]. In the last line, the value 1 represents a death whereas 0 means censored
data.

Type of trait Example Concepts used to define rij

Quantitative −1.2, 3.0, . . . The Pearson correlation coefficient

Binary class {death,survival} The relative difference of two means

Multiclass {state 0,1,2,3} The Fisher’s linear discriminant

Survival data (time,[1|0]) Cox’s proportional hazards function

of the matrix A and the j-th row vector of the matrix B, and sij is the standard error

of rij.

Example 6.2. Assume that the instances of trait j in the trait matrix B = (T, S)

have quantitative values. Then, the statistic rij for gene i in the gene expression

matrix A and trait j is defined as follows:

rij =

∑
k bjk(aik − ai)∑

k(bjk − bj)2
(6.2)

where ai =
∑

k aik/|S| and bj =
∑

k bjk/|S|. sij is the standard error of rij:

sij =
σ̂ij√∑

k(bjk − bj)2

(6.3)

where σ̂ij is the square root of residual error:

σ̂ij =

√∑
k(aik − âijk)2

n− 2
(6.4)

âijk = β̂ij0 + rijbjk (6.5)

β̂ij0 = ak − rijbk (6.6)

For the multiclass type of traits (e.g., trait ∈ {state1, state2, state3, . . . , staten}),
rij and sij are defined using the Fisher’s linear discriminant [83] as follows.

Example 6.3. Suppose that trait j in the trait matrix B = (T, S) represent multiclass

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 114

responses and can have values chosen from {1, 2, . . . , H}, a set of H classes. Let Ch

denote the indices of observations in class h, nh = |Ch|, aih =
∑

c∈Ch
aic/nh, and

ai =
∑|S|

k=1 aik/|S|. Then, rij and sij are defined as follows:

rij =

√√√√
∑

nh∏
nh

H∑

h=1

nh(aih − ai)2 (6.7)

sij =

√√√√ 1∑
(nh − 1)

·
(∑ 1

nh

) H∑

h=1

∑
c∈Ch

(aic − aih)2 (6.8)

Details on computing rij and sij for other types of traits can be found in [102]. The

fudge factor s0 is set to the γ percentile of the sij values, where γ can be determined

adaptively according to the distribution of sij or can be fixed to a constant value such

as γ = 5%.

The problem of multiple comparisons When calculating cij, we must follow a

procedure for multiple comparisons, thus ensuring that too many falsely significant

ones are not declared [29,83]. In statistical hypothesis testing, a Type I error consists

of rejecting a null hypothesis that is true [29, 83]. It is the equivalent of a “false

positive” or “false alarm.” The probability of Type I error is often denoted by symbol

α. Statistical analysis typically involves not only a single hypothesis testing but

multiple hypotheses testing. The problem is that using a value of, for example,

α = 0.05 means that approximately one out of every twenty such tests will produce

a false positive. Consequently, if we perform a series of hypothesis testing for 10,000

genes, we can expect as many as 500 genes to be declared as significant if we perform

a single test per gene with the significance level of α = 0.05.

Conventional correction methods We need to correct the problem of multiple

comparisons and control the false positive rate not only for any single test but also for

the entire set of tests involved in our experiment. Let αe denote the experiment-wise

false positive rate. We can also consider symbol α, the Type I error rate, as each

comparison-wise false positive rate. Then, the probability of at least one false positive

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 115

is

αe = 1− (1− α)n (6.9)

assuming that the number of independent tests is n, and each test has α as its Type

I error rate. If we want to determine α, an experiment-wise error rate that can

guarantee αe, a specific experiment-wise error rate, we can solve α for αe:

α = 1− (1− αe)
1
n (6.10)

which is often referred to as the Dunn-Šidák correction method [105]. Since (1−αe)
1
n '

1− αe

n
for small values of αe, we can also approximate α as

α =
αe

n
(6.11)

which is called the Bonferroni correction method [83].

Adaptive correction methods The correction methods described previously use

the same values of α for every test. In addition, when n is quite large, as is typical in

most genomics problems, the value of α can be too tiny and no test can find significant

results in any circumstances. In contrast, adaptive correction methods generate the

distribution of p-values observed from the entire tests and use different values of α for

each test, depending upon the location of its p-value in the distribution. For instance,

the Holm’s step-wise correction method [43] orders the tests in the increasing order

of the p-values of the individual tests and uses αe

n−i+1
as the value of α for the test

located in the i-th order. Thus, the test with the smallest p-value uses α = αe

n
,

the test with the second smallest p-value uses α = αe

n−1
, and so on. Benjamini and

Hochberg [11] proposed a similar method, where the test with i-th largest p-value

employs α =
(

i
n

)
αe. Westfall and Young [110] proposed a more general method that

is based upon the sample-label permutation, which is similar to the bootstrapping

method [83] conducted by sampling without replacement [29].

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 116

The SAM procedure SAM uses the same permutation idea to estimate the per-

centage of the genes called significant by chance. This rate is referred to as the false

discovery rate (FDR) and is calculated as follows [102]:

1. For given j, compute statistic cij for i = 1, 2, . . . , |G|, where |G| is the number

of genes in the gene expression matrix.

2. Compute order statistics c(1) ≤ c(2) · · · ≤ c(|G|).

3. Take M sets of permutations of the vector associated with trait j. For each

permutation m, compute statistics c∗mij and corresponding order statistics.

4. From the set of M permutations, estimate the expected order statistics by

c(i) = (1/M)
∑

m c∗m(i) for i = 1, 2, . . . , |G|.

5. Plot the values of c(i) versus the values of c(i).

6. For ∆, a fixed threshold, find the first i = i1 such that c(i) − c(i) > ∆, starting

at the origin and moving up to the right. All genes past i1 are called significant

positive. Similarly, find significant negative genes. For each ∆, define the upper

cut-point cutup(∆) as the smallest cij among the significant positive genes, and

similarly define the lower cut-point cutlow(∆).

7. For a grid of ∆ values, compute the total number of significant genes (from the

previous step), and the median number of falsely called genes, by computing the

median number of values among each of the M sets of c∗m(i) (for i = 1, 2, . . . , |G|)
that fall above cutup(∆) or below cutlow(∆).

8. Estimate P0, the proportion of true null (unaffected) genes in the data set

(see [102] for details).

9. The median of the number of falsely called genes from Step 6 is scaled appro-

priately, according to the value of P0 (see [102] for details).

10. A value of ∆ can be specified by the user and the significant genes are listed.

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 117

11. The FDR is computed as the median of the number of falsely called genes

divided by the number of genes called significant.

Using the notion of FDR, the p-value of the statistic cij is defined as follows.

Definition 6.1. The p-value for score cij, denoted by p-value(cij), is the lowest FDR

at which gene i is called significantly correlated with trait j.

In summary, to construct the correlation matrix, we use the SAM statistic, which

is a modified t-test statistic (or F -test statistic for multiclass analysis), with sample-

label permutations to evaluate statistical significance [17].

6.2.3 Defining co-clusters

Co-clusters are defined on the correlation matrix. Informally, we are interested in

finding a submatrix (of the correlation matrix) in which the values on all columns

exhibit some common behavior. Co-clusters in this definition are similar to Type 3

nested biclusters in Chapter 4. An example is presented in Figures 6.5(a) and 6.5(b).

In particular, we focus on searching submatrices where every pair of column vectors

show positive or negative correlation as seen in Figures 6.5(c) and 6.5(d).

To assess the degree of correlation, we introduce a metric called linear deviation,

which resembles a conventional statistic such as the Pearson correlation coefficient

but can be computed more efficiently, especially in the current setup where we want

to measure correlation between many sub-vectors of two vectors. The introduction of

this metric is not to deny the effectiveness of a conventional statistic but to transform

it to a computation-efficient form, minimizing loss in the detection power.

Definition 6.2. For V , a vector on R, the range of V , denoted by range(V), is the

absolute difference between the largest and the smallest elements of V .

Note that this range operator is similar to that in descriptive statistics, where the

range is the length of the smallest interval which contains all the data [93]. There,

the range is also calculated by subtracting the smallest observations from the greatest

and provides an indication of statistical dispersion.

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 118

−1 0 1
0

10

20

30

40

ρ
VW

R
A

N
G

E
(V

−
W

)

(a)

−1 0 1
0

10

20

30

40

ρ
VW

R
A

N
G

E
(V

+
W

)

(b)

−1 −0.5 0 0.5 1
0

10

20

30

40

ρ
VW

LI
N

−
D

E
V

(V
,W

)

(c)

Figure 6.4: An empirical study to show the relationship between lin-dev and
the Pearson correlation coefficient. (a) A pair of 10-dimensional vectors (V, W)
were generated in such a way that the Pearson correlation coefficient ρV W between
the two vectors randomly lies in [−1, 1]. The elements of the two vectors were
ranged in [−10, +10]. We also calculated range(V − W) and then place point
(ρV W ,range(V − W)) on a plot. We repeated this procedure 300 times. Two
300-dimensional vectors X and Y were created from the 300 points (x, y) on the plot.
We calculated the Pearson correlation coefficient ρXY between vectors X and Y to
obtain ρXY = −0.7433 (P < 10−54), indicating significant negative correlation be-
tween range(V −W) and ρV W . (b) The same procedure repeated for a plot of ρV W

versus range(V +W): ρXY = 0.7934 (P < 10−66). (c) Focusing on a low value of the
metric lin-dev thus enables us to detect either strongly positive or highly negative
correlation between V and W .

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 119

1.0

3.0

2.0

1.5 2.0 2.5

3.5

2.5

0.0

4.0

3.0

0.5

4.5

3.5

-1.0 -0.5

I
 -
 g
e
n
e
s

J - traits

(a) D = (I, J)

d
ij

g
e
n
e
s

traits

-1.0 4.5

(b)

d
ij

g
e
n
e
s

trait x trait y

(c)

d
ij

g
e
n
e
s

trait x trait y

(d)

Figure 6.5: Defining co-clusters. (a) D = (I, J), an example co-cluster with the gene
set I and the trait set J . (b) The column vectors of D show the same trend. (c)
Positive correlation between traits x and y. (c) Negative correlation between traits x
and y.

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 120

Using the notion of this range(·) operator, we define the linear deviation of two

vectors as follows.

Definition 6.3. Given V and W , two real vectors of the same dimension, the linear

deviation of V and W , denoted by lin-dev(V,W), is defined as1

min{range(V −W),range(V + W)}. (6.12)

The example in Figure 6.4 reveals the relationship between lin-dev and the

Pearson correlation coefficient: a lower value of lin-dev typically corresponds to a

higher level of either positive or negative correlation. Using the metric lin-dev, a

co-cluster is formally defined as follows.

Definition 6.4. Given the correlation matrix C = (G, T) and thresholds τ ≥ 0 and

π > 0, a co-cluster is a matrix, denoted by D = (I, J), satisfying the following

conditions: (1) I ⊆ G and J ⊆ T ; (2) for any two column vectors V and W of size

|I| in D, lin-dev(V,W) ≤ τ ; (3) ∀i ∈ I, ∀j ∈ J , p-value(cij) < π.

Condition (1) indicates that D is a submatrix of the correlation matrix C. Con-

dition (2) is to require that every pair of |I|-dimensional column vectors from D

exhibit correlation with respect to the metric lin-dev. The last condition is to find

co-clusters with statistically significant elements.

In this study, we search only maximal co-clusters or those that are not contained

by others, because non-maximal co-clusters are redundant.

6.2.4 Discovering pairwise co-clusters

Since co-clusters in the present definition are nested biclusters, we can follow an ap-

proach similar to the nested bicluster mining described in Chapter 4. Thus, after

having computed the correlation matrix, the next step of our method is to find a

special type of co-cluster called pairwise co-cluster, which corresponds to the atomic

nested biclusters defined in Chapter 4. That is, a pairwise co-cluster is a co-cluster

1Since range(−V) = range(V) by definition, we do not need to consider range(−V + W) or
range(−V −W).

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 121

Algorithm 6.1: Find positively correlated dimensions for two vectors
input : V and W , two n-dimensional vectors
input : τ , a threshold
output: I ⊆ {1, 2, . . . , n}, a set of dimensions

for i = 1 to n do1

S[i].score := Vi −Wi;2

S[i].dim := i;3

sort S in ascending order with respect to the field score;4

begin := 1, end := 2;5

while (end ≤ n) do6

if (S[end].score− S[begin].score ≤ τ) then7

end := end + 1;8

if (end > n) then9

Report {S[begin].dim, . . . , S[end− 1].dim};10

else11

Report {S[begin].dim, . . . , S[end− 1].dim};12

repeat13

begin := begin + 1;14

until (begin = end) or (S[end].score− S[begin].score ≤ τ);15

Figure 6.6: Algorithm to find positively correlated dimensions.

with only two traits and can therefore be represented by a submatrix (of the corre-

lation matrix) with two columns. Pairwise co-clusters are used later in Section 6.2.5

as seeds to find (non-pairwise) co-clusters.

To find a pairwise co-cluster in the correlation matrix C = (G, T), we first select

two distinct columns v, w ∈ T and construct from them two |G|-dimensional column

vectors V = (c1v, c2v, . . . , c|G|v) and W = (c1w, c2w, . . . , c|G|w). Then, we compare V

and W to identify I, a set of dimensions over which V and W are correlated (I ⊆ G).

Finally, we remove all i ∈ I such that p-value of civ or ciw is greater a given threshold.

By Definition 6.4, the matrix denoted by pair (I, {v, w}) represents a co-cluster, and

this co-cluster with only a pair of traits is called pairwise co-cluster.

Here we further explain the procedure to compare two vectors V and W and

identify the dimension set I. The other details on finding pairwise co-clusters are

straightforward and thus omitted.

Algorithm 6.1 presents the procedure to find I, a set of dimensions over which two

vectors V and W are positively correlated. Invoking this algorithm with −V, W or

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 122

V,−W provides a set of negatively correlated dimensions. This algorithm resembles

Algorithm 4.3 in Chapter 4.

The key idea of Algorithm 6.1 is simple: when the elements of a vector V are

arranged in an ascending or descending order, range(V) is simply the absolute dif-

ference between the first and the last elements of V , and no other elements need to

be examined. Thus, in Lines 1–3, the vector S = V −W is rearranged in ascending

order. Then, in Lines 6–15, the algorithm examines sub-vectors of S and reports

those whose range is not greater than the threshold τ . The boundary of a sub-vector

under consideration is indicated by two pointers begin and end. The algorithm relies

on these pointers to find only maximal subsets and to handle multiple (and possibly

overlapping) instances of I.

The worst-case complexity of Algorithm 6.1 is polynomial in n, the number of

dimensions in two vectors.

6.2.5 Deriving co-clusters

In the last step of our method, co-clusters are derived from pairwise co-clusters. The

approach taken here is the same as the depth-first pattern mining method explained

in Section 4.3.3 but is focused on the case for Type 3 nested biclusters.

For the sake of explanation, let pair (I, J) represent a pairwise co-cluster with

J = {x, y} and assume that we want to expand this co-cluster “horizontally” by

adding z, a third column index, to the set J . Let (I ′, J ′) denote this new co-cluster.

Since we are interested in finding only maximal co-clusters, assume that we are to

find the instance of I ′ with maximal cardinality.

Clearly, the set J ′ is a superset of J , namely, J ′ = J ∪{z} = {x, y, z}. In contrast,

the set I ′ is a subset of I by construction2. In what follows, we explain more precisely

what the set I ′ should be.

First, I ′ ⊆ I as previously stated. Second, if the pair (I ′, {x, y, z}) represents a co-

cluster, then by definition, (I ′, {x, z}), (I ′, {y, z}), and (I ′, {x, y}) should be pairwise

co-clusters. Now let Ixz and Iyz be the row sets of pairwise co-clusters obtained

2If any two trait vectors show a common trend over |G| dimensions in the correlation matrix, then
three traits including the two traits cannot show a common trend over more than |G| dimensions.

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 123

by Algorithm 1 for column pairs {x, z} and {y, z}, respectively. Then, I ′ ⊆ Ixz

and I ′ ⊆ Iyz, since Algorithm 1 finds only maximal pairwise co-clusters. Therefore,

I ′ ⊆ I ∩ Ixz ∩ Iyz, and we can obtain the instance of I ′ with the largest cardinality by

setting I ′ = I ∩ Ixz ∩ Iyz.

In general, given a co-cluster (I, J), we can add element z to the set J and produce

a new maximal co-cluster (I ′, J ∪ {z}) with

I ′ = I ∩
(⋂

∀j∈J

Ijz

)
, (6.13)

where Ijz is a maximal pairwise co-cluster for columns {j, z}. Our approach to de-

riving co-clusters from pairwise co-clusters is based upon this idea.

Algorithm 6.2 provides the details. This algorithm is in essence equivalent to

Algorithm 4.5 in Chapter 4. Recall that T is the set of clinical traits or the set

of column indices in the correlation matrix C = (G, T). Algorithm 6.2 examines

elements J ∈ 2T in such an order that Equation 6.13 can be exploited to find a co-

cluster (I, J). To this end, a data structure called prefix tree or trie [2] is employed to

systematically represent the elements of the power set 2T . For the sake of explanation,

assume that T = {1, 2, 3, 4}. The prefix tree representing the power set 2T is depicted

in Figure 6.8(a). Each vertex v of the prefix tree is associated with two sets v.I and

v.J such that v.I ⊆ G and v.J ⊆ T . Indicated inside a vertex in Figure 6.8(a) is v.J .

The prefix tree is traversed in preorder by Algorithm 6.2. In the worst case, the

algorithm needs to visit every vertex of the prefix tree. Thus, the worst-case com-

plexity of Algorithm 2 is exponential in |T |. However, in most cases, this exhaustive

enumeration is avoided, and the running time of our algorithm on typical benchmarks

is practical. To see the reason, observe that the subtree rooted at a vertex v with

v.I = ∅ needs not be visited and removed from the prefix tree. The condition v.I = ∅
means that the matrix represented by the pair (v.I, v.J) cannot be a co-cluster. Thus,

any pair (I ′, J ′) with J ′ ⊇ v.J cannot represent a co-cluster either, regardless of the

set I ′. For instance, assume that v.I = ∅ for the top left vertex v with v.J = {1, 2}.
Then, as shown in Figure 6.8(b), the vertex v and the subtree rooted at v are removed

from the tree, producing the reduced tree in Figure 6.8(c).

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 124

Algorithm 6.2: Mining co-clusters
input : C = (G, T), a correlation matrix
output: co-clusters

Generate pairwise co-clusters by Algorithm 1;1

foreach {x, y} ⊆ T do2

Create vertex v;3

v.J := {x, y};4

ConstructTrieInPreorder(v);5

delete v;6

Remove redundancy and return remaining co-clusters;7

procedure ConstructTrieInPreorder (vertex v)8

begin9

if |v.J | = |{x, y}| = 2 then10

v.I := Ixy;11

else12

vertex p := v.parent;13

k := the element in v.J − p.J ;14

v.I := p.I ∩ (∩∀j∈p.J Ijk);15

if v.I = ∅ then return;16

Collect pattern (v.I, v.J);17

l := the “largest” element in v.J wrt a total order ≺;18

J := {j|j ∈ T and l ≺ j};19

foreach j ∈ J do20

create vertex w;21

w.J := v.J ∪ {j};22

w.parent := v;23

ConstructTrieInPreorder(w);24

delete w;25

end26

Figure 6.7: Algorithm to find co-clusters.

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 125

123 124 134 234

12 13 14 23 24 34

1234

1 2 3 4

/

(a)

123 124 134 234

12 13 14 23 24 34

1234

1 2 3 4

/

(b)

134 234

13 14 23 24 34

1 2 3 4

/

(c)

Figure 6.8: Prefix tree example. Each vertex v is associated with two sets v.I and v.J .
Indicated inside each vertex v is v.J . Algorithm 2 examines only those vertices with
|v.J | >= 2. (a) A prefix tree representing the power set 2T , where T = {1, 2, 3, 4}.
(b) Assuming v.I = ∅ for the top most vertex with v.J = {1, 2}, the subtree rooted
at the vertex v can be removed. (c) Reduced prefix tree.

Several remarks on Algorithm 6.2 are in order. First, the algorithm does not main-

tain the prefix tree in its entirety. Only a part of the subtree is constructed at a time

and removed after its use. To emphasize this, the procedure used in Algorithm 6.2

was termed “ConstructTrie” rather than “TraverseTrie.” Second, multiple instances

of v.I can be produced in Line 15, since p.I and Ijk in this line are not necessarily

unique.

6.2.6 Remarks

As already stated in previous chapters, the problem of co-clustering is inherently

intractable, and the worst-case complexity of our method is exponential in |T |, the

total number of samples. However, the response time of our method was practical in

all the cases we tested. Furthermore, given input matrices A and B, our method can

find all co-clusters that satisfy specific input parameters. If desired, the users can

also define a criterion to further select co-clusters of specific interest.

Our method provides both a list of co-clusters found in the correlation matrix and

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 126

Submatrix of B

Submatrix of A

samples

I
-
 s
e
t
o
f
g
e
n
e
s

J - set of traits

C
o
-c
lu
s
te
r

Figure 6.9: Composition of each images in Figure 6.10(d). Each figure is composed
of three panels (heat maps). The panel in the middle corresponds to the submatrix
(I, S) of the microarray matrix A, where I ⊆ G. The panel at the top corresponds to
the submatrix (J, S) of the trait matrix B, where J ⊆ T . The right panel represents
a co-cluster or a submatrix (I, J) of the correlation matrix C. The colored bars at
the left of the middle panel indicate those genes from the gene groups C–H labeled
in Figure 6.10(b).

the graphical images of these co-clusters. Figure 6.9 explains how these graphical

images should be read. Section 6.3 will present some examples of co-clusters and

their images. For example, Figure 6.10(d) shows some co-clusters discovered from

the correlation matrix in Figure 6.10(c), which was constructed from the data in

Figures 6.10(a) and 6.10(b).

6.3 Experimental results

6.3.1 Experiment procedure

We remind the reader of some notation that has been introduced so far. The input of

our method are (1) A = (G,S), a gene expression matrix with gene set G and sample

set S; (2) B = (T, S), a clinical parameter matrix with trait set S and sample set S;

(3) τ and π, algorithm parameters.

We tested our method with data from an acute myelogenous leukemia (AML)

study [17]. The AML data set used includes two matrices. One is a gene expression

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 127

Table 6.2: The input parameters used for the experiment and some statistics obtained
from the output co-clusters.

Parameters/statistic Value/reference

A: gene expression matrix [17]

B: trait matrix [17]

τ : parameter for Algorithm 1 2.5

π: p-value cutoff 0.05

Total number of co-clusters found 43

Average size of co-clusters (#genes, #traits) (143, 3)

data matrix with 6283 genes and 119 samples as shown in Figure 6.10(b). The other

is a matrix of 15 clinical parameters measured from the same subjects as seen in

Figure 6.10(a). The description of these clinical parameters can be found in the

caption of Figure 6.11.

We then used the procedure described in Section 6.2.2 to produce the correlation

matrix3 presented in Figure 6.10(c). In particular, we performed the significance

analysis of microarrays (SAM) [102] on each clinical parameter over all the genes.

Figure 6.11 shows the plots obtained by the SAM package4. The observed scores in

the k-th SAM plot corresponds to the values on the k-th column of the correlation

matrix. More details can be found in the caption of Figure 6.11.

We implemented our algorithm to find co-clusters in the correlation matrix in

ANSI C++ on a 3.02 GHz Linux machine with 4 GB RAM. The implementation was

invoked with the parameters listed in Table 6.2. The running time was in the order

of minutes.

6.3.2 Results and discussion

We identified 43 co-clusters from the AML data set. Figure 6.10(d) shows some of the

co-clusters found. Refer to Figure 6.9 for how to read the images in Figure 6.10(d).

3This correlation matrix has 14 columns instead of 15, because the traits “Status” and ”Overall
survival” were merged into one for the convenience in survival analysis.

4http://www-stat.stanford.edu/∼tibs/SAM/

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 128

Status
Overall survival

Remission status
Tx group

FAB subtype
LDH

BM-Blasts
PB-Blasts

WBC
Preceding malignancy

Age
Sex

MLL PTD
FLT3 aberration
Sample source

Down-regulation Up-regulation - Correlation +

Group C

Group D

Group F

Group H

MGC5352
TLE1

(a)

(b) (c) (d)

O
v

e
ra

ll s
u

r
v

iv
a

l &
 S

ta
tu

s
R

e
m

is
s
io

n
 s

ta
tu

s
T

x
 g

ro
u

p
F
A

B
 s

u
b

t
y

p
e

L
D

H
B

M
-B

la
s
ts

P
B

-B
la

s
ts

W
B

C
P

re
c

e
d

in
g

 m
a

lig
n

a
n

c
y

A
g

e
S

e
x

M
L

L
 P

T
D

F
L
T

3
 a

b
e

rra
tio

n
S

a
m

p
le

 s
o

u
rc

e

MGC45416
TFDP2

MSI2
MSI2

AA573736
GRN

Calpastatin
CYP51
CD68
PTPRJ

SMPD1

PTPRM
SLC9A3R2

SLC16A1

MGC5352

Calpastatin
CD68

SMPD1

PTPRM
SLC9A3R2

Overall survival days
FAB subtype

FLT3 abberation

Overall survival days
FAB subtype

PB-blasts

Overall survival days

PB-Blasts
FLT3 aberration

O
v

e
ra

ll su
rv

iv
a

l
&

 S
ta

tu
s

FA
B

 su
b

ty
p

e
F

LT
3

 a
b

b
e

ra
tio

n

O
v

e
ra

ll su
rv

iv
a

l
&

 S
ta

tu
s

P
B

-B
la

sts
F

LT
3

 a
b

e
rra

tio
n

O
v

e
ra

ll su
rv

iv
a

l
&

 S
ta

tu
s

FA
B

 su
b

ty
p

e
P

B
-b

la
sts

8
7
6
5
4
3
2
1
0
missing

Group G

Figure 6.10: Data from an adult acute myeloid leukemia (AML) study [17]. (a) The
heat map of the clinical trait matrix, in which each row corresponds to a trait and
each column a sample. The legend of the heat map can also be found. (b) The heat
map of the gene expression matrix with 6283 genes (rows) and 119 samples (columns).
The vertical colored bars are to indicate the gene groups C–H used in the original
study [17]. (c) The heat map of the correlation matrix. (d) Some co-clusters found
by the proposed method. Refer to Figure 6.9 for further details.

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 129

1 2 3 4 5

6 7 8

11 12 13

14

9 10

Figure 6.11: SAM plots obtained from the AML data set. The x and y axes of each
plot represent the expected and the observed values of the SAM score (Equation 6.1),
respectively. Further details on reading SAM plots can be found in [102]. The ob-
served scores in the k-th SAM plot corresponds to the values on the k-th column of
the correlation matrix. The number in each plot is the identifiers of the clinical traits
used in [17]. [1: sample source, 2: FLT3 aberration, 3: MLL PTD, 4: sex, 5: age,
6: preceding malignancy, 7: WBC, 8: PB-Blasts, 9: BM-Blasts, 10: LDH, 11: FAB
subtype, 12: Tx group, 13: remission status, 14: overall survival time and status.]

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 130

For each co-cluster (I, J) discovered (I ⊆ G, J ⊆ T), it is possible to pose a hypothesis

of the form “genes g ∈ I are correlated with traits t ∈ J”, which can then be tested

by further experimental studies.

Supporting evidence from the literature

Our data showed that trait “survival” is clustered with genes TGFB1 or TGFB2 and

CD1a multiple times in co-clusters #37, #38, #42 and #43.

TGF-β (transforming growth factor-β) is a multifunctional peptide that has both

growth-inhibitory and growth-stimulating properties [48]. Its combined effects with

other growth factors or inhibitors have been shown to play a central role in the control

of growth, differentiation, and morphogenesis of normal and malignant cells. For

example, TGF-β is required for efficient in vitro generation of dendritic cells (DCs)

from CD34+ progenitor cells [81]. However, it also inhibits cell proliferation and

survival mediated by the Flt3 (Fms-like tyrosine kinase-3) signaling pathway [44,103].

Given that a mutated and constitutively active form of Flt3 is detected in 30-35 % of

AML cases and the patients with Flt3 mutations tend to have a poor prognosis [108],

it is interesting to note that “survival” trait is positively correlated with the expression

of TGFB1 and TGFB2 which abrogate the effects of Flt3.

In addition, our data indicate that “survival” is associated with the expression of

CD1a, a cell surface marker for mature DC. Previous studies reported that, when

cultured in the presence of GM-CSF (granulocyte-macrophage colony-stimulating

factor), TNF-α (tumor necrosis factor-α), and IL-4 (interleukin-4), AML cells were

induced to differentiate into DCs and up-regulated the expression of CD1a and co-

stimulatory molecules such as CD80 and CD86 [23,38]. Since DCs are the most potent

antigen-presenting cells (APCs) in the immune system, the CD1a-positive leukemic

DCs might function as APCs bearing leukemic antigens, hence priming cytotoxic T

cells and generating a strong anti-leukemic immune response. This may explain why

CD1a is often clustered with the trait “survival” in our data.

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 131

Cellular

process

Morphogenesis

Response

to stress
Organogenesis

Response to external

biotic stimulus

Defense

response

Hemopoiesis

Cellular defense

response

Acute-phase

response

Antigen

presentation

Immune cell

activation

Complement

activation

Complement activation,

classical pathway

Lympohcyte

differentiation

Thymocytes

differentiation

Organ

development

Physiological

process

ITK SERPINA1

MALT1, APOH

CD3G

Humoral defense mechanism\

(sensu Vertebrata)

T-cell

activation

CD3G

Cell

differentiation

Response to

wounding

FCGRT

C1QA

Response to

biotic stimulus

Lymphocyte

activation

Response to

external stimulus

Organismal

physiological process

Response to

stimulus

Response to pest,

pathogen or parasite

Humoral immune

response

OAS2, NFIL3

Cell

activation

Development

Immune

response

2

3

4

5

6

7

8

9

10

Figure 6.12: Terms from Process Ontology that annotate the genes in co-cluster #15
with p-values less than 0.05. The tool GO::TermFinder [13] was used to calculate
p-values with multiple comparison correction as well as false discovery rate (FDR)
calculation. The descriptions of the genes included in co-cluster #15 are listed in
Table 6.3. Further analyses of the enriched terms are possible. For example, see
Table 6.4 for more statistics for the term defense response (GO:0006952).

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 132

Validation with GO

The gene ontology (GO) is a collaborative effort to address the need for consistent

descriptions of gene products in different databases [100]. GO consists of a trio

of controlled vocabularies that are being developed to aid the description of the

molecular functions of gene products, their placement in and as cellular components,

and their participation in biological processes. Terms in each of the vocabularies are

related to one another within a vocabulary in a poly-hierarchical (or directed acyclic

graph) manner. Terms are mutually exclusive across the three vocabularies.

To determine whether any GO terms annotate genes in a specified co-cluster at a

frequency greater than that would be expected by chance, a p-value is calculated in

this particular setting using the hypergeometric distribution:

p-value = 1−
k−1∑
i=0

(
M
i

)(
N−M
n−i

)
(

N
i

) , (6.14)

where N is the total number of genes in the background distribution, M is the number

of genes (within that distribution) that are annotated to the node of interest, n is

the size of the list of genes in a co-cluster of interest, and k is the number of genes

within that list which are annotated to the node. The background distribution is all

the genes within a given GO annotation file. We used the tool GO::TermFinder [13]

for the calculation of p-values as well as the multiple hypothesis correction [29] of the

calculated p-values.

For example, Figure 6.12 shows a subgraph of Process Ontology, which includes

the terms that annotate genes in co-cluster #15 with p-values less than a threshold of

0.05. The descriptions of the genes included in co-cluster #15 are listed in Table 6.3.

Further analyses of the enriched terms are also possible, and as an example, Table 6.4

shows more statistics for the term defense response (GO:0006952) obtained from the

tool used.

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 133

Table 6.3: Some genes contained in co-cluster #15 with descriptions.

Gene Description

MALT1 MAL tissue lymphoma translocation gene 1

NFIL3 Nuclear factor, interleukin 3 regulated

APOH Apolipoprotein H (beta-2-glycoprotein I)

FCGRT Fc fragment of IgG, receptor, transporter, alpha

SERPINA1 Serine (or cysteine) proteinase inhibitor

C1QA Complement component 1, q subcomponent, alpha

OAS2 2’-5’-oligoadenylate synthetase 2

ITK IL2-inducible T-cell kinase

CD3G CD3G antigen, gamma polypeptide (TiT3 complex)

Table 6.4: Further details on an enriched GO term in Figure 6.12, obtained by the tool
GO::TermFinder [13]. The total number of genes used to calculate the background
distribution of GO terms is 23531.

Item Value

GO term Defense response

Cluster frequency 9 out of 54 genes (16.7%)

Genome frequency of use 1209 out of 23531 genes (5.1%)

Corrected p-value 0.0359

False Discovery Rate (FDR) 3.00%

False Positives 0.06

CHAPTER 6. LINKING GENE EXPRESSION AND CLINICAL TRAITS 134

6.4 Summary

We investigated the problem of finding co-clusters of genes and clinical traits using

microarray data and clinical parameter information. An intermediate data matrix

called correlation matrix was computed by means of a statistical method. We then

modeled a co-cluster by a submatrix of the correlation matrix with coherent elements

and aimed at finding statistically significant co-clusters. We describe a co-clustering

algorithm, which is a special case of the nested bicluster mining algorithm in Chap-

ter 4. We tested this co-clustering algorithm with the AML data set and discovered a

number of co-clusters of clinical traits and possibly related genes. The validation with

GO as well as the literature suggests that some of these co-clusters are biologically

meaningful. Extension of this technique may provide an effective methodology for

finding genes responsible for any set of clinical parameters of interest, which can lead

to a major impact on clinical diagnosis. Since the proposed technique allows us to

trace the relationship between genes with respect to some clinical traits, this technique

can also provide useful information for reconstructing gene regulatory networks.

Chapter 7

Prediction of MicroRNA

Regulatory Modules

This chapter covers an application of the biclustering method described in Chapters 3

and 4 to the problem of predicting microRNA regulatory modules.

7.1 Introduction

MicroRNAs (miRNAs) are endogenous 21-22-nucleotide RNAs that can play cru-

cial regulatory roles in animals and plants by targeting transcripts for cleavage or

translational repression [8]. Hundreds of different miRNAs have now been identified

in complex eukaryotes, implying that they mediate a vast network of unappreciated

regulatory interactions [54].

Computational methods have been applied to the studies of miRNAs largely in

two ways. First, techniques to identify miRNA host genes have been proposed [55,60,

75,82]. These methods rely upon the observation that miRNAs generally derive from

phylogenetically conserved stem-loop precursor RNAs with characteristic features.

Second, given that miRNA target gene selection is guided by the sequence, algorithms

have been suggested to systematically identify miRNA targets in silico [31,45,49,58,

77,79,92,94].

135

CHAPTER 7. PREDICTION OF MICRORNA REGULATORY MODULES 136

Typically, multiple miRNAs regulate one message, reflecting cooperative transla-

tional control. Conversely, one miRNA may have several target genes, indicative of

target multiplicity [31]. This multiplicity of targets and cooperative signal integra-

tion on target genes are key features of the control of translation by miRNAs [45].

However, this many-to-many relationship between miRNAs and target genes is often

complicated (e.g., see Figure 7.6(c)), and we thus need an automated analysis tool.

In this chapter, we mathematically formulate the biological observations of the

interactions of miRNAs and their targets and present a way to identify important

patterns hidden in the complex interactions. In particular, we propose a computa-

tional method to predict miRNA regulatory modules (MRMs) or groups of miRNAs

and their targets that are believed to participate cooperatively in post-transcriptional

gene regulation. MRMs are similar to Type 1 patterns introduced in Chapter 4 and

can thus be found by the biclustering algorithm described in that chapter.

We apply our method to the prediction of human miRNA regulatory modules and

here report a predicted module that contains the genes: BTG2, WT1, PPM1D, PAK7

and RAB9B, and the miRNAs: miR-15a and miR-16. As will be detailed later, it

has been reported that these genes are mostly regulators and their anomaly can be

found in breast, renal, and prostate cancers [34, 47, 96]. Interestingly, BTG2, WT1,

and PPM1D have been shown to be directly associated with the function of p53, a

tumor suppressor gene [104]. Furthermore, the human miRNAs miR-15a and miR-16

are clustered on chromosome 13q14, and this region has been shown to be deleted

altogether in several types of cancer [59,86]. The annotation of this module with the

terms in the database Gene Ontology (GO) [100] also suggests that the genes in this

module indeed share some common roles in biological processes.

The miRNA regulatory modules predicted can further be useful in some important

tasks including the reconstruction of gene regulatory networks as well as the biological

validation of miRNA-target duplexes. Specifically, the regulatory interactions newly

revealed by MRMs may provide a missing piece in the puzzle of gene regulation mech-

anisms, enabling us to reverse-engineer more accurate gene regulatory networks. In

addition, the genes included in MRMs can be reasonable candidates for the experi-

mental validation of miRNA targets, since these genes are detected multiple times by

CHAPTER 7. PREDICTION OF MICRORNA REGULATORY MODULES 137

distinct miRNAs. Focusing on the genes included in MRMs may be an effective way

to design an experiment for target validation.

The remainder of this chapter is organized as follows. Section 7.2 formally defines

miRNA regulatory modules and presents our approach to predict them. Section 7.3

provides the details of our analysis of a predicted module through a literature review

and annotation with GO.

7.2 Method

Our method consists of five major steps, each of which will be detailed in this section.

1. Target identification: given a set of miRNAs, their target genes are identified

(Section 7.2.1).

2. Relation graph representation: the relation between miRNAs and their tar-

gets are represented by a weighted bipartite graph called relation graph (Sec-

tion 7.2.2).

3. Seed finding: a seed or a set of miRNAs that bind a common target with similar

binding strength is identified (Section 7.2.3). A seed corresponds to the Type 1

atomic nested bicluster described in Chapter 4 and can be found by an approach

similar to Algorithm 4.1.

4. Merging seeds to find candidate modules: the seeds found in the previous step

are collected and merged to produce candidates for miRNA regulatory modules

(Section 7.2.4). This step is a simplified version of Algorithm 3.2 in Chapter 3.

5. Post-processing: statistically significant miRNA regulatory modules are selected

by computing the p-value or the probability of finding a module by chance [93]

(Section 7.2.5).

CHAPTER 7. PREDICTION OF MICRORNA REGULATORY MODULES 138

5'

5'3'
3'

miRNA Target

AnimalsPlants

(a)

Synergistic inhibition

(by multiple miRNAs)

Synergistic inhibition

(by single miRNA)
Cleavage

Inhibition

(b)

Figure 7.1: MicroRNAs and targets [54]. (a) Plant miRNAs exhibit extensive com-
plementarity to their targets, but animal miRNAs generally do not. (b) Various con-
figurations for miRNA-target duplexes: one near-perfect binding site for one miRNA
(upper left), one strong site for one miRNA (lower left), multiple ‘modest’ sites for
one miRNA (upper right), and multiple ‘modest’ sites for multiple miRNAs (lower
right).

CHAPTER 7. PREDICTION OF MICRORNA REGULATORY MODULES 139

7.2.1 Identification of miRNA target sites

Target selection is guided by the miRNA sequence, as informally shown in Fig-

ure 7.1 [54]. In plants, probable targets of most miRNAs can be found simply by

searching for highly complementary sequences in mRNA coding sequences or un-

translated regions (UTRs). In contrast, animal miRNAs do not generally exhibit

extensive complementarity to any endogenous transcripts (Figure 7.1(a)). Various

configurations for miRNA-target duplexes are possible, as presented in Figure 7.1(b).

In particular, when multiple binding sites exist on a target, the strength of each bind-

ing is not too strong or weak but modest and similar, according to Lai (2004, page

115.2). This observation will be reflected in our mathematical formulation in Section

7.2.2.

We first brief the reader on the existing target identification techniques, upon

which the first step of our method depends. One stream of the algorithms to identify

animal miRNA targets relies on three properties: (i) sequence complementarity using

a position-weighted local alignment algorithm, (ii) free energies of miRNA-target

duplexes, and (iii) evolutionary conservation of target sites in homologous genes. In

particular, the conservation filter tends to be the most predictive criterion for accurate

target detection [31]. The complementarity displayed by a miRNA and its binding

site is usually not enough to be statistically significant, since a miRNA is only 21-22

nucleotides long. Thus, this conservation filter plays a crucial role in reducing the

number of false positives.

Recently, another type of target identification algorithm [57] was proposed. This

algorithm works by identifying mRNA targets with conserved complementarity to the

nucleotides 2–7 of the miRNA. This method does not consider other criteria. What

was found by this approach was that an overrepresentation of conserved adenosines

(flanking the mRNA sites that are complementary to the nucleotides 2–7 of the

miRNA) indicates that primary sequence determinants can supplement base pair-

ing to specify miRNA target recognition. This method uses simplified detection rules

and potentially predicts more miRNA targets than previous methods.

In the first step of our method, we identify miRNA-mRNA duplexes by the method

CHAPTER 7. PREDICTION OF MICRORNA REGULATORY MODULES 140

described in [58]1 and [45]. (Other methods can also be used as long as they can

quantify the strength of miRNA-target binding, as is usually the case.) We refer to

the local alignment score and the free energy of a miRNA-target duplex as sA and sE,

respectively. The scores sA and sE are (negatively) correlated in most cases, because

a duplex with a high local alignment score tends to have a low free energy and vice

versa.

7.2.2 Relation graph representation

In the second step of our method, we represent the many-to-many relation between

miRNAs and target genes by a weighted bipartite graph termed relation graph.

Definition 7.1. Let M denote a set of miRNAs and T a set of targets (typically

|M | ¿ |T |). The relation graph is a weighted bipartite graph G = (V, E,w) with the

vertex set V = M ∪ T , the edge set E = {{m, t}|miRNA m ∈ M binds target t ∈ T},
and the weight function w : E → R.

We determine the weight function w by performing principal component analysis

(PCA) [46] on the space spanned by sA and sE. After making the populations of

sA and sE have a zero mean, we find the unit vector u so that when the data is

projected onto the direction corresponding to u the variance of the projected data

is maximized. This unit vector u is equivalent to the principal eigenvector of Σ, the

empirical covariance matrix of the data, defined as

Σ =
1

N

N∑
i=1

[
sA

sE

]

i

·
[
sA

sE

]T

i

 , (7.1)

where N represents the number of edges,

[
sA

sE

]

i

is a score vector for the i-th edge, and

T means the transpose operator. Finally, for each e ∈ E, its weight w(e) is calculated

1According to our experiments, the set of target genes identified by the method described in [57]
is typically a superset of the set of target genes predicted by the earlier method [58] from the same
authors.

CHAPTER 7. PREDICTION OF MICRORNA REGULATORY MODULES 141

as the projection of a score vector onto u, namely,

w(e) =

[
sA

sE

]T

u. (7.2)

Modeling MRMs

We model the miRNA regulatory module by a biclique or a complete subgraph in a

bipartite graph [2]. In particular, we search only those bicliques in which, for each

target vertex t, the edges incident on t have similar weights, following the biological

observation explained in Section 7.2.1. To avoid redundancy, we find only maximal

bicliques that are not contained by other bicliques as a proper subgraph.

Definition 7.2. For set A on R, range(A) denotes the difference between the largest

and the smallest elements of A.

Definition 7.3. Let G = (M ∪T, E, w) be the relation graph and δ ≥ 0 be given as a

parameter. Graph G′ = (M ′∪T ′, E ′, w) is called a miRNA regulatory module (MRM),

if G′ is a maximal biclique in G, and for each t ∈ T ′, range({w|w = w({m, t}), ∀m ∈
M ′}) ≤ δ.

Example 7.1. Figure 7.2 shows an example of the relation graph and an MRM found

in this relation graph.

7.2.3 Finding seeds

The third step of our method is to find seeds for each predicted target gene. A seed

is similar to the Type 1 atomic nested bicluster described in Chapter 4. Thus, an

approach similar to Algorithm 4.1 can be taken here by switching the role of rows

and columns in Algorithm 4.1.

Definition 7.4. Let t be a target gene and Mt be a set of miRNAs that binds the target

gene t. A seed for t, denoted by S(t), is a subset of Mt such that (i) range(S(t)) ≤ δ,

and (ii) there is no M ′ ⊃ S(t) such that M ′ ⊆ Mt and range(M ′) ≤ δ.

CHAPTER 7. PREDICTION OF MICRORNA REGULATORY MODULES 142

t
0

1.0

1.8 1.2 1.4

2.0

2.2 1.6

2.4

3.0

3.4

3.1

2.7

2.5

t
1

t
2

t
3

m
0

m
1

m
2

m
3

(a)

2.0

2.2

3.0 3.4

2.7

2.5

t
1

t
2

t
3

m
0

m
1

(b)

Figure 7.2: (a) Example relation graph G = (M ∪ T, E,w), where M =
{m0,m1,m2,m3}, and T = {t0, t1, t2, t3} with some hypothetical weights. (b) An
MRM found in G with the parameter δ = 0.5.

Algorithm 7.1 presents our approach to generate a seed set for a given target

transcript. This algorithm closely resembles Algorithm 4.1. Algorithm 7.1 takes as

input a target gene and a set of all the miRNAs binding the target gene regardless

of binding strength. The output is a seed for the target gene or a maximal set of

miRNAs whose binding strength to the target gene is similar in the sense that the

difference between the maximum and the minimum strength is less than given δ.

The key idea of Algorithm 7.1 is simple: when the elements of set A are sorted

and arranged in the corresponding order, range(A) is simply the absolute difference

between the first and the last elements of A.

In Lines 1–6, miRNAs are sorted in ascending order by their binding strength.

The variables begin and end in Lines 7–8 are to point to the first and the last

elements of the sub-array under consideration at some point. The set of seeds S,

which is to be returned as output, is initialized in Line 9. Inside the while loop in

Lines 10–21, seeds are generated as the variables begin and end are incremented.

Since the miRNAs are sorted, we only need to compare the first element (s[begin])

and the last element (s[end]), as is done in Line 11, in order to see if all the elements

in the sub-array are similar. In Lines 11–12, the variable end is extended as long as

s[end].w − s[begin].w ≤ δ. A seed is found and collected in Lines 14–15 and Lines

CHAPTER 7. PREDICTION OF MICRORNA REGULATORY MODULES 143

Algorithm 7.1: Find a seed for each target gene
input : t, a target transcript
input : Mt, a set of all miRNAs binding t
input : δ, a threshold
output: {S(t)}, a set of seeds

i := 0;1

foreach m ∈ Mt do2

s[i].w := w(t,m);3

s[i].id := m;4

i := i + 1;5

sort array s in ascending order with respect to the w field;6

begin := 0;7

end := 1;8

S = ∅;9

while (end < |Mt|) do10

if (s[end].w − s[begin].w ≤ δ) then11

end := end + 1;12

if (end = |Mt|) then13

S := GetOneSeed(begin, end, s);14

S := S ∪ {S};15

else16

S := GetOneSeed(begin, end, s);17

S := S ∪ {S};18

repeat19

begin := begin + 1;20

until (begin = end) or (s[end].w − s[begin].w ≤ δ);21

return S;22

procedure GetOneSeed(begin, end, s)23

begin24

S := ∅;25

for i = begin to end− 1 do26

S := S ∪ {s[i].id};27

return S;28

end29

Figure 7.3: Algorithm to find seeds for each target

CHAPTER 7. PREDICTION OF MICRORNA REGULATORY MODULES 144

Table 7.1: The seeds generated by Algorithm 1 from the relation graph in Fig-
ure 7.2(a) with the parameter δ = 0.5.

t: target gene S(t): seed for target gene t # seeds

t0 {m0,m2,m3}, {m1,m3} 2

t1 {m0,m1,m3}, {m0,m2} 2

t2 {m0, m1} 1

t3 {m0, m1}, {m1,m3} 2

17–18. Lines 19–21 are to adjust the variable begin after a seed is found.

Note that multiple seeds can exist for a single target gene, and thus a set of

all the seeds for the given target gene is returned as output. Also notice that two

distinct seeds for the same target gene can overlap. The worst-case complexity of the

algorithm is polynomial in |Mt|.

Example 7.2. Table 7.1 shows all the seeds generated by Algorithm 7.1 from the

relation graph in Figure 7.2(a) with the parameter δ = 0.5.

Related data mining tasks

Before describing the next step of our method, we show how the process of finding

miRNA regulatory modules is related to several data mining techniques, in order to

put the description in proper context.

First, the problem of frequent itemset mining [1] is to find a group of items that

occur together frequently in a database. Formally, let I be a set of all items in

database D. A set, I ′, is called an itemset if I ′ ⊆ I. A transaction is pair (tid, I ′),

where tid is the transaction identifier and I ′ is an itemset. The transaction (tid, I ′)

is said to support itemset Is if Is ⊆ I ′. The cover of an itemset is the set of the

identifiers of transactions that support the itemset. That is, for itemset Is,

cover(Is) = {tid|(tid, I ′) ∈ D, Is ⊆ I ′}. (7.3)

The itemset Is is called frequent if |cover(Is)| ≥ β, where β is a given threshold.

CHAPTER 7. PREDICTION OF MICRORNA REGULATORY MODULES 145

In the current problem, the set of miRNAs and the set of targets forming an MRM

are similar to a frequent itemset and its cover, respectively. One difference is that a

target can have multiple seeds whereas a transaction has only one itemset in a typical

setup.

The present problem is also related to the problem of biclustering. Any matrix

can be converted to a weighted bipartite graph, and vice versa. Thus, the relation

graph G = (M ∪ T,E, w) can be converted to a matrix of weights with the row set

M and the column set T . Then, a miRNA regulatory module is similar to a bicluster

with constant values on columns. In other words, miRNA regulatory modules can be

represented by Type 1 nested biclusters defined in Chapter 4 by switching the role of

rows and columns.

7.2.4 Deriving MRMs from seeds

The fourth step of our method is to collect all the seeds and derive MRMs from the

seed collection. As previously stated, this step corresponds to the second step of the

biclustering process described in Chapter 3. Thus, to collect seeds in a systematic

and effective manner, we exploit a trie, a compact data structure used to represent

sets of character strings [2]. Many overlaps often occur between the seeds, and a trie

can provide compact representations. The seeds stored in the nodes of the trie are

then merged to form MRMs as the trie is traversed.

Algorithm 7.2 details our approach. In addition to the seeds found by Algo-

rithm 7.1, the algorithm takes as input two parameters, minT and minM , to specify

the minimum size of MRMs to find. Note that this algorithm is similar to Algo-

rithm 3.2. One difference is that the first step of Algorithm 3.2 is not needed in

Algorithm 7.2, since here we search for Type 1 biclusters (with the role of rows and

columns switched).

In Lines 2–6, each seed is inserted into a trie. To decide the location of the node

into which a seed is inserted, we first assume a total order among the elements of M

(the set of all miRNAs in Definition 7.1), of which every seed is a subset. For each

seed S(t) of target t, we then sort its elements with respect to the total order. The

CHAPTER 7. PREDICTION OF MICRORNA REGULATORY MODULES 146

Algorithm 7.2: Find miRNA regulatory modules from the seeds
input : All the seeds generated by Algorithm 7.1
input : minT , the minimum number of target genes in MRMs
input : minM , the minimum number of miRNAs in MRMs
output: miRNA regulatory modules

/* Represent seeds by a trie */1

foreach seed S(t) do2

Sort the elements in S(t);3

n := the node whose path is specified by (sorted) S(t);4

n.T := n.T ∪ {t};5

n.S := S(t);6

/* Merge the seeds */7

foreach node n in the post-order traversal of the trie do8

foreach node n′ s.t. |n′.S| = |n.S| − 1 ≥ minM do9

n′.T := n′.T ∪ n.T ;10

/* Prune the trie and collect candidates */11

foreach node n in the pre-order traversal of the trie do12

if |n.S| ≥ minM then13

if |n.T | < minT then14

Remove n and its subtrie rooted at n;15

else16

Collect (n.T, n.S) as a candidate MRM;17

Return maximal candidates as MRMs;18

Figure 7.4: Algorithm to find miRNA regulatory modules.

CHAPTER 7. PREDICTION OF MICRORNA REGULATORY MODULES 147

0
1

1

3

2

3

3

{t
0
,t
3
}

{t
1
}

{t
0
}{t

1
}

{t
2
,t
3
}

(a)

0 1

1
33

3

2

3

3

2

{t
0
}{t

0
,t
1
,t
3
}{t

0
,t
1
}{t

0
,t
1
}

{t
0
}{t

1
}

{t
1
,t
2
,t
3
}

(b)

Figure 7.5: (a) The trie representation of the seeds in Table 7.1. The edge labeled
i represents miRNA mi. (b) The seeds merged by Algorithm 2 with the parameters
minT = 3, and minM = 2. The solid-circled vertices represent a candidate for MRMs.

sorted seed can now be inserted into the node whose path is specified by the ordered

elements.

To keep track of the seeds and associated target genes represented by the trie

efficiently, two sets n.S and n.T are associated with each node n, as seen in Lines

5–6. Suppose that S(t), a seed for target t, is inserted into node n. Then the set n.S

stores S(t) proper, and the set n.T contains the target gene t. Later in Line 10, the

set n.T will be expanded in such a way that n.T = {τ ∈ T |n.S ⊆ S(τ)}.

Example 7.3. The trie in Figure 7.5(a) collectively represents the seeds in Table 7.1.

In Lines 8–10, the algorithm expands the trie to systematically merge the seeds

and find candidates for MRMs. For each node n encountered in the post-order traver-

sal of the trie, the set n.T is distributed to every node n′ in which |n′.M | = |n.M |−1

and |n′.M | ≥ minM . The node n′ is a node such that the number of elements in n′.S

is one smaller than n but not less than minM .

In Lines 14–15, every node n in which |n.T | < minT is deleted. This step

can be performed efficiently by a pre-order traversal of the trie. Target genes were

distributed in post-order in Lines 8–10. Consequently, node n in the trie always has a

superset of the genes its children have. Thus, if the node n has less than minT target

genes, then none of its children can have more. For this reason, we can safely remove

the entire subtree whose root is located at the node n without visiting its child nodes.

CHAPTER 7. PREDICTION OF MICRORNA REGULATORY MODULES 148

Table 7.2: miRNA regulatory modules predicted with the parameters δ = 0.5, minT =
3, and minM = 2.

MRM # Targets in the module miRNAs in the module

1 {t1, t2, t3} {m0,m1}
2 {t0, t1, t3} {m1,m3}

In Lines 17–18, candidates for MRMs are collected, and the maximal ones are

returned as MRMs.

Example 7.4. Figure 7.5(b) shows the trie after the seeds have been merged. Ta-

ble 7.2 lists two candidate MRMs predicted from our running example.

The problem of enumerating maximal bicliques is inherently intractable [65], and

the worst-case complexity of Algorithm 2 is exponential in the number of miRNAs in

the relation graph. However, the execution time of the algorithm on typical bench-

marks is practical (see Section 7.3). This is because a seed seldom contains all the

miRNAs in the relation graph, and the trie-based representation of seeds helps to

prevent unnecessary enumeration of intermediate results.

7.2.5 Post-processing

Out of the miRNA regulatory modules found by Algorithm 7.2, we select those with

a low p-value. We estimate the p-value of an MRM, or the probability of finding it by

chance, on top of the statistical framework by [18]. They calculated the probability

that a random submatrix of a gene expression data matrix has near-constant values

on rows. They also reported that the distribution of the number of such matrices can

be well approximated by the Poisson distribution. As previously stated, an MRM

can be viewed as a matrix in which the values of each row are similar. Thus, we take

advantage of the result by [18] with minor modifications in order to approximate the

p-values of MRMs. More precise assessment of their statistical significance will be

possible as more exact mechanisms of miRNA-target interaction are revealed.

We assume that the number of miRNA regulatory modules with m miRNAs and

t targets in the relation graph is a Poisson random variable denoted by Xm×t. That

CHAPTER 7. PREDICTION OF MICRORNA REGULATORY MODULES 149

is,

P (Xm×t = k) =
λke−λ

k!
, k = 0, 1, 2, . . . (7.4)

The parameter λ corresponds to the average number of the MRMs with m miRNAs

and t targets in the relation graph, namely,

λ =

(|M |
m

)(|T |
t

)
Pm×t, (7.5)

where Pm×t is the probability that a random (m × t) biclique in the relation graph

satisfies the condition to be a (m× t) MRM. Based upon the result by [18], Pm×t can

be approximated by

Pm×t ' ζt[1− ζ]|T |−t[1− (1 + m−1)tδt]|M |−m, (7.6)

where

ζ = mδm−1 − (m− 1)δm. (7.7)

The p-value of the MRM with m miRNAs and t targets is then defined to be

the probability that one or more such MRMs occur by chance in the relation graph,

namely,

P (Xm×t ≥ 1) = 1− P (Xm×t = 0) = 1− e−λ. (7.8)

Finally, we choose those MRMs whose p-value computed by Equation (7.8) is less

than a certain threshold, highlighting statistically significant modules.

7.3 Experimental results

We tested our method with the miRNAs and genes in Homo sapiens and predicted

431 miRNA regulatory modules. On average, an MRM consists of 3.58 miRNAs and

6.74 target genes.

CHAPTER 7. PREDICTION OF MICRORNA REGULATORY MODULES 150

Table 7.3: The parameters used for the experiment and some statistics obtained. (†
The standard deviation of the weight distribution in Figure 7.6(b).)

Parameters/statistic Value/reference

Parameters (sA cutoff, sE cutoff) (91,−17 kcal/mol)

Parameters (minT ,minM , δ) (3, 3, 2σ† = 2.40)

Size of the relation graph (|T |, |M |, |E|) (2888, 156, 7886)

Weights in the relation graph Figure 7.6

Total number of modules found 431

Average size of modules (# targets, # miRNAs) (6.74, 3.58)

7.3.1 Experiment procedure

The input to our method was the human miRNA sequences2 and the human gene

sequences3. The output was a list of miRNA regulatory modules. The methods

described in [58] and [45] were first used to identify 7,886 human miRNA-mRNA

duplexes. 2,888 genes and 156 miRNAs were found to participate in forming a duplex

(see Table 7.3). After scalar weights were calculated by Equation (7.2), the relation

graph was constructed. Figure 7.6 shows the distributions of sA and sE and a matrix

representation of the relation graph. Algorithms 1 and 2 were invoked with the

parameters listed in Table 7.3. Statistically significant MRMs were selected with the

p-value threshold of 0.01. The annotation of selected modules with the terms in Gene

Ontology4 was finally performed. The computation ran on a 3.06 GHz Linux machine

with 4 GB RAM, and the response time for Algorithms 1 and 2 was in the order of

minutes.

7.3.2 Prediction and analysis of an oncogenic module

From the 431 predicted modules, here we present a cancer-related module and analyze

it at length in an attempt to reveal its biological implications.

2http://www.sanger.ac.uk/Software/Rfam/mirna
3http://www.ensembl.org/EnsMart
4http://www.geneontology.org

CHAPTER 7. PREDICTION OF MICRORNA REGULATORY MODULES 151

90 100 110 120 130 140 150 160
−45

−40

−35

−30

−25

−20

−15

s
A
 (local alignment score)

s E
 (

fr
ee

 e
ne

rg
y)

(a)

−2 0 2 4 6 8 10 12
0

100

200

300

400

w

oc

cu
rr

en
ce

s

(b)

m
iR

N
A

Target

(c)

Figure 7.6: (a) The distributions of the scores sA and sE. (b) The edge weight
distribution with µ = 0, σ = 1.20, min = −1.79 and max = 10.26. (c) The relation
graph represented by a 156 × 2, 888 matrix. A dot exists at row i and column j, if
target j has a binding site for miRNA i. This plot visualizes the initial raw data
set, clearly showing a need for an automated tool to identify important patterns
underlying the complex interactions between miRNAs and targets.

CHAPTER 7. PREDICTION OF MICRORNA REGULATORY MODULES 152

Table 7.4: A predicted human MRM. The first column represents the genes in the
module, and the last three columns show the miRNAs with their binding strength
to each target in terms of the weight calculated by Equation (7.2). The parameters
used are listed in Table 7.3. († Has not been experimentally verified in human.)

Target Ensemble ID Description miR-15a miR-16 miR-195 †

PAK7 ENSG00000101349 p21-activated kinase 7 1.609 -0.789 0.676

RAB9B ENSG00000123570 Ras-associated oncogenic protein 9b 1.303 -0.746 -0.956

BTG2 ENSG00000159388 B cell translocation gene 2 -0.162 -0.816 -1.259

PPM1D ENSG00000170836 Protein phosphatase 1D Mg-dependent -0.487 -0.817 -1.143

WT1 ENSG00000184937 Wilms’ tumor 0.275 1.019 -0.514

Our data shows that a set of genes PAK7, BTG2, WT1, PPM1D, and RAB9B

are candidate targets for human miR-15a, miR-16, and miR-195. Table 7.4 lists

more details of this module. In what follows, we consider miR-15a and miR-16 only,

since miR-195 is a predicted miRNA based on homology to a verified miRNA from

mouse [53], and the expression of this miRNA has not been verified in human.

Using Gene Ontology (GO) [100] has become a standard way to validate the func-

tional coherence of genes in a list. Typically, this type of validation is accompanied

by a statistical significance analysis.

Figure 7.7 shows the annotation of the genes in this module with the terms in the

Biological Process category of GO. In particular, Figure 7.7(a) shows the distribu-

tion of the GO terms over the genes, and Figure 7.7(b) presents how these terms are

related in the GO dag5. We observe that the abundant terms include GO:0007582

(physiological process), GO:0008152 (metabolism), GO:0050875 (cellular physiolog-

ical process), GO:0008151 (cell growth and/or maintenance), and GO:0008283 (cell

proliferation).

Furthermore, we used the tool GO::TermFinder [13] to find significantly over-

represented GO terms. This tool calculates a p-value relative to the hypergeometric

distribution and also performs the multiple comparison correction. For example,

Table 7.5 presents some more details on one of the enriched GO term shown in

Figure 7.7(b).

5Each of the three ontology databases is represented by a directed acyclic graph (dag).

CHAPTER 7. PREDICTION OF MICRORNA REGULATORY MODULES 153

PAK7
RAB9B

BTG2
PPM1D

WT1

G
O

:0007582
G

O
:0009987

G
O

:0050789

G
O

:0007154

G
O

:0008152
G

O
:0050791

G
O

:0050794

G
O

:0050875
G

O
:0050896

G
O

:0006139

G
O

:0006793

G
O

:0006950

G
O

:0007165

G
O

:0008151
G

O
:0009605

G
O

:0009719

G
O

:0019222

G
O

:0042127

G
O

:0043170

G
O

:0006259

G
O

:0006350

G
O

:0006796

G
O

:0006810

G
O

:0006974

G
O

:0007242

G
O

:0008283
G

O
:0009628

G
O

:0016043

G
O

:0019219

G
O

:0019538

G
O

:0006281

G
O

:0006355

G
O

:0008285

G
O

:0006468

G
O

:0000074

G
O

:0006470

G
O

:0009314

G
O

:0006895

G
O

:0007264

G
O

:0015031

G
O

:0045786

Levels 6-10Level 2 Level 3 Level 4 Level 5

(a) Distribution of the GO terms over the genes in the module in Table 7.4

2

3

4

5

6

7

8

9

10

Regulation of

biological process

Cellular

process

Response to

stimulus

Regulation of

physiological process

Cell

communicati

on

Response

to external

stimulus

Response to

endogenous

stimulus

Response

to stress

Phosphorus

metabolism

Nucleobase, nucleoside, nucleotide,

and nucleic acid metabolism

Regulation of

metabolism

Signal

transduction

Response to

DNA damage

stimulus

Protein

metabolism

DNA

metabo-

lism

Phosphate

metabolism

Transcr-

iption

Regulatio of nucleobase,

nucleoside, nucleotide, and

nucleic acid metabolism

Trans-

port

Cell

organization

and biogenesis

Regulation

of cellular

process

Intracellular

signaling

cascade

DNA

repair

Protein

modification

Phospho-

rylation

Dephospho-

rylation

Transcription,

DNA-

dependent

Regulation of

transcription

Protein

transport

Cytoplasm

organization

and biogenesis

Cell

clcle

Regulation

of cell

proliferation

Small GTPase

mediated signal

transduction

Protein amino acid

phosphorylation

Protein amino acid

dephosphorylation

Regulation of transcription,

DNA-dependent

Intracellular

transport

Vesicle-mediated

transport

Organelle

organization and

biogenesis

Regulation of

cell cycle

Negative regulation

of cell proliferation

Secretory

pathway

Golgi vesicle

transport

Endosome

organization and

biogenesis

Negative regulation

of cell cycle

Post-golgi

transport

Endosome

transport

Golgi to endosome

transport

Cell growth

and/or

maintenance

Cell

prolifer-

ation

metabolism

Cellular

physiological

process

Physiological

process

PPM1D

PAK7

BTG2

PPM1D BTG2, WT1

RAB9B

PPM1D

WT1

RAB9B

BTG2, PPM1D

RAB9B

Response

to abiotic

stimulus

Response to

raditation

(b) A subgraph of the GO dag to show the relationship among the GO terms used

Figure 7.7: Annotation with GO terms. (a) Each row represents a target gene, and
each column a GO term in Biological Process. A colored box exists at row i and
column j if target i has GO term j. The abundant terms are GO:0007582 (physiolog-
ical process), GO:0008152 (metabolism), GO:0050875 (cellular physiological process),
GO:0008151 (cell growth and/or maintenance) and GO:0008283 (cell proliferation).
(b) The blue vertices are for the terms in levels 6–10 associated with the targets in
the predicted MRM. The ancestor vertices are also included, where the most abun-
dant terms in each level are colored in red (level 2), orange (level 3), yellow (level
4), and green (level 5). Further analysis of each enriched GO term is possible. For
example, Table 7.5 presents some detailed analysis of the term negative regulation of
cell proliferation.

CHAPTER 7. PREDICTION OF MICRORNA REGULATORY MODULES 154

Table 7.5: Further details on an enriched GO term in Figure 7.7(b), obtained by the
tool GO::TermFinder [13].

Item Value

GO ID GO:0008285

Term Negative regulation of cell proliferation

p-value 0.000259

Corrected p-value 0.0184

Annotated Genes BTG2, PPM1D

Genome frequency of use 134 out of 23531 genes

7.3.3 Supporting evidence from the literature

BTG2 is a negative regulator of cell cycles, and impaired expression of BTG2 has

been found in breast, renal, and prostate cancers in human [34,47,96]. WT1 is a gene

encoding zinc-finger transcription factor, and defects in WT1 are a cause of Wilms’

tumor (WT), an embryonal malignancy of the kidney [64]. PPM1D is a p53 -inducible

protein phosphatase and its overexpression has been reported to cause breast cancer

and neuroblastoma in human [59,86].

Interestingly, BTG2, WT1, and PPM1D have been shown to be directly associ-

ated with the function of p53, a tumor suppressor gene whose activation results in

cell cycle arrest and apoptosis upon DNA damage, viral infection and oncogene ac-

tivation [104]. Since inactivation of p53 by deletion or mutation can cause tumor, it

is also possible that the impaired function of p53 by dysregulation of BTG2, WT1,

or PPM1D mediated by miR-15a and miR-16 might promote tumor development in

an indirect way.

Several lines of evidence suggest that miRNAs may be related to leukemia and

other cancers. For example, the human miR-15a and miR-16 are clustered within

0.5 kb on chromosome 13q14, and this region has been shown to be deleted in B cell

chronic lymphocytic leukemia (B-CLL), mantle cell lymphoma, multiple myeloma,

and prostate cancer [19, 68, 95]. A recent study by [19] demonstrated that miR-15a

and miR-16 are located within a 30-kb region of loss in CLL, and both genes are

CHAPTER 7. PREDICTION OF MICRORNA REGULATORY MODULES 155

deleted or down-regulated in more than two thirds of CLL cases, strongly suggesting

the involvement of miRNA genes in human cancers.

7.4 Discussions

7.4.1 A strategy for biological validation

Given that miR-15a and miR-16 are detected together and found to regulate a set of

genes that are actively involved in tumorigenesis, further studies should be focused

on elucidating the role of miR-15a and miR-16 in other types of cancers through

dysregulation of their target gene expression.

For instance, whether miR-15a or miR-16 is involved in the incidence of breast

cancer through the regulation of PPM1D can be tested as follows. First of all, in order

to determine whether or not those miRNAs participate in breast cancer pathogenesis,

the level of miRNAs will be measured in breast cancer samples and breast cancer

cell lines by Northern Blot. If a significant reduction or increase in the expression

of miR-15a or miR-16 is observed compared with normal tissues, gain-of-function

and loss-of-function analyses will be performed to demonstrate that dysregulation of

miR-15a or miR-16 is directly associated with breast cancer. Since the expression

of PPM1D, a predicted target for miR-15a and miR-16, has been found to increase

in breast cancer, it is highly likely that those miRNAs are down-regulated in breast

cancer patients.

For gain of function analysis, breast cancer cells will be infected with retroviral

vectors containing miR-15a or miR-16, and whether ectopic expression of the miRNAs

would revert or alleviate tumorigenesis will be examined. In addition, cancer cells

infected with the miRNAs will be implanted into nude mice, and tumor growth and

malignant progression will be compared to that of unmanipulated cancer cells.

Since the over-expression of PPM1D has been shown to lead to breast cancer,

ectopic expression of miR-15a or miR-16 is expected to repress PPM1D protein

expression and reduce tumor burden, if PPM1D is a functional target. Therefore,

whether PPM1D is down-regulated by the ectopic expression of miR-15a or miR-16

CHAPTER 7. PREDICTION OF MICRORNA REGULATORY MODULES 156

at the protein level will be examined by Western Blot. At the same time, in order

to verify that the level of mRNA is not changed despite the repression of protein

expression by miRNAs, reverse transcription polymerase chain reaction (RT-PCR)

or Northern Blot will be performed.

Furthermore, loss of function experiments will be performed by introducing o-

methyl-oligos specific for miR-15a or miR-16, thus inhibiting the function of these

miRNAs. The use of o-methyl oligos will reduce the level of endogenous or ectopi-

cally expressed miRNAs and may convert normal cells into tumor cells by increasing

PPM1D expression.

7.4.2 Extension of our computational method

As the understanding of in vivo miRNA target selection mechanisms deepens, more

advanced methods to computationally identify miRNA targets will emerge. New

findings on miRNA-target interactions will need to be represented by a new relation

graph. Our method can then be applied to the augmented relation graph without

further modifications. In fact, identifying animal miRNA targets is computationally

difficult and there is much room for improvement. This is because animal miRNAs

are short and only partially complementary to their targets. Enhanced methods may

consider interactions involving RNA binding proteins, conservation filtering through

sophisticated phylogenetic profiling techniques, and handling for some unusual struc-

tures in targets. For example, a very long loop structure in the target sequence cannot

easily be detected without adversely affecting the rate of false positive detection [31].

The miRNA regulatory module defined in this work consists of miRNAs and their

targets. Since computational methods have been proposed to identify the genes that

encode miRNAs [55,60,75,82], it is possible to redefine the MRM as a group of host

genes, the miRNAs encoded by the host genes, and the target genes bound by the

miRNAs. This will complete the regulatory chain of ‘host gene → miRNA → target

gene.’ This new piece of information can be incorporated into the modeling of gene

regulatory networks.

CHAPTER 7. PREDICTION OF MICRORNA REGULATORY MODULES 157

7.5 Summary

MicroRNAs are small endogenous RNAs that can play important regulatory roles

via the RNA-interference pathway by targeting mRNAs for cleavage or translational

repression. Using the biclustering algorithm described in Chapter 4, this chapter

proposes a computational method to predict miRNA regulatory modules (MRMs) or

groups of miRNAs and target genes that are believed to participate cooperatively in

post-transcriptional gene regulation. MRMs are similar to Type 1 nested biclusters

and can thus be found by the approaches covered in Chapters 3 and 4.

The method to predict MRMs was tested with the human genes and miRNAs,

predicting 431 miRNA regulatory modules. We analyze a module that includes genes

BTG2, WT1, PPM1D, PAK7 and RAB9B ; and miRNAs miR-15a and miR-16. Re-

view of the literature and annotation with Gene Ontology terms reveal that the roles

of these genes are indeed closely related in specific biological processes, such as the

gene regulation involved in breast, renal, and prostate cancers. Furthermore, it has

been reported that miR-15a and miR-16 are deleted together in certain types of

cancers, suggesting a possible connection between these miRNAs and cancer. Given

that most known functionalities of miRNAs are related to negative gene regulation,

extending our approach and exploiting the insight thus obtained may provide clues to

achieving practical accuracy in the reverse-engineering of gene regulatory networks.

Chapter 8

Conclusions

Previous chapters described the development of a biclustering algorithm and the

application of this algorithm to several problems in computational genomics. This

final chapter summarizes the contributions of this dissertation and presents future

research directions.

8.1 Dissertation summary

While Chapters 1 and 2 are dedicated to a general introduction and background infor-

mation, respectively, the other chapters contain the original contributions: Chapters 3

and 4 describe the ZBDD-based biclustering algorithm whereas Chapters 5, 6, and 7

present the application of this algorithm.

• Chapter 3 described a novel biclustering algorithm, which exploits a compact

data structure called zero-suppressed binary decision diagrams (ZBDDs). ZB-

DDs have been extensively studied in the field of design and verification of VLSI

digital circuits. It has been reported that ZBDDs are useful in solving many

practical instances of intractable problems. This ZBDD-based biclustering ap-

proach has the important advantages over alternative methods: The proposed

algorithm is exact, and it can find all the biclusters satisfying specific input

conditions. In addition, this algorithm is scalable to very large data sets due to

the use of dynamic programming, a divide-and-conquer strategy, and ZBDDs.

158

CHAPTER 8. CONCLUSIONS 159

In this chapter, the ZBDD-based algorithm was described at length, focusing

on handling gene expression data sets.

• Chapter 4 presented a method to find nested biclusters. This method is a

generalized and extended version of the ZBDD-based biclustering algorithm

described in Chapter 3. In fact, the algorithm described in this chapter is a

unifying method that can be applied to finding any type of biclusters defined

in the same formalism. Moreover, our experimental studies confirmed that

this method is far more efficient than alternative algorithms. This chapter

introduced the notion of nested biclusters: A bicluster is nested if any sub-

bicluster of this bicluster is yet another bicluster under the same input condition.

Nested biclusters can have several desirable properties. For instance, we can

apply the dynamic programming paradigm to devise an efficient method to

find nested biclusters. In addition, nested biclusters can model more coherent

patterns than non-nested biclusters. Many bicluster definitions appearing in the

literature describe nested biclusters, and the proposed biclustering technique is

applicable with minor modifications. In this chapter, three examples of nested

bicluster definitions were introduced as case studies.

• Chapter 5 showed the first application of the proposed biclustering algorithm to

gene expression data analysis. DNA microarray technology allows us to moni-

tor transcription levels of thousands of genes simultaneously. This fascinating

technology helps us to annotate gene functions, reconstruct gene regulatory

networks, diagnose disease conditions, and characterize effects of medical treat-

ments. In this chapter, several gene expression data sets obtained from DNA

microarray experiments were analyzed by the proposed biclustering method.

First, the proposed algorithm and alternative algorithms were compared in

terms of response time, the number of biclusters that can be found, and the

size of data sets that can be handled. In addition, the biclusters discovered by

different methods were evaluated in terms of compatibility to prior biological

knowledge. It was confirmed that the proposed algorithm consistently outper-

forms the alternatives.

CHAPTER 8. CONCLUSIONS 160

• Chapter 6 presented a method to link gene expression with clinical traits by

biclustering. It can have clinical impact if we can determine which genes are

responsible for a given set of clinical traits. Now that we can monitor expression

levels of many genes at the same time due to DNA microarray technology, it

has become feasible to correlate each gene expression level with the observed

instances of clinical traits. In the experiment explained in this chapter, from

one matrix of gene expression levels and patients and another matrix of pa-

tients and their clinical traits, an intermediate matrix of gene expression levels

and clinical traits was constructed by averaging over the set of patients. Sta-

tistically significant biclusters were found from this intermediate matrix in an

unsupervised fashion by the proposed method. Some biclusters discovered were

validated with existing biological knowledge, and they are promising in that

they can potentially provide new hypotheses for further clinical studies.

• Chapter 7 covered the prediction of microRNA regulatory modules. MicroR-

NAs are small endogenous RNAs that play important regulatory roles via the

RNA-interference pathway by targeting mRNAs for cleavage or translational

repression. Given that miRNA target gene selection is guided by the sequence,

algorithms have been suggested to systematically identify miRNA target genes.

In this chapter, interactions between miRNAs and their target genes were mod-

eled using a weighted bipartite graph. In this graph, bicliques with some edge

constraints were named miRNA regulatory modules (MRMs) and discovered

using the proposed biclustering algorithm. MRMs correspond to groups of

miRNAs and their target genes that are believed to participate cooperatively in

post-transcriptional gene regulation. This method was tested with the human

genome, and a number of statistically significant MRMs were discovered. Some

MRMs were thoroughly validated with the literature as well as Gene Ontol-

ogy, and the functional coherence of the genes in these MRMs was confirmed.

Extending this approach can be very useful in reconstructing gene regulatory

networks, since the regulation patterns by miRNAs has not been appreciated

before in the process of gene network reconstruction.

CHAPTER 8. CONCLUSIONS 161

In summary, this dissertation proposed a series of novel data mining techniques

that can find a variety of local structures appearing in large-scale genomic data sets

in an unsupervised fashion. The effectiveness of this method was confirmed with a

number of experimental studies.

8.2 Future work

An interesting research direction could lie in enhancing the computation speed in-

volved in Bayesian networks using the ZBDD-based data management framework

established through this dissertation. Bayesian networks, also termed belief networks

or probabilistic networks, are graphical models for visually representing the interaction

between variables [5]. In essence, Bayesian networks provide a compact representa-

tion of joint probability distributions. However, a Bayesian network is a “represen-

tational” factorization of a probability distribution, not a “computational” one [25].

That is, although the network allows us to compactly represent the distribution, it

needs to be processed further to obtain answers to arbitrary probabilistic queries.

This inference problem in Bayesian networks is NP-hard, and in theory, even approx-

imate inference of probabilities in Bayesian networks can be NP-hard [71]. Thus, any

Bayesian network approach is typically very computationally intensive, although the

use of Bayesian networks is recently widespread in many disciplines in which uncer-

tainty needs to be handled. Binary decision diagrams (BDDs) are a special kind of

Bayesian networks [101], and it may be possible to devise a fast algorithm for the

inference problem in Bayesian networks using a BDD-based approach.

In addition to the applications described in this dissertation, biclustering can be

useful in many other contexts. For example, one of the earliest developments of biclus-

tering was in the field of natural language text processing, or text mining [66]. The

rapid growth of digitally stored scientific literature provides attractive opportunities

for biomedical text mining as well. A starting point for applying any data mining

algorithm to a corpus is to create a vector space model, also known as a bag-of-words

model [87]. The basic concept in this model is to extract unique content-bearing words

from the corpus treating these words as features and to represent each document in

CHAPTER 8. CONCLUSIONS 162

the corpus as a vector of certain weighted word frequencies in this feature space [28].

Thus, the entire document collection may be treated as a word-by-document matrix,

in which rows corresponds to words and columns to documents. A subset of the

MEDLINE repository1 can be used to build a word-by-document matrix, and addi-

tional information extracted from other biomedical resources can be linked to this

matrix using the methodology introduced in Chapter 6. Finding biclusters from this

combined information then validating them may provide an interesting scheme for

biomedical text mining.

Another interesting application may be genome-wide association studies to obtain

information on the association of single nucleotide polymorphism (SNP) to phenotypes

across the entire genome. SNPs are the most common form of genetic variation in

humans comprising almost 0.1% of the average human genome. Predicting and un-

derstanding the downstream effects of genetic variation using computational methods

are becoming increasingly important for SNP selection in genetic studies [72]. The

biclustering method investigated in this study can be applied as follows. We can pro-

duce a subject-by-genotype matrix in which rows correspond to subjects under study

and columns to SNP genotypes for each subject. We can also record phenotypes for

each subject and construct a subject-by-phenotype matrix. Then, it is possible to find

a genotype-by-phenotype matrix following the technique described in Chapter 6. Find-

ing biclusters from this matrix corresponds to associating genotypes with phenotypes,

and evaluation of these biclusters may provide valuable biological insight.

1http://www.ncbi.nlm.nih.gov/entrez/

Bibliography

[1] R Agrawal, T Imielinski, and A N Swami. Mining association rules between

sets of items in large databases. In Proc. ACM SIGMOD ’93,, pages 207–216,

1993.

[2] Alfred V Aho, John E Hopcroft, and Jeffrey D Ullman. Data Structures and

Algorithms. Addison-Wesley, Reading, Massachusetts, 1983.

[3] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts,

and Peter Walter. Molecular Biology of the Cell. Garland Science, New York,

fourth edition, 2002.

[4] Ash Alizadeh et al. Distinct types of diffuse large B-cell lymphoma identified

by gene-expression profiling. Nature, 4051:503–511, 2000.

[5] Ethem Alpaydin. Introduction to Machine Learning. MIT Press, Massachusetts,

2004.

[6] Russ B Altman and Soumya Raychaudhuri. Whole-genome expression analysis:

challenges beyond clustering. Current Opinion in Structural Biology, 11:340–

347, 2001.

[7] Pierre Baldi and Søren Brunak. Bioinformatics: The Machine Learning Ap-

proach. MIT Press, Massachusetts, 2nd edition, 2001.

[8] David P Bartel. MicroRNAs: Genomics, biogenesis, mechanism, and function.

Cell, 116(2):281–297, 2004.

163

BIBLIOGRAPHY 164

[9] R E Bellman. Adaptive Control Processes. Princeton University Press, New

Jersey, 1961.

[10] Amir Ben-Dor, Benny Chor, Richard Karp, and Zohar Yakhini. Discovering lo-

cal structure in gene expression data: The order-preserving submatrix problem.

Journal of Computational Biology, 10(3-4):373–384, 2003.

[11] Y Benjamini and Y Hochberg. Controlling the false discovery rate: A practical

and powerful approach to multiple testing. Journal of the Royal Statistical

Society, 57(1):289–300, 1995.

[12] Jeremy M. Berg, John L. Tymoczko, and Lubert Stryer. Biochemistry. W.H.

Freeman and Company, New York, 5th edition, 2002.

[13] E I Boyle, S Weng, J Gollub, H Jin, D Botstein, J M Cherry, and G Sherlock.

GO::TermFinder. Bioinformatics, 20(18):3710–3715, December 2004.

[14] K S Brace, R L Rudell, and R E Bryant. Efficient implementation of a BDD

package. In Proceedings of the 27th Design Automation Conference, pages 40–

45, 1990.

[15] Randal E. Bryant. Graph-based algorithms for Boolean function manipulation.

IEEE Transactions on Computers, C-35(8):677–691, August 1986.

[16] Randal E. Bryant. Binary decision diagrams and beyond: Enabling technolo-

gies for formal verification. In IEEE/ACM International Conference on Com-

puter Aided Design, ICCAD, San Jose/CA, pages 236–243. IEEE CS Press, Los

Alamitos, 1995.

[17] L Bullinger, K Dohner, E Bair, S Frohling, R F Schlenk, R Tibshirani,

H Dohner, and J R Pollack. Use of gene-expression profiling to identify prognos-

tic subclasses in adult acute myeloid leukemia. N Engl J Med., 350(16):1605–

1616, April 2004.

BIBLIOGRAPHY 165

[18] Andrea Califano, Gustavo Stolovitzky, and Yuhai Tu. Analysis of gene expres-

sion microarrays for phenotype classification. In Proc. Int Conf Intell Syst Mol

Biol, pages 75–85, 2000.

[19] G A Calin, C D Dumitru, M Shimizu, R Bichi, S Zupo, E Noch, H Aldler,

S Rattana, M Keating, K Rai, L Rassenti, T Kipps, M Negrini, F Bullrich,

and C M Croce. Frequent deletions and down-regulation of micro-RNA genes

miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad

Sci USA, 99(24):15524–15529, 2002.

[20] W Chen, M Reiss, and D J Foran. A prototype for unsupervised analysis of

tissue microarrays for cancer research and diagnostics. IEEE Trans Inf Technol

Biomed, 8(2):89–96, 2004.

[21] Yizong Cheng and George M. Church. Biclustering of expression data. In

Proceedings of ISMB, pages 93–103, 2000.

[22] R J Cho, M J Campbell, E A Winzeler, L Steinmetz, A Conway, L Wodicka,

T G Wolfsberg, A E Gabrielian, D Landsman, D J Lockhart, and R W Davis.

A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell,

2(1):65–73, July 1998.

[23] A Cignetti, E Bryant, B Allione, A Vitale, R Foa, and M A Cheever. CD34(+)

acute myeloid and lymphoid leukemic blasts can be induced to differentiate into

dendritic cells. Blood, 94:2048–2055, 1999.

[24] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms. The MIT Press, Cambridge, Massachusetts, 2001.

[25] Adnan Darwiche. A logical approach to factoring belief networks. In Pro-

ceedings of the Eights International Conference on Principles and Knowledge

Representation and Reasoning, pages 409–420, April 2002.

[26] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-

Hill, New York, 1994.

BIBLIOGRAPHY 166

[27] J DeRisi, L Penland, P O Brown, M L Bittner, P S Meltzer, M Ray, Y Chen,

Y A Su, and J M Trent. Use of a cDNA microarray to analyse gene expression

patterns in human cancer. Nature Genetics, 14(4):457–460, 1996.

[28] Inderjit S. Dhillon. Co-clustering documents and words using bipartite spectral

graph partitioning. In Knowledge Discovery and Data Mining, pages 269–274,

2001.

[29] Sorin Drǎghici. Data Analysis Tools for DNA Microarrays. Chapman &

Hall/CRC, Florida, 2003.

[30] Richard O Duda, Peter E Hart, and David G Stork. Pattern Classification.

Wiley, New York, 2nd edition, 2001.

[31] Anton J Enright, Bino John, Ulrike Gaul, Thomas Tuschl, Chris Sander, and

Debora S Marks. MicroRNA targets in Drosophila. Genome Biology, 5(1):R1,

2003.

[32] Tom Fawcett. ROC graphs: Notes and practical considerations for data mining

researchers. HP Laboratories Technical Report, 2003.

[33] Uriel Feige. Relations between average case complexity and approximation com-

plexity. In Proceedings of the 34th ACM Symposium on Theory of Computing,

pages 534–543, May 2002.

[34] M A Ficazzola, M Fraiman, J Gitlin, K Woo, J Melamed, M A Rubin, and

P D Walden. Antiproliferative B cell translocation gene 2 protein is down-

regulated post-transcriptionally as an early event in prostate carcinogenesis.

Carcinogenesis, 22(8):1271–1279, 2001.

[35] G. Getz, E. Levine, and E. Domany. Coupled two-way clustering analysis of

gene microarray data. Proc. Natl. Acad. Sci USA, 94:12079–12084, 2000.

[36] Dan Gusfield. Algorithms on String, Trees and Sequences: Computer Science

and Computational Biology. Cambridge, New York, 1997.

BIBLIOGRAPHY 167

[37] David Hand, Heikki Mannila, and Padhraic Smyth. Principles of Data Mining.

MIT Press, Massachusetts, 2001.

[38] Beth D. Harrison, Julie A. Adams, Mark Briggs, Michelle L. Brereton, and

John A. Liu Yin. Stimulation of autologous proliferative and cytotoxic T-cell

responses by “leukemic dendritic cells” derived from blast cells in acute myeloid

leukemia. Blood, 979:2764–2771, 2001.

[39] Leland H. Hartwell, Leroy Hood, Michael L. Goldberg, Ann E. Reynolds, Lee M.

Silver, and Ruth C. Veres. Genetics. McGraw-Hill, New York, 2000.

[40] Arjang Hassibi and Thomas H Lee. A programmable electrochemical biosensor

array in 0.18µm standard CMOS. In Proceedings of IEEE International Solid-

State Circuits Conference, 2005.

[41] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of

Statistical Learning. Springer, New York, 2001.

[42] John P T Higgins, Rajesh Shinghal, Harcharan Gill, Jeffrey H Reese, Martha

Terris, Ronald J Cohen, Michael Fero, Jonathan R Pollack, Matt van de Rijn,

and James D Brooks. Gene expression patterns in renal cell carcinoma as-

sessed by complementary DNA microarray. American Journal of Pathology,

162(3):925–932, March 2003.

[43] S Holm. A simple sequentially rejective multiple test procedure. Scandinavian

Journal of Statistics, 6:65–70, 1979.

[44] S E Jacobsen, O P Veiby, J Myklebust, C Okkenhaug, and S D Lyman. Ability

of flt3 ligand to stimulate the in vitro growth of primitive murine hematopoietic

progenitors is potently and directly inhibited by transforming growth factor-

beta and tumor necrosis factor-alpha. Blood, 87:5016–5026, 1996.

[45] Bino John, Anton J Enright, Alexei Arain, Thomas Tuschl, Chris Sander, and

Debora S Marks. Human microRNA targets. PLoS Biology, 2(11):e363, 2004.

BIBLIOGRAPHY 168

[46] I T Jolliffe. Principal Component Analysis. Springer-Verlag, New York, second

edition, 2002.

[47] H Kawakubo, J L Carey, E Brachtel, V Gupta, J E Green, P D Walden, and

S Maheswaran. Expression of the NF-kappaB-responsive gene BTG2 is aber-

rantly regulated in breast cancer. Oncogene, 23(50):8310–8319, 2004.

[48] J Keski-Oja, E B Leof, R M Lyons, R J Coffey Jr, and H L Moses. Transforming

growth factors and control of neoplastic cell growth. J Cell Biochem, 33:95–107,

1987.

[49] Marianthi Kiriakidou, P T Nelson, A Kouranov, P Fitziev, C Bouyioukos,

Z Mourelatos, and A Hatzigeorgiou. A combined computational-experimental

approach predicts human microRNA targets. Genes and Development,

18(10):1165–1178, 2004.

[50] S Kiyonaka, K Sada, I Yoshimura, S Shinkai, N Kato, and I Hamachi. Semi-wet

peptide/protein array using supramolecular hydrogel. Nature Mater., 3(1):58–

64, 2004.

[51] Y Kluger, R Basri, J T Chang, and M Gerstein. Spectral biclustering of microar-

ray data: Coclustering genes and conditions. Genome Research, 13(4):703–716,

April 2003.

[52] I S Kohane, A T Kho, and A J Butte. Microarrays for an Integrative Genomics.

The MIT Press, Cambridge, Massachusetts, 2003.

[53] M Lagos-Quintana, R Rauhut, J Meyer, A Borkhardt, and T Tuschl. New

microRNAs from mouse and human. RNA, 9(2):175–179, 2003.

[54] Eric C Lai. Predicting and validating microRNA targets. Genome Biology,

5(9):115.1–6, 2004.

[55] Eric C Lai, Pavel Tomancak, Robert W Williams, and Gerald M Rubin. Com-

putational identification of Drosophila microRNA genes. Genome Biology,

4(7):R42.1–20, 2003.

BIBLIOGRAPHY 169

[56] L Lazzeroni and Art Owen. Plaid models for gene expression data. Stanford

University Technical Report, 2000.

[57] Benjamin P Lewis, Christopher B Burge, and David P Bartel. Conserved seed

pairing, often flanked by adenosines, indicates that thousands of human genes

are microRNA targets. Cell, 120:15–20, 2005.

[58] Benjamin P Lewis, I-hung Shih, Matthew W Jones-Rhoades, David Partel,

and Christopher B Burge. Prediction of mammalian microRNA targets. Cell,

115(7):787–798, 2003.

[59] J Li, Y Yang, Y Peng, R J Austin, W G van Eyndhoven, K C Nguyen,

T Gabriele, M E McCurrach, J R Marks, T Hoey T, S W Lowe, and S Powers.

Oncogenic properties of PPM1D located within a breast cancer amplification

epicenter at 17q23. Nature Genetics, 31(2):133–134, 2002.

[60] Lee P Lim, Margaret E Glasner, Soraya Yekta, Christopher B Burge, and

David P Bartel. Vertebrate microRNA genes. Science, 299(5612):1540, 2003.

[61] J Liu, J Yang, and Wei Wang. Biclustering in gene expression data by tendency.

In Proceedings of CSB, pages 182–193, 2004.

[62] D Lockhart, H Dong, M Byrne, M Follettie, M Gallo, M Chee, M Mittmann,

C Wang, M Kobayashi, H Horton, and E L Brown. Expression monitoring

by hybridization to high-density oligonucleotide arrays. Nature Biotechnology,

14(13):1675–1680, 1996.

[63] Harvey Lodish, Arnold Berk, Paul Matsudaira, Chris A. Kaiser, Monty Krieger,

Matthew P. Scott, Lawrence Zipursky, and James Darnell. Molecular Cell Bi-

ology. W. H. Freeman, New York, fifth edition, 2003.

[64] D M Loeb and S Sukumar. The role of WT1 in oncogenesis: tumor suppressor

or oncogene? Int J Hematol., 76(2):117–126, 2002.

BIBLIOGRAPHY 170

[65] Sara C Madeira and Arlindo L Oliveira. Biclustering algorithms for biological

data analysis: A survey. IEEE Transactions on Computational Biology and

Bioinformatics, 1(1):24–45, 2004.

[66] Christopher D Manning and Hinrich Schütze. Foundations of Statistical Natural

Language Processing. MIT Press, Cambridge, Massachusetts, 1999.

[67] Christoph Meinel and Thorsten Theobald. Algorithms and Data Structures in

VLSI Design. Springer, Berlin, 1998.

[68] A Migliazza, E Cayanis, F Bosch-Albareda, H Komatsu, S Martinotti, E Toni-

ato, S Kalachikov, M F Bonaldo, P Jelene, X Ye, A Rzhetsky, X X Qu, M Chien,

G Inghirami, G G Gaidano, U Vitolo, G Saglio, L L Resegotti, P P Zhang,

M B Soares, J Russo, S G Fischer, I S Edelman, A Efstratiadis, and R Dalla-

Favera. Molecular pathogenesis of B-cell chronic lymphocytic leukemia: analysis

of 13q14 chromosomal deletions. Curr Top Microbiol Immunol., 252:275–284,

2000.

[69] Shinichi Minato. Zero-suppressed BDDs for set manipulation in combinatorial

problems. In IEEE/ACM Design Automation Conference, DAC, Dallas/TX,

pages 272–277. ACM Press, New York, 1993.

[70] Shinichi Minato. Binary Decision Diagrams and Applications for VLSI CAD.

Kluwer, 1996.

[71] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[72] Sean Mooney. Bioinformatics approaches and resources for single nucleotide

polymorphism functional analysis. Briefings in Bioinformatics, 6(1):44–56,

March 2005.

[73] Gordon E. Moore. Cramming more components onto integrated circuits. Elec-

tronics Magazine, April 1965.

BIBLIOGRAPHY 171

[74] T M Murali and Simon Kasif. Extracting conserved gene expression motifs from

gene expression data. In Proceedings of Pacific Symposium on Biocomputing,

pages 77–88, 2003.

[75] Uwe Ohler, Soraya Yekta, Lee P Lim, David P Bartel, and Christopher B Burge.

Patterns of flanking sequence conservation and a characteristic upsteam motif

for microRNA gene identification. RNA, 10(9):1309–1322, 2004.

[76] R Peeters. The maximum edge biclique problem is NP-complete. Discrete

Applied Math., 131(3):651–654, 2003.

[77] Nikolaus Rajewsky and Nicholas D Socci. Computational identification of mi-

croRNA targets. Developmental Biology, 267(2):529–535, 2003.

[78] Soumya Raychaundhuri, Patric D Sutphin, Jeffrey T Chang, and Russ B Alt-

man. Basic microarray analysis: grouping and feature reduction. Trends in

Biotechnology, 19(5):189–193, May 2001.

[79] Marc Rehmsmeier, Peter Steffen, Matthias Hchsmann, and Robert Giegerich.

Fast and effective prediction of microRNA/target duplexes. RNA, 10(10):1507–

1517, 2004.

[80] John A. Rice. Mathematical Statistics and Data Analysis. Duxbury Press, 1994.

[81] E Riedl, H Strobl, O Majdic, and W Knapp. TGF-beta 1 promotes in vitro

generation of dendritic cells by protecting progenitor cells from apoptosis. J

Immunol, 158:1591–1597, 1997.

[82] Antony Rodriguez, Sam Griffiths-Jones, Jennifer L Ashurst, and Allan Bradley.

Identification of mammalian microRNA host genes and transcription units.

Genome Research, 14(10A):1902–1910, 2004.

[83] B Rosner. Fundamentals of Biostatistics. Duxbury, Pacific Grove, California,

5th edition, 2000.

BIBLIOGRAPHY 172

[84] A Y Rubina, E I Dementieva, A A Stomakhin, E L Darii, S V Pan’kov, V E

Barsky, S M Ivanov, E V Konovalova, and A D Mirzabekov. Hydrogel-based

protein microchips: manufacturing, properties, and applications. Biotechniques,

34(5):1008–1014, 2003.

[85] Stuart Russell and Peter Norvig. Artificial Intelligence: A modern Approach.

Prentice Hall, New Jersey, 2nd edition, 2003.

[86] F Saito-Ohara, I Imoto, J Inoue, H Hosoi, A Nakagawara, T Sugimoto, and

J Inazawa. PPM1D is a potential target for 17q gain in neuroblastoma. Cancer

Research, 63(8):1876–1883, 2003.

[87] G Salton and M J McGill. Introduction to Modern Retrieval. McGraw-Hill,

1983.

[88] Tsutomu Sasao and Masahiro Fujita. Representations of Discrete Functions.

Kluwer, Massachusetts, 1996.

[89] M Schienle, C Paulus, A Frey, F Hofmann, B Holzapfl, P Schindler-Bauer, and

R Thewes. A fully electronic DNA sensor with 128 positions and in-pixel A/D

conversion. IEEE Journal of Solid-State Circuits, 39(12):2438–2445, 2004.

[90] E. Segal, B. Taskar, A. Gasch, N. Friedman, and D. Koller. Rich probabilistic

models for gene expression. Bioinformatics, 17(Suppl 1):S243–52, 2001.

[91] I S Shergill, N K Shergill, M Arya, and H R Patel. Tissue microarrays: a current

medical research tool. Curr Med Res Opin., 20(5):707–712, 2004.

[92] Neil R Smalheiser and Vetle I Torvik. A population-based statistical approach

identifies parameters characteristic of human microRNA-mRNA interactions.

BMC Bioinformatics, 5(1):139, 2004.

[93] Robert R. Sokal and F. James Rohlf. Biometry. WH Freeman and Co., 1994.

[94] Alexander Stark, Julius Brennecke, Robert B Russel, and Stephen M Cohen.

Identification of Drosophila microRNA targets. PLoS Biology, 1(3):397–409,

2003.

BIBLIOGRAPHY 173

[95] S Stilgenbauer, J Nickolenko, J Wilhelm, S Wolf, S Weitz, K Dohner, T Boehm,

H Dohner, and P Lichter. Expressed sequences as candidates for a novel tumor

suppressor gene at band 13q14 in B-cell chronic lymphocytic leukemia and

mantle cell lymphoma. Oncogene, 16(14):1891–1897, 1998.

[96] K Struckmann, P Schraml, R Simon, K Elmenhorst, M Mirlacher, J Kononen,

and H Moch. Impaired expression of the cell cycle regulator BTG2 is common

in clear cell renal cell carcinoma. Cancer Research, 64(5):1632–1638, 2004.

[97] M Sultan, D A Wigle, C A Cumbaa, M Maziarz, J Glasgow, M S Tsao, and

I Jurisica. Binary tree-structured vector quantization approach to clustering

and visualizing microarray data. Bioinformatics, 18:S111–S119, 2002.

[98] A Tanay, R Sharan, and R Shamir. Discovering statistically significant biclus-

ters in gene expression data. Bioinformatics, 18:S136–S144, 2002.

[99] Saeed Tavazoie, Jason D. Hughes, Michael J. Campbell, Raymond J. Cho, and

George M. Church. Systematic determination of genetic network architecture.

Nature Genetics, 22:281–285, 1999.

[100] The Gene Ontology Consortium. Gene ontology: tool for the unification of

biology. Nature Genetics, 25(1):25–29, 2000.

[101] Robert R. Tucci. Binary decision diagrams are a subset of bayesian nets. eprint

arXiv:quant-ph/0209009, 2002.

[102] V G Tusher, R Tibshirani, and G Chu. Significance analysis of microarrays ap-

plied to the ionizing radiation response. Proc. Natl. Acad. Sci USA, 98(9):5116–

5121, April 2001.

[103] O P Veiby, F W Jacobsen, L Cui, S D Lyman, and S E Jacobsen. The flt3 ligand

promotes the survival of primitive hemopoietic progenitor cells with myeloid as

well as b lymphoid potential. Suppression of apoptosis and counteraction by

TNF-alpha and TGF-beta. J Immunol, 157:2953–2960, 1996.

BIBLIOGRAPHY 174

[104] B Vogelstein, D Lane, and A J Levine. Surfing the p53 network. Nature,

408(6810):307–310, 2000.

[105] Z Šidák. Rectangular confidence regions for the means of multivariate normal

distributions. Journal of the American Statistical Association, 62:626–633, 1967.

[106] C C Wang, R P Huang, M Sommer, H Lisoukov, R Huang, Y Lin, T Miller,

and J Burke. Array-based multiplexed screening and quantitation of human

cytokines and chemokines. J Proteome Res., 1(4):337–343, 2002.

[107] Haixun Wang, Wei Wang, Jiong Yang, and Philip S. Yu. Clustering by pattern

similarity in large data sets. In Proceedings of ACM SIGMOD, pages 394–405,

2002.

[108] E Weisberg, C Boulton, L M Kelly, P Manley, D Fabbro, T Meyer, D G

Gilliland, and J D Griffin. Inhibition of mutant FLT3 receptors in leukemia

cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell,

1:433–443, 2002.

[109] M West, C Blanchette, H Dressman, E Huang, S Ishida, R Spang, H Zuzan,

J A Olson Jr, J R Marks, and J R Nevins. Predicting the clinical status of

human breast cancer by using gene expression profiles. Proc Natl Acad Sci

USA, 98(20):11462–11467, September 2001.

[110] P H Westfall and S S Young. Resampling-based multiple testing: Examples and

Methods for p-value adjustment. Wiley, New York, 1993.

[111] A R Whitney, M Diehn, S J Popper, A A Alizadeh, J C Boldrick, D A Relman,

and P O Brown. Individuality and variation in gene expression patterns in

human blood. Proc Natl Acad Sci USA, 100(4):1896–1901, February 2003.

[112] Chang-Jiun Wu, Yutao Fu, T M Murali, and Simon Kasif. Gene expression

module discovery using gibbs sampling. Genome Informatics, 15(1):239–248,

2004.

BIBLIOGRAPHY 175

[113] Jiong Yang, Haixun Wang, Wei Wang, and Philip Yu. Enhanced bicluster-

ing on expression data. In Proc. IEEE 3rd Symposium on Bioinformatics and

Bioengineering, pages 321–327, 2003.

[114] Sungroh Yoon, Luca Benini, and Giovanni De Micheli. Finding co-clusters of

genes and clinical parameters. In Proceedings of the 27th Annual International

Conference of the IEEE EMBS, September 2005.

[115] Sungroh Yoon, Luca Benini, and Giovanni De Micheli. A pattern mining

mehtod for high-throughput lab-on-a-chip data analysis. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 25(2), February

2006, in press.

[116] Sungroh Yoon and Giovanni De Micheli. An application of zero-suppressed

binary decision diagrams to clustering analysis of DNA microarray data. In

Proceedings of the 26th Annual International Conference of the IEEE EMBS,

pages 2925–2928, September 2004.

[117] Sungroh Yoon and Giovanni De Micheli. Prediction and analysis of human

microRNA regulatory modules. In Proceedings of the 27th Annual International

Conference of the IEEE EMBS, September 2005.

[118] Sungroh Yoon and Giovanni De Micheli. Prediction of regulatory modules com-

prising microRNAs and target genes. Bioinformatics, 21:ii93–ii100, September

2005.

[119] Sungroh Yoon, Christine Nardini, Luca Benini, and Giovanni De Micheli. En-

hanced pClustering and its applications to gene expression data. In Proceedings

of IEEE 4th Symposium on Bioinformatics and Bioengineering, pages 275–282,

May 2004.

[120] Sungroh Yoon, Christine Nardini, Luca Benini, and Giovanni De Micheli. Dis-

covering coherent biclusters from gene expression data using zero-suppressed

binary decision diagrams. IEEE/ACM Transactions on Computational Biology

and Bioinformatics, 2(4), October-December 2005, in press.

