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Abstract

The growing complexity of Multiprocessor Systems on Chips (MPSoCs) is requiring

communication resources that can only be provided by a highly-scalable communica-

tion infrastructure. This trend is exemplified by the growing number of Networks on

Chip (NoC) architectures that are being proposed recently for MPSoC integration.

Developing NoC-based systems tailored to a particular application domain is crucial

for achieving high-performance, energy-efficient customized solutions. The effective-

ness of this approach largely depends on the availability of a design methodology

that, starting from a high-level application specification, derives an optimized NoC

configuration with respect to different design objectives and instantiates the selected

application specific on-chip micro-network. Automatic execution of these design steps

is highly desirable to increase SoC design productivity.

With technology scaling, as the geometries of the transistors reach the physical

limits of operation, another important design challenge of SoCs will be to provide

dynamic (run-time) support against permanent and intermittent faults that can occur

in the system. The interconnect will be susceptible to various noise sources such as

cross-talk, coupling noise, process variations, etc.. Designing systems under such

uncertain conditions becomes a challenge.

In this thesis, I present novel and state-of-the-art methods to solve some of the

most important and time-intensive problems encountered during NoC design, such as

topology synthesis, core mapping, crossbar sizing, route generation, resource reser-

vation, achieving fault-tolerance, RTL code and layout generation. The methods are

integrated into a complete tool flow, Netchip, for designing reliable and efficient NoCs

for application-specific SoCs and chip multi-processors.
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Layout-level design of several realistic MPSoCs are performed, which show that the

tool flow can produce highly optimal NoC designs in a matter of hours, a process that

usually takes several weeks. Moreover, the produced designs have large improvement

in performance and reduction in power consumption when compared to the traditional

design approaches.

The nature of contributions of this work are of two kinds: scientific and engineer-

ing. First, from the scientific viewpoint, novel algorithmic methods are presented to

solve many of the important NoC design problems. These methods will be useful for

designers to tackle specific problems in NoC design. Second, from the engineering

viewpoint, the SoC designer can directly use the tool flow as a black-box to design

efficient interconnects and to perform design space exploration of different communi-

cation architectures.

Thus, the design methodology presented in this thesis bridges an important design

gap that exists today, in building efficient communication architectures for MPSoCs.
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Chapter 1

Introduction

In contrast to past projections, today the introduction of new technology solutions is

increasingly application driven. As an example, let us consider ambient intelligence,

which is regarded as the new paradigm for consumer electronics. Systems designed

for ambient intelligence will be based on high-speed digital signal processing, with

computational loads ranging from 10 MOPS for lightweight audio processing, 3 GOPS

for video processing, 20 GOPS for multi-lingual conversation interfaces and up to 1

TOPS for synthetic video generation [9]. This computational challenge will have to

be addressed at manageable power levels and affordable costs, and a single processor

will not suffice, thus driving the development of increasingly more complex Multi-

Processor Systems-on-Chip (MPSoCs).

MPSoCs represent high-complexity, high-value semiconductor products that incor-

porate building blocks from multiple sources (either in-house made or externally sup-

plied), such as general-purpose fully programmable processors, co-processors, DSPs,

dedicated hardware accelerators, memory blocks, I/O blocks, etc [1], [10]. Even

though commercial products currently exhibit only a few integrated cores ( e.g.,

NEC’s new TCP/IP offload engine is powered by 10 Tensilica Xtensa Processor

Cores [76]), in the next few years technology will support the integration of several

tens to hundreds of cores, making a large computational power available.

Full exploitation of the increased level of SoC integration requires new paradigms

and significant improvements of design productivity, as current system architectures

1
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and design styles do not scale up to such dimensions and complexities. A relevant

example regards the system architecture, whose paradigm is progressively shifting

from computation-centric to communication-centric. In fact, MPSoC performance

will be increasingly determined by the ability of the communication infrastructure

to efficiently accommodate the communication needs of the integrated computation

resources.

1.1 Networks on Chips: Scalable interconnects for

SoCs

In several application domains, such as multi-media processing, the bandwidth re-

quirement between the cores in SoCs is increasing. The aggregate communication

bandwidth between the cores is in the GBytes/s range for many video applications.

In the future, with the integration of many applications onto a single device and with

increased processing speed of cores, the bandwidth demands will scale up to much

larger values [12]. As an example of a media processing application, a Video Object

Plane decoder [13] is shown in Figure 1.1. Each block in the figure corresponds to a

core and the edges connecting the cores are labeled with bandwidth demands of the
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Figure 1.2: Evolution of Communication Architecture for SoCs

communication between them. As seen from the figure, the bandwidth demands are

in the order of hundreds of MBytes/s.

Traditionally, bus-based architectures have been used to interconnect the various

cores of the MPSoCs. To meet the increasing communication demands, the bus-based

architectures have evolved over time from a single shared bus to multiple bridged

buses and to crossbar-based designs (shown in Figure 1.2). Current state-of-the art

bus architectures, such as the AMBA multi-layer [6], STBus [7] and SonicsMX [8]

enable the instantiation of multiple buses operating in parallel, thereby providing a

crossbar architecture. However, as all the cores in the design need to connect to the

crossbar, such architecture is inherently non-scalable for large number of cores in the

design.

To effectively tackle the interconnect complexity of current and future MPSoCs, a

micro-networks based interconnect architecture is needed to connect the cores. A

communication-centric design approach, Networks on Chips (NoCs), has recently

emerged as the design paradigm for designing such scalable micro-networks for MP-

SoCs [25], [27], [28], [26], [36], [35].

A typical NoC consists of switches, links and Network Interfaces (NIs), as shown

in Figure 1.3. A NI connects a core to the network and co-ordinates the transmission

and reception of packets from/to the core. A packet is usually segmented into multiple

FLow control unITS (flits). The switches and links are used to connect the various

cores and NIs together. To tackle the delay of long NoC links, a latency insensitive

design approach in which the links are pipelined can be utilized [75]. Link pipelining

increases the link throughput and decouples the cycle time of the communication
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Figure 1.3: Example NoC system with pipelined links

system from the link length.

The use of a NoC to replace bus-based wiring has several key advantages:

� Better scalability at the architectural and physical levels. NoCs can add band-

width as needed and segment wires as required.

� Better performance under high loads. NoCs can run at or beyond 1 GHz (on

a 1300nm technology process), cope with large bandwidth demands, and paral-

lelize traffic streams.

� Better decoupling of protocol-level and transport-level issues in the commu-

nication protocol stack. Any standard interface can be deployed at the NoC

boundary, then several degrees of freedom can be exploited within the fabric.

� Quicker design closure. NoC are more predictable: they intrinsically provide

wire segmentation, which helps ensuring that design re-spins will not be needed

in the last phases of the design flow, when they are more costly.

� More freedom in the design. NoCs are decentralized; therefore, features such as

power management, clock domain crossing, frequency and voltage scaling can

be independently added to the NoC sub-domains, reducing the issues presented

by global infrastructures.
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� More customizability. NoC topologies can be arbitrary and NoC architectures

can be tuned according to a large range of settings. This extensive customization

allows for perfect tailoring of the NoC to the target application(s).

� More streamlined design flows. NoCs provide a solution to designing and ver-

ifying the whole architecture in a single automated pass, while bus-based ar-

chitectures are struggling to keep up with application demands by means of

very complicated and hand-crafted assemblies of buses, crossbars, bridges and

converters. Moreover, these bus-based designs typically require several time-

consuming feedback loops in the design and verification phases due to the in-

tensive manual intervention of designers, not needed with NoCs.

� NoCs facilitate modularity by orthoganalizing the design of the communica-

tion architecture design from the computation architecture, thereby leading to

reduced design efforts.

Another effect of the shrinking feature size is that the power supply voltage and

device Vt decreases and the wires become unreliable, as they are increasingly sus-

ceptible to various noise sources such as cross-talk, coupling noise, soft errors and

process variations [129, 134, 137, 135, 138, 139]. The use of aggressive voltage scal-

ing techniques to reduce the power consumption of the system further increases the

susceptibility of the system to various noise sources. Moreover, wires are becoming

thicker and taller, but their widths are not increasing proportionally, thereby increas-

ing the effect of coupling capacitance on the delay of wires. As an example, the delay

of a wire can vary between τ and (1 + 4λ)τ (where τ is the delay of the wire without

any capacitive coupling and λ is the ratio of the coupling capacitance to the bulk ca-

pacitance) [141]. The wire delay for data transfer on a communication bus depends on

the data patterns transferred on the bus. As presented in [126], the data-dependent

variations in wire delay can be as large as 50% for the different switching patterns.

With technology scaling, the device characteristics fluctuate to a large extent due to

process variations and can cause significant variations in wire delay [127]. Wire delay

is also affected by other forms of interference such as supply bounce, transmission
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line effects, etc. [128], [129]. Providing resilience from such transient delay and logic

errors is critical for proper system operation.

The variability in process technology and temperature distribution (thermal hotspots)

and the effect of various noise sources such as power supply fluctuations and electro-

magnetic radiations pose major challenges for the reliable operation of current and

future MPSoCs. While some of these noise sources (such as thermal effects) cause

intermittent or temporary failures in the system, some others (such as process vari-

ations) can cause permanent failures of hardware components. With the increased

uncertainty of device operation, the time-to-failure period for the hardware compo-

nents varies widely, with some components having a shorter lifetime than expected.

Therefore, new design methodologies and architectural solutions need to be developed

to ensure proper system operation. NoCs facilitate the use of error recovery schemes

developed for networks to achieve a reliable system operation.

1.2 Design Challenges for NoCs

Designing an efficient NoC architecture, while satisfying the application performance

constraints is a complex process. The design issues span several abstraction levels,

ranging from high-level application modeling to physical layout level implementation.

Some of the most important phases in designing the NoC include:

� Analyzing and characterizing application traffic.

� Synthesizing the NoC topology for the application.

� Mapping and binding of the cores with the NoC components.

� Finding paths for the traffic flows and reserving resources across the NoC.

� Choosing NoC architectural parameters, such as the data width of the links,

buffer sizes and frequency of operation.

� Verifying the designed NoC for correctness and performance.
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� Building simulation, synthesis and emulation models for the NoC.

� Ensure reliable system operation from unreliable components

In order to handle the design complexity and meet the tight time-to-market con-

straints, it is important to automate most of these NoC design phases. To achieve

design closure, the different phases should also be integrated in a seamless manner.

SoCs that use a NoC infrastructure are economically feasible if they can be used

in several product variants, and if the design can be reused in different application

areas. On the other hand, successful products must provide good performance char-

acteristics, thus requiring dedicated solutions that are tailored to specific needs. As

a consequence, the NoC design challenge lies in the capability to design hardware-

optimized, customizable platforms for each application domain.

Computer-aided synthesis of NoCs is particularly important in the case of application-

specific systems on chip, which usually comprise computing and storage arrays of

various dimensions as well as links with various capacity requirements. Moreover,

designers may use NoC synthesis as a means for constructing solutions with various

characteristics, that can be compared effectively only when a detailed model is avail-

able. Thus synthesis of NoCs can be used for comparing prototypes. Needless to say,

synthesis may also be very efficient for designing NoCs with regular topologies as, for

example, multi-processing systems with homogeneous cores.

Design and optimization can be achieved by facilitating the integration of domain-

specific computation resources in a plug-and-play design style. Standard interface

sockets such as the Open Core Protocol (OCP) [96] have been developed for this

purpose and support the use of a common NoC as the basis for system integration. A

relevant task of these interfaces is to make the NoC adaptive to the different features

of the integrated cores (e.g., data and address bus width).

NoC architectures are pushing the evolution of traditional circuit design method-

ologies to deal effectively with functional diversity and complexity. At the application

level, the key design challenge is to expose task-level parallelism and to formally cap-

ture concurrent communication in models of computation [33]. Then, high-level con-

current tasks have to be mapped to the underlying communication and computation
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resources. At this level, an abstract model of the hardware architecture is usually

exposed to the mapping tool, so that area and power estimates can be given in the

early design stage, and different objective functions (e.g. minimization of communica-

tion energy) can be considered to evaluate the feasibility of alternative mappings. In

this context, a critical step in communication mapping is the NoC architecture syn-

thesis for its significant impact on overall system performance, which is increasingly

communication-dominated.

Finally, it is important to achieve a reliable NoC operation by providing resilience

from permanent and transient delay and logic errors in the system. In order to

protect the system from errors that occur in the communication sub-system, we can

use error recovery mechanisms that are used in traditional macro-networks. As the

error detection/correction capability, area-power overhead and performance of the

various error detection/correction schemes differ, the choice of the error recovery

scheme for an application involves multiple power-performance-reliability trade-offs

that have to be explored.

1.3 Thesis Contributions

In this thesis, I present methodologies to design reliable and efficient NoCs. The

nature of contributions of this work are of two kinds: scientific and engineering.

First, from the scientific viewpoint, algorithmic methods to solve many of the im-

portant NoC design problems are presented. The novel, state-of-the-art optimization

methods provide near optimal solutions for many of the NoC design problems. These

methods will be useful for designers to tackle specific problems in NoC design or can

even be applied to solve analogous problems in other domains.

Second, from the engineering viewpoint, most of the time-intensive steps of NoC

design are automated and integrated into a complete tool flow. The SoC designer can

directly use the tool flow as a black-box to design efficient interconnects for his or

her applications. It can also be used to perform design space exploration of different

communication architectures. The proposed tool bridges an important design gap,

that exists today, in building efficient communication architectures for MPSoCs.
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1.3.1 Main Contributions

The technical contributions of this thesis can be divided into two major parts:

(1) methods to design state-of-the-art bus and NoC based interconnects, and

(2) mechanisms to provide system-level support for achieving fault-tolerant NoC

operation in the presence of temporary and permanent errors.

I finally show how the fault-tolerant mechanisms are integrated with the NoC

design methods to achieve a reliable and efficient design.

1.3.2 Assumptions and Limitations

As with any research work, there are some realistic assumptions that are used for

building the proposed methods:

� Application and architecture scaling: The first assumption is that the number

of cores on a chip is increasing and SoCs integrate several applications. This is

a realistic assumption, as the chip complexity has been scaling roughly in accor-

dance with the Moore’s law. Today, we find a convergence of several different

applications onto the same device, with massive computation and communica-

tion complexity.

� Computation and communication design separation: Another major assumption

in this work is that the computation architecture is designed separately from

the communication architecture. Several seminal works in the design automa-

tion area (such as [2]) have established the need for separating computation and

communication architecture to manage the design complexity. For the commu-

nication architecture design, we assume that the hardware/software partition

of application tasks onto the processor/hardware cores have been performed.

� Synchronous Design: It is assumed that the entire NoC operates at a single

clock frequency (which can, if needed, be varied dynamically). This assumption

makes the methods to be applicable many existing NoC architectures, which are

synchronous in nature. Moreover, this leads to a simplified architecture for the

NoC components.
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� NoC architectural details and comparisons: In this thesis, I only provide an

overview the architectural details of NoCs. The main purpose of this work is to

provide design methods. Thus, a detailed analysis of different NoC architectures

and comparisons with other interconnect schemes is not presented. I refer the

reader to [78], [93] for this.

I envision that the methods presented in this work will have wide applicability,

handling different NoC architectures and operating conditions. However, due to the

above assumptions, the methods do have some limitations:

� Designing NoCs with multiple clock domains: As stated above, the design flow

only synthesizes fully synchronous NoC architectures. However, several of the

underlying methods, such as the methods to remove network deadlocks and

to achieve reliable system operation can be utilized for designing NoCs that

support the Globally Asynchronous, Locally Synchronous (GALS) paradigm.

A very interesting future direction will be to enhance the entire tool flow to

support such a paradigm.

� Designing mixed interconnect architectures: The design flow currently does not

support the design of mixed interconnect architectures, where several buses and

NoC components are utilized in the same design. However, the design methods

can be individually applied to synthesize such systems.

� Architectural Features: Most of the methods presented in this thesis are general

and can be applied to most existing NoC architectures. Towards this end, I

show the application of the methods onto two unique NoCs: the ×pipes and

the Æthereal architectures. However, the area/power models for the network

components used in the work have been developed for these specific architec-

tures. In order to use the design methods for building other NoC architectures,

some training of the input models to the design flow will be required.
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1.4 Related Work

The design issues in macro-networks (e.g. the LAN, WAN, Internet) have received

unprecedented focus in the last several decades. In the last decade, the design of chip-

to-chip interconnection networks for parallel processing has also received considerable

focus.

However, the challenges encountered in the design of on-chip networks for SoCs

is quite different from the design of such macro-networks. Some major differences

are: (1) The communication between the various cores can be statically analyzed

for many SoCs and the NoC can be tailored for the particular application behavior.

Whereas in the case of macro-networks, it is impossible to obtain a global knowledge

of the traffic patterns of all the users. (2) The design objectives and constraints

are different. As most SoCs are used in mobile and hand-held devices, having a

network with minimum power consumption becomes an important design objective.

Many SoCs also need to respond in real-time for certain inputs, for which the NoC

has to support different criticality levels for the different traffic streams. (3) The

design process should also consider VLSI issues, such as the structure (floorplan

requirements) and wiring complexity of the resulting interconnect.

In this section, I present the state-of-the art in the domain of NoC architectures,

design methodologies and fault-tolerant communication architectures.

1.4.1 NoC Architectures and Design Methods

The most advanced state-of-the-art SoC communication architectures represent evo-

lutionary solutions with respect to shared buses. Sonics MicroNetwork [8] is a TDMA-

based bus which can easily adapt to the data-word width, burst attributes, interrupt

schemes and other critical parameters of the integrated cores, while providing very

high bandwidth utilization. STBus interconnect [7] is a high performance communi-

cation infrastructure that allows to instantiate shared buses as well as more advanced

topologies such as partial or full crossbars. Although evolutionary from a topology
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viewpoint, these solutions can rely on advanced and highly automated design method-

ologies for the implementation of generic communication sub-systems, allowing de-

signers to rapidly assemble, synthesize and verify their SoCs using the MicroNetwork

or the STBUS interconnect as integration platforms.

However, the early works in [25, 27] pointed out the need for more scalable ar-

chitectures for on-chip communication, and therefore to progressively replace shared

buses with on-chip networks. Many NoC architectures have therefore been proposed

in the open literature so far, but in most cases the design methodologies and tools

are still in the early stage.

One of the earliest contributions in this area is the Maia heterogeneous signal

processing architecture, proposed by Zhang et al., based on a hierarchical mesh net-

work [29]. Unfortunately, Maia’s interconnect is fully instance-specific. Furthermore,

routing is static at configuration time and communication is based on circuit switch-

ing, as opposed to packet switching. In this direction, Dally and Lacy sketch the

architecture of a VLSI multi-computer using 2009 technology [14]. A chip with 64

processor-memory tiles is envisioned. Communication is based on packet switching.

This seminal work draws upon past experiences in designing parallel computers and

reconfigurable architectures (FPGAs and their evolutions) [70, 71].

Most proposed NoC platforms are packet switched and exhibit regular structure.

An example is a mesh interconnection, which can rely on a simple layout and the

switch independence on the network size.

The Scalable Programmable Integrated Network (SPIN) described in [36] is a regu-

lar, fat-tree-based network architecture. It adopts cut-through switching to minimize

message latency and storage requirements in the design of network switches.

The NOSTRUM network described in [37] also takes this approach: the platform

includes both a mesh topology and the relative design methodology, wherein a con-

crete architecture is derived from a general NoC template, then application mapping

follows.

The Linkoeping SoCBUS [74] is a two-dimensional mesh network which uses a

packet connected circuit (PCC) to set up routes through the network: a packet is

switched through the network locking the circuit as it goes. This notion of virtual



1.4. RELATED WORK 13

circuit leads to deterministic communication behavior but restricts routing flexibility

for the rest of the communication traffic.

In [15], the use of octagon communication topology for network processors is pre-

sented. Instead, the implementation of a star-connected on-chip network supporting

plesiochronous communication among system components is described in [32].

The Æthereal NoC design framework presented in [35] aims at providing a complete

infrastructure for developing heterogeneous NoC with end-to-end quality of service

guarantees. The network supports guaranteed throughput (GT) for real time appli-

cations and best effort (BE) traffic for timing unconstrained applications. Support

for heterogeneous architectures requires highly configurable network building blocks,

customizable at instantiation time for a specific application domain. For instance, the

Proteo NoC [31] consists of a small library of predefined, parameterized components

that allow the implementation of a large range of different topologies, protocols and

configurations. ×pipes interconnect [66] and its synthesizer ×pipesCompiler [67]

push this approach to the limit, by instantiating an application specific NoC from a

library of composable soft macros (network interface, link and switch).

Today, several NoC architectures have been developed [79], [80], [81], [47] with

each architecture having a different structure, switch/NI design, routing scheme, QoS

support, clocking methodology. In [78], the state-of-the-art in the NoC field is pre-

sented in detail.

The synthesis and instantiation of single bus and multiple bridged buses has been

explored in many research works such as [40]-[43], [52], [82]. In [44], the authors

present an approach for mapping the system’s communication requirements and op-

timizing the protocols for a given communication architecture template. In [45], the

use of communication architecture tuners to adapt to runtime variability needs of a

system is presented. A floorplan aware method for designing point-to-point links and

buses are presented in [82] and [58]. In [61], the authors present an exact approach

to crossbar synthesis, where they integrate the NoC architecture parameter setting

with the synthesis process.

Methods to collect and analyze traffic information that can be fed as input to the

bus and NoC design processes have been presented in [44]. Mappings of cores onto
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standard NoC topologies have been explored in [48], [49]. In [11], a unified approach

to mapping, routing and resource reservation has been presented.

Important research in macro-networks has considered the topology generation

problem [46]. As the traffic patterns on these networks are difficult to predict, most

approaches are tree-based (like spanning or Steiner trees) and only ensure connec-

tivity with node degree constraints [46]. Hence, these techniques cannot be directly

extended to address the NoC synthesis problem. Application-specific custom topol-

ogy design has been explored in [53]- [56], [30]. In [54], a physical planner is used

during topology design to reduce power consumption on wires. A method to obtain

application-specific NoC topologies with floorplan estimation is presented in [83]. In

[72], memory optimization in single chip network fabrics is explored. In [101], a tool

flow to design NoCs with QoS guarantees is presented.

In [17], a low latency router architecture for supporting dynamic routing is pre-

sented. In [18], a routing scheme that switches between deterministic and adaptive

modes, depending on the application requirements is presented. Several works in the

multi-processor field have focused on the design of efficient routing strategies [99]. In

the Avici router [21], packets that need to be in-order at the receiver are grouped

together into a flow. Packets of a single flow follow a single path, while different

flows can use different paths. In the IBM SP2 network [22], source-based oblivious

routing is used for a multi-stage interconnection network. In [19], the authors present

a source-based dynamic routing algorithm for multi-stage networks. Building area

and power models for on-chip networks has been addressed in [84]-[86], [73].

To the best of my knowledge, this is the first work that presents a streamlined

design methodology for NoC topology synthesis that is completely integrated with

the state-of-the commercial tools for back-end physical design. Unlike all the ear-

lier works, I present a floorplan aware topology design method for NoCs that leads

to detecting timing violations on the NoC links early in the design cycle, with the

resulting designs fully verified for timing correctness using standard place&route

tools. This is also the first work on custom NoC topology synthesis that guaran-

tees a complete deadlock-free network operation without requiring special hardware
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mechanisms, which is critical for using NoCs in real designs. The topology synthe-

sis process is integrated with NoC architectural parameter setting and uses accurate

switch area, power models and link power models that are obtained from layouts of

the components. Unlike all the earlier works, I address the design of both regular and

custom NoC topologies and present methods to design NoCs under different appli-

cation scenarios. Moreover, I also address the design of NoCs, when the application

traffic characteristics cannot be predicted in advance. The presented design processes

are both performance and power consumption aware, which are two of the important

design objectives in SoC design.

1.4.2 Reliability support for NoCs

The quest for reliable and energy efficient NoC architectures has been the focus of

multiple researchers. Error protection can be applied at several levels within a NoC

design. For example, fault-tolerant routing algorithms have been proposed in [145],

[143]. The use of non-intersecting paths for achieving fault-tolerant routing has been

utilized in many designs, such as the IBM Vulcan [99]. The use of temporal and

spatial redundancy in NoCs to achieve resilience from transient failures is presented

in [20]. In this work, I present a fault-tolerant routing scheme and an associated

design method for NoCs, which has low area-power overhead when compared to the

existing schemes and is practical to be used in the on-chip domain.

A methodology for trading off power and reliability using error control codes for

Systems on Chip (SoC) signaling is presented in [153], [131]. In [132], the energy

behavior of different error detection and correction schemes for on-chip data buses

is explored. In [134], a fault model notation is presented and the use of multiple

encoding schemes for different parts of a packet is explored. In [133], the use of

single error correction and parity based error detection schemes for NoCs is explored.

Even though some of these works consider the use of error recovery schemes for

NoCs, there is no framework available today for systematic analysis of the different

error recovery schemes. To tackle this issue, I present a systematic power-reliability

analysis methodology for the different error detection/correction schemes for NoCs.
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The presented method will be useful to NoC designers for choosing the appropriate

error-recovery scheme for their applications.

In [144], the supply voltage is varied dynamically based on the error rate on

the links. In [137], the data bus is monitored to detect adverse switching patterns

(that increase the wire delay) and the clock frequency is changed dynamically to

avoid timing errors on the bus. Many bus encoding techniques such as [139] have

been proposed that decrease cross-talk between wires and avoid adversarial switching

patterns on the data bus. There have been several approaches in the design space

to detect and correct timing errors. The use of double data sampling techniques

has been shown in self-checking testing circuits [121], [122] and for clock recovery in

digital systems [125]. Recently, these techniques have been used for online timing

and soft-error recovery in systems. The TEAtime [120] architecture tracks logic delay

variations and dynamically adjusts the clock frequency to accommodate the changes

in logic delay.

In Razor [118], [119], an aggressive, better than worst-case design approach is

presented for processor pipelines. In this work, double sampling of data is used to

control supply voltage (and hence power consumption) by monitoring the error rate.

Favalli et al. [122] assume an encoded data signal which is checked by a small decoder

present at the input of each flip-flop. In case of an error, the clock is delayed for

one cycle, until the correct value of data settles. Mousetrap [123] is a high speed

asynchronous pipeline which ensures correct data availability to consecutive stages.

The Iroc [124] design uses a latch with delayed clock to detect transient faults due

to soft errors. In [77], a method to re-use the scan flip-flops to achieve soft-error

tolerance is presented. The method significantly reduces the soft-error rate of the

system, with minimal overhead.

In this thesis, I present the application of the double sampling data technique to

NoCs. By efficiently integrating the technique with the flow control of the NoCs, I

show that large power/area savings can be achieved, when compared to the general

double sampling techniques. I also present ways to dynamically activate/de-activate

the technique to adapt to the application error rates.

In this thesis, I present novel methods for achieving error protection at both
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design level and architectural level. I also show how NoCs can be used to provide

error resiliency for the entire SoC. Finally, I integrate the different error recovery

methods presented in this thesis with the NoC design flow, thereby automating the

design of fault-tolerant NoC architectures.

1.5 Thesis Overview

In this section, a detailed overview of the rest of the thesis is presented.

1.5.1 NoC Design Methods

I first present (in Chapter 2) methods for synthesizing state-of-the-art crossbar based

communication architectures. While methodologies that target the design of NoCs are

required in the long run, providing design support for the state-of-the-art crossbar

based bus designs pose an immediate and pressing problem. The crossbar based

architectures are already widely deployed in several industrial platforms [4]. [3],

[5] and a streamlined methodology to design them is still not yet fully developed.

Also, as NoC design process is more complex in nature, synthesis of crossbar-based

communication architectures is an ideal starting point for illustration. Moreover, even

in complex NoCs, the communication architecture will be hierarchical in nature, with

local cores communicating through crossbars and the global communication taking

place through a scalable network. In fact, this trend is already followed in many

CMPs, such as the Stanford Smart Memories [106]. From Chapter 3 on, I present the

design of NoC architectures.

The NoC topology defines the interconnection of the different network switches

with the cores and among each other. The NoC topologies can be broadly classified

into two main categories: standard and application-specific custom topologies. In the

standard topologies, the interconnection structure ensures full connectivity between

the cores: that is any core is reachable from any other core. Examples of such

topologies include mesh, torus, hypercube, Clos, butterfly. In an application-specific

custom topology, the interconnection between the switches and cores are optimized
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to match the application traffic patterns. If an application does not require full

connectivity between the cores, then the topology is optimized to provide only the

required connectivity.

The use of a custom topology for an application, almost always leads to a bet-

ter performance and reduction in area/power overhead. However, there are some

situations where a standard topology is desirable for the design:

� When the NoC is to be used across multiple product generations, a standard

topology ensures that the same NoC can be re-used easily across the different

generations. However, when using a custom topology, the designer has restricted

options when adding cores in the future, as the NoC may not provide full

connectivity.

� When the cores are almost regular (similar sizes), the use of a standard topology

leads to better wiring structure, as the floorplan is more predictable.

In this research, I address the design of both standard and application-specific

custom topologies.

In Chapter 3, I present Netchip, a CAD tool flow for designing NoCs. To the best

of my knowledge, this is the first work to present a streamlined design methodology

for NoC topology synthesis that can be used to design both standard and custom

topologies and is completely integrated with the state-of-the-art commercial tools for

back-end physical design.

The Netchip tool flow has three main phases and several tools integrated together:

� Front-End Design Phase: In this phase, several key NoC features such as the

interconnect structure (or topology), routing scheme, paths for traffic flow, val-

ues for the NoC architectural parameters are determined. I have developed two

tools: SUNMAP and SUNFLOOR to design application-specific standard and

custom topologies, thereby automating this phase. The synthesis methods used

in these tools are the subject of discussions in Chapters 4 and 5. The synthesis

approaches are some of the key contributions of this thesis.
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� Architectural Design Phase: In this phase, the RTL code of the NoC architec-

ture is instantiated. For this, ×pipes, a library of soft-macros for the network

components and ×pipesCompiler, a tool to generate the RTL design using the

component library are developed. This is further explain in Chapter 3.

� Back-End Phase: In this phase, simulation, FPGA emulation and layout gen-

eration of the NoC are carried out. For this, several standard industrial tool

chains have been integrated with the tool flow, so that most of the back-end pro-

cesses can be automatically obtained. This is also further explained in Chapter

3.

The NoC design process in Netchip is tuned to satisfy the requirements of the

specific application that is to be run on the SoC. However, in today’s systems, multiple

applications (or use-cases) can run on the same chip. As an example, a set-top

box SoC has multiple resolution video processing capabilities (like high definition,

standard definition), multiple picture modes (like split-screen, picture-in-picture),

video recording features, high speed Internet access, file transfer services, etc. In

Chapter 6, I present the extensions to the synthesis process to handle the multiple use-

case scenario. Even though, in Chapters 3-5, I present the NoC synthesis processes for

the ×pipes architecture, the methods are quite general in nature and can be applied

to any architecture. Towards this end, in Chapter 6, I show the process of designing

the NoC for the Æthereal architecture (from Philips research).

So far, for the design process, we have assumed that the application traffic is

statically known. However, what happens if there are large dynamic variations in

traffic or if the traffic cannot be pre-characterized at all ? As an example, this would

be the case when tasks are assigned dynamically to the different cores. In Chapter

7, I present methods to design the NoC architecture for handling dynamic traffic

patterns, while still yielding predictable performance.

Thus, in the first part of the thesis, I will be covering methods to synthesize NoCs

under almost all possible design conditions.



20 CHAPTER 1. INTRODUCTION

1.5.2 NoC Reliability Mechanisms

In the second part of the thesis, I will be presenting the different mechanisms that

can be used to obtain a reliable NoC and system operation.

With technology scaling, the device characteristics fluctuate to a large extent due

to process variations and can cause significant variations in wire delay [127]. Wire de-

lay is also affected by other forms of interference such as supply bounce, transmission

line effects, etc. [128], [129]. As such delay variations can affect multiple bits simul-

taneously, special mechanisms are needed to handle timing errors. In Chapter 8, I

present T-error, a timing-error tolerant mechanism to make the interconnect resilient

against timing errors arising due to such delay variations on wires.

Once the NoC components are made timing-error tolerant, we need to still handle

other transient and permanent errors that can occur in the system, such as soft-

errors. To handle such errors, we need support at the design level, as well as at

the architectural level. In Chapter 9, I present an analysis of the power efficiency

of traditional error detection/correction mechanisms, to choose the best scheme for

the application, so that we can achieve the required reliability level with minimum

area-power overhead. In Chapter 10, I present routing mechanisms that achieve an

application-specific reliability level against temporary and permanent failures.

NoCs not only allow a reliable interconnect operation, but also facilitate achiev-

ing a reliable operation of the entire system. The high flexibility of NoCs allows the

designer to add redundant cores in the same chip (e.g. processing elements, backup

memories) without largely increasing the design complexity. In Chapter 11, I show

how the NoC can be used to support the design of a reliable on-chip memory subsys-

tem.

Finally, in Chapter 12, I conclude the thesis by integrating the reliability mech-

anisms with the design methods and showing how a complete NoC can be designed

using the tool chain.
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Chapter 2

Designing Crossbar Based Sytems

Over the last decade, the communication architecture of SoCs has evolved from single

shared bus systems to multi-bus systems. Today, state-of-the-art bus based systems,

such as the AMBA AXI [6] or the STBUS platform [7] supports the instantiation of

crossbar matrices, where multiple buses operate in parallel, providing a high band-

width communication infrastructure. While methodologies that target the design of

NoCs are required in the long run, providing design support for the state-of-the-art

crossbar based bus designs pose an immediate and pressing problem. The crossbar

based architectures are already widely deployed in several industrial platforms [4].

[3], [5] and a streamlined methodology to design them is still not yet fully developed.

A crossbar matrix can be viewed as an evolutionary NoC architecture, where

a single switch is used for the communication traffic flows. As the design process

for building a general NoC is more complex in nature, synthesis of crossbar-based

communication architectures is an ideal starting point for illustration of the design

methods.

Despite some similarities, there is one important difference between the design of

a crossbar matrix and a general NoC architecture. As the crossbar matrix design is

simpler, exact algorithms can be utilized to build the system, thereby leading to fully

optimum solutions. Even in cases where completely optimum solutions cannot be

obtained, a large portion of the design space can be explored. Thus, we can design

the crossbar system to handle more efficiently the local variations in traffic rates and

22
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burstiness in traffic flows, when compared to a general NoC system.

Even in complex NoCs, the communication architecture will be hierarchical in

nature, with local cores communicating through crossbars and the global communi-

cation taking place through a scalable network. Thus, it is important to have efficient

methods to design such crossbar systems.

In this chapter, I present the design of state-of-the-art crossbar based bus sys-

tems. I present methods to automatically design the most power efficient crossbar

configuration for a MPSoC, satisfying the performance characteristics of the applica-

tions [57]. The communication architecture for the design should closely match the

application traffic characteristics and performance requirements.

As an example, let us consider an image-processing MPSoC (detailed explanation

of the MPSoC and experimental set-up is presented later in Section 2.5) with three

different communication architectures used to connect the cores: a shared bus (all

the cores are connected to a single bus), a full crossbar (each core is connected to

a separate bus) and a partial crossbar (some of the cores share a bus). In Table

2.1, the average and maximum latencies incurred for a transaction (transfer of a

single data word), obtained from SystemC simulation of the design using the different

communication architectures are presented. The sizes of the crossbars (in terms of

number of components used) normalized with respect to the size of the shared bus

are also presented in the table. As seen from the table, as expected, both the average

and the maximum transaction latencies are much higher for a single shared bus than

the partial or full crossbars. However, it is interesting to note that an optimal partial

crossbar gives almost the same performance as a full crossbar, even though it uses

fewer resources than a full crossbar.

The proposed design methodology is based on actual functional traffic analysis

of the application, and the generated crossbar configuration is validated by cycle-

accurate SystemC simulation of the application using that crossbar. Most previous

works on bus generation and NoC topology generation (which are somewhat similar to

crossbar generation) are either based on average communication traffic flow between

the various cores or based on statistical traffic generating functions ([48]-[56]) . While

the former approaches fail to capture local variations in traffic patterns (as the average
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Table 2.1: Crossbar performance and cost for an example image-processing MPSoC

Type Average Maximum Size
Latency Latency Ratio
(cycles) (cycles)

shared bus 35 51 1
full crossbar 6 9 11

partial crossbar 10 20 4

bandwidth of communication is a single metric that is calculated based on the entire

simulation time), the latter approaches are only based on approximations to the

functional traffic.

The proposed design methodology differs from existing approaches ([48]-[55])) in

the fact that it is based on the analysis of simulated traffic patterns in windows.

The entire simulation period is divided into a number of fixed-sized windows. The

crossbar is designed such that, within each window, the application communication

requirements (such as the bandwidth requirements) are met. Moreover, the overlap

among traffic streams mapped onto the same resource is minimized, thereby reducing

the latency for data transfer. The criticality and real-time requirements of streams

are also considered and the overlapping critical streams are mapped onto different

crossbar resources.

The methodology spans an entire design space spectrum with the analysis based

on average communication traffic (as done in many previous works [48]-[55]) and on

peak bandwidth (as done in [56]) being the two extreme design points. Thus, the

methodology also applies to cases where application traces are not available and only

rough estimates of the traffic flows between the various cores are known. The design

point in the spectrum is varied by controlling the window size used for the traffic

analysis and design.

I also integrate the setting up of several communication architecture parameters

(such as the frequency of operation) with the crossbar synthesis phase. Unlike ear-

lier approaches to crossbar generation [61], I consider the wiring complexity of the

interconnect during the communication architecture synthesis procedure. During the
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synthesis phase, the floorplan of the design is performed, where the accurate physical

locations of the cores and the crossbar matrix are determined. From the resulting

floorplan, the wire-lengths in the design are obtained. Based on the length of the

wires and the operating frequency of the crossbar (which is automatically tuned by

the synthesis procedure), any timing violations on the wires are obtained early in

the design cycle. Thus, the crossbar architecture generated by the procedure is also

validated for timing correctness, which is a key step to bridge the gap between the

higher level architectural models and the actual physical design models of the cross-

bar architecture. From the wire-length estimates, accurate estimates of the power

consumption of the interconnect wires are also obtained. The crossbar matrix power

consumption values are based on the synthesis of the RTL models of the design,

obtained using industry standard tools. From the wire and crossbar matrix power

consumption, the total communication architecture power consumption is obtained,

which is used to guide the synthesis procedure to obtain the most power efficient

crossbar architecture.

I present experiments on several different MPSoC designs that show large reduc-

tion in power consumption of the communication architecture (45.3% on average)

and total wire-length of the crossbar buses (38.0% on average) when compared to the

traditional full crossbar based design approaches. Compared to the existing design

methods, the proposed methodology results in crossbar platforms that lead to large

reduction in transaction latencies (up to 7×). The experiments also show that the

proposed approach is highly scalable to a large number of cores and to a large number

of simulation windows in the design.

2.1 Problem Motivation and Application Traffic

Analysis

2.1.1 Problem Motivation

There are three possible ways in which a crossbar can be instantiated: as a shared

bus, a partial crossbar or a full crossbar. The partial and full crossbars are actually
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Figure 2.2: Power consumption of switch matrix and wires
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composed of many buses to which the processor/memory cores are connected. Exam-

ples of partial and full crossbars are presented in Figure 2.1. In the partial crossbar

architecture, some of the cores (such as the Master 0 and Master 1) share the same

bus, while in the full crossbar, each core is connected to a separate bus. The objective

of the crossbar synthesis procedure is to obtain an efficient clustering of the master

and slave cores onto the crossbar buses, such that a communication architecture with

low power consumption is obtained.

When choosing the most power efficient crossbar configuration, it is also important

to account for the wiring complexity of the different configurations. As an example,

the power consumption of the crossbar components (switch matrix and arbiters) for

two different configurations and the power consumption of the wires for two different

total wire-lengths (assuming a design with 30 cores and data width of 32-bits for

the crossbar buses) are presented in Figure 2.2. For most MPSoC designs, the total

length of the wires of the crossbar buses is of the order of few tens of millimeters. For

the power consumption values presented in the figure, a 130 nm process technology

is used, with an operating frequency of 500 MHz and an operating voltage of 1.2V.

The methods and assumptions used for estimating the power consumption of the

crossbar matrices and wires are presented in detail in the experimental section. From

the figure, we can infer that the wire power consumption is a significant fraction of

the total communication architecture power consumption for crossbar based systems.

Thus, it is important to consider the length of wires during the synthesis process,

as the design point can be far from the optimum design point if such information is

not accounted for. In order to have accurate wire-length estimates, we need to have

accurate floorplan information of the design.

Another point worth noting is that, in many crossbar architectures, the under-

lying protocol may not support pipelining of the buses (as an example, the Type 1

protocol of STbus [7]). In this case, the frequency of operation of the communication

architecture is limited by the length of the longest bus in the design. For a chosen

frequency point, it is then important to evaluate whether the length of the wires are

lower than the threshold limit, so that they can be traversed in one clock cycle. We

would also require the accurate floorplan and wire-length estimates to apply such
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feasibility checks.

2.1.2 Application Traffic Analysis

In this subsection, I explore the traffic characteristics of applications to model the

performance constraints to be satisfied by the crossbar designed for the system. As an

example, consider the 21-core image processing application, shown in Figure 2.3(a).

In this example, there are 9 ARM cores, 11 on-chip memories, with some of the

memories used for inter-processor communication and an interrupt device. The ARM

cores act as masters and the memory cores act as slaves. The ARM cores run a set

of image processing benchmarks that involve accesses to different memories. A cycle-

accurate simulation of the system with a full crossbar design was performed, using

the STbus crossbar architecture. A small trace of the traffic to three of the cores is

shown in Figure 2.3(b).

Even though the aggregate traffic (measured over the entire simulation period) to

the three cores is lower than that can be supported by a single bus, using a single bus

to connect all three cores will lead to high average and peak latency due to overlap in

traffic patterns during some regions of the simulation. Another related point is that

if overlaps are not considered, connecting ARM 0 and ARM 1 on to the same bus is

better than connecting ARM 0 and ARM 2 onto the same bus, as the former results in
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lower bandwidth needs. However, the latter solution will result in better performance

(reduced transaction latency) while still satisfying the bandwidth needs. Note that

using peak bandwidth instead of the average bandwidth will solve this problem, but

lead to an over-design of the crossbar (in terms of number of buses needed or their

frequency of operation). The design methodology needs to consider overlap among

the various traffic streams into account and should consider local variations in traffic

rates. Also, some of the traffic streams can be critical and to facilitate providing real-

time guarantees, real-time traffic streams that overlap in time should not be mapped

onto the same crossbar bus.

2.2 Design Methodology

The design flow for the crossbar design is shown in Figure 2.4, which consists of

four distinct phases. In the first phase, the application is initially designed using a

full crossbar communication architecture and a SystemC simulation of the design is

carried out. As the full crossbar architecture is non-blocking in nature (no contention
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between the cores if they are accessing different cores), it helps in modeling the

application traffic requirements under ideal operating conditions. For the simulations,

I use the MPARM simulation environment [62] that allows interconnection of ARM

cores to several interconnection platforms (such as AMBA, STbus, ...) and to perform

cycle accurate simulations for a variety of benchmark applications.

To effectively capture local variations in traffic patterns and to perform overlap

calculations, I define a window-based traffic analysis. The entire simulation period is

divided into a number of windows and the traffic characteristics to the various cores

in each window are obtained. The traffic characteristics recorded include: the amount

of data sent and received by each core in every window, amount of pair-wise overlap

between the traffic streams between the different cores in every window, the real-time

requirements of traffic streams, etc. Without loss of generality, in the rest of this

chapter I assume that all the windows are of equal size, although the methodology

also applies to windows with varying sizes. The size of the window is parameterizable

and depends on the application characteristics and performance requirements.

After the data collection phase, a pre-processing phase is carried out in which the

cores that have traffic flows with large overlaps in any window and need to be put

on different buses are identified. In this phase, the overlapping critical streams that

need to be on separate buses are also identified.

In the next phase, the optimal crossbar configuration for the application, satisfying

the performance constraints is synthesized. To generate the optimal crossbar config-

uration, I use the traffic information collected in each window and check whether the

bandwidth, overlap and criticality constraints are satisfied in each window. In the

final phase, the designed crossbar matrix is instantiated in the MPARM environment

and SystemC simulations are carried out.

The details of the crossbar synthesis phase are presented in Figure 2.5. In the outer

loop of the synthesis process, the communication architectural parameters (such as

the frequency of operation and bus width) are varied in several user defined steps. The

interesting range for the parameters are obtained from the user. For each architec-

tural parameter point, the most power efficient crossbar configuration is synthesized.
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For synthesis, I present two approaches: one approach is based on solving the prob-

lem exactly using Integer Linear Program (ILP) formulation, which is applicable for

small problem instances, and the other is a more scalable approach based on fast and

efficient heuristics. In the next step of the synthesis phase, floorplan of the synthe-

sized design is performed. Floorplanning is the process of determining the exact 2-D

positions of the different cores and the switch matrix in the design. For obtaining

the floorplan, I use Parquet [97], a fast and accurate floorplanner that minimizes the

design area as well as the average wire-length. As the cores in the MPSoC are usually

pre-designed hardware blocks, I realistically assume that the size of the cores (either

the width and height or the aspect ratio and area) are provided as an input to the

synthesis process.

From the floorplan of the design, the length of the wires (based on the Manhattan

distance) and hence the power consumption on the wires are obtained. In the next

step, for the chosen frequency point, the wire-lengths are checked to see whether the

maximum wire-length exceeds the length that the data can traverse in a single clock

cycle. In the next step, from the switch matrix power consumption and the wire power

consumption, the power consumption of the synthesized communication architecture

is obtained. From the set of generated crossbar architectures for each architectural

design point, the most power efficient architecture that satisfies the performance and

timing constraints is chosen.

2.3 Exact Approach to Crossbar Synthesis

In this section I formulate the mathematical models of the crossbar design problem

and present the exact ILP formulation to synthesize the most efficient architecture

for a chosen architectural parameter design point.

2.3.1 Problem Formulation

Definition 1 The set of all cores in the design is represented by the set T . The set of

all windows used for traffic analysis is represented by the set W , with the bandwidth
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available (product of frequency of operation and bus width) in each window represented

by WS. The set of buses used in the crossbar is represented by the set B.

Definition 2 The bandwidth requirement of each core ti, ∀i ∈ 1 · · · |T |, in every

window m, ∀m ∈ 1 · · · |W |, is represented by commi,m
1. The amount of data overlap

between every pair of cores (ti, tj) in each window m is represented by woi,j,m.

The overlap between every pair of cores ti and tj, over the entire simulation period

is obtained by summing the overlap between them in all the windows and represented

by the entries of the overlap matrix OM :

omi,j =
∑

m

woi,j,m : ∀i, j (2.1)

In the pre-processing phase of the design flow (refer Figure 2.4), those pair of cores

that have overlap exceeding the threshold value (which is parameterizable) in any

window are identified. By mapping the traffic flows of such cores onto separate buses,

the maximum and average latency of data transmission can be reduced and in some

cases can also speed up the process of finding the optimal crossbar configuration. Also

in this pre-processing step, the real-time traffic streams that overlap with each other

in any window are identified. Such cores with overlapping real-time streams should

not be placed on the same bus, as real-time communication guarantee to the streams

cannot be given in this case. Also, as noted earlier, most crossbar architectures do

not allow masters and shared slaves of the design to be mapped onto the same bus.

The set of all cores that cannot be on the same bus by the conflict matrix is defined

by:

ci,j =

{

1 , if ti & tj should be on different buses

0 , otherwise : ∀i, j
(2.2)

1In the rest of this chapter I follow the convention that variables i and j are defined for 1 · · · |T |,
variable k is defined for 1 · · · |B| and m for 1 · · · |W |.
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The performance constraints that need to be satisfied by the crossbar configuration

in each window are modeled as constraints of an ILP.

Definition 3 The set X represents the set of binding variables xi,k, such that xi,k is

one when core ti is connected to the bus bk and zero otherwise.

In the crossbar design, each core has to be connected to a single bus (while a single

bus can connect multiple cores). This is implemented by the following constraint:

∑

k

xi,k = 1 : ∀i (2.3)

In every window used for traffic analysis, the individual buses of the crossbar have

to support the traffic through them in that window. By evaluating the bandwidth

constraints over a smaller sample space of a window (which is typically few hundred or

thousand cycles) instead of the entire simulation sample space (which can be millions

of cycles) we are better able to track the local variations in the traffic characteristics.

This window-based bandwidth constraint is represented by the equation:

∑

i

commi,m × xi,k ≤ WS : ∀k,m (2.4)

Definition 4 The set SB represents the set of sharing variables sbi,j,k, such that

sbi,j,k is one when cores ti and tj share the same bus bk and zero otherwise. The set

S represents the set of sharing variables si,j, such that si,j is one when cores ti and

tj share any of the buses of the crossbar and zero otherwise.

The sbi,j,k can be computed as a product of xi,k and xj,k. However, this results

in non-linear (quadratic) equality constraints. To break the quadratic equalities into

linear inequalities, the following set of inequalities are used:

sbi,j,k ∈ {0, 1}

xi,k + xj,k − 1 ≤ sbi,j,k
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0.5 xi,k + 0.5 xj,k ≥ sbi,j,k : ∀i, j, k (2.5)

and the si,j are computed using the equation:

si,j =
∑

k

sbi,j,k : ∀i, j (2.6)

The condition that certain cores are forbidden to be on the same bus, obtained

from Equation 2, is represented by:

ci,j × si,j = 0 : ∀i, j (2.7)

The fact that all the integer variables introduced above take values of either 0 or

1 only, is represented by:

xi,k, si,j , ci,j ∈ {0, 1} : ∀i, j, k (2.8)

2.3.2 Exact Crossbar Synthesis Algorithm

The exact algorithm for the crossbar design has two major steps: the first is to find

the best crossbar configuration that satisfies the performance constraints (that were

presented in the above sub-section) and the second step is to find the optimal binding

of the cores to the chosen crossbar configuration.

In order to find the best crossbar configuration, I vary the number of buses in

the design, from the maximum number (equal to the number of cores in the design,

modeling a full crossbar) to one (modeling a single shared bus), in a binary search

manner. For each configuration of bus count, I check whether a feasible solution that

satisfies the constraints of the ILP (formed by the set of inequalities from Equations

(3) to (8)) exists. Once the minimum number of buses have been identified from

applying the ILP, possibly multiple times, the buses used by the masters and slaves

of the design are seperated, thereby generating the optimal crossbar configuration.

Once the best crossbar configuration is obtained, in the next step, the optimal

binding of the cores onto buses of the crossbar is obtained. A binding of cores to the

buses that minimizes the amount of overlap of traffic on each bus will result in lower
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Table 2.2: Communication require-
ments of example system: (M-Master,
S-Slave)

Name Type BW BW
(win 1) (win 2)
MB/s MB/s

core 0 M 300 180
core 1 M 200 270
core 2 M 80 210
core 3 S 60 110
core 4 S 150 70

Table 2.3: Amount of traffic overlap between
cores (in MB/s) of example system

core 0 core 1 core 2 core 3 core 4
core 0 x 30 10 x x
core 1 30 x 27 x x
core 2 10 27 x x x
core 3 x x x x 15
core 4 x x x 15 x

average and peak latency for data transfer.

For this, the above ILP is solved with the objective of reducing the maximum

overlap on each of the bus (the maximum overlap over all the buses is represented by

the variable maxov), and satisfying the performance constraints, as follows:

min: maxov

s.t.
∑

i

∑

j

omi,j × sbi,j,k ≤ maxov : ∀k

and subject to Equations (3) to (8). (2.9)

By splitting the problem into two ILPs, the execution time of the algorithm is

reduced, as solving ILP 1 for feasibility check is usually faster than solving the ILP

2 with objective function and additional constraints. The ILPs are solved using the

CPLEX package [64].

2.4 Heuristic Approach to Crossbar Synthesis

As the exact ILP approach is not scalable to large problem instances, either when

the number of cores in the design is large or when the number of simulation windows

used for analysis is large, in this section I present fast and efficient heuristic approach
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Algorithm 1 Heuristic-synthesis(frequency, buswidth)

1: Bandwidth available in each window, WS = frequency × buswidth
2: for i = 1 · · · |T | do
3: mapped(i) = false
4: end for
5: Initialize number of buses used, k to 0.
6: while ∃i ∈ 1 · · · |T |, such that mapped(i) = false do
7: Increment the bus count k by 1 and instantiate new bus. Initialize bandwidth

available on bus on all windows: BW (k,m) = WS, ∀m ∈ 1 · · · |W |
8: Choose unmapped core i, ∀i ∈ 1 · · · |T |, with maximum bandwidth require-

ments on any window and map it onto bus k.
9: Initialize the set chosen set to φ

10: for i = 1 · · · |T | do
11: if mapped(i) = false and core i does not have conflicts with cores already

mapped onto bus k then
12: bw satisfied = true
13: for m = 1 · · · |W | do
14: if BW (k,m) < commi,m then
15: bw satisfied = false
16: end if
17: end for
18: if bw satisfied = true then
19: chosen set = chosen set

⋃

i
20: end if
21: end if
22: end for
23: Choose core i, ∀i ∈ 1 · · · |chosen set|, with minimum overlap with cores

mapped onto bus k and map it to bus k. Update available bus bandwidth
as: BW (k,m) = BW (k,m) − commi,m, ∀m ∈ 1 · · · |W |.

24: Repeat steps 9-23 until chosen set is empty.
25: end while
26: Separate the buses onto which masters and slaves are mapped and generate the

crossbar configuration
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Figure 2.6: Example illustrating the operation of the heuristic algorithm for crossbar
synthesis
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for crossbar synthesis.

The problem of assigning cores to the minimum number of buses, subject to the

performance constraints is a special instance of the general problem of constrained

bin-packing [65]. There are several efficient heuristics that have been developed for the

bin-packing problem [65]. In this work, I use an approach that is based on the first-fit

heuristic to bin-packing. I chose this heuristic for several reasons. When the perfor-

mance constraints are removed, the heuristic procedure is theoretically guaranteed

to provide solutions that are within two times the optimum solution that would be

obtained by an exact algorithm [65]. Practically, I found that the solutions obtained

by the heuristic are close to the optimum solution possible for experiments on several

SoC benchmarks. Moreover, the heuristics are relatively simple to implement and

have a very low run-time complexity, making the approach scalable to large designs

and allowing the use of large number of simulation windows for analysis.

The heuristic algorithm for crossbar synthesis is presented in Algorithm 1. In

the first step of the algorithm, the bandwidth available in each simulation window

is calculated. In the next step, all the cores are initialized as unmapped, as they

are yet to be mapped onto buses. Then, the number of buses in the crossbar is

initialized to zero (step 5). In steps 6 to 25, the assignment of the cores onto the

buses of the crossbar is performed. The basic approach used is the following: I try

to map as many cores as possible onto a single bus. While mapping the cores, from

the set of all cores that satisfy the bandwidth and conflict constraints, I choose the

one that minimizes the pair-wise traffic overlap with the cores that have been already

mapped onto the current bus. When no more cores can be assigned to the current

bus, either because the bandwidth of the bus in any of the simulation window has

been saturated, or because of conflicts with the cores already mapped onto the bus,

a new bus is instantiated. The process is repeated until all the cores in the design

have been mapped onto a bus.

From the resulting number of buses, the buses onto which masters are attached

and those onto which the slaves are attached are seperated. From this, the efficient

crossbar configuration for the design is obtained.

Example 1 Let us consider a small example with 5 cores, with 3 of them being
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Table 2.4: Traffic Characteristics of IMP2

Core win. 1 win. 2
(MB/s) (MB/s)

ARM 0 810 210
ARM 1 740 234
MEM 0 790 150
MEM 1 730 220
MEM 9 180 50
MEM 10 180 50
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masters and the rest being slaves. For illustrative purposes, let us assume that two

simulation windows are used for analysis (although in real systems usually several

thousand windows are used). The communication traffic rates for each of the cores

(in MB/s) for the two simulation windows are presented in Table 2.2 and the amount

of traffic overlap between the different cores over all the windows is presented in Table

2.3. Let us assume that the current frequency design point is 100 MHz and the bus

width is 32 bits, which are automatically tuned by the crossbar synthesis procedure (as

presented in Figure 2.5). In the first step of the heuristic algorithm, the bandwidth of

the bus in each simulation window is calculated to be 400 MB/s (frequency × data-

width). Initially, a single bus is instantiated and core 0 is chosen to be mapped onto

the bus, as it has the maximum bandwidth requirements of the different cores, across

all the simulation windows (see Figure 2.6(a)).

Then, from the set of all cores, those cores that satisfy the bandwidth and conflict

constraints are chosen. As cores that are masters and slaves are not allowed to be

mapped onto the same bus (specified as part of the conflict constraints), the set of

assignable cores to the bus are core 1 and core 2. From these two, core 2 is chosen, as

it has minimum overlap with the cores already mapped onto the bus (i.e. with core 0)

and assigned onto this bus (Figure 2.6(b)). When no more cores can be assigned to the

current bus, a new bus is instantiated. The different steps of the procedure for the 5-

core example are presented in Figures 2.6(a)-2.6(f). At the end of the procedure, those

buses that are used by the masters and those that are used by the slaves are separated,

which gives the best crossbar configuration. In this example, we have 2 buses used by

the masters and 1 used by the slaves, resulting in a 2×1 crossbar design, as shown in

Figure 2.6(f).

2.5 Experiments and Case Studies

In this section, I present the experimental case studies performed to validate the

proposed crossbar design methodology.
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Table 2.5: Crossbar Size and power consumption for SoC designs

Design Full Synthesized Full Synthesized
Cross Cross Crossbar Crossbar
-bar -bar Power Power
Size Size Consumption (mW) Consumption (mW)

matrix wire total matrix wire total
IMP1 11x14 6x7 156.7 228.0 384.7 60.2 146.1 206.3
IMP2 9x12 5x6 128.4 198.2 326.6 45.2 125.0 170.2
FFT 13x16 7x8 175.1 301.4 476.5 75.9 191.8 276.7
DP 6x9 3x5 38.7 51.3 90.0 12.1 36.9 49.0
DES 8x11 4x6 56.0 82.1 138.1 18.8 54.1 72.9
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2.5.1 Experimental Platform and Power Models

For performing the SystemC simulations on MPSoC benchmarks, I use the MPARM

simulation platform [62]. The platform is a representative of a large class of multi-

processor SoC platforms and consists of a configurable number of 32-bit ARM proces-

sors, memory cores, hardware devices or traffic generators and a hardware interrupt

unit. The platform allows the use of different interconnect architectures, such as the

AMBA, STbus to interconnect the various hardware cores. It also supports a variety

of MPSoC benchmarks that have been efficiently parallelized to run on the ARM

cores.

For power consumption estimations of the switch matrix, I implemented several

configurations of the AMBA multi-layer crossbar, varying the number of input and

output ports of the matrix. The different configurations were implemented using the

AMBA DesignWare libraries obtained from Synopsys CoreAssembler tool [103]. The

tool generates RTL code of the different configurations, which were then synthesized

using Synopsys Design Compiler [103]. For synthesis, I utilize a 130 nm process

technology, an operating voltage of 1.2V and an operating frequency of 500 MHz.

Based on the power consumption values obtained from the synthesis process, analyti-

cal models for the switch matrix power consumption are built using linear regression.

During the crossbar design process, the power numbers from the analytical models

are linearly scaled, based on the crossbar operating frequency (which is automatically

tuned by the design process). I estimate the wiring capacitance and wire power con-

sumption based on the models from [63]. The power consumption values of some of

the crossbar components was presented earlier in Figure 2.2.

2.5.2 Application Benchmark Analysis

I apply the crossbar design methodology on several SoC designs implemented using

the MPARM platform: IMage Processing design 1 (IMP1-25 cores), IMage Processing

design-2 (IMP2-21 cores), FFT based SoC (FFT-29 cores), Data Processing SoC

(DP-15 cores) and SoC implementing a DES encryption system (DES-19 cores). The

traffic characteristics of the applications were scaled to project the traffic requirements
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Figure 2.12: Comparisons of heuristic engine VS exact engine

of future MPSoCs, as presented in [36]. For traffic analysis, I use 1000 simulation

windows for the different designs, with each simulation window accounting for few

hundred simulation cycles.

The interesting range of operating frequencies and bus data-widths are obtained

as inputs from the designer. Practically, the data-width of the bus is set-up based on

the data-widths of the different processors in the design. In the SoC designs used here,

all the processors have the same data-width (of 32-bits) and hence I feed this value

as an input to the synthesis engine. The interesting range of operating frequencies

are defined to be between 100 MHz to 500 MHz, with each frequency point being

a multiple of 100 MHz. With this set-up, I apply the heuristic synthesis engine to

design the crossbar architecture for the designs.

I first briefly analyze the quality of the crossbar design obtained for the IMP2

SoC design. The communication between the cores of the IMP2 design was presented

earlier in Figure 2.3(a). The communication requirements of some of the cores for

the first few simulation windows are presented in Table 2.4. In this benchmark, there

are 9 ARM cores (ARM 0 to ARM 8), 11 memory cores (MEM 0 to MEM 10) and

an interrupt device (INT). The ARM cores act as masters and the others are slave

cores that respond to the requests of the masters. There is substantial temporal

overlap between the traffic flows from the various ARM cores to the memories, as
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Table 2.6: Heuristic procedure
run-time for FFT design

Number of Run-time
Windows (in s)

1000 4.85
10000 5.46
50000 8.31
100000 11.91
500000 41.40

Table 2.7: Run-time for different
number of cores

Number Run-time
of cores (in s)

29 41.40
40 67.22
50 96.73
60 130.03

the ARM cores perform similar computations and thus access their memories at

almost the same time. The power consumption of the synthesized crossbar designs

for the different frequency design points are plotted in Figure 2.7. As the maximum

bandwidth requirements of most of the cores were above 800 MB/s, the minimum

frequency design point that gives a feasible solution is 300 MHz (at 200 MHz, the

available bus bandwidth of 800 MB/s cannot support the requirements of most cores).

At lower operating frequencies (such as 300 MHz), a larger crossbar configuration is

required to satisfy the bandwidth constraints. A larger crossbar configuration usually

also leads to an increased wiring complexity. These two factors coupled together

results in larger power consumption for the communication architecture. At very

high operating frequencies, the power consumption of the communication architecture

is higher, as the power consumption increases linearly with the operating frequency

of the system. For the IMP2 design, the crossbar architecture with lowest power

consumption is obtained at 400 MHz.

The synthesized crossbar architecture (a 5 × 6 crossbar) for the IMP2 design

is presented in Figure 2.8. In order to satisfy the window bandwidth constraints,

only few of the cores can share a single bus and thus each of the buses used in the

crossbar have at most 2 cores attached to them. The bindings are such that the

cores with highly overlapping streams are placed on different buses. As a result,

the designed crossbar has acceptable performance (in terms of average and maximum

latency constraints) with 1.9× reduction in the number of buses used, when compared

to a full crossbar. The floorplan of the IMP2 SoC with the designed crossbar, as
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obtained from the Parquet floorplanner is presented in Figure 2.9.

The size and power consumption of the synthesized crossbar architectures for the

different SoC designs and for full crossbar configurations are reported in Table 2.5.

The power consumption of both the switch matrix and the crossbar bus wires are

reported in the table. The methodology results in a large reduction in the crossbar

architecture power consumption (45.3% on average) when compared to the traditional

full crossbar based systems. The synthesized crossbar configurations also lead to large

reduction in the total length of the buses used in the design (38.0% on average, refer

Figure 2.10), as there are fewer buses in the design. Reducing wiring congestion is

essential to have a faster physical design process and to achieve faster design closure.

The normalized average and maximum read/write transaction latencies (to read

or write one data word) for the designs obtained using the methodology based on

average traffic flows and using the proposed methodology (referred to as ”slot” in

the figures, signifying the use of the proposed slot or window based methodology),

are presented in Figures 2.11(a) and 2.11(b). As seen from the figures, the latencies

incurred by crossbar designs based on average traffic flows are 4× to 7× higher than

the crossbars designed using the presented scheme. Also, the latencies incurred in

the designs generated by my scheme are within acceptable bounds from the minimum

possible latencies (of a full crossbar). Moreover, depending on the design objective,

crossbar size-performance trade-offs can be explored in this approach by tuning the

analysis parameters (such as the window size, overlap threshold, etc.), as explained

in further subsections.

2.5.3 Comparisons of heuristic engine with the exact engine

In this sub-section, I explore the quality of the solutions produced by the heuristic

engine with respect to the exact ILP engine. As the exact engine takes several hours

to compute solutions for designs with more than few hundred windows, I reduced

the number of windows to 100 for the designs and applied the two engines for the

SoC designs. The size (total number of buses) of the crossbar synthesized by the

heuristic engine normalized with respect to the size of the crossbar synthesized by the
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exact engine for the different designs is presented in Figure 2.12(a). The normalized

power consumption of the synthesized crossbar designs for the different SoC designs is

presented in Figure 2.12(b). Compared to the exact solutions, the solutions obtained

by the heuristic engine incur only a modest increase in crossbar size (1.21× on average)

and power consumption (1.26× on average).

The total run-time of the heuristic engine (including the time for performing

floorplanning) for the biggest SoC design (the FFT SoC) for different number of

window sizes is presented in Table 2.6. The experiments were performed on a Linux

workstation, with 3.2 GHz processor and 4 GB RAM. The run-time also includes the

time to perform the sweep over the architectural parameters (frequency of operation

and bus width) of the crossbar design. As seen from the table, the algorithms have

a very low run-time complexity even for large designs and when large number of

windows are used for analysis. On the other hand, the exact ILP procedure did

not produce results in reasonable time for the design when more than few hundred

windows were used for analysis. To show the scalability of the heuristic procedure

with the number of cores in the design, I produced synthetic benchmarks based on the

scaled versions of the FFT SoC. The execution times of the engine for the different

benchmarks (with the number of windows set to 500,000) are presented in Table

2.7. From the table, we see that even for a very large design (60 cores with 500,000

windows used for analysis), the heuristic process completes in few minutes, thereby

showing the scalability of the procedure.

2.5.4 Window Sizing

The size of the window used during the design process is an important parameter

that determines the efficiency of the design methodology to capture the application

performance parameters. A small window size results in much finer control of the

application performance parameters and the resulting crossbars have lower latencies.

However, a very small window size will lead to over-design of the network components.

On the other hand, a large window size results in lesser control over the performance

parameters of the application, but results in a more conservative design approach
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where higher transaction latencies can be tolerated.

To illustrate these effects, I applied the design methodology with different window

sizes for a synthetic benchmark with 20 cores. Please note that I use a synthetic

benchmark for this experiment (instead of the real SoC designs), so that I can vary

the burst sizes (I refer to a burst as a stream of words generated by the same core)

in the application to study its impact on the crossbar synthesis process. The typical

burst sizes for the benchmark is initially set to 100 cycles. When the window size is

much smaller than the burst size, the size of the crossbar generated is very close to

that of a full crossbar (refer Figure 2.13). When the window size is around few times

that of the burst size (from 1-4 times), the synthesized crossbar has much smaller

size (typically around 25%) and acceptable latencies (around 1.5×) of that of a full

crossbar. For aggressive designs, the window size can be set closer to the burst size

and for conservative designs (where larger transaction latencies can be tolerated), the

window size can be set to few times the typical burst size. The acceptable window

sizes for various burst sizes is presented in Figure 2.14. It can be seen from the plot

that the window size varies almost linearly with the burst size, consolidating the

above arguments.
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2.5.5 Real-Time Streams & Effect of Binding

In each simulation window, the critical traffic streams that require real-time guaran-

tees are recorded. During the pre-processing step of the design flow (refer Figure 2.4),

the real-time traffic streams that overlap with each other in any window are identi-

fied. In order to provide real-time guarantees to such streams, the cores with critical

streams that have temporal overlap are placed onto separate buses of the crossbar.

Experimental results on the benchmark applications show a very low transaction la-

tency (almost equal to the latency of perfect communication using a full crossbar)

for such streams. Please note that in order to provide hard real-time guarantees, the

underlying crossbar architecture should also provide support for having priorities for

the different traffic streams, so that the real-time streams are given higher priorities

over other streams. In many crossbar architectures, such as the STbus, such sup-

port is provided in the crossbar architecture by utilizing priority based arbitration

mechanisms.

After finding the best crossbar configuration, I do an optimal binding of the cores

onto the buses of the crossbar, minimizing the total overlap on each bus. By min-

imizing the overlap on each bus, the transaction latencies reduce significantly. To

illustrate this effect, I compare the crossbars designed using the proposed approach

with two binding schemes: random binding of cores onto the buses, satisfying the

design constraints (Equations (3)-(8)) and optimal binding that minimizes overlap

on each bus, satisfying the design constraints. The average latency incurred by the

random binding scheme for the benchmark applications was on average 2.1× higher

than that incurred by the optimal binding scheme.

2.5.6 Overlap Threshold Setting

By varying the two parameters: window size and overlap threshold, the crossbar can

be designed such that the average and the maximum transaction latencies incurred in

the design are acceptable. The effect of the overlap threshold parameter on the size

and power consumption of the crossbar generated for the synthetic benchmark are

presented in Figures 2.15(a) and 2.15(b). The crossbar size and power numbers are



50 CHAPTER 2. DESIGNING CROSSBAR BASED SYTEMS

0% 5% 10% 20% 30% 40% 50%
0

0.2

0.4

0.6

0.8

1

Overlap Threshold %

N
or

m
al

iz
ed

 C
ro

ss
ba

r 
Si

ze

(a) Crossbar Size

0% 5% 10% 20% 30% 40% 50%0

0.2

0.4

0.6

0.8

1

Overlap Threshold %

N
or

m
al

iz
ed

 P
ow

er
 C

on
su

m
pt

io
n

(b) Crossbar Power Con-
sumption

Figure 2.15: Effect of overlap threshold parameter

normalized with respect to the case when the overlap threshold is set to 0%, which

leads to a full crossbar configuration (as no two cores can share a bus in this case).

The plots end at 50% overlap between cores because, if the pair-wise overlap between

two cores exceeds 50% of the window size (in any of the windows), then the window

bandwidth constraints cannot be satisfied. So, the maximum value of the overlap

parameter can be set at 50% of the window size. This will also speed-up the process

of finding the best crossbar configuration, as such overlapping cores will be identified

in the pre-processing phase (refer Figure 2.4) and will be forbidden to be on the same

bus of the crossbar. From experiments, I found that for aggressive designs (where

there are tight requirements on the maximum latencies) the threshold can be set to

around 10% and for conservative designs, the threshold can be set to 30%-40% of the

window size.

2.6 Summary

Today, a streamlined methodology to design crossbar based architectures is not yet

fully developed. Towards this end, in this chapter, I have presented methods that

address this important problem of designing optimal crossbar based systems for SoCs.
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The approaches consider the real application traffic, accounting for the local varia-

tions and temporal overlap of the traffic streams. As a crossbar system is wiring

dominated, it is important to consider the wiring complexity during the design of the

architecture. I consider this by utilizing physical design aware methods that consider

the layout of the design. I have validated the methods using two state-of-the-art

industrial platforms: STBus and AMBA AXI, that are widely deployed in several

industrial designs. Equipped with this knowledge of designing bus-based systems,

in the subsequent chapters, I will proceed to design general NoC systems that can

handle the global traffic requirements of SoCs.



Chapter 3

Netchip Tool Flow For NoC Design

The crossbar based systems we considered in the previous chapter can provide a very

high bandwidth communication infrastructure. However, they are still inherently

non-scalable, as all the cores need to connect to a single crossbar matrix. To provide

a scalable infrastructure, we need to utilize many such crossbar matrices in the design.

NoCs can be viewed as a logical extension of this concept, where multiple switches are

used to connect the cores of the SoC. The switches, while providing the functionality

of a crossbar matrix, also support decentralized control of the traffic flows.

A NoC consists of three main components: switches, Network Interfaces (NIs) and

links. The NoC is instantiated by deploying a set of these components in an arbitrary

topology and by configuring them.

In this chapter, I present NetChip, a design flow [38] that automates most of the

complex and time-intensive design steps in NoC synthesis. It provides design support

for application-specific standard and custom network topologies, and therefore lends

itself to the implementation of both homogeneous and heterogeneous system inter-

connects. Netchip assumes that the application has already been mapped onto cores

by using pre-existing tools and the resulting cores together with their communication

requirements are taken as an input. The tool-assisted design and generation of a

customized NoC-based communication architecture is the ultimate goal of Netchip.

The design flow of Netchip is presented in Figure 3.1. The Netchip tool flow has

3 main phases and several tools integrated together:

52
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� Front-End Design Phase: In this phase, several key NoC features such as the in-

terconnect structure (or topology), routing scheme, paths for traffic flow, values

for the NoC architectural parameters are determined.

� Architectural Design Phase: In this phase, the RTL code of the NoC architecture

is instantiated.

� Back-End Phase: In this phase, simulation, FPGA emulation and layout gen-

eration of the NoC are carried out.

3.1 Front-End Design Phase

I have developed two tools: SUNMAP [51], [16] and SUNFLOOR [87], [88] to design

application-specific standard and custom topologies, thereby automating this phase.

NetChip has a Graphical User Interface (GUI) designed in TCL/TK for entering,

visualizing and modifying the application traffic characteristics. Based on the user’s

choice, either a custom topology is synthesized using SUNFLOOR or mapping onto

a regular topology is performed using SUNMAP.

3.1.1 SUNMAP

SUNMAP maps the input core graph onto various standard topologies (mesh, torus,

hypercube, Clos and butterfly) defined in the topology library, which can be augmented

by user-defined templates. It explores various design objectives such as minimizing

average hop delay, area and power dissipation. The tool also supports different routing

functions: dimension-ordered, minimum path, traffic splitting across minimum paths

and traffic splitting across all paths. For each mapping, the bandwidth and area

constraints are evaluated, so that only feasible mappings are chosen. The area-power

models and a floorplanner are built into SUNMAP, so that area-power estimates can

be incorporated early in the mapping process. For a chosen design objective and

routing function, the best feasible mappings onto various topologies are obtained.

From the different topologies in the library, the topology that best optimizes the user
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Figure 3.1: Design Flow of Netchip

objectives is chosen. The design file describing the selected topology and routing

information is automatically generated. This tool is further explained in Chapter 4.

3.1.2 SUNFLOOR

The SUNFLOOR tool is used to synthesize a custom irregular topology that is tailor-

made for a specific application. It supports two objective functions: minimizing net-

work power consumption and hop-delay for data transfer. The designer can optimize

for one of the two objectives or a linear combination of both. The topology design

process supports constraints on several parameters such as the hop-delay (when the

objective is power minimization), network power consumption (when the objective is

hop-delay minimization), design area and total wire-length. SUNFLOOR also uses a

floorplanner during the synthesis process to estimate the design area and wire-lengths.

The wire-length estimates from the floorplan are used to evaluate whether the de-

signed NoC satisfies the target frequency of operation and to compute the power

consumption of the wires. The use of floorplan information during synthesis step

helps achieving faster design closure between the high-level design and the physical

design. There are two kinds of deadlocks that can occur in a NoC: routing dead-

locks and message-level deadlocks. Freedom from both these deadlocks is critical for
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proper NoC operation. Methods to find deadlock free paths for routing packets are

integrated with the topology design process in the SUNFLOOR tool. By mapping

the request and response transactions onto separate resources, message-level dead-

locks are also avoided by the tool. The tool uses accurate analytical models for power

consumption and area of the network components. The power consumption values are

obtained from layouts with back-annotated resistance, capacitance information and

from the switching activity of the components. The tool also tunes several NoC archi-

tectural parameters (such as the NoC operating frequency, link-width) in the design

process. The design file describing the synthesized topology and routing information

is automatically generated. This tool is further explained in Chapter 5.

3.2 Architectural Design Phase: The ×pipes NoC

Library

Among the many NoC architectures proposed in the literature, I choose the ×pipes

NoC architecture, which incorporates features that have been successful in many

NoC designs and represents a reasonable design point. The ×pipes NoC [39, 93] is

an example of a highly flexible library of component blocks (Figure 3.2).

To show the generality of the methods, I also apply them to the Æthereal archi-

tecture [35] (which is presented later in Chapter ). I chose this architecture, as it

represents a different design point in the NoC spectrum. It supports a predictable

communication behavior, by providing connections with throughput guarantees. This

is in contrast with the ×pipes architecture, where the packets are routed in a best-

effort manner.

The backbone of the NoC consists of switches, whose main function is to route

packets from sources to destinations. Arbitrary switch connectivity is possible, al-

lowing for implementation of any topology. Switches provide buffering resources to

lower congestion and improve performance; in ×pipes, output buffering is chosen, i.e.

FIFOs are present on each output port. Switches also handle flow control [95] issues

(I use the ACK/NACK protocol in this thesis), and resolve conflicts among packets
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Figure 3.2: ×pipes building blocks: (a) switch, (b) NI, (c) link

when they overlap in requesting access to the same physical links.

An NI is needed to connect each IP core to the NoC. NIs convert transaction

requests/responses into packets and vice versa. Packets are then split into a sequence

of flits (FLow control unITS) before transmission, to decrease the physical wire paral-

lelism requirements. In ×pipes, two separate NIs are defined, an initiator and a target

one, respectively associated to system masters and system slaves. A master/slave de-

vice will require an NI of each type to be attached to it. The interface among IP cores

and NIs is point-to-point as defined by the Open Core Protocol OCP 2.0 [96] speci-

fication, guaranteeing maximum re-usability. NI Look-Up Tables (LUTs) specify the

path that packets will follow in the network to reach their destination (source rout-

ing). Two different clock signals can be attached to NIs: one to drive the NI front-end

(OCP interface), the other to drive the NI back-end (×pipes interface). The ×pipes

clock frequency must be an integer multiple of the OCP one. This arrangement allows
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the NoC to run at a fast clock even though some or all of the attached IP cores are

slower, which is crucial to keep transaction latency low. Since each IP core can run

at a different divider of the ×pipes frequency, mixed-clock platforms are possible.

In the topology generation phase, Netchip reads the topology and routing informa-

tion file and generates SystemC description of network components for the topology

using ×pipesCompiler. An example input file describing a custom NoC is presented

in Figure 3.3. The ×pipesCompiler instantiates a network of building blocks from

the ×pipes library.

Once the SystemC code is available, it can be used in multiple ways. To get accu-

rate simulation in a flexible environment, I integrate the NoC in MPARM (Figure 3.4).

MPARM allows for accurate injection of functional traffic patterns as generated by

real IP cores (processors, DMA engines, etc.) during a benchmark run. Further, it

provides facilities for debugging, statistics collection and tracing.

3.2.1 Back-End Phase: Synthesis to FPGA or Standard Cells

The RTL code of the platform can also be used to synthesize it, either on FPGA or on

a custom chip via the use of technology libraries. More details about the back-end of

the flow can be found in Figure 3.5. First, a SystemC-to-HDL automatic translation is

performed. The outputs include the HDL code for the NoC building blocks, auxiliary

devices such as traffic generators, and a top-level instantiation layer. These files can

be directly used for FPGA mapping, by using any standard commercial tool.

A flow aimed at a standard cell implementation is also available. The flow is tested

on a 0.13µm, power characterized, technology library. In this case, the NoC building

blocks are synthesized with Synopsys Design Compiler [103]. While mixing some full-

custom logic blocks (e.g. FIFO buffers) at this stage would lead to better efficiency

of the design, the presented process avoids using this methodology to illustrate the

results achievable with a maximally flexible approach. During the synthesis, the

Design Compiler was instructed to save power when buffers are inactive by applying

clock gating to NoC blocks. The gating logic can be instantiated only for sequential

cells which feature an input enable pin; in ×pipes, such cells are approximately 90%
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// The IP core characteristics are defined here

// The parameters include the core identifier, switch identifier to which

// core is connected, the clock frequency division between the network and the

// cores, the number of NI buffers, type of core

core(core_0, switch_0, 1, 6, initiator);

// private memory and the addressing range

core(pm_1, switch_0, 1, 6, target:0x00);

// shared memory, semaphore memory and interrupt device and their memory ranges

core(shm_2, switch_1, 1, 6, target:0x19-fixed);

core(smm_3, switch_1, 1, 6, target:0x20-fixed);

core(int_4, switch_1, 1, 6, target:0x21-fixed);

// switches: switch identifier, input ports, output ports, number of output buffers

switch(switch_0, 7, 7, 6);

switch(switch_1, 4, 4, 6);

// links

link(link0, switch_0, switch_1);

link(link1, switch_1, switch_0);

// routing information for the connections

// parameters include: source, destination, switches traversed

route(core_0, pm_1, switches:0);

route(core_0, shm_2, switches:0,1);

route(core_0, smm_3, switches:0,1);

route(core_0, int_4, switches:0,1);

route(pm_3, core_0, switches:0);

route(shm_2, core_0, switches:1,0);

route(smm_3, core_0, switches:1,0);

route(int_4, core_0, switches:1,0);

Figure 3.3: Example topology and routing specification generated by SUNFLOOR
and read by ×pipesCompiler.
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Figure 3.4: The MPARM SystemC virtual platform

of the flip-flops along the data-paths. Therefore, large power savings are possible.

The final result is an HDL netlist of technology library standard cells.

The following step is the place&route phase, which is performed with Cadence

SoC Encounter [104]. Hard IP blocks representing cores and memories are defined

with a Library Exchange Format (LEF) file and a Verilog Interface Logical Model,

and rendered as black boxes obstructing a predefined area (for example, 1 mm2).

The SoC Encounter is fed with a floorplan specification file automatically generated

by SUNFLOOR. This file contains information about the layout fences, i.e. sets of

constraints on where the cells of each NoC module and the black boxes representing

the IP cores can be placed. This approach lets the designer skip, if desired, the tedious

activity of manually placing blocks on the floorplan, and iteratively improving the

result by means of trial-and-error tighter packing. The tool automatically places the

cells within the fences, and subsequently performs the wire routing steps. The final

output is a complete layout of the NoC design that can be sent to a foundry.
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Figure 3.5: The back-end of the flow: ×pipes synthesis

3.3 Summary

In this chapter, I presented the basics of the Netchip design flow, that automates the

design of application-specific NoCs. The design flow integrates the front-end design

phase, where the NoC topology is synthesized, with the architectural and back-end

phases. The front-end phase has two major tools: SUNMAP and SUNFLOOR to

design regular and custom topologies. In the subsequent chapters I will present a

detailed description of these tools.



Chapter 4

Designing Standard Topologies

The NoC topology defines the interconnection of the different network switches with

the cores and among each other. The NoC topologies can be broadly classified into

two main categories: standard and application-specific custom topologies. In the

standard topologies, the interconnection structure ensures full connectivity between

the cores: that is any core is reachable from any other core. Examples of such

topologies include mesh, torus, hypercube, Clos, butterfly. In an application-specific

custom topology, the interconnection between the switches and cores are optimized

to match the application traffic patterns. If an application does not require full

connectivity between the cores, then the topology is optimized to provide only the

required connectivity.

The use of a custom topology for an application, almost always leads to a bet-

ter performance and reduction in area/power overhead. However, there are some

situations where a standard topology is desirable for the design:

� When the NoC is to be used across multiple product generations, a standard

topology ensures that the same NoC can be re-used easily across the different

generations. However, when using a custom topology, the designer has restricted

options when adding cores in the future, as the NoC may not provide full

connectivity.

� When the cores are almost regular (similar sizes), the use of a standard topology

61
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leads to better wiring structure, as the floorplan is more predictable.

In this chapter, I present SUNMAP, a tool for synthesizing the best standard

topology for applications.

SoCs are aggressively designed to meet the performance requirements of diverse

applications that need to be supported. In most cases the cores in the SoC are

heterogeneous in nature with each core performing a set of specialized functions in

order to maximize performance and satisfy design constraints such as Quality-of-

Service (QoS) for the applications. As an example, consider an efficient design of

an MPEG4 decoder shown in Figure 4.1(a) [13]. In this design, there are several

processors (for e.g. RISC), several hardware cores (e.g. Upsampler) and memory

cores (e.g. SDRAM). Each core has different functionality, size and communication

requirements. Some of the cores are hard cores, with size fixed during design (e.g.

RISC) and some of the cores are soft cores, whose size can be varied with some

restrictions on the aspect ratios (e.g. Upsampler).

Figure 4.1(b) shows the design area for the best mappings of the MPEG4 onto

a mesh topology for two schemes: in the first scheme the mapping of the cores is

done logically (without considering the physical planning of the cores) followed by a

separate physical planning phase and in the second scheme the mapping and physical

planning are done together, so that the mapping process takes the physical planning

information, i.e., the position of the cores and network components (e.g. switches,

links) and the size of soft cores and switches in the 2-D plane. There is significant

area improvement in the second scheme where mapping and physical planning are

integrated together.

This improvement will be even more pronounced for indirect topologies such as

the butterfly network shown in Figure 4.1(c). In a butterfly topology, logically, the

switches are arranged as stages with the switches in the first and last stages connected

to the cores. Ideally we would like to distribute the switches around the cores so that

performance of the NoC is maximized and mappings onto the butterfly should take

this physical planning information into account.

Another important design consideration for SoCs is to guarantee Quality-of-Service

(QoS) for the application. As an example, in many video applications, data should
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Figure 4.1: MPEG4 mapping schemes and example butterfly topology

be communicated in such a way that the system supports a pre-determined frame

rate (e.g. 30 frames/s in many video displays). The network should support the QoS

requirements of the applications satisfying the delay constraints of the traffic streams.

It should also provide support for real-time communication. These QoS guarantees

need to be considered during the mapping process. Moreover the burstiness in the

traffic streams (that makes providing QoS guarantees harder) needs to be considered.

In SUNMAP, I provide an integrated approach to mapping and physical plan-

ning, where I determine the 2-D position of the cores and network components and

the size of soft cores and switches during the mapping process. The physical planning

phase also automatically computes the switch buffers needed to support the appli-

cation traffic and integrates this in the switch size computation. I also present a

method to provide QoS guarantees for the application during the mapping-physical

planning phase. For QoS guarantees, I consider the burstiness in the application traf-

fic, delay/jitter constraints of the individual traffic streams and provide support for

real-time communication. The additional power-area overhead in obtaining the QoS
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Figure 4.2: DSP Filter application and traffic flow between ARM & Filter cores

Table 4.1: Link Implementation
Scheme BW Delay

(pk/cy) (cyles)
1. Avg 100 1000
2. Peak 1000 100
3. Opt 200 500

guarantees is negligible. The mapping and physical planning of the cores is applied

to several topologies defined in a topology library and the best topology for the ap-

plication is automatically selected. In the resulting topology, the switches and links

are optimized for the traffic characteristics, followed by automatic instantiation of

the topology. Thus the integrated design methodology automates mapping, physical

planning and topology selection for an application providing QoS guarantees, thereby

bridging an important design gap in building NoCs based on standard topologies.

4.1 On-Chip Traffic Modeling

In this section, I develop traffic models to characterize the application traffic, provid-

ing QoS guarantees for the application. As an example, consider the traffic flowing

between the Filter core and the ARM core in a DSP Filter application (refer Figure

4.2). Without loss of generality assume that the packet size is such that a packet is
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sent in one cycle, although the following discussion also applies when a packet is sent

over multiple cycles (i.e. when a packet has multiple flits). There are three important

features to be noted from Figure 4.2(b).

� Bursty Traffic Flows: The application traffic from Filter to ARM core is bursty

in nature, with a burst period of 100 cycles followed by 900-cycles of silence

period. The peak-bandwidth of the traffic (100 packets/100 cycles) is an order

of magnitude higher than the average bandwidth (100 packets/1000 cycles).

� Delay/Jitter Constraints: Each burst from the Filter core has a delay constraint

by which it should reach the ARM core. In this example, I assume that the

burst B1 has to reach the ARM core by 500 cycles, which is obtained from the

application characteristics.

� Real Time Constraints: The ARM core issues a control stream to the Filter

which is assumed to be critical and needs to reach the Filter as quickly as

possible. These real-time requirements need to be satisfied by the network.

Consider three implementations of the communication link (refer Table 4.1) be-

tween the Filter core and ARM core (for illustrative purposes assume other cores

don’t send traffic on this link). In the first case, the link is designed to support the

average bandwidth of traffic flowing between Filter and ARM. As seen from Table 4.1,

the delay incurred in this scheme for the burst B1 violates the delay constraint for the

stream. In the second case, the link is designed for the peak bandwidth requirements

and the delay constraints are met. However, the link is over-designed with 5× the

capacity that is needed to support the delay constraints of the burst. In the third
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case, the link is optimally designed to support the burst without violating the delay

constraints.

From this example, it is clear that the communication links should be designed

optimally in a way such that they support the traffic flowing through them, satisfy-

ing the delay/jitter constraints of the traffic streams. Moreover, there should be a

mechanism that ensures that each core sends traffic so that the links can support the

traffic and the delay constraints are met. Clearly these two objectives complement

each other and to ensure that the objectives are met I propose the use of traffic reg-

ulators for NoCs. Traffic regulators are widely used in ATM networks to guarantee

QoS to applications [99]. A traffic regulator can be abstracted as a hardware block

with two parameters: σ and ρ. The parameter ρ represents the bandwidth required to

support the traffic streams so that the delay constraints are met and the parameter σ

represents the variations permitted over the ρ value. Such a regulator is also called as

a (σ,ρ) regulator [99]. The traffic flow between each source-destination is represented

by a (σ, ρ) value. As an example, the Filter to ARM communication is represented

by (0,0.2), which means that one packet can be sent every 5 cycles (i.e. one packet

can be sent every 1/ρ = 1/0.2 = 5 cycles) and no variations over the required rate is

permitted (as the σ value is 0). A (1,0.2) regulator would allow a burst of one packet

over the required packet rate. In the rest of this chapter, I assume that the σ value

is chosen to be equal to 0, so that no variation is permitted over the required rate.

To ensure that each core sends data according to the regulator values, we need to

add small hardware to each core (or to the Network Interface connecting the core to

the network), which is shown in Figure 4.3. The additional hardware consists of a

saturating credit counter and a comparator. The saturating counter is incremented

at rate ρ and saturates when it reaches a count of (1 + σ). A packet is transmitted

only if the credit counter is non-zero and when a packet is transmitted the counter is

decremented by 1. This counter ensures that the amount of traffic transmitted by the

source matches the rate for which the links are designed to handle. For traffic streams

to different destinations, different sets of (σ, ρ) values are used in the regulator. Note

that power-area overhead of such a regulator is negligible as it’s just a counter and

a comparator. For supporting real-time constraints, I assume tight latency bounds
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for the real-time stream and during the mapping process I consider the criticality of

the stream by using a weighted communication graph (called as weighted core graph),

where the weights are a function of the criticality. In the next section, I explain this

in more detail, where I present mathematical models for modeling the ρ value for the

regulators.

4.2 Problem Formulation

The communication between the cores of the SoC is represented by the weighted core

graph:

Definition 5 The weighted core graph is a directed graph, G(V,E) with each vertex

vi ∈ V representing a core and the directed edge (vi, vj), denoted as ei,j ∈ E, repre-

senting the communication between the cores vi and vj. The weight of the edge ei,j,

denoted by commi,j, represents the average bandwidth of the communication from vi

to vj weighted by the criticality of the communication.

As an example, the weighted core graph of the Filter application is given in Figure

4.4. The edge weights are a function of the criticality of the stream (which depends

on the application characteristics) and the amount of traffic communicated in the

stream. The value of the weights depends on how critical are the streams and on

the number of classes of streams. In this work, I assume two classes of streams:

non-critical and critical and weigh the critical streams by a factor of 10 compared

to non-critical streams. Other approaches such as weighing a stream based on the

amount of slack permitted for the stream can also be used.

Definition 6 In G(V,E), the traffic flow from each source vi to each destination vj,

∀i, j ∈ V is represented by the set Ti,j. Each Ti,j comprises of Mi,j bursts, with each

burst bi,j,k,∀k ∈ Mi,j, having a burst length of bleni,j,k cycles and a latency window of

blati,j,k cycles.

In the above example, the traffic flow between the Filter and the ARM (v3 and

v2) is represented by the set T3,2. The set T3,2 consists of 1 burst (I assume such a
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small sampling window for illustrative purposes), with M3,2 equal to 1, blen3,2,1 equal

to 100 cycles and blat3,2,1 equal to 400 cycles. The latency window, blati,j,k is the

deadline (or slack) that is permissible for the burst, which is obtained from the initial

simulation of the application and the application characteristics.

The ρi,j values of the regulator for each source vi to destination vj is obtained by:

ρi,j = max∀k∈Mi,j

(

bleni,j,k

bleni,j,k + blati,j,k

)

∀i, j s.t. ei,j ∈ |E| (4.1)

Definition 7 The bandwidth constraint graph CG(Q,R) is a directed graph where

the vertex and edge sets are equal to the vertex and edge sets of G(V,E) but with edge

weights ri,j equal to ρi,j × PacketSize/Cycletime, ∀i, j ∈ s.t. ri,j ∈ |R|.

The bandwidth constraint graph for the above example is given in Figure 4.5. The

edge weights in the graph are ρ× packetsize/Cycletime values for the corresponding

traffic flows. When calculating the ρ values, I neglect the network latency as it is of

the order of tens of cycles, while burst lengths and latency windows are of the order

of hundreds of cycles.

The NoC topology is defined by the adjacency information of nodes in the topology

and by the capacity of the links. Formally the NoC topology is defined as:

Definition 8 The NoC topology graph is a directed graph P (U, F ) with each vertex

ui ∈ U representing a node in the topology and the directed edge (ui, uj), denoted as

fi,j ∈ F representing a direct communication between the vertices ui and uj. The

weight of the edge fi,j, denoted by bwi,j, represents the bandwidth available across the

edge fi,j.

The mapping of the application cores onto an NoC architecture is defined by the

one-to-one mapping function:

map : V → U , s.t. map(vi) = uj,∀vi ∈ V,∃uj ∈ U (4.2)

Each link in the mapped NoC should satisfy the bandwidth constraints corre-

sponding to the constraint graph CG(Q,R). The design objective (area, power or
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in physical planning using MILP:
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Mapping_and_physicalplanning(G,CG,P)
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       topologies onto 2D plane;

In each iteration of the robust tabu search perform3
for all i and j in U of topology graph{4

generate current move by swapping the cores{
in positions i and j 

5

if current move is not tabu
       compute routes  based on routing function;

Figure 4.6: Mapping and Physical Planning Algorithm

hop delay) of a mapping is obtained from the physical planning of the mapping. This

ensures that the heterogeneity in the size of the cores and network components is

taken into account for accurate estimation of the design objectives.

4.3 Mapping and Physical Planning Algorithm

In this section I present the algorithm for mapping and physical planning. The general

problem of embedding one graph into another is intractable and is a special case of

the Quadratic Assignment Problem (QAP) [69]. QAP is well studied in the literature

with many heuristic algorithms available [34]. In [34], robust tabu search is shown

to be most effective for many classes of QAP and I use this to solve the mapping
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problem. The general structure of the mapping-physical planning algorithm is shown

in Figure 4.6.

In the first step an initial greedy mapping of the cores onto the topology is ob-

tained. I also assume a greedy mapping of higher dimensional topologies (such as

hypercube) onto the 2D plane. Then for each iteration of the robust tabu search, I

perform the following computations:

� Compute the routes for the traffic flowing between the cores, based upon the

routing function chosen from the library.

� Physical planning for this mapping. This includes computing the positions of

the cores and the switches, sizes of the switches & soft cores and automatic com-

putation of switch buffers needed for the application. These steps are explained

in detail in the next section.

� Check whether the mapping satisfies the delay/jitter and area constraints. For

delay constraints, the links in the NoC should support the traffic through them,

which is determined by the (σ,ρ) regulator values. I also check whether the

real-time constraints for the critical streams are met by checking whether the

hop delay for the streams are lower than the required value, which is obtained

from the application characteristics.

In each step of the tabu search I try to optimize the design objective (area, power or

hop delay) satisfying the QoS and criticality constraints. The area and power values

are obtained from physical planning of that particular mapping. The parameters of

the tabu search (such as the size of tabu list, aspiration function computation, etc.) are

chosen as explained in [34]. This tabu search is applied to all topologies in the library.

The library currently has mesh, torus, hypercube, Clos and butterfly topologies, while

other topologies can be easily added to the library. The best topology is selected

and the switches and links are optimized to match the application characteristics. In

this step, redundant switch ports and links (i.e. the links that don’t carry any traffic

and the corresponding switch ports) are eliminated. The links are sized (by changing

the bit-width of the links or frequency of operation) according to the traffic flowing

through them.
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Figure 4.7: Switch Position Restriction for direct and indirect topologies

4.4 Physical Planning

I use a Mixed Integer Linear Program (MILP) based physical planning algorithm. An

MILP based physical planning for minimizing area, power of a design is presented in

[68]. I modify this approach for NoCs by considering NoC specific features such as

switch positioning, switch buffer calculation, etc.

As the cores are pre-designed components, I assume the area and power values of

the cores as an input. I also assume the type of the core (hard or soft) and aspect

ratio constraints as an input. I use area, power libraries for various configuration of

switches that are developed in [67].

For a given mapping, the relative position of the cores with respect to each other is

obtained from the tabu search, but the relative position of the switches is unknown.

The switches in a direct topology (such as mesh, torus, hypercube) can be placed

anywhere around the core to which it is connected. An important constraint to be

considered in the MILP is that the switches and the cores should not overlap each

other. If the switch positions are not restricted to a small region around the core,

solving this overlap calculation as an MILP will be time consuming for large problem
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sizes (for > 20 cores). To allow scaling of the algorithm, I restrict each switch to

lie in a region of adjacent cores surrounding the core to which it’s connected (refer

Figure 4.7(a)). By restricting the switch positions to a small region, the overlap

calculations are several orders of magnitude faster and are scalable for large problem

sizes. The solution obtained in this scheme, for all the simulations performed, are

within 1% from the solution obtained without restricting switch sizes as the switch

position tends to be close to the core to which it’s connected.

For the indirect topologies (such as the Clos and butterfly), I distribute the

switches along the cores in a 2D plane, based on their connectivity to the cores

and to other switches (refer Figure 4.7(b)). Here again I restrict switch locations to

lie within certain regions as shown in the figure. Then during each step of the tabu

search, I compute the actual positions of the switches and cores.

During the physical planning, I also compute the buffering needed at each switch.

I assume that the links are pipelined with the number of pipeline stages depending

upon the link length. For wormhole (or virtual channel) based switches with credit

based flow control, for maximum throughput, the number of buffers in the switches

should be equal to 2N + M , where N is the number of pipeline stages in the link

and M is the delay incurred for credit processing at the upstream and downstream

switches [99]. As the switch size (power) depends on the number of buffers, I integrate

this as a constraint in the MILP by breaking down the switch area (power) as a sum

of buffer area (power) and crossbar (including logic) area (power). The buffer area

(power) is a function of link length and is automatically calculated during physical

planning.

4.5 Experiments and Case Studies

4.5.1 Effect of Physical Planning

In this sub-section I investigate the effect of combined mapping and physical plan-

ning applied to a variety of video applications. I consider four different video ap-

plications: Video Object Plane Decoder (VOPD-12 cores), MPEG4 decoder (mapped
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Table 4.2: Design Area for Video Applications
Appln Area-1 Area-2 Ratio

sqr mm sqr mm
VOPD 20.25 18.01 1.12
MPEG 36.00 20.25 1.19

PIP 20.25 10.565 1.92
MWA 33.00 25.00 1.32
Avg - - 1.39

Figure 4.8: Avg. Latency for DSP
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onto 12 cores), Picture-In-Picture application (PIP-8 cores), Multi-Window Applica-

tion (MWA-14 cores). I assume that the design objective is to minimize design area

subject to delay/jitter and criticality constraints. I consider two schemes: in the first

scheme the mapping and physical planning phases are done separately (as in past

works) and in the second scheme I use the proposed integrated approach to mapping

and physical planning.

The design area for the video applications as obtained for both the schemes are

presented in Table 4.2. On an average I have 1.4× area savings in the proposed

approach.

4.5.2 Design for QoS Guarantees

In traditional design methodology, QoS can be guaranteed by designing the network

to support the worst-case bandwidth needs of the application. Such a worst-case



74 CHAPTER 4. DESIGNING STANDARD TOPOLOGIES

Torus
Mesh

Topol. Power
(in mW)

mapping
No

542
930
960
753

Hyp.

Bfly

Clos

Figure 4.10: VOPD Design

Figure 4.11: Throughput vs. buffer
count

design approach, however, leads to an over-design of the network components. By

using (σ, ρ) traffic regulation methodology for NoCs presented in this chapter, the

network components are designed optimally to support the QoS constraints of the

application.

As an example, for the DSP Filter application (Figure 4.2), the minimum band-

width needed (assuming minimum-path routing) for the design methodology is 5×

lower than a worst-case design approach. Moreover, in the proposed design method-

ology, the network is made to operate at very low contention, thereby reducing con-

tention delay and power. Figure 4.8 shows the packet latency as obtained from the

actual simulations of the DSP Filter application. In the first case, the links are de-

signed to handle the average traffic through them. As the traffic is bursty in nature,

such a design approach leads to high network contention resulting in large packet

latency. In the second case, the links are designed with the design methodology. The

average latency is almost equal to the worst-case design approach (case 3) where the

network components are over designed. As the design methodology for traffic regula-

tors is based on initial simulation, it is static in nature and doesn’t capture dynamic

variations in the input data streams. But for many SoC applications, the traffic char-

acteristics don’t vary a lot with the input data [48]. Thus the design methodology

incurs only slight increase in latency (around 10%) due to dynamic changes in data

when compared to the worst-case design approach.
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4.5.3 VOPD Design

In this sub-section, I explore VOPD mapping and physical-planning with QoS guar-

antees. I assume a conservative link bandwidth of 2GB/S.

The bandwidth constraint graph for the VOPD application, based on the traffic

characteristics and QoS needs of the application is presented in Figure 4.9. For

minimum-path mapping, the minimum bandwidth needed to support the application

is 2.4GB/S and can’t be supported by any of the topologies. So I apply split-traffic

routing, spreading the traffic between the cores across multiple paths. As a butterfly

network has no path diversity (only one path from any source to any destination)

[99], it can’t support the traffic requirements of the application. All other topologies

produce feasible mappings with split-traffic routing. I assume that the objective is

to minimize power consumption of the design, satisfying QoS and area constraints.

Figure 4.10 shows the power consumption of the topologies. Mesh has the least power

and is the best topology for VOPD for the chosen design objective.

4.5.4 Buffer Sizing and Network Optimization

During physical planning, the number of buffers needed for the switches is automati-

cally computed based on the link lengths and this is integrated into the area (power)

calculations of the physical planner. When the number of buffers is lower than the

required number, throughput of the network is low. On the other hand, when the

number of buffers is more than needed, the throughput remains the same, but switch

area and power are increased. As an example, let us consider a homogeneous 16-node

torus NoC in which each link has 4 pipeline stages. Let us assume that the credit pro-

cessing delay (the M value) is 2 cycles, which is typical for most credit-based switches.

Figure 4.11 shows the throughput dependence on the total number of buffers in the

switches for the NoC. As seen, the relative throughput increases till the optimal count

of 702 buffers, after which it remains constant. With the buffer computation method-

ology, the physical planner automatically computes this optimum number of buffers

needed to support maximum throughput. Note that in a heterogeneous SoC, the num-

ber of buffers can be different for different switches and even different for different
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Table 4.3: Network Optimization
Component Savings

Buffers 2.20×
Wire count 3.77×

Ports 1.60×

inputs of the same switch as the link lengths are non-uniform in nature. Even in this

case, the physical planner automatically computes the optimum number of buffers

needed at each input of the switch based on the corresponding link lengths. For the

VOPD application, compared to an average-case design (where all the switches have

the same number of buffers) I get 2.2× reduction in buffer count in this scheme.

After the topology selection phase, the network components (switches and links)

are optimized based on the traffic flowing through them. The links and switch ports

that don’t carry any traffic are removed. Other links and switches are optimized to

match the traffic rate through them by changing the bit-width of the links. The effect

of network optimization on VOPD design is reported in Table 4.3.

For all the experiments, the mapping and physical planning phases are executed in

few minutes on a 1GHz SUN workstation and the algorithms are scalable for hundreds

of cores.

4.6 Summary

A variety of applications require a regular interconnect structure. In such cases, se-

lecting the most suitable topology for the application, mapping of cores onto that

topology and generating the resulting network are important phases in designing the

NoC. In this chapter, I have presented SUNMAP, a tool that automates all these

steps, bridging an important design gap in building regular NoCs. It explores vari-

ous design objectives such as minimizing average communication delay, area, power

dissipation subject to bandwidth and area constraints. The tool supports differ-

ent routing functions (dimension ordered, minimum-path, traffic splitting) and uses

floorplanning information early in the topology selection process to provide feasible
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mappings. Experiments on several realistic MPSoC applications show that it can also

be used as a powerful design space exploration tool. In the next chapter, I present

the SUNFLOOR tool that automates the design of custom (irregular) NoC topologies

for applications.



Chapter 5

Designing Custom Topologies

In this chapter, I present SUNFLOOR, a tool for synthesizing the best custom (ir-

regular) topology that is tailor-made for a specific application and satisfies the com-

munication constraints of the design. The tool automates the entire NoC front-end

design process, including topology synthesis, routing, path computation, architectural

parameter setting: thereby bridging an important gap in the design of the communi-

cation architecture for application-specific MPSoCs.

5.1 Objectives

The SUNFLOOR tool has several salient features:

1. The synthesis method is both performance and power consumption aware, which

are two of the important design objectives in MPSoC design. It supports two

objective functions: minimizing network power consumption and hop-count for

data transfer. The designer can optimize for one of the two objectives or a

linear combination of both. The topology design process supports constraints

on several parameters such as the hop-count (when the objective is power min-

imization), network power consumption (when the objective is hop-count min-

imization), design area and total wire-length.

2. SUNFLOOR incorporates mechanisms to guarantee the generation of networks

78
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that are free from deadlocks, which is critical for the deployment of custom NoC

topologies in real designs. The deadlock-freedom is achieved without the use of

special hardware mechanisms (refer to Section 5.1.2 for details).

3. The tool uses a floorplan-aware topology design method. It considers the wiring

complexity of the design for accurate timing and power consumption estimation.

4. Accurate analytical models for the area, power and timing information of the

network components (switches and links) were built from layout level imple-

mentations, which are utilized during the synthesis process. The power values

are obtained from layouts of the network components with back-annotated re-

sistance and capacitance information (at 0.13µm technology), based on the

switching activity of the components. The area and power models are highly

detailed: they even capture the impact of the frequency used for RTL synthesis

on the area and power values of the components. This is further explained in

detail in Section 5.2.

5. To achieve design closure and fast time-to-market, the actual physical layer

measures are considered during the high-level topology synthesis phase itself.

The timing information of switches and links are accurately characterized from

layouts. I model the maximum frequency that can be supported by a switch as a

function of the switch size. During the synthesis process, I steer the algorithms

to only synthesize those switches that would support the desired NoC frequency.

From the floorplan of the NoC design, estimates of the length of the NoC wires

are obtained, which are used to detect timing violations on the interconnects

early in the design cycle.

6. The tool automatically tunes several important NoC architectural parameters

(such as the frequency of operation, flit-width) during the synthesis process.

7. SUNFLOOR is seamlessly integrated with back-end tools. SUNFLOOR di-

rectly feeds the floorplan information of the NoC to standard industrial place-

ment&routing tools. The entire layout of the NoC can then be obtained from

the placement&routing tools.
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The layout of a multi-media MPSoC with the NoC designed using the method-

ology is presented later in the chapter (in Section 5.4.2). It achieves a post-layout

clock frequency close to 900 MHz. I could design the NoC architecture from in-

put specifications to layout in 4 hours, a process that used to take weeks. A layout

level comparison with a hand-designed architecture for this example is also presented,

which shows that the automatic design methodology produces good results (in terms

of power consumption and performance), matching those of carefully hand-crafted

designs. Experiments on several MPSoC benchmarks show large power, performance

and wire-length improvements when compared to standard topologies. Despite the

very large design space considered, due to the use of fast algorithms and tools, the

design process completes in reasonable time for all the experiments (see Section 5.4.1).

5.1.1 Background on NoC Topology Synthesis

The standard topologies (mesh, torus, etc.) that have been used in macro-networks

result in poor performance and have large power and area overhead when used for

MPSoCs. A major motivation for the use of NoCs is the fact that the interconnect

structure and wiring complexity can be well controlled. When the interconnect is

structured, the number of timing violations that occur during the physical design

(floorplanning and wire routing) phase is minimum. Such design predictability is

critical for today’s MPSoCs for achieving timing closure. It leads to faster design

cycle, reduction in the number of design re-spins and faster time-to-market. As the

wire delay as a fraction of gate delay is increasing with each technological generation,

having shorter wires is even more important for future MPSoCs. Early works on

NoC topology design assumed that using regular topologies (such as mesh) would

lead to regular and predictable layouts [48]. While this may be true for designs with

homogeneous processing cores and memories, this is not true for most MPSoCs as

they are typically composed of heterogeneous cores. This is due to the fact that

the core sizes of the MPSoC are highly non-uniform and the floorplan of the design

does not match the regular, tile-based floorplan of standard topologies [38]. An

application-specific NoC with structured wiring, which satisfies the design objectives
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Table 5.1: Topology Comparisons
Parameter Mesh Application-specific

Power (mW) 301.78 79.64
Hop-Count 2.58 1.67

Total wire-length (mm) 185.72 145.37
Design Area (mm2) 51.01 47.68

and constraints is required to have feasible NoC designs.

As a motivating example, the network power consumption (switch and link power

consumption), hop-count, wire-length and design area of two different NoC topologies

for a video processor MPSoC with 42 cores is presented in Table 5.1. The first topology

is a mesh, while the second is a custom topology generated using SUNFLOOR tool.

The wire-lengths and design area are obtained from floorplanning of the NoC designs.

The detailed explanation of the topologies and the floorplanning process is described

later in this chapter (Section 5.3). The custom topology leads to a 3.8× reduction

in network power consumption, a 1.55× reduction in average hop-count and a 1.28×

reduction in total length of wires when compared to the mesh.

5.1.2 Background on Deadlock-Free NoC Design

The deadlocks that can occur in NoCs can be broadly categorized into two classes:

routing-dependent deadlocks and message-dependent deadlocks [99], [89]-[92]. Routing-

dependent deadlocks occur when there is a cyclic dependency of resources created by

the packets on the various paths in the network [99].

Message-dependent deadlocks occur when interactions and dependencies are cre-

ated between different message types at network endpoints, when they share resources

in the network. Even when the underlying network is designed to be free from routing-

dependent deadlocks, the message-level deadlocks can block the network indefinitely,

thereby affecting the proper system operation.

Example 2 An example of a situation where a message-dependent deadlock occurs

is presented in Figure 5.1. In this case, two of the cores are masters and two other

cores are slaves. In this system, I assume two types of messages: request and response.
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Switch 1 Switch 4

Slave 2Master 1

Req 1

Resp 1

Resp 2

Link 3

Slave 1
Switch 3

Link 2
Switch 2

Master 2

Link 1

Link 4

Figure 5.1: Example of message-dependent deadlock

Consider the following situation: Master 1 sends a request to Slave 1 (Req 1), Slave 1

is replying to a previously issued request to Master 1 (Resp 1) and at the same time,

Slave 2 sends a response to Master 2 (Resp 2). When requests and responses share

the same links, Resp 2 is waiting for link 1, which is used by Req 1, and Resp 1 waits

for link 4 used by Resp 2. Meanwhile, Req1 is waiting for Slave 1, the operation of

which has been stalled as Resp 1 could not complete. Thus, none of the messages can

move ahead, leading to a deadlock situation. An interesting point to note here is that

message-level deadlocks can be avoided if the receivers have infinitely large buffering

or if they have perfectly ideal operation (consuming all received data instantly), which

would avoid queuing of the packets in the network. Obviously, such a solution is not

feasible in practice.

For proper system operation, it is critical to remove both routing and message-

dependent deadlocks in the network. It is also important to achieve deadlock freedom

with minimum NoC area and power overhead. In the topology synthesis process, I in-

tegrate methods to find paths that are free from both routing and message-dependent

deadlocks. This is explained in detail in Section 5.3.
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Figure 5.3: Impact of frequency on the area and energy of a
5 × 5 switch, for 0.13µm technology
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5.2 Input Models

5.2.1 Area, Power Models

I have built accurate analytical models for calculating the power consumption, area

and delay of the ×pipes network components [94]. To get an accurate estimate of these

parameters, the place&route of the components is performed using SoC Encounter

and accurate wire capacitances and resistances are obtained, as back-annotated in-

formation from the layout, with a 0.13µm technology library. The switching activity

in the network components is varied by injecting functional traffic. The capacitance,

resistance and the switching activity report are combined to estimate power consump-

tion using Synopsys PrimePower [103].

A large number of implementation runs were performed, varying several param-

eters, such as the number of input, output ports, link-width and the amount of

switching activity at the layout level for the NoC switches. When the size of a NoC

switch increases, the size of the arbiter and the crossbar matrix inside the switch also

increases, thereby increasing the critical path of the switch. To have accurate delay

estimates of the switches, I model the maximum frequency that can be supported by

the switches, as a function of the switch size, presented in Figure 5.3(b).

I used linear regression to build analytical models for the area and power con-

sumption of the components as a function of these parameters. Due to the intrinsic

modularity and symmetry of NoC components, the models built are very accurate

(with maximum and mean error of less than 7% and 5%, respectively) when compared

to the actual values. Power consumption on the wires is also obtained at the layout

level. As in the ×pipes architecture, each core is connected to a separate NI [39], I

consider the power consumption of the NI to be part of the power consumption of

the core.

The impact of the targeted frequency of operation on the area and energy con-

sumption of an example 5×5 switch obtained from layout-level estimates is presented

in Figure 5.3. Note that I plot the energy values (in power/MHz) instead of the total

power, so that the inherent increase in power consumption due to increase in frequency
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is not observed in the plot. When the targeted frequency of operation is below a cer-

tain frequency, referred to as the nominal operating frequency (around 250 MHz in

the plots), the area and energy values for the switch remains the same. However, as

the targeted frequency increases beyond the nominal frequency, the area and energy

values start increasing linearly with frequency. This is because, the synthesis tool

(such as Synopsys DC [103]) tries to match the desired high operating frequency by

utilizing faster components that have large area and energy overhead. When perform-

ing the area, power estimates, I also model this impact of desired operating frequency

on the switch area, power consumption.

5.2.2 Traffic Models

The traffic characteristics of the application are represented by a graph, as presented

in the previous chapter, defined here again for convenience:

Definition 9 The core graph is a directed graph, G(V,E) with each vertex vi ∈ V

representing a core and the directed edge (vi, vj), denoted as ei,j ∈ E, representing

the communication between the cores vi and vj. The weight of the edge ei,j, denoted

by commi,j, represents the sustained rate of traffic flow from vi to vj weighted by the

criticality of the communication. The set F represents the set of all traffic flows, with

value of each flow, fk, ∀k ∈ 1 · · · |F |, representing the sustained rate of flow between

the source (sk) and destination (dk) vertices of the flow.

The edges of the core graph are annotated with the sustained rate of traffic flow,

multiplied by the criticality level of the flow, as done in the previous chapter.

Definition 10 The message type for each flow fk, ∀k ∈ 1 · · · |F |, is represented by

mtypek.

As an example, when a system has request and response message types, the mtypek

value can be set to 0 for request messages and 1 for response messages.
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Figure 5.4: Algorithm examples

5.3 Design Algorithms

The algorithms for the topology design process are explained in this section. In the

first step of Algorithm 2, a design point θ is chosen from the set of available or

interesting design points φ for the NoC architectural parameters. In the current im-

plementation, the synthesis engine automatically tunes two critical NoC parameters:

operating frequency (freqθ) and link-width (lwθ). As both frequency and link-width

parameters can take a large set of values, considering all possible combinations of

values would be infeasible to explore. The system designer has to trim down the

exploration space and give the interesting design points for the parameters. The

designer usually has knowledge of the range of these parameters. As an example,

the designer can choose the set of possible frequencies from minimum to a maximum

value, with allowed frequency step sizes. Similarly, the link data widths can be set to

multiples of 2, within a range (say from 16 bits to 128 bits). Thus, I get a discrete

set of design points for φ, as done in [58]. In all the experiments, 8 frequency steps

and 4 link-width steps are used, providing 32 discrete design points in the set φ. The

rest of the topology design process (steps 3-15 in Algorithm 2) is repeated for each

design point in φ.

As the topology synthesis and mapping problem is NP-hard [53], I present efficient

heuristics to synthesize the best topology for the design. For each design point θ, the
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algorithm synthesizes topologies with different numbers of switches, starting from a

design where all the cores are connected through one big switch until the design point

where each core is connected to only one switch. The reason for synthesizing these

many topologies is that it cannot be predicted beforehand whether a design with

few bigger switches would be more power efficient than a design with more smaller

switches. A larger switch has more power consumption than a smaller switch to

support the same traffic, due to its bigger crossbar and arbiter. On the other hand,

in a design with many smaller switches, the packets may need to travel more hops

to reach the destination. Thus, the total switching activity would be higher than a

design with fewer hops, which can lead to higher power consumption.

For the chosen switch count i, the input core graph is partitioned into i min-cut

partitions (step 3). The partitioning is done in such a way that the edges of the

graph that are cut between the partitions have lower weights than the edges that

are within a partition (refer to Figure 5.4(a)) and the number of vertices assigned

to each partition is almost the same. Thus, those traffic flows with large bandwidth

requirements or higher criticality level are assigned to the same partition and hence

use the same switch for communication. Hence, the power consumption and the hop-

count for such flows will be smaller than for the other flows that cross the partitions.

For partitioning, I use Chaco, a hierarchical graph partitioning tool [98].

At this point, the communication traffic flows within a partition have been re-

solved. In steps 5-9, the connections between the switches are established to support

the traffic flows across the partitions. In step 5, the Switch Cost Graph (SCG) is

generated.

Definition 11 The SCG is a fully connected graph with i vertices, where i is the

number of partitions (or switches) in the current topology.

Please note that the SCG does not imply the actual physical connectivity between

the different switches. The actual physical connectivity between the switches is es-

tablished using the SCG in the PATH COMPUTE procedure, which is explained in

the following paragraphs.

In NoCs, wormhole flow control [99] is usually employed to reduce switch buffering
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requirements and to provide low-latency communication [35], [38]. With wormhole

flow control, deadlocks can happen during routing of packets due to cyclic dependen-

cies of resources (such as buffers) [99]. I pre-process the SCG and prohibit certain

turns to break such cyclic dependencies. This guarantees that deadlocks will not occur

when routing packets. For finding the set of turns that need to be prohibited to break

cycles, I use the turn prohibition algorithm presented in [92], [11]. The algorithm has

polynomial time complexity (very fast in practice, see Section 7.6) and guarantees

that at most 1/3 of the total number of turns would be prohibited to remove cy-

cles. The algorithm also guarantees connectivity between all nodes in the SCG after

prohibiting the turns. From the algorithm, I build the Prohibited Turn Set (PTS)

for the SCG, which represents the set of turns that are prohibited in the graph. To

provide guaranteed deadlock freedom, any path for routing packets should not take

these prohibited turns. These concepts are illustrated in the following example:

Example 3 The min-cut partitions of the core graph of the filter example (from

Figure 4.2(a)) for 3 partitions is shown in Figure 5.4(a). The SCG for the 3 partitions

is shown in Figure 5.4(b). After applying the turn prohibition algorithm from [92],

the set of prohibited turns is identified. In Figure 5.4(b), the prohibited turns are

indicated by circular arcs in the SCG. For this example, both the turns around the

vertex P3 are prohibited to break cycles. So no path that uses the switch P3 as an

intermediate hop can be used for routing packets.

The actual physical connections between the switches are established in step 8 of

Algorithm 2 using the PATH COMPUTE procedure. The objective of the procedure

is to establish physical links between the switches and to find paths for the traffic

flows across the switches. Here, I only present the procedure where the user’s design

objective is to minimize power consumption. The procedure for the other two cases

(with hop-count as the objective and with linear combination of power and hop-count

as objective) follow the same algorithm structure, but with different cost metrics.

An example illustrating the working of the PATH COMPUTE procedure is pre-

sented in Example 4. In the procedure, the flows are ordered in decreasing rate

requirements, so that bigger flows are assigned first. The heuristic of assigning bigger
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Algorithm 2 Topology Design Algorithm

1: Choose design point θ from φ: freqθ, lwθ

2: for i = 1 to |V | do
3: Find i min-cut partitions of the core graph
4: Establish a switch with Nj inputs and outputs for each partition, ∀j ∈ 1 · · · i.

Nj is the number of vertices (cores) in partition i. Check for bandwidth con-
straint violations.

5: Build Switch Cost Graph (SCG) with edge weights set to 0
6: Build Prohibited Turn Set (PTS) for SCG to avoid deadlocks
7: Set ρ to 0
8: Find paths for flows across the switches using function PATH COMPUTE(i,

SCG, ρ, PTS, θ)
9: Evaluate the switch power consumption and average hop-count based on the

selected paths
10: Repeat steps 8 and 9 by increasing ρ value in steps, until the hop-count con-

straints are satisfied or until ρ reaches ρthresh

11: If ρthresh reached and hop-count not satisfied, go to step 2.
12: Perform floorplan and obtain area, wire-lengths. Check for timing violations

and evaluate power consumption on wires
13: If target frequency matches or exceeds freqθ, and satisfies all constraints, note

the design point
14: end for
15: Repeat steps 2-14 for each design point available in θ
16: For the best topology and design point, generate information for ×pipesCompiler

and Cadence SoC Encounter
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Algorithm 3 PATH COMPUTE(i, SCG, ρ, PTS, θ)

1: Initialize the set PHY (i1, j1) to false and Bw avail(i1, j1) to freqθ × lwθ,
∀ i1, j1 ∈ 1 · · · i.

2: Initialize switch size in(j) and switch size out(j) to Nj, ∀ j ∈ 1 · · · i. Find
switching activity(j) for each switch, based on the traffic flow within the parti-
tion.

3: for each flow fk, k ∈ 1 · · · |F | in decreasing order of fc do
4: for i1 from 1 to i and j1 from 1 to i do
5: {Find the marginal cost of using link i1, j1}
6: {If physical link exists, can support the flow and is of the same message type}
7: if PHY (i1, j1) and Bw avail(i1, j1) ≥ fc and (MType(i1, j1) = mtypek)

then
8: Find cost(i1, j1), the marginal power consumption to re-use the existing

link
9: else

10: {We have to open new physical link between i1, j1}
11: Find cost(i1, j1), the marginal power consumption for opening and using

the link. Evaluate whether switch frequency constraints are satisfied.
12: end if
13: end for
14: Assign cost(i1, j1) to the edge W (i1, j1) in SCG
15: Find the least cost path between the partitions in which source (sk) and desti-

nation (dk) of the flow are present in the SCG. Choose only those paths that
have turns not prohibited by PTS

16: Update PHY, Bw avail, switch size in, switch size out, switching activity,
MType for chosen path

17: end for
18: Return the chosen paths, switch sizes, connectivity
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flows first has been shown to provide better results (such as lower power consumption

and more easily satisfying bandwidth constraints) in several earlier works [51], [11].

For each flow in order, I evaluate the amount of power that will be dissipated across

each of the switches, if the traffic for the flow used that switch. This power dissipation

value on each switch depends on the size of the switch, the amount of traffic already

routed on the switch and the architectural parameter point (θ) used. It also depends

on how the switch is reached (from what other switch) and whether an already ex-

isting physical channel will be used to reach the switch or a new physical channel

will have to be opened. This information is needed, because opening a new physical

channel increases the switch size and hence the power consumption of this flow and

of the others that are routed through the switch. These marginal power consumption

values are assigned as weights on each of the edges reaching the vertex representing

that switch in the SCG. This is performed in steps 8 and 11 of the procedure.

When opening a new physical link, I also check whether the switch size is small

enough to satisfy the particular frequency of operation. As the switch size increases,

the maximum frequency of operation it can support reduces (as noted earlier in Sec-

tion 5.2). This information is obtained from the placement&routing of the switches,

taken as an input to the algorithms. The message type that is supported by a link

between any two switches i and j is represented by MType(i, j). Whenever a path is

established for a flow, the links that are newly instantiated in the path are assigned

the same message type as the flow. When choosing a path for a flow, I check whether

the existing links in the path support the same message type as the flow (step 7 of

Algorithm 3). Thus, flows with different message types are mapped onto different

physical links in the NoC, thereby removing the chances of a message-level deadlock.

Once the weights are assigned, choosing a path for the traffic flow is equivalent to

finding the least cost path in the SCG. This is done by applying Dijkstra’s shortest

path algorithm [100] in step 15 of the procedure. When choosing the path, only those

paths that do not use the turns prohibited by PTS are considered. The size of the

switches and the bandwidth values across the links in the chosen path are updated

and the process is repeated for other flows.

Example 4 Let us consider the example from Figure 5.4(a). The input core graph
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Figure 5.5: VOPD custom topology floorplan and
core graph
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has been partitioned into 4 partitions. I assume 2 different message types: request

and response for the various traffic flows. Each partition pi corresponds to the cores

attached to the same switch. Let us consider routing the flow with a bandwidth value of

100 MB/S between the vertices v1 and v2, across the partitions p1 and p2. The traffic

flow is of the message type request. Initially no physical paths have been established

across any of the switches. If we have to route the flow across a link between any

two switches, we have to first establish the link. The cost of routing the flow across

any pair of switches is obtained. The edges between the switches are annotated by the

cost (marginal increase in power consumption) of sending the traffic flow through the

switches (Figure 5.4(c)). The cost on the edges from p2 are different from the others

due to the difference in initial traffic rates within p2 when compared to the other

switches. This is because, the switch p2 has to support flows between the vertices v2

and v3 within the partition. The least cost path for the flow, which is across switches

p1 and p2 is chosen. Now we have actually established a physical path and a link

between these switches. I associate the message type request for this particular link.

This is considered when routing the other flows and only those traffic flows that are

of request type can use this particular physical link. I also note the size and switching

activity of these switches that have changed due to the routing of the current flow.

The PATH COMPUTE procedure returns the sizes of the switches, connectivity
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between the switches and the paths for the traffic flows. The objective function

for establishing the paths is initially set to minimizing power consumption in the

switches. Once the paths are established, if hop-count constraints are not satisfied,

the algorithm gradually modifies the objective function to minimize the hop-count as

well, using the parameter ρ (in steps 7, 10 and 11 of Algorithm 2). The upper bound

for ρ, denoted by ρthresh, is set to the value of power consumption of the flow with

maximum rate, when it crosses the maximum size switch in the SCG. At this value of

ρ, for all traffic flows, it is beneficial to take the path with least number of switches,

rather than the most power efficient path. The ρ value is varied in several steps until

the hop-count constraints are satisfied or until it reaches ρthresh.

In the next step (step 12, Algorithm 1), the algorithm invokes the floorplanner

to compute the design area and wire-lengths. The floorplanner minimizes a dual-

objective function of area and wire-length, with equal weights assigned to both. The

floorplanner used [97] also supports soft cores, fixed pin/pad locations and aspect

ratio constraints for the generated design. From the obtained wire-lengths, the power

consumption across the wires is calculated. Also, the length of the wires is evaluated to

check any timing violations that may occur at the particular frequency (freqθ). In the

end, the tool chooses the best topology (based on the user’s objectives) that satisfies

all the design constraints. At the last step, for the synthesized topology, the algorithm

automatically generates the information required for the ×pipesCompiler tool for

network instantiation and the SoC Encounter tool to perform placement&routing.

The presented NoC synthesis process scales polynomially with the number of cores

in the design. The number of topologies evaluated by the methodology also depends

linearly on the number of cores. Thus, the algorithms are highly scalable to a large

number of cores and communication flows. The synthesis time for several different

MPSoC benchmarks is presented in Section 5.4.1.
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5.4 Experiments and Case Studies

5.4.1 Experiments on MPSoC Benchmarks

I have applied the topology design procedure to six different MPSoC benchmarks:

video processor (VPROC-42 cores), MPEG4 decoder (12 cores), Video Object Plane

Decoder (VOPD-12 cores), Multi-Window Display application (MWD-12 cores), Picture-

in-Picture application (PIP-8 cores) and IMage Processing application (IMP-23 cores).

For comparison, I have also generated mesh topologies for the benchmarks by

modifying the design procedure to synthesize NoCs based on mesh structure. To

obtain mesh topologies, I generate a design with each core connected to a single

switch and restrict the switch sizes to have 5 input/output ports. I also generated

a variant of the basic mesh topology: optimized mesh (opt-mesh), where those ports

and links that are unused by the traffic flows are removed.

The core graph and the floorplan for the custom topology synthesized by the tool

for one of the benchmarks (VOPD) are shown in Figure 5.5. The network power

consumption (power consumption across the switches and links), average hop-count

and design area results for the different benchmarks are presented in Table 5.2. Note

that the average hop-count is the same for mesh and opt-mesh, as in the opt-mesh

only the unused ports and links of the mesh have been removed and the rest of the

connections are maintained. The custom topology results in an average of 2.78×

improvement in power consumption and 1.59× improvement in hop-count when com-

pared to the standard mesh topologies. The area of the designs with the different

topologies is similar, thanks to efficient floorplanning of the designs. It can be seen

from Figure 5.5 that only very little slack area is left in the floorplan. This is because

I consider the area of the network elements during the floorplanning process, and not

after the floorplanning of blocks. The total run-time of the topology synthesis and

architectural parameter setting process for the different benchmarks is presented in

Table 5.2. Given the large problem sizes and very large solution space that is ex-

plored (8 different frequency steps, 4 different link-widths, 42 cores for VPROC and

several calls to the floorplanner) and the fact that the NoC parameter setting and

topology synthesis are important phases, the run-time of the engine is not large. This
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Table 5.2: Comparisons with standard topologies
Appl Topol. Power Avg. Area Time

(mW) Hops mm2 (mins)
custom 79.64 1.67 47.68 68.45

VPROC mesh 301.82 2.58 51.01
opt-mesh 136.11 2.58 50.51
custom 27.24 1.52 13.49 4.04

MPEG4 mesh 96.82 2.17 15.00
opt-mesh 60.97 2.17 15.01
custom 30.03 1.33 23.56 4.47

VOPD mesh 95.94 2.03 23.85
opt-mesh 46.48 2.03 23.79
custom 20.53 1.15 15.00 3.21

MWD mesh 90.17 2.02 13.62
opt-mesh 38.60 2.02 13.81
custom 11.71 1 8.95 2.07

PIP mesh 59.87 2.02 9.61
opt-mesh 24.53 2.03 9.34
custom 52.13 1.44 29.66 31.52

IMP mesh 198.92 2.11 29.41
opt-mesh 80.15 2.11 29.41

is mainly due to the use of hierarchical tools for partitioning and floorplanning and

the development of fast heuristics to synthesize the topology.

I also performed comparisons of synthesized topology against several other stan-

dard topologies. For mapping the cores onto the standard topologies, I use the

SUNMAP tool, presented in the previous chapter. I optimized the topologies for

performance, subject to the design constraints. The comparisons against 5 stan-

dard topologies (mesh, torus, hypercube, Clos and butterfly) for an image processing

benchmark with 25 cores is presented in Figure 5.6. The custom topology synthesized

by the method shows large performance improvements (an average of 1.73×) over the

standard topologies.

As an interesting observation, I found that prohibiting certain turns to avoid

deadlocks during routing had a negligible impact on the power and performance

results for all of the benchmarks. This was because, even if some turns were avoided,

the path computation procedure could easily find other paths with low cost, as several

alternative low cost paths exist between each source and destination in the SCG (refer

to Section 5.3).
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5.4.2 Layout-level Comparisons

I had earlier manually developed a NoC design for a MPSoC that runs multi-media

benchmarks [93]. The design consists of 30 cores: 10 ARM7 processors with caches,

10 private memories (a separate memory for each processor), 5 custom traffic genera-

tors, 5 shared memories and devices to support inter-processor communication. The

hand-designed NoC has 15 switches connected in a 5x3 quasi-mesh network (2 cores

connected to each switch), shown in Figure 5.7(a). The design is highly optimized,

with the private memories being connected to the processors across a single switch

and the shared memories distributed around the switches. The layout of the design

(presented in Figure 5.7(b)) was performed using SoC Encounter and the mesh struc-

ture was maintained in the layout. Each of the cores has an area of 1 mm2 [93] in

the design. The entire process, from topology specification to layout generation took

weeks. The post-layout NoC could support a maximum frequency of operation of

885 MHz, which is determined by the critical path in the switch pipeline. The power

consumption of the topology for functional traffic has been evaluated to be 368 mW.

I apply the topology synthesis process with the objective of minimizing power

consumption, to automatically synthesize the NoC for this application. I set the de-

sign constraints and the required frequency of operation to be the same (885 MHz)

as that of the hand-designed topology. The synthesized NoC topology and the layout

obtained using SoC Encounter are presented in Figures 5.7(c) and 5.7(d). The syn-

thesized topology has fewer switches (8 switches) than the hand-designed topology.

It can support the same maximum frequency of operation (885 MHz), without any

timing violations on the wires. As I considered the wire-lengths during the synthesis

process to estimate the frequency that could be supported, I could synthesize the

most power efficient topology that would still meet the target frequency. To reach

such a design point manually would require several iterations of topology design and

place&route phases, which is a very time consuming process.

Layout level power consumption calculations on functional traffic show that the

synthesized topology has 277 mW power consumption, which is 1.33× lower than the

hand-designed topology. Given the fact that the hand-designed topology is highly

optimized, with much of the communicating traffic (which is between the ARM cores



5.4. EXPERIMENTS AND CASE STUDIES 97

and their private memories) traversing only one switch, these savings are achieved

entirely from efficiently spreading the shared memories around the different switches.

The layout of the hand-designed NoC was manually optimized to a large extent (by

moving switches, network interfaces) to reduce the area of the design. The layout of

the synthesized topology is obtained completely automatically, and still the area of

the design is close to that of the manual design (only a marginal 4.3% increase in

area).

I perform cycle-accurate simulations of the hand-designed and the synthesized

NoCs for two multimedia benchmarks. The total application time for the benchmarks

(including computation time) and the average packet latencies for read transactions

for the topologies are presented in Figures 5.8(a) and 5.8(b). The custom topology

not only matches the performance of the hand-designed topology, but provides an

average of 10% reduction in total execution time and of 11.3% in packet latency.

5.4.3 Impact of Frequency Constraints

The maximum frequency of operation that can be supported by the NoC switches

depends on the number of switch I/O ports, as indicated earlier in Figure 5.3(b). In

this sub-section, I study the impact of the required NoC frequency on the topology

synthesis process. I consider the multi-media MPSoC considered in Section 5.4.2 and

apply the SUNFLOOR tool to synthesize the most power-efficient topology for differ-

ent operating frequency constraints. The number of switches and maximum switch

sizes (maximum over the number of input and output ports of all the switches) used in

the synthesized topologies for different NoC frequencies are presented in Figures 5.9

and 5.10. From these plots we can infer that at low operating frequencies, a topology

with few, but large switches results in the most power optimal design. This is due

to the fact that the increase in power consumption is mostly linear with the increase

in switch size [94]. Thus, in a design with fewer switches, the traffic flows traverse

shorter paths, thereby leading to more power optimal designs. But, as the required

NoC operating frequency increases, the timing delay constraints cannot be met by

large switches, thereby the optimal design point moves to a topology with smaller,
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but more switches. As the tool flow automatically considers the frequency constraint

of the switches as well, I am able to prune the infeasible design points (that violate

the timing constraints) early in the design process.

5.4.4 Handling Dynamic Effects

When the designed NoC is simulated, there can be some mismatch between the ob-

served traffic patterns and the initial traffic estimates. This may be either because of

inaccurate traffic models or because of dynamic effects, such as congestion. Note that

it will be too time consuming to simulate each topology during the synthesis process.

To bridge the gap between topology synthesis and simulation, I use the mismatch

parameter; the input traffic rates are multiplied by the value of this parameter. The

parameter is fed as an input to the synthesis engine. It is initially set to 1 and the

user can manually tune the parameter and re-design the NoC, until the simulations

satisfy the required performance level. The effect of increasing the parameter on

performance for the MPEG4 NoC is presented in Figure 5.11.

5.5 Summary

Having a power and latency efficient NoC architecture that closely matches the ap-

plication traffic characteristics is key to have an efficient MPSoC implementation.

Synthesizing such NoC architecture is non-trivial, given the large design space that

needs to be explored. In this chapter, I have presented SUNFLOOR, a tool that

automates the process, generating efficient NoCs that satisfy the design constraints

of the application. To have fewer design re-spins and faster time-to-market, I have

integrated the architectural synthesis models with back-end physical design models,

thereby bridging a big design gap in NoC synthesis. The synthesis process also con-

siders the wiring complexity of the NoC to accurately estimate interconnect delay

and power consumption and produces networks that are free from deadlocks. I have

shown a layout-level implementation of the NoC for a multi-media MPSoC, validating

the Netchip design flow.
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Chapter 6

Supporting Multiple Applications

In the previous three chapters, I presented approaches to design the NoC to match

the traffic requirements of an application. As technology advances, it becomes cost-

effective to integrate several different applications or use-cases onto a single SoC

chip. As an example, the PNX8550 (Viper2 ) set-top box SoC based on the Philips

Nexperia platform has multiple resolution video processing capabilities (like high

definition, standard definition), multiple picture modes (like split-screen, picture-in-

picture), video recording features, high speed internet access, file transfer services,

etc. [3].

Current state-of-the-art SoCs also allow several of the use-cases to run in parallel.

As an example, in a set-top box SoC, video display and recording applications can

run in parallel, where the recorder could potentially record a different program than

what is being displayed on the screen. I refer to such use-cases that run in parallel

as compound modes (Figure 6). The transition between the single use-case mode to

compound mode needs to be smooth. As an example, when I start a new function such

as video-recording in a set-top box, the video display that is currently going on should

be unaffected. However, when there is a switching between compound modes, there

can be a configuration time overhead to load the new set of use-cases, as shown in

Figure 6. As the different use-cases have different functionalities, the communication

characteristics can be very different across the use-cases. As an example, in Figure

10.5(b), a small fragment of the communication constraints for two different use-cases

101
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for the Viper2 set-top box SoC is presented, where the bandwidth requirements for

some of the traffic streams for the use-cases are different.

In this chapter, I extend the synthesis approach to design NoCs that support

multiple applications. To show the generality of the methods presented in this and

preceding chapters, I apply the synthesis procedure to a different NoC design: the

Ætheral architecture [35]. I integrate the synthesis tool with the Æthereal design flow

[101], similar to the integration into the Netchip flow presented in last chapter.

The proposed synthesis process performs mapping, path selection and resource

reservation in the NoC that satisfies the communication constraints of multiple use-

cases of the SoC. I consider compound modes, where two or more use-cases run in

parallel, and automatically compute the communication constraints for such modes

from the constituent use-cases. When there is switching between the use-cases that are

run, there is a possibility of changing the paths and resource reservations in the NoC

across the use-cases. The dynamic network re-configuration can be applied when the

use-case switching times are large and it helps in reducing the operating frequency and

power consumption of the NoC. In the methodology, I pre-process the use-cases and

identify the set of use-cases that need to share the same NoC configuration and use-

case switching where the NoC configuration can be changed. I also explore the effect of

dynamic voltage and frequency scaling (DVS/DFS) techniques for reducing the power

consumption of the network across the different use-cases. I apply the methods to

several SoC designs (set-top box, TV processor SoCs) and synthetic benchmarks to
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validate the design methodology. The methods are scalable to a large number of use-

cases and are applicable even when the use-cases have very different communication

characteristics.

6.1 The Æthereal NoC Architecture

In this section, I present the architecture of the Æthereal NoC, which provides sup-

port for predictable communication behavior and the mechanism for dynamic NoC

configuration.

6.1.1 Switch/NI Architecture

The Æthereal NoC architecture interconnects IP blocks by connecting them to Net-

work Interfaces (NIs), which convert the IP-block communication view (protocols such

as DTL, AXI and OCP) to the network communication view, which is packet-based.

The NIs are then interconnected by a switch network, which may consist of multiple

switches in different topologies. Æthereal supports a request-response transaction

scheme, in which a master IP block may send a request (such as a read or a write) to

a slave IP, and the slave IP might return a response (in case of a read for example).

This transaction scheme is implemented in Æthereal by a connection, which consists

of a request channel and a response channel.
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Many applications run on SoCs have real-time requirements, such as audio and

video streaming applications. In order to make sure these applications can meet their

requirements from the communication point-of-view, Æthereal offers so-called GT

connections which provide bandwidth and latency guarantees on that connection. In

order to provide bandwidth and latency guarantees, the Æthereal NoC uses a Time

Division Multiple Access (TDMA) mechanism to divide time in multiple time slots,

and then assigns each GT connection a number of slots. The result is a slot-table

in each NI, stating which GT connection is allowed to enter the network at which

time-slot. Once a GT connection is granted a slot, it is guaranteed a contention-free

path to its destination NI. This is achieved by computing the slot table allocations for

each NI such that two GT packets never use the same output link at any time on any

switch. This slot allocation is computed at design time by a heuristic algorithm [11],

and must be programmed in the NIs at run-time. For example, when a connection is

given half of the slots, it will be granted half of the total bandwidth.

For traffic that has no real-time requirements, Æthereal implements Best-Effort

(BE) connections. BE connections are allowed to enter the network whenever a slot is

not used by a GT connection or when the slot is not allocated. Besides the allocation

of slots for GT connections, both GT and BE connections need to have a path through

the switch network. Æthereal uses a static path routing scheme, in which paths are

inserted at the source NI of the traffic flow. These paths are computed at design-time,

and must be programmed into the NIs at run-time. NoC configuration thus consists

of programming both the slot-allocation and path for each connection.

6.1.2 Dynamic NoC Re-Configuration

When multiple applications (use-cases) must be supported by the NoC and they

have different requirements, the paths and slot-tables allocations for these use-cases

will vary. The tables therefore need to be stored in memory and loaded whenever a

usecase switch is executed. As the on-chip memory available is mostly limited and

as the number of use-cases is usually large, the off-chip memory can be used to store

the paths and slot-tables for the different use-cases.
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I investigated the overhead for the reconfiguration mechanism for the set-top box

SoC. The amount of data required to store the path and slot-table information for

each use-case is around 560 Bytes. With 400 use-cases, the memory requirement for

the reconfiguration mechanism is 224 KB. The time required to load the data from the

memory and spread it around the NoC for an use-case is of the order of micro-seconds

and the energy dissipation is of the order of micro-Joules. Using traditional mecha-

nisms to scale the frequency and voltage of the system may require few milliseconds

for configuration.

6.2 Design Methodology

The communication characteristics and constraints of the various use-cases of a SoC

are the input to the design methodology (U1 · · · Un in Figure 6.3). The communica-

tion design constraints for each use-case includes the required bandwidth for various

connections between the cores in the use-case, the maximum latency allowed for the
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connection, the QoS level required for the connection (like GT or BE), etc. An ex-

ample fragment of the input file is presented in Figure 6.4. The user specifies the set

of use-cases that can run in parallel (PUC in the Figure). In the first phase of the

design process, new use-cases are generated automatically to represent such parallel

modes of operation.

For a multiple use-case SoC, when the system switches between use-cases, some

timing overhead is incurred in loading the new use-case. This delay is mainly due to

the fact that the new use-case’s data and code need to be loaded, control signals need

to be distributed to different parts of the design and the already running use-case

need to be gracefully shut down. This switching time varies with different use-cases

and depends on the underlying computational architecture. Some use-cases represent

control sequences that are critical and are loaded and run quickly. For many other

use-cases, the switching time is of the order of hundreds of micro-seconds to milli-

seconds. In this time, we can re-configure the paths and TDMA slot-tables in the

NoC to match the communication characteristics of the use-cases. When the switching

times are in the order of few milli-seconds, we can also scale the supply voltage and

NoC frequency to match the use-case characteristics, which can lead to a reduction

in the NoC power consumption.

To accommodate NoC re-configuration and to apply DVS/DFS, I perform two

different groupings of the various use-cases. If two use-cases have a switching time of

less than few micro-seconds, then they belong to the same configuration group. The

use-cases within the same configuration group share the same path and slot-table

reservations, as there would not be sufficient time to change the paths and TDMA

time-slots across the use-cases. Similarly, if two use-cases that have switching time

of less than few milli-seconds, they belong to the same DVS/DFS group, that is they

use the same NoC operating frequency and voltage.

When some use-cases can run in parallel, I require a smooth transition between

the single use-case mode to the parallel use-case mode and thus they would belong to

the same configuration and DVS/DFS group. Other use-cases that are in the same

configuration or DVS/DFS group are given as an input to the design flow (SUC in

Figure 6.3). In the second phase of the design, I pre-process the use-cases identifying
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those set of use-cases that can have re-configuration and those that should share the

same NoC configuration. I also find the set of use-cases across which the DVS/DFS

schemes can be applied. The detailed description of this phase is presented in Section

5.

In the third phase of the design, I perform mapping and NoC configuration. The

objective of the mapping process is to design the smallest size NoC (in terms of

the number of the switches used) that satisfies the design constraints of all the use-

cases. I assume that all of the use-cases utilize the same mapping of cores onto the

NoC components and only the paths and TDMA slot-tables can be potentially re-

configured across the different use-cases. This is because, if each individual use-case

has a different mapping, then each core potentially needs to be connected to several

different NIs, which may not be feasible because of physical layout restrictions and

wiring complexity. The methods presented in this chapter can be easily extended to

support even limited re-configuration of the mapping across the different use-cases.

In the last phase of the design, the SystemC/VHDL code for the NoC design is

generated and simulations of the design are performed. The NoC performance for the

GT connections is also verified analytically in this step.
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6.3 Use-Case Pre-Processing

The set of use-cases that can run in parallel is specified by the user as an input. As the

number of combinations of the use-cases can be large, it is a tedious process for the

user to manually create use-cases to represent the parallel modes. In the first phase

of the methodology I automatically compute the bandwidth, latency requirements for

such parallel modes from the individual use-cases. The bandwidth of a flow between

two cores in such a compound mode is obtained by summing the bandwidth of the

flows between the two cores across the use-cases that comprise the mode and the

latency requirement of the flow is taken to be the minimum of the requirements of

the flows across the different use-cases in the mode. Such compound modes are then

taken as separate use-cases in the design flow.

To find the set of all use-cases that belong to the same configuration group and

hence need to have the same NoC configuration, I construct a Switching Configuration

Graph (SCG).

Definition 12 The SCG(SV, SE) is an undirected graph, with each vertex svi ∈ SV

representing an use-case and the undirected edge (svi, svj) (or (svj, svi)), representing

the fact that the use-cases svi and svj belong to the same configuration group.

As an example, in Figure 6.5, a SCG graph for 10 use-cases is presented. The

use-cases U 123, U 45 are automatically generated by the first phase of the design

flow to represent the compound modes of operation where use-cases 1, 2, 3 and 4, 5,

respectively, run in parallel. we require a smooth switching between use-cases 6 and

7, as use-case 7 is considered to be critical. The set of use-cases that need to have

the same NoC configuration have an edge between them in the SCG graph.

To find the set of all use-cases that need to have the same NoC configuration,

I use the algorithm presented in Algorithm 7. In the algorithm, the SCG graph is

traversed and those vertices that are reachable from each other are grouped. The

vertices in the same group represent those use-cases that need to have the same NoC

configuration. This is obtained by performing depth-first search of SCG, possibly

multiple times, until all vertices are traversed. The set of vertices traversed in a



6.3. USE-CASE PRE-PROCESSING 109

NI
switch

C5

C1

C2
C0

S S

S S

C4

(a) Topology graph

physical connection

logical connectionC2

S S

S S

C5 C4

C1

C0

(b) V TG

Figure 6.6: (a), (b): Example NoC topology graph and V TG for a use-case. In the
V TG, the connections between the switches and the NIs represent actual physical
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between the cores and the NIs are obtained as outputs of the proposed mapping
procedure.

single search are grouped together, as they are reachable from each other. During

the mapping process, the set of use-cases that are in the same group utilize the same

NoC configuration.

Algorithm 4 Use-Case Grouping

1. Initialize svi ∈ SV,∀i ∈ 1 · · · |SV |, unvisited.
2. Choose unvisited vertex v ∈ SV and mark it visited.
3. Perform depth first search from v on SCG. Group all vertices traversed in the
search and mark them visited.
4. Remove visited vertices and their edges from SG.
5. Repeat steps 2-4 until all vertices in SCG are visited.

A similar approach is used for finding the set of all use-cases that are in the same

DVS/DFS group and need to have the same operating voltage and frequency.
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6.4 Unified Mapping-NoC Configuration

In the next steps, I must map the IP cores to NIs and generate configurations for the

NIs which support the various use-cases. To perform the mapping, I formulate the

following definitions:

Definition 13 Let the set of use-cases be U . The communication between set of all

pairs of cores in an use-case i,∀i ∈ 1 · · · |U |, is represented by the set Fi. Each flow

in the use-case i, flowi,j ,∀j ∈ 1 · · · |Fi|, is associated with a bandwidth requirement,

commi,j and a latency constraint, lati,j. Let the source core of the traffic flow flowi,j

be source(flowi,j) and the destination core of the flow be dest(flowi,j).

The bandwidth of the flow represents the maximum rate of traffic communicated

in the flow and the latency of the flow represents the maximum delay by which a

transaction of the flow should reach the destination.

I define the NoC topology by the topology graph:

Definition 14 The NoC topology graph is a directed graph P (V, L), with each vertex

vi ∈ V representing a core or core-cluster1, NI or a switch in the design and the

directed edge (vi, vj), denoted as li,j ∈ L, representing a link between vertices vi and

vj.

As an example, a NoC topology graph with 5 cores, 4 NIs and 4 switches is shown

in Figure 6.6(a). As the connectivity of the cores with the switches and NIs, which

defines a mapping of the cores onto the network components, is an output of the

design methodology, the complete connectivity information of the topology graph is

only obtained after the application of the algorithms.

To facilitate the mapping process, taking into account the possibly different paths

and TDMA slot reservations to be used by the different use-cases, I define a virtual

topology graph for each use-case. The virtual topology graph keeps track of the current

path and slot-allocation per use-case while the algorithm is running.

1the procedure can also consider a cluster of cores that are to be mapped to the same NI.
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Definition 15 The virtual topology graph for use-case i, ∀i ∈ 1 · · · |U |, (represented

as V TGi(W,M)) is a directed graph with the same number of vertices as the topology

graph P (V, L). Each edge, mi,i1,j1, ∀i1, j1 ∈ 1 · · · |M |, in the graph represents the

possibility of an actual physical link. Each vertex representing a core or a core-cluster

is connected to all the vertices that represents NIs, which means initially each core

could potentially be connected to any NI. The connectivity between the switches and the

NIs are determined by the physical switch network architecture, which is an input to

the design methodology. Each edge m ∈ M is associated with the residual bandwidth

capacity value, commm, (the amount of bandwidth that is not yet reserved) and a

TDMA time-slot table tm. The source vertex of the edge m is represented by s(m)

and the destination vertex of the edge is represented by d(m).

As an example, the V TG for a use-case, for the example presented in Figure 6.6(a),

is shown in Figure 6.6(b). Please note that an edge between the vertex representing a

core and the vertex representing a NI in the V TG (as an example, the edge denoted

as a logical connection in the figure) does not imply an actual physical link. The

actual physical connections are established by the mapping procedure. In this work,

I assume the connectivity between the switches to be based on a mesh topology, and

the procedure can be easily extended to accommodate other topologies as well. The

connectivity between the NIs and the switches is determined by the amount of NI

to switch clustering that is permitted, which is obtained as an user input. In the

example from Figure 6.6(b), two NIs are connected to each switch and a 2 × 2 mesh

topology is used to interconnect the 4 switches.

Definition 16 A path πi,i1,j1 for a traffic flow from a source vertex wi,i1 to destination

vertex wi,j1 in the graph V TGi is a non-empty sequence of edges < m1,m2, · · ·mk >,

such that:

� d(mk1) = s(mk1+1), ∀k1 ∈ 1 · · · k − 1.

� s(m1) = wi,i1 and d(mk) = wi,j1.

The cost of traversing an edge of the path is determined by the contention on the edge

(based on the residual bandwidth and slot-table availability) and the total cost of a
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path is determined by the weighted sum of contention on the edges of the path and

hop-count.

In the mapping procedure, I select a path with a low contention (high probability of

successful allocation) and at the same time try to keep the path length short, so that I

do not consume unnecessarily many resources. As the cost function of a path depends

on two factors (contention and hop-count), I use a weighted linear combination of the

two measures, with the weights for the measures set up experimentally.

The mapping algorithm for multiple use-cases is presented in Algorithm 8. In the

first step, the maximum NoC operating frequency, the data-width of the links, the

maximum TDMA slot-table size and the number of NIs connected to each switch are

obtained as user inputs. From the data-width and the maximum frequency design

point, the maximum bandwidth available on each link of the NoC is obtained (step

2). In the next step (step 3), the number of slots and switches in the design are

increased until a valid mapping is obtained in the subsequent steps. The objective of

the algorithm is to find the smallest NoC design (in terms of the number of switches

and NIs utilized) that satisfies the bandwidth and latency constraints of all the use-

cases. The algorithm declares the mapping as infeasible when the switch/NI count

reaches an user-defined threshold.

For a chosen switch/NI count, the V TG graphs for all the use-cases are constructed

(step 4). Then, the residual bandwidth on all the edges of the V TG graphs are

assigned to the maximum bandwidth value. In the next step (step 6), the traffic flows

are sorted in a non-increasing order of their bandwidth values for all the use-cases

in the design. Then (step 7), the flow with the maximum bandwidth value is chosen

across all the use-cases. The intuition behind choosing the flow that has the largest

bandwidth value first is that it reduces bandwidth fragmentation and larger flows get

to use shorter paths, which is desirable as it leads to lower power consumption [51].

While choosing a flow, I prefer to choose a flow from the already mapped nodes before

other flows, as it further helps in satisfying the bandwidth constraints.

For the chosen flow, the least cost path that satisfies the bandwidth, TDMA slot-

table and latency constraints is obtained (steps 8-13). For obtaining the least-cost

path, I use Dijkstra’s algorithm that is modified to accommodate the constraints,
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Algorithm 5 Unified Mapping and NoC Configuration
1: Obtain the NoC operating frequency, link data-width, maximum TDMA slot-table size

and number of NIs connected to each switch.
2: Set the maximum bandwidth available across each NoC link (max bw) as a product of

the NoC frequency and link data-width..
3: First increase the number of slots until the pre-determined maximum until a valid

mapping is obtained. If the maximum slot-table size is reached without finding a
valid mapping, increase the number of switches in the design until a valid mapping is
obtained, or until an user-defined threshold is reached.

4: Generate, V TGi(W, M) for each use-case i, ∀i ∈ 1 · · · |U |.
5: Assign the residual bandwidth value of all edges, bwm ∀m ∈ M , to max bw.
6: Sort the flows fi,j , ∀i ∈ 1 · · · |U |, j ∈ 1 · · · |Fi|, in non-increasing order of the bandwidth

values, commi,j .
7: Choose the flow in order of the bandwidth value, preferring flows that have

source/destination vertices already mapped. Let fu1,n be the flow chosen.
8: Let wu1,i1 be the vertex representing the core source(fu1,n) and wu1,j1 be the vertex

representing the core dest(fu1,n).
9: Find constrained least cost path πi,i1,j1 from source(fu1,n) to dest(fu1,n) such that

10: (i)Min∀mk1∈πi,i1,j1
bwmk1 ≥ commu1,n (each link has enough bandwidth to accomo-

date the flow)
11: (ii) TDMA slots are available in mk1 ∀mk1 ∈ πi,i1,j1

12: (iii) The latency (hop-delay) constraint of the flow is satisfied.
13: (iv) And the cost of the path is minimum.
14: Reduce the residual bandwidth available (bwmk1) on mk1, ∀mk1 ∈ πi,i1,j1 by commu1,n

and re-compute available TDMA time-slots.
15: Remove edges other than the one present in the chosen path from source/destination

vertices to NIs. Apply this process to all the use-cases.
16: For all other use-cases i, ∀i ∈ 1 · · · |U |, i /∈ u1, choose the flow f , that has the same

source and destination vertices as fu1,n, if such a flow exists.
17: Choose a least cost path in each use-case that satisfies the constraints and reserve

resources. For use-cases in same group, choose path for that use-case in the group that
has the maximum bandwidth value for the flow and reserve resources across the path
in each use-case.

18: Remove mapped flows and repeat steps 7-17 until all flows are mapped.
19: If no path that satisfies the constraints is available for any flow of any of the use-cases,

go to step 3.
20: Once a valid mapping is obtained, obtain the required frequency of operation and supply

voltage for all the use-cases in each DVS/DFS cluster.
21: Store the paths, slot-table allocations, supply voltage and operating frequency for the

use-cases.
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applied onto the V TG representing the use-case that has the chosen traffic flow.

Once the least cost path is computed, the residual bandwidth and the TDMA time

slots available on the edges of the path are re-computed (step 14). In the next step,

all edges from the vertex representing the source/destination cores to the vertices

representing the NIs, other than the one in the chosen path, are removed. This is

because, in the Æthereal architecture, each core is connected to only one NI (while

a single NI can connect multiple cores) due to physical layout restrictions. Now, the

edge of the chosen path has established an actual physical connection between the

source/destination cores and the NI.

As all the use-cases use the same mapping of cores onto the NIs, I fix the physical

connection between the source/destination cores and the NIs in all the other use-cases

as well (step 15). Then (step 16), for all the other use-cases, the flows that have the

same source and destination cores as the one that is mapped are chosen and allocated

in a similar manner (as done in steps 8-13). For the flows belonging to the use-cases

from the same configuration group, the flow with the maximum bandwidth value is

chosen first and the path and slot-table reservations for the flow are obtained. Then,

for all the other use-cases in the group, the same path and slot-table reservations are

utilized for the corresponding flows.

The process is repeated until all flows in all the use-cases are mapped in the NoC

(step 18). At any stage, if a flow cannot be mapped (as a path that satisfies the

constraints of the flow is not available), the entire mapping process is repeated using

a bigger NoC design.

Once a valid mapping is obtained, the required operating frequency for the use-

cases in each DVS/DFS group is obtained (step 20). The required operating frequency

is computed from the maximum bandwidth requirements of any link across all the

use-cases in a DVS/DFS group, as all the use-cases in a group use the same operating

frequency and voltage. From the operating frequency, the required supply voltage

is also obtained. The paths, slot-table allocations, operating frequency and supply

voltage for the use-cases, along with the designed NoC are given as the outputs of

the procedure.
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Example 5 Let us consider a small example of the procedure for 3 use-cases shown

in Figure 6.7. Let us assume that use-cases U2 and U3 are in the same configuration

and DVS/DFS group and hence should utilize the same path and slot-table allocations.

Let us also assume that the use-case U1 is in a different configuration and DVS/DFS

group. The largest flow across the 3 use-cases is the flow between the cores C3 and C4

in U1. A mapping of the cores C3, C4 onto the NoC topology, along with unified path

selection and TDMA slot table reservation for the first use-case is performed (Figure

6.7(d)). The flow between C3 and C4 in the other two use-cases are selected next.

As U2 and U3 are assumed to be in the same configuration group, the flow should use

the same path and slot-table reservations in both the use-cases. As the flow from C3

to C4 in U3 is larger than the one in U2, the paths and slot-table reservations for the

flow are obtained in U3 (refer Figure 6.7(e)). Then, the same allocations are used for

the flow in U2 (refer Figure 6.7(f)). Note that all the use-cases use the same mapping

of the cores onto the topology, but can use a different path if NoC re-configuration is

possible when the two use-cases switch. The residual capacity and time slots on the

NoC links are updated separately for the use-cases. The process is repeated for all the

remaining flows in the use-cases. Finally, after routing all the flows, the required NoC

frequency and supply voltage are obtained for each DVS/DFS group. As an example,

let us assume that the NoC link data-width is 32-bits. Then, after routing the flow

from C3 and C4, the minimum NoC frequency required for use-case U1 is computed

to be 250 MHz. This is because, the bandwidth of a link is the product of frequency

(250MHz) and link data-width (4 bytes), which would match the maximum traffic rate

for the mapped flow in U1 (1000 MB/s). For the DVS/DFS group consisting of use-

cases U2 and U3, the NoC frequency requirement for the currently mapped flows is

105 MHz (the maximum requirement across the 2 use-cases).
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6.5 Simulation Results

6.5.1 Experimental Benchmarks

To validate the performance of the multiple use-case mapping methodology, I per-

form experiments on existing SoC designs and synthetic benchmarks. I consider four

simplified versions of real SoC designs: a set-top box SoC with 4-use-cases [3] (D1 ),

set-top box SoC with 20 use-cases (D2 ), a video processing SoC used in TVs with

8-use-cases (D3 ), and video processing SoC with 20-use-cases (D4 ). The designs D2

and D4 are based on scaled versions of the designs D1 and D3 for supporting more

use-cases. Each use-case has a large number of (50 to 150) communicating pairs of

components. The set-top box SoC and the TV processor have different functionalities

and communication patterns. The set-top box design uses an external memory for

storing and retrieving data and the amount of data communicated to the memory is

very large when compared to the rest of the design. The video processor design uses

a streaming architecture with local memories on the chip, thereby distributing the

communication load across several components. I apply the proposed design method

to these SoCs with different architectures to validate the generality of the method.

I also generated synthetic benchmarks for testing the method with more number

and variety of use-cases. The benchmarks are structured to follow the application

patterns of real SoCs. I identify two classes of such benchmarks: (i) Spread commu-

nication benchmarks (Sp), where each core communicates to few other cores. These

benchmarks represent designs such as the TV processor that has many small local

memories with communication spread evenly in the design. (ii) Bottleneck commu-

nication benchmarks (Bot), where there are one or more bottleneck vertices to which

most of the communication takes place. These benchmarks characterize designs using

shared memory/external devices such as the set-top box example. I vary the band-

width and latency constraints across the different traffic flows of the use-cases. Most

of the video processing architectures have traffic flows that have bandwidth/latency

values that fall in to few (around 3-4) clusters. As an example, the HD video streams

have traffic flows with bandwidth requirements of few hundred MB/s, the SD video

streams have few MB/S bandwidth needs, the audio streams have low bandwidth
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needs and the control streams have low bandwidth needs, but are latency critical.

I capture such effects in the synthetic benchmarks generated, with the traffic pa-

rameters taking a cluster of values, with small deviations in the values within each

cluster.

6.5.2 Effect of Mapping for SoC Benchmarks

In order to compare the quality of mappings produced by the design approach pre-

sented in this work with the worst-case design method (WC method) presented in [59],

I fix the operating frequency and link sizes of the NoC to be the same (500 MHz, 32

bits) for the methods. I apply the design methods and find the smallest size network

that satisfies the constraints of the use-cases. I fix the number of cores to be same

(equal to 20 with 60-100 connections between cores) for all the synthetic benchmarks

and vary the number of use-cases across the benchmarks (from 2 to 40 use-cases) to

evaluate the quality of the mappings. In Figure 6.8, the number of switches used

in the mesh NoC for the current design methodology normalized with respect to the

number of switches used in the WC method for the various benchmarks is presented.

For the designs D1, D2 and for the synthetic benchmarks with small number of use-

cases, the WC method performs reasonably when compared to the method presented

in this work. However, as the number of use-cases increase, the WC method starts

to perform poorly, as the worst-case use-case becomes heavily over-specified and the

resulting NoC design becomes big. The method presented here, on the other hand,

performs well even for large number of use-cases and is scalable. As an example,

for the D3 design, the current methodology produced a successful mapping of the

application onto a 2 × 2 mesh, while the WC method required a 11 × 11 mesh for

the design. For the synthetic benchmarks (both Sp and Bot) with 40 use-cases, the

current methodology resulted in a 2×2 mesh, while the WC method failed to produce

a valid mapping even onto a 20× 20 mesh topology (thus they not plotted in Figures

6.8(b) and 6.8(c)). Compared to the Bot benchmarks, for the Sp benchmarks the

current method performs much better than the WC. This is attributed to the fact

that the Sp benchmarks have more variations in the communication patterns across
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the different use-cases and the WC method is unable to adapt to such variations,

while the current method does. For all the benchmarks, both the methods produced

the results in less than few minutes when run on a Linux workstation.

6.5.3 Frequency-Area Trade-offs

We can perform area-frequency trade-offs using the method presented in this work.

When the NoC frequency is higher, the bandwidth and resources available across the

NoC is higher and a smaller network can satisfy the constraints of the design. On the

other hand, higher frequency of operation implies a higher power consumption in the

network. In Figure 6.9(a), I present the Pareto curve for the area-frequency trade-off

for the D1 design. The area of the switches is obtained from layouts with back-

annotated worst-case timing in 0.13 µm technology. At low operating frequencies

(≤ 350 MHz), the area of the NoC (which is taken to be the sum of the area of all

the switches2) is large as more number of switches are needed to satisfy the design

constraints. At very high-frequencies (≥ 1.5GHz), the area of the NoC is very small.

The optimum design point can be chosen based on the objectives of the designer from

such a curve.

6.5.4 Dynamic Configuration

The switching time between most use-cases in a SoC is of the order of few milli-

seconds. When the use-cases are expected to run for a long time, the frequency of

operation of the NoC can be varied during this switching time to match the com-

munication characteristics of the use-cases, thereby resulting in large power savings

for the system. When the different use-cases require different NoC frequencies, the

voltage of the NoC can also be dynamically changed to match the requirements of

the use-cases. I use a conservative model for voltage scaling, where I assume that the

square of the voltage scales linearly with the frequency [102]. The dynamic voltage

and frequency scaling technique (DVS/DFS) results in an average of 54% reduction in

2Here I assume that the NI area is taken to be part of the core area.
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power consumption for the different SoC designs when compared to the design where

no DVS/DFS scheme is used (Figure 6.9(b)).

6.5.5 Parallel Use-Cases

As the number of use-cases that can run in parallel increases, the NoC size or fre-

quency also increase. The methodology can be applied by the designer to quickly

perform trade-offs involving the number of use-cases that run in parallel with the

size/frequency required for the NoC to support the parallel use-cases. As an example

for a 20-core, 10 use-case Sp benchmark, the required NoC frequency as the number

of use-cases run in parallel is varied is presented in Figure 6.9(c). Such a plot helps

the designer in evaluating the trade-offs involved in the NoC for supporting multiple

parallel use-cases.

6.6 Summary

As the number of applications or use-cases integrated on to a single SoC increases,

the designer is faced with the challenge of building an interconnect structure that

supports the design constraints of all the use-cases. In this chapter, I motivated the

importance of the problem and presented extensions of the design methods presented

in the previous chapters, to handle the multi-use-case scenario. I also presented a way

to dynamically configure the interconnect to support multiple use-cases and integrated

Dynamic Voltage and Frequency (DVS/DFS) techniques with the reconfiguration

mechanism.
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Chapter 7

Supporting Dynamic Application

Patterns

To efficiently utilize the large number of transistors that are available on the chip

with manageable design complexity and wiring requirements, Chip Multi-Processors

(CMPs) have been recently proposed [105]-[108]. In CMPs, the chip area is divided

into a number of regular and identical tiles, where each tile represents a proces-

sor/memory core. The use of a simpler architecture for the processor in a single tile,

coupled together with the re-use of the tile across the chip, results in a reduced design

complexity, when compared to conventional single-core processor systems.

7.1 NoC Design Challenges for CMPs

The systems that utilize NoCs can be broadly classified into two types: Application-

Specific Systems-on-Chip (ASSoCs) and CMPs. In ASSoCs, single or a fixed set of

applications are statically mapped onto the different processor and hardware cores in

the design. The communication between the various cores is known and the inter-

connect architecture can be tailor-made to suit the application traffic characteristics.

In all the preceding chapters, I targeted the design of such ASSoCs. On the other

hand, in CMPs, general-purpose processor cores are used to run software tasks of

different applications. In such systems, the communication between the cores cannot

122
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Figure 7.1: Example tile-based CMP architecture

be pre-characterized, as the different application processes can be mapped differently

to the cores, typically with the support of the compiler [105]. As the total system per-

formance of CMPs is increasingly dominated by the interconnect performance [105],

designing an interconnect architecture with predictable performance is critical.

In NoC-based systems for CMPs, to provide predictable performance and optimal

network throughput, the bandwidth capacity of the different links of the NoC should

be sufficient to support the peak rate of traffic on the links. If the network links

cannot support the peak traffic that can be routed on them, then the network might

experience traffic congestion. In a congested network, the latency for the traffic

streams and hence the interconnect performance will become unpredictable, which

needs to be avoided for dependable system operation.

In traditional multi-processor interconnection networks (the chip-to-chip networks),

the bandwidth on the network links is limited by the number of pins that are available

on the chip and all the links of the network have the same bandwidth capacity [112].

For most interconnect topologies and routing patterns, the load on the different links

of the network is non-uniform. Thus, in traditional multi-processor networks, the

interconnect throughput is limited by the bottleneck links of the network [112].
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On the other hand, CMPs have enormous wiring resources at their disposal [27].

The links in different parts of the network can be sized differently, so that the network

throughput is no longer limited by few bottleneck links. As chip designs are increas-

ingly power consumption limited, when sizing the links, it is important to achieve a

NoC design with the least power consumption.

However, in order to design such a network, there are several challenges that have

to be addressed:

� The first challenge is that the exact traffic pattern of the CMP cannot be pre-

characterized. Usually, to evaluate the quality of the interconnection network in

multi-processors, the network is simulated with different traffic patterns, such as

uniform, nearest neighbor, hot-spot, etc. If such a template of traffic patterns is

used to size the links of the NoC, there is a huge drawback that the methodology

is ad-hoc and does not guarantee network throughput for other traffic patterns

that can occur when real applications are executed.

� The second challenge is to efficiently utilize the link bandwidth (which is a

product of link width and frequency) available. Traditionally, links with dif-

ferent bandwidth capacities are obtained by varying either their frequency of

operation or their width. However, both schemes require complex frequency

and width converters for potentially every input of every switch in the design.

This drastically increases the design complexity and NoC area. Moreover, such

designs incur significant serialization and parallelization delay at every switch,

which results in high packet latencies. Thus, a way to efficiently utilize the link

bandwidth is needed.

� Finally, the interconnect has to maintain a regular structure, so that a pre-

dictable and modular architecture is obtained.

In this chapter, I address the important problem of synthesizing the most power

efficient NoC for CMPs that have dynamic traffic patterns, providing theoretically

guaranteed optimum throughput and predictable performance for any application to

be executed on the CMP. To the best of my knowledge, this is the first work that
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presents a NoC synthesis method for CMPs where the application traffic cannot be

pre-characterized.

I achieve a predictable interconnect design in two ways: First, the architecture

is designed to provide predictable performance under all application traffic condi-

tions. Second, the synthesis approach considers accurate information of the physical

layer measures (such as wire-lengths, wire delays, network component delays), thereby

bridging the gap between the synthesis models and the actual physical layout imple-

mentation. Thus, the design process becomes more predictable, leading to quicker

design convergence.

7.2 Basics of the Synthesis Approach

To efficiently utilize the large on-chip wiring resources that are available, I use multiple

physical channels for each link, namely, a link is segmented into different physical

channels that can be utilized by different traffic flows in parallel. As an example, a

2× 3 mesh topology is presented in Figure 7.2. Each vertex in the figure represents a

switch (and the core that is connected to the switch) and a link between two vertices

has one or more physical channels. For example, the link from vertex v1 to vertex v3

has two physical channels, while the link from vertex v0 to vertex v1 has one physical

channel. In the synthesis process, I size the different links with different number of



126 CHAPTER 7. SUPPORTING DYNAMIC APPLICATION PATTERNS

physical channels, such that each channel supports the load due to any traffic pattern

of the NoC.

When multiple physical channels are used between two switches, if different chan-

nels are dynamically assigned to incoming packets, it may lead to out-of-delivery of

packets. In this case, re-order buffers are required for ordering the packets at each

receiver. Such buffers have large power and area overhead and deterministically sizing

them is infeasible in practice [48]. To avoid such out-of-order delivery, for the traffic

flow from each source to destination, I statically assign a single channel in every link

that is used by the flow. I integrate this mapping of traffic flows to the different

channels in the synthesis procedure.

I also tune the setting up of NoC operating frequency during the synthesis process.

To evaluate the quality of the different NoC designs, I use accurate analytical models

for power consumption of the network components. The power consumption values

are obtained from layouts with back-annotated resistance and capacitance information

at 0.13µ technology using standard industrial tools.

During the synthesis of the NoC, I consider the physical layer measures as well:

the delay encountered on the wires in the NoC and the target frequency that can be

supported by the designed network components. The synthesis approach utilizes the

floorplan knowledge of the NoC to detect timing violations on the NoC links early in

the design cycle. This results in a faster design cycle that leads to a reduction in the

number of design re-spins and faster time-to-market, which are critical for today’s

complex chips. I validate the design flow predictability of the proposed approach by

performing a layout of the NoC synthesized for a 25-core CMP. The approach main-

tains the regular and predictable structure of the NoC and is applicable in practice

to existing NoC architectures.

7.3 Design Flow

In this section, I present the synthesis flow used to design the NoC (see Figure 7.3).

The network topology, utilized routing function, operating frequency of the core, core

data width and network link width are inputs from the user. In the outer loop of
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the synthesis process, the operating frequency of the NoC is varied in a user-defined

range. For each frequency point, the number of physical channels on each link and

an assignment of traffic flows to the different physical channels are computed by the

synthesis process.

From the number of physical channels instantiated between the switches, the

different switch sizes are obtained. Then, I evaluate whether every switch of the NoC

can support the corresponding frequency point (chosen in the outer loop). As the

switch size increases, the maximum frequency of operation it can support reduces (as

the critical path inside the switch gets longer) [39]. This information is obtained from

the layout of the switches for different sizes, which is taken as an input library for

the synthesis method. Then, all the links in the NoC are checked for timing delay

violations. For evaluating the wiring delays, I include the floorplan of the NoC as an

input to the synthesis flow. Usually, standard topologies, such as mesh, are used for

CMPs because the floorplan of the NoC is regular and known at design time. Based

on the link lengths and wire models from [63], the delay values on the NoC links are

calculated. Any timing violations on the NoC links are then evaluated by the method.
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If the design satisfies the timing constraints on NoC switches and links, then the power

consumption of the NoC is computed, based on the layout-level power models. From

the set of all feasible NoC designs, the design with the least power consumption is

finally chosen by the synthesis process.

7.4 Problem Formulation

The topology of the network that defines the connectivity between the switches and

the cores is taken as input. The number of physical channels used for each link is to

be determined by the synthesis procedure. Formally, the NoC topology is defined by

the topology graph:

Definition 17 The NoC topology graph is a directed graph P (V, L), with each vertex

vi ∈ V representing a core (and the switch to which it is connected) and the directed

edge (vi, vj), denoted as li,j ∈ L, representing a link between vertices vi and vj. The

set of physical channels that are instantiated for each link li,j, is represented by the

set CHi,j.

An example topology graph was presented earlier in Figure 7.2, which repre-

sents a 2 × 3 mesh network. The graph has 6 vertices (v0 through v5) and 14 links

(l0,1, · · · , l5,4). The number of physical channels used in each link varies. For example,

link l0,2 has 2 physical channels. Please note that this number is an output of the

synthesis process. To begin with (when the inputs are fed), all the links are initialized

to have no physical channels. Then, the communication among NoC nodes can be

defined as follows:

Definition 18 The communication between each pair of cores is treated as a flow of

single commodity, represented as dk, k = 1, 2, · · · , |V | × |V |, with the source of the

commodity represented as source(dk) and the destination represented as dest(dk)
1.

I assume that a deterministic routing function is utilized for routing packets,

as most existing NoC architectures support only a deterministic routing function

1In the rest of this chapter, I follow the convention that variables i, j are defined for 1 · · · |V |
and the variable k is defined for 1 · · · |V | × |V |
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[35], [38]. This is because the area-power overhead involved in adaptive routing is

quite high. Moreover, adaptive routing presents several problems such as out-of-order

packet delivery, which are hard to tackle in on-chip networks that need to have low

power overhead. The routing function defines the set of links used by each commodity

as:

Definition 19 The routing function R maps the traffic flows of commodities onto the

links of the network, i.e. R : dk → L, ∀k. The set of links utilized by the commodity

k for the routing function is represented by the set Lk.

In Figure 7.2, links l1,0 and l0,2 are used by the traffic flow that has vertex v1 and

source and vertex v2 as destination, for the dimension-ordered (with x first, y next)

routing scheme.

The maximum rate at which each core injects traffic into the network is also taken

as an input to the synthesis engine. It is defined formally as follows:

Definition 20 The rate of traffic injection of each core, vi, ∀ i, is represented by ri.

The rate of each commodity dk, represented as rate(dk), is equal to the rate of traffic

injection of the source core of that commodity, i.e. rsource(dk).

Practically, for most CMPs each core can inject one data word into the network

every clock cycle. Thus, the injection rate is the product of the operating frequency

of the core and its data width. For instance, if a core has a data width of 32 bits and

operates at 100 MHz, its injection rate is 400 MB/s (i.e. 4B × 100 MHz).

I also obtain as inputs the set of interesting operating frequencies to explore for

the NoC design, and the data width of the channels (which is usually set to match

the data width of the cores).

Then, the Problem Statement is the following:

The synthesis procedure has to determine the number of channels (|CHi,j|) required

for each link (li,j) and a static mapping of each commodity (dk) onto a single channel

(ch ∈ CHi,j) of each link li,j ∈ Lk. The mapping has to satisfy the constraint that

every channel should support the traffic rates of all the commodities mapped onto that
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channel for any traffic pattern. The synthesis process should also determine the NoC

operating frequency that results in the most power efficient NoC design.

An optimum (100%) throughput can be achieved if each channel supports its

worst-case load, i.e. the channel bandwidth matches or exceeds the channel load.

Here, I would like to point out that to practically achieve the full throughput value,

the NoC architecture should have a predictable communication behavior, as in [35],

[109], [110].

7.5 Synthesis Algorithm

The detailed synthesis algorithm to solve the defined problem is presented in Algo-

rithm 6. In step 1, the NoC frequency of operation is varied in user-defined steps.

Then, in step 2, I consider each link individually to size the different links with

different channels.

7.5.1 NoC Link Sizing

For each link li,j , I first build a Link Loading Graph (LLG) (in step 3), defined as

follows:
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Algorithm 6 Synthesis Algorithm

1: for Each NoC frequency (freq) design point in user defined range do
2: for each link li,j ∈ L do
3: Build the Link Loading Graph (LLGi,j) for the link li,j
4: Build the Vertex Conflict Graph (V CGi,j) for the link li,j
5: Initialize number of channels to zero, m = 0
6: Increment m by 1 and instantiate new physical channel chm

7: Find m max-cut partitions of VCG.
8: Assign bw satisfied to true
9: for each max-cut partition do

10: Build Partition Loading Graph (PLG)
11: max load = maximum weight matching(PLG)
12: If (max load > freq × width), bw satisfied = false
13: end for
14: if bw satisfied then
15: Assign those commodities k such that source(dk) is in partition m1 to

channel m1, ∀ m1 ∈ 1 · · ·m
16: Set CHi,j =

⋃

∀m1 ∈ m chm1

17: else
18: Go to step 6.
19: end if
20: end for
21: From computed CHi,j , ∀i and j, compute the switch sizes.
22: Evaluate whether the switch size implementations can match the target fre-

quency (freq).
23: Evaluate whether all the links in the NoC can meet the target frequency (freq).

Utilize the NoC floorplan information to estimate the link lengths.
24: If target frequency met, obtain the power consumption for the synthesized NoC.
25: end for
26: From the set of synthesized NoCs, choose the design with least power consumption
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Definition 21 The LLGi,j(LV,LL) is a bi-partite graph with |LV | = 2 × |V | (i.e.

with 2 × |V | vertices). An edge exists between vertices lvx and lvy, ∀x ∈ 1 · · · |V |,

∀y ∈ |V | + 1 · · · 2 × |V |, if ∃ k such that source(dk) = lvx and dest(dk) = lvy−|V | and

li,j ∈ Lk. The weight of the edge is the rate of traffic flow of the commodity, i.e.

equal to rate(dk).

The edges of the LLG represent the set of all traffic flows that utilize the link,

depending on whether the link is part of the route for the different traffic flows. The

weights of the edges represent the rate of the traffic flows.

Example 6 The LLG for the link l0,2 (i.e. LLG0,2) of the 2 × 3 mesh example is

presented in Figure 7.4. With x-y routing, the link l0,2 is used by the traffic flows that

originate from vertex v0 to v2 and v4, and by the traffic flows that originate from vertex

v1 to v2 and v4. The maximum rate of all these traffic flows is 400 MB/s. In the

LLG bipartite-graph, each vertex on both the left and the right columns represents a

single core. Those vertices with traffic flows that utilize this particular link have edges

between them. In this example, there are edges between those vertices that represent

core 0 and core 1 with core 2 and core 4, with the edge weights being the rate of the

flows.

The load on a link is equal to the sum of the loads caused by each source-

destination pair using that link. The worst-case link load can be obtained by consid-

ering all possible permutation traffic patterns. In [113], [114], the authors show that

the worst-case load can be obtained by representing all permutations as matchings

within the LLG bipartite graph. A maximum-weight matching on the graph yields

the exact worst-case permutation for a particular link and the worst-case (maximum)

load on that link. I utilize this basic approach to evaluate the worst-case load on the

different channels.

In the next step of the algorithm (step 4), I build the Vertex Conflict Graph

(V CG), defined as follows:

Definition 22 The V CGi,j(V V, V L)) is an undirected graph with |V V | = |V | (i.e.

with |V | vertices). An edge vli,j exists between two vertices vvi and vvj if degree(lvi)+
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degree(lvj) > 0. The weight of the edge is the value of the maximum weight bipartite

matching of modified LLG, where the edges from all vertices other than lvi and lvj

are removed.

The edge-weight assignment in V CG is such that, if the traffic flows from a pair

of cores (representing two vertices connected by an edge in VCG) are mapped onto

the same physical channel, then they would together cause a maximum load on the

channel that is given by the edge-weight.

Example 7 The V CG for link l0,2 is presented in Figure 7.5. In LLG0,2, as the

two cores core 0 and core 1 have traffic flows originating from them, the edges from

vertices vv0 and vv1 to all other vertices exist. Let us consider the edge between vv0

and vv5. The value of the maximum weight matching obtained on the modified LLG

when only edges of vertex lv0 and lv5 are maintained is 400. Thus the weight of the

edge between vertices vv0 and vv5 is 400, as seen in Figure 7.5.

Then, in steps 5-20, physical channels are instantiated for the link and the com-

modities are mapped onto the channels. The number of channels is increased from 1

until the load on each channel can be satisfied by the channel. Note that the maxi-

mum number of instantiated physical channels would be |V |. Thus, the traffic flows

from every source that utilizes the link would be assigned to a separate channel.

For a certain number of physical channels, the V CGi,j is divided into that many

number of partitions (step 7 of the algorithm). The partitioning is such that the sum

of the edge weights cut across the partitions is maximized and the total number of

vertices within each partition is almost the same. For partitioning, I use Chaco, an

efficient hierarchical graph partitioning tool [98]. The intuition behind such parti-

tioning is that the traffic flows that would cause higher channel loads are assigned to

different channels, and channels are loaded uniformly.

Example 8 The 2 max-cut partitions of the V CG graph for link l0,2 are shown in

Figure 7.5. Note that vertices vv0 and vv1 are in different partitions.

To evaluate the load on each physical channel, I build the Partition Loading Graph

(PLG) for each partition. This bi-partite graph is obtained from a modified LLG,
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where the edges from all vertices other than those of the partition are removed. By

finding the maximum weight matching of the PLG, the load caused by the partition

on a channel is obtained. Then (in step 12), I check whether the load on each channel

is less than or equal to the bandwidth capacity of the channel. For the channel

bandwidth calculation, the data width of all the channels (width in Algorithm 6) is

taken as an user input.

Example 9 The two PLG graphs for the two partitions for the mesh example are

shown in Figure 7.6. The load on the two physical channels, onto which the flows from

the vertices of the two partitions are mapped is 400 MB/s (obtained from the value of

the maximum weight matching of each of the PLG graphs). If the vertices vv0 and

vv1 had been assigned to the same partition, then the load on the channel supporting

the traffic flows from the vertices of the partition would be 800 MB/s (with the load

on the other physical channel being 0). Thus, the partitioning process is steered to

uniformly load the different channels of the link.

7.5.2 Timing Feasibility Check

In step 21 of the algorithm, the sizes of the different switches are obtained, which

are based on the number of physical channels instantiated for each link. In the

next step, I evaluate whether all the switches can meet the particular NoC operating

frequency design point. This check is needed because, when switch size increases, the

maximum supported frequency of operation reduces (as the critical path inside the

switch gets longer) [39]. This information is obtained from the Place&Route of the

switches, which is an input to the synthesis algorithm. Based on the frequency design

point and the size of the switches, the power consumption values of the switches

are obtained. For power consumption estimations, the switching activities of NoC

components are obtained from several functional traffic traces. In the next step (step

26), the different links of the NoC are checked for timing violations. The length of

the links are obtained from the NoC floorplan, which is taken as an input to the
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synthesis engine. The timing models for the interconnect wires are obtained from

[63], for 0.13µ technology.

For each frequency design point (steps 1-25, outer loop), the best NoC topology is

synthesized. Finally, the most power efficient design across all these points is chosen

in step 26.

7.5.3 Algorithm Run-time

The run-time complexity of the algorithm is dominated by the maximum weight

matching calculations carried out for each channel (as fast heuristics are used for

partitioning, it has a low impact on the algorithm run-time). The maximum weight

matching for a PLG graph can be computed in O(|V |3) time complexity [113] and the

total number of times the matchings are performed (for each frequency design point)

is at most O(|L||V |2). This is because each link can have at most |V | channels and

we need to perform at most O(|V |2) matchings for each link. Overall, the algorithm

finds the best solution for even large CMP designs in few tens of minutes, running on

a 3.2 GHz workstation.

7.6 Experimental Results

In this section, I present the experimental results obtained after applying the pro-

posed synthesis algorithm on NoC designs with different parameter values. First, I

present the application of the method to a 5×5 mesh topology. Then, I study the

impact of varying the data injection rates and the number of processing cores in

the design. Then, I perform experiments to show the effect of link lengths on the

solutions produced. The generality of the method (applicability to any CMP NoC

topology and deterministic routing function) is shown next, by applying it on a torus

topology with two different routing functions. Finally, the design flow predictability

is validated by performing a complete layout of the synthesized NoC architecture.
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7.6.1 Experiments on a Mesh Topology

In this experiment, I consider a 5×5 mesh topology. I assume the operating frequency

of each core is 200 MHz, the data width of the cores and NoC channels are 32-bits,

and dimension-ordered (x-first, y-next) routing is utilized. I assume that the length of

each NoC link to be 1mm. I assume these as the default values and in the subsequent

subsections I study the impact of varying some of these parameters.

I vary the NoC operating frequency from 200 MHz to 1 GHz and synthesize the

efficient NoC for each frequency point using the proposed synthesis procedure. The

total power consumption values for the synthesized NoCs (sum of switch and link

power consumption) for the different frequency points are plotted in Figure 7.7. At

operating frequencies lower than 400 MHz, a large number of physical channels were

needed for each link, which resulted in switches with large number of inputs and

outputs. Hence, the designed switches could not support the required NoC operating

frequencies. Similarly, at the 1 GHz frequency point, the designed switches could not

support the frequency point. Thus, no feasible NoC design is obtained below 400

MHz and at 1 GHz. NoCs synthesized at lower operating frequencies (e.g. 400 MHz)

require larger switches, which leads to higher power consumption. At higher operating

frequencies, such as 900 MHz, the switch hardware complexity is higher (as more logic

is needed to achieve faster clock speeds during physical design) and the clock-net

power consumption is also higher. In fact, clock nets account for approximately 15%
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of NoC power consumption. Note that, for the power consumption estimations of the

NoC components, I run several functional traffic traces and obtain the average values.

Thus, I do account for the fact that the switch input/output ports and the links of

a NoC running at a higher frequency have lower switching activities than for a NoC

design operating at a lower frequency. The most power optimal frequency point for

the 5 × 5 mesh is 600 MHz, and the synthesized NoC at this frequency is presented

in Figure 7.8.

As no previous work has directly addressed NoC design for CMPs, for comparison

purposes I evaluate how a direct extension of the approach from [113] would perform

(I call this the Reference approach). When the procedure from [113] is applied to the

5 × 5 mesh topology, the maximum load on a link is computed to be 4× the traffic

rate of each core. Thus, the NoC operating frequency required would be 800 MHz. As

seen from Figure 7.7, the NoC designed using the Reference approach would consume

1.17× more power than the optimal NoC designed using the proposed approach.

7.6.2 Effect of Core Injection Rates

When the processor operating frequency increases, the rate of traffic injected on the

NoC links also increases significantly. The actual operating frequency of the cores

varies widely across the different CMP architectures proposed in the literature. As

an example, the RAW architecture has cores operating around few hundred MHz

[115], while some of the commercial CMPs operate at much higher operating frequen-

cies [108].

The power consumption requirements for different operating frequencies of the

cores for the Reference and proposed approaches are depicted in Figure 7.9. This

figure shows that the Reference approach does not produce valid NoC designs when

the operating speed of the cores exceeds 200 MHz. This is because the designed NoCs

needed very high operating frequency, which could not be supported by the switches.

As an example, a 4 × 4 switch of the ×pipes architecture can only operate at a

maximum frequency of 1 GHz approximately. While these values strongly depend

on the underlying NoC architecture, the basic fact is that the Reference approach
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typically requires the NoC to be several times faster than the cores (4 times for the

5 × 5 mesh and higher for larger topologies). In systems where the cores themselves

operate at high frequencies, it would not be feasible in practice to clock the network

at such excessively high frequencies. Thus, the Reference approach cannot produce a

valid design. On the contrary, the proposed approach supports a larger range of core

operating speeds and produces more power-efficient designs as well.

7.6.3 Effect of Different NoC Sizes

The different CMP architectures available today have different number of tiles on

the chip and thus require NoCs of different sizes. As an example, for exploiting

fine grained parallelism, CMP architectures with 50-100 tiles can be utilized, while

to exploit coarse-grained parallelism, architectures with few tens of tiles are utilized

[107]. In this experiment, I study the impact of different mesh sizes on the quality of

the synthesized NoCs.

The NoC power consumption for different mesh sizes for the proposed synthesis

approach is presented in Figure 7.11. The power numbers are normalized with respect

to the power consumed by the 10×10 mesh design. As expected, when the mesh size

increases, NoC power consumption rapidly grows as well. Even for the largest 10×10

mesh design, the method completed in few tens of minutes on a 3.2 GHz workstation.

This shows that, due to the use of fast heuristics and exact polynomial algorithms,
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the proposed synthesis method is highly scalable to large problem instances.

7.6.4 Effect of Link Length

To see the importance of considering wire power consumption during the synthesis

process, I have varied the length of the NoC links in the design. For this experiment,

I fixed the NoC topology to be a 5 × 5 mesh. Thus, the designs with different link

lengths represent designs with different total chip area. For example, when the link

length is 1mm, the dimensions of the mesh NoC are 5mm×5mm, but when the link

length is 4mm, the dimensions are 20mm×20mm.

The motivation for considering different link lengths is that different CMP ar-

chitectures have wires of different lengths. As an example, in the Smart Memories

architecture [106], the link lengths of the global network are around 4mm [116], while

the link lengths in a smaller NoC design are from 1mm to 2mm [93].

The NoC switch and link power consumption values for different link lengths

are presented in Figure 7.10. As the link length starts to increase, the link power

consumption largely augments. This shows that the wire power consumption must

be considered during the NoC synthesis phase, as it is done in this approach. Note

that the power numbers are for 130 nm technology. With more advanced process

technologies (especially at 90nm and below), the impact of wire power consumption

on the total NoC power consumption is expected to increase considerably [111]. Thus,

the exploration of such technology dependent effects is a necessary direction for future

work in the design of efficient on-chip interconnects.

7.6.5 Application to Torus Topology

The proposed approach is applicable to any NoC topology and deterministic routing

function. I have applied it to a 5 × 5 torus topology and studied the impact of 2

different routing functions: One routing function in which the wrap-around links of

the torus are not used (Routing 1), and another one where the wrap-around channels

are utilized (Routing 2). The NoC power consumed by the synthesized designs for

the two routing functions are shown in Figure 7.12. It shows that the use of the
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Figure 7.13: Layout of a 5 × 5 mesh topology

wrap-around links in the torus topology is beneficial, not only as generally believed

for latency, but also for power. This is because, when the wrap-around links are

utilized, the traffic is spread more evenly in the network. Thanks to the proposed

synthesis approach, this type of architectural test can be easily performed, showing its

effectiveness for NoC design exploration purposes. Usually, standard NoC topologies,

such as mesh and torus, are used for CMPs, as the NoC floorplan for such topologies

is predictable [105], [106]. This is the reason for choosing these topologies for the

experiments. However, the synthesis approach is general and applicable to any NoC

topology.

7.6.6 Validating Design Flow Predictability

Usually, a design gap exists between the architectural level model and the actual

physical layout implementation. Bridging this design gap is key to decrease the

number of design iterations and to achieve quicker design convergence and faster

time-to-market. In this work, I achieve a predictable design flow by bridging this

design gap between the architectural and physical models. This is achieved due to

two factors. First, I consider the physical layer measures, such as wire delays and
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accurate NoC component delays, during the synthesis process. Second, the use of

regular NoC topologies results in easily predictable NoC floorplan and link lengths,

which help us to accurately model the wire delays. In fact, achieving a predictable

design flow is one of the most important reasons for utilizing NoC-based interconnects

[93]. To validate the predictability of the design flow, I implemented the layout of the

optimal 5 × 5 mesh topology synthesized by the procedure at 600 MHz. The CMP

consists of 25 cores, and the area of each core is 1mm × 1mm.

To obtain the layout, I have first generated the RTL code of the designed NoC

components using a custom built tool, ×ipesCompiler [67]. Then, I have synthesized

the RTL design using Synopsys Design Compiler [103]. After this, I have performed

the place&route phase of the synthesized design using Cadence SoC Encounter [104].

The resulting layout of the design is presented in Figure 7.13. For the layout, a 0.13µ

process technology with 8 metal layers are used for wire routing. Among these, 5

metal layers are used for intra-cell routing inside the cores and the remaining 3 metal

layers are used for over-the-cell routing of NoC links.

I have performed post-layout timing checks on the different switches and links of

the NoC. I could achieve a fully functional design at the target frequency of 600 MHz,

without any timing violations. I could design the NoC till layout level quickly, thanks

to the predictability of the design flow.

Finally, I studied the impact of adding multiple physical channels on NoC area.

For the 5× 5 mesh topology, the use of multiple physical channels increased the total

switch area from 0.94 mm2 (when only a single physical channel is used for all the

links) to 1.18 mm2, which is negligible when compared to the total chip area of the

CMPs. From the layouts, I also found that sufficient routing area was available for the

multiple physical channels that were instantiated. This is in accordance with several

earlier studies [27], [93], which have shown that sufficient routing area is available

between the switches of regular topologies to route a large number of wires.
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7.7 Summary

Having a predictable interconnect architecture is critical to manage the increasing

interconnect complexity of current Chip Multi-Processors (CMPs). The CMPs differ

from Application Specific SoCs (ASSOCs) in the fact that their traffic characteristics

cannot be predetermined. Thus, the NoC predictability for CMPs needs to be tack-

led at several design levels. On the one hand, from the architectural viewpoint, the

interconnect has to provide predictable performance under different operating condi-

tions. On the other hand, from the design flow viewpoint, the design gap between the

architectural model and the physical implementation should be minimized, so that

a quicker design convergence is obtained. Designing an efficient NoC architecture

that provides predictable performance for any application running on a CMP is a

challenging task.

In this chapter, I have presented a synthesis method that addresses this impor-

tant design issue of synthesizing the most power efficient NoC interconnect for CMPs,

providing guaranteed optimum throughput and predictable performance for any ap-

plication to be executed on the CMP. I achieve a predictable interconnect design in

two ways: first, the architecture is designed to provide predictable performance under

all application traffic conditions. Second, the synthesis approach considers accurate

information of the physical layer measures, such as wire-lengths, wire delays and

network component delays, thereby bridging the gap between the synthesis models

and the actual physical layout implementation. This leads to a faster design cycle

and quicker design convergence across the high level synthesis approach and physical

implementation of the design. I have validated the design flow predictability of the

proposed approach by performing a layout of the NoC synthesized for a 25-core CMP.

The proposed synthesis approach can also be used as a design space exploration tool

to evaluate the efficiency of different NoC topologies and routing functions. Finally,

the presented approach maintains the predictable layout of regular NoC architectures;

thus, it can be applied to existing NoC architectures.

In the preceding chapters, I have seen methods to design NoC architectures under

various operating conditions. Now, it is time to proceed to make their operation
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reliable. This will be focus of the next part of the thesis.



Part II: NoC Reliability Mechanisms



Chapter 8

Timing-Error Tolerant NoC Design

With technology scaling, the device characteristics fluctuate to a large extent due to

process variations and can cause significant variations in wire delay [127]. Wire delay

is also affected by other forms of interference such as supply bounce, transmission

line effects, etc. [128], [129]. As such delay variations can affect multiple bits simul-

taneously, special mechanisms are needed to handle timing errors. In this chapter, I

present T-error, a timing-error tolerant mechanism to make the interconnect resilient

against timing errors arising due to such delay variations on wires.

Current NoC design methodologies are based on a worst-case design approach

that considers all the delay variations that can possibly occur due to the various

noise sources and environmental effects and targets a safe operation of the system

under all conditions. The system state is considered safe if there are no timing vio-

lations for all operating conditions and in the presence of the various noise sources.

Such a conservative design approach targets timing error free operation of the sys-

tem. In Razor [118], [119], an aggressive, better than worst-case design approach

was presented for processor pipelines. In such a design, the voltage margins that

traditional methodologies require are eliminated and the system is designed to dy-

namically detect and correct circuit timing errors that may occur when the worst-case

noise variations occur. Dynamic Voltage Scaling (DVS) is used along with the ag-

gressive design methodology, allowing the system to operate robustly with minimum

power consumption.
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The proposed T-error methods are used to aggressively design the NoC compo-

nents (switches, links and NIs) to support higher operating frequencies than designs

based on conservative approaches. Aggressive design of the communication archi-

tecture has several implications when compared to the design of processor pipelines.

First, the hardware overhead required to recover from timing errors can be minimized

by smart utilization of the buffering resources available in the NoC. Second, the error

recovery penalty can be mostly hidden under the network operation, so that large per-

formance benefits can be obtained. Finally, the switches, NIs should be re-designed

to handle errors, as they may receive a wrong piece of data before the right one.

In many SoCs, Dynamic Frequency Scaling (DFS) and Dynamic Power Manage-

ment (DPM) policies are used to reduce the operating power of the SoC [60]. In

such systems, at the application level, the voltage and frequency of the components

are selected to match the performance level of the application. The NoC can also

be dynamically tuned at runtime. When a communication-intensive application re-

quires fast execution, the NoC can be over-clocked to higher operating frequencies.

When an application does not require a fast NoC, the frequency of the NoC can be

lowered to reduce the power consumption of the system. Unlike many of the earlier

works ([118]), where the system’s error rate is constantly monitored to tune the volt-

age or frequency, I envision that the T-error based NoCs to be utilized in systems

with application-level DFS/DPM policies. Thus, complex network error rate moni-

toring controllers are not needed in the design. Moreover, the large delay incurred

to change the frequency/voltage to reduce errors is avoided. The required voltage

and frequency parameters of the network for the different applications can be stored

in programmable registers or memories and can be accessed by the operating system

upon task switches among the applications that are running on the SoC.

In this context, I distinguish two possible operating modes for the NoC: normal

mode and over-clocked mode. In normal mode, the NoC operates at frequencies less

than or equal to the frequency of a conservative design. Under over-clocked mode, the

frequency of operation can be higher than that of the traditional design. The NoC

under the over-clocked mode incurs some penalty for error resiliency, even when there

are no errors in the system (this is explained in detail in Section 8.4.2). Under normal
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mode, the NoC does not need to encounter the additional error resiliency penalty, as it

operates at a safe operating frequency. To remove any additional overheads when in

normal mode, I present a way to dynamically configure the NoC between the normal

and over-clocked modes of operation at the application level.

The T-error scheme for a NoC link is presented in [142]. In this work, I present two

robust link design methods. In the first scheme, link buffers are efficiently utilized,

so that error resiliency is achieved without much additional hardware overhead. In

the second scheme, more hardware resources are used to achieve higher performance.

The two link schemes have the same timing relation and logic interpretation of control

signals from/to the switch. The two schemes can be used in a plug-and-play fashion by

the designer to suit the application and NoC architecture characteristics. I integrate

the link designs with NoC flow control and present T-error schemes for switches/NIs.

I developed cycle-accurate SystemC models of the T-error based switches, links

and NIs and integrated them onto the � pipes NoC architecture. Functional SystemC

simulations on several benchmark applications have been carried out. Detailed case

studies of the T-error design and comparisons with the traditional mechanisms are

presented. Experiments show large performance improvements (up to 33% reduction

in communication delay) for the benchmark applications for the aggressive NoC design

methodologies, when compared to traditional design methodologies. The application

of DVS/DFS techniques result in 57% reduction in the NoC power consumption when

compared to traditional design approaches.

8.1 The Double Sampling Technique

In most NoC realizations, when errors are detected, corrupted packets are retrans-

mitted. Unfortunately, retransmissions incur significant performance penalties [135].

Moreover, timing delay variations occurring due to higher operating frequencies can

potentially affect multiple data bits in a packet, requiring complex multi-bit error

detecting/correcting codes that may be impractical to use [135].

To recover from timing errors in a digital system, double data sampling techniques
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Figure 8.1: Double Data Sampling Technique

have been proposed and used by several researchers [118]-[125]. In such double sam-

pling schemes, each pipeline flip-flop in the design (called main flip-flop) is augmented

with an additional latch/flip-flop (called delayed flip-flop), as shown in Figure 8.1.

Both the main and the delayed flip-flops have the same frequency of operation. How-

ever, the clock to the delayed flip-flop has a phase shift from the clock to the main

flip-flop and it samples data at delayed clock edge, as shown in Figure 8.2.

ckd

ck

φ

Figure 8.2: Phase shift between clocks

Thus, data sampled by the delayed flip-flop has more time to settle, compared to

the main flip-flop. The delayed clock is usually generated locally at the pipeline stage

from the main clock using an inverter chain (delay element). After that the delayed

flip-flop has sampled data, the values of the two flip-flops are compared through an

EXOR gate; if there is any difference, data from the delayed flip-flop is assumed to be

correct and is resent through the main flip-flop in the next clock cycle. The control

circuitry also sends flow control signals to the pipeline stages before and after the

stage where the error occurred, so that they can recover from the error.

Let us consider a bit-line of a NoC link with one pipeline stage, where the pipeline

flip-flop (main flip-flop) is augmented with a delayed flip-flop. Let the maximum safe
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operating frequency of the link for the original design (without using any double-

sampling technique) be 1 GHz. If the double sampling technique is used, I can have

a higher frequency of operation, as the link no longer needs to have safe operation at

the main flip-flop. As an example, if the delay or phase shift between the clocks to

the main and delayed flip-flops (φ/(clock period) in Figure 8.2) is 50%, the delayed

flip-flop will sample the right data even when the link operates at 1.5 GHz. Even

though the main flip-flop may incur timing errors, I can recover the right data from

the delayed flip-flop.

Note that higher operating frequency can also be achieved by having a deeper

pipeline in the NoC components. However, there are several advantages in using the

T-error based design than having a deeper pipeline:

1. When the NoC is operating in the normal mode, a deeper pipeline depth will

result in a fixed increase in latency across the link, while in the T-error based

scheme, this latency is avoided (in fact, T-error design can be viewed as a way

to dynamically change the pipeline depth of the NoC components).

2. As the traditional design frequency is conservative, even in the over-clocked

mode the errors introduced due to over-clocking may not be substantial. Thus,

the T-error design can achieve the same frequency of a deeply pipelined design

with a lower latency for the average case. This is because, in the T-error design,

the pipeline depth changes dynamically according to the error rate, while the

deeply pipelined design always incurs a high latency.

3. Significant re-design, verification and timing validation of switches and NIs are

needed to increase the pipeline depth, while the T-error design can be incorpo-

rated with lower design efforts. The normal FIFOs used in the links, switches

and NIs need to be replaced by the T-error FIFOs, which can be designed and

used as library elements.

4. T-error can always be used as an add-on to a deeply pipelined NoC system to

improve the operating frequency of the system.
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In this work I present methods that address only the timing delay variations on

the NoC that are introduced due to over-clocking. Coping with other kind of errors

(such as soft errors, capacitive coupling based cross-talk, data upsets, etc.) is assumed

to be done by means of existing techniques (such as [131]-[140]). By operating the

NoC at higher frequencies, the effect of these errors on the system may vary and I

assume that the techniques used to address them are designed to handle the maximum

over-clocked frequency of operation.

8.2 Using Links as a Storage Medium

Flow control is needed in networks to support full throughput operation. Specifically,

it is needed to ensure that enough buffering is available at each switch to store the

incoming data and the available buffers are utilized efficiently. In traditional designs,

queuing buffers are either located at the inputs (input-queued switches) or at the

outputs (output-queued switches). In some switches, the buffers can be located at

both the inputs and the outputs to improve the performance of the NoC [99]. A

credit-based or on/off flow control mechanism is typically used to manage the input

buffers of the switch. In such designs, for maximum network throughput, the number

of queuing buffers needed at each input of the switch should be at least 2N+1 flits [99],

where N is the number of cycles needed to cross the link between adjacent switches.

This is because, in credit-based flow control, it takes at least 1 cycle to generate a

credit, N cycles for the credit to reach the preceding switch and N cycles for a flit

to reach the switch from the preceding switch [99]. To support link pipelining, there

need to be N − 1 pipeline buffers on each bit-line of the link connecting the switches.

Thus, effectively we need 3N flit-buffers for each input of the switch/link (Figure 8.3).

In [75], the use of relay stations and link-level flow control has been presented. In

such a scheme, each pipeline flip-flop on the link is replaced by a 2-entry FIFO and a

link-level flow control is used to ensure full throughput operation. I utilize such links

for the NoC architecture. In the NoC architecture, the switch input buffers are also

replaced by a 2-entry FIFO. Figure 8.4 shows a 3-stage link pipeline using 2-entry

FIFO at each pipeline stage (N = 4, as it takes 1 more cycle to reach the receiver
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Figure 8.3: Input queued switch

from the last pipeline stage of the link). The scheme has two control signals (stall

and valid) transmitted between sender, receiver and the link pipeline stages. The

stall signal is sent by the receiver and flows in the opposite direction to that of the

data, while the valid signal is driven by the sender and it flows in the same direction

as that of the data. The sender or receiver may be a switch or a network interface.

The receiver generates a stall signal when its storage capacity is full or if it receives

a stall request from the following stage. The valid signal informs that the data which

was received in the previous cycle (at the previous rising edge of clock ck) is valid.

During normal operation (i.e. when there is no stall request) only one of the flip-flops

in the 2-entry FIFO is used, as shown in Figure 8.4. When a stall signal is received

by the 2-entry FIFO (shown in Figure 8.5), the data on output of the main flip-flop

is stalled and the new data is received by the secondary flip-flop. The stall signal

is propagated to the previous stage, as shown in Figure 8.6. The schematic of the

2-entry FIFO is shown in Figure 8.7.

RECEIVERSENDER 4 3 2

Data

Valid

Stall

Figure 8.4: Modified link design with 3 stages

RECEIVERSENDER 5 4

Data

Valid
23

Stall

Figure 8.5: Entry 3 buffered in secondary flip-flop

This flow control mechanism ensures full throughput operation with performance

similar to that of input-queued switches with credit-based or on/off flow control. As
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Figure 8.7: A 2-entry FIFO. The control circuit is common for all the bit lines

previously shown, in traditional input-queued schemes (Figure 8.3), the total number

of buffers needed for maximum throughput is 3N , as compared to only 2N buffers

(2×(N−1) along the link and 2 at the switch input) in this scheme (Figure 8.8). The

traditional input-queued design has one flip-flop at each link pipeline stage. In the

stall/valid protocol, it takes one clock cycle for the stall signal to reach the preceding

pipeline stage. During this time, the data which is in transit from the preceding

pipeline stage cannot be stored when it reaches the current pipeline stage. Thus, for

full throughput operation in such a scheme, the link flip-flops are not used for queuing

data and, instead, data is queued at the input of the next switch. By augmenting the

link pipeline stage with one more flip-flop, the full throughput operation is achieved.

As we also utilize the pipeline flip-flops, the scheme leads to reduced buffering require-

ments. As the link buffering scheme can be viewed as merely spreading the FIFO

buffers of the switch inputs onto the links, it maintains the same deadlock and live-

lock properties of a design with input-queued switches. Moreover, as all the inputs of

a switch have same buffer count in the link-buffer scheme, the switch design becomes

more modular, when compared to the traditional switch design. Note that the control

circuit used at a link pipeline stage in this scheme is common for all the w data bits

in a flit of the NoC and thus the overall cost of the control circuit is negligible.



8.3. T-ERROR LINK DESIGNS 153

LINKS

Crossbar

Arbiter
Allocator

Figure 8.8: Modified link and switch design

8.3 T-error Link Designs

In this section, I present two link designs to support timing error tolerant operation

needed for over-clocking the links. The first design re-uses the link FIFO for error

recovery with very little hardware overhead (the overhead is only for the control

circuitry). This scheme, in the worst case, can incur a 1-cycle penalty for each

error occurrence at a pipeline stage. In the second link design scheme, the 2-entry

FIFOs are augmented with an additional flip-flop. The resulting design is a high-

performance link that incurs a 1-cycle penalty only for the first occurrence of an error

for a continuous stream of data at each pipeline stage. The design is such that all

subsequent errors are automatically resolved.

8.3.1 Scheme 1: Low overhead T-error Links

In the T-error scheme, the 2-entry FIFOs along the links are modified to support

timing error tolerant operation. The modified FIFO structure is shown in Figure 8.9.

The second flip-flop of the FIFO is clocked at a delayed clock (ckd) compared to the

clock ck of the main flip-flop. ckd and ck however feature the same period. The phase

shift among them is configured after proper delay analysis, as will be discussed later.

The incoming data is sampled twice, once by the main flip-flop (at time instant

t0 in Figure 8.11) and then by the delayed flip-flop (at time instant t1). There are

two modes of operation at each pipeline stage of the link: main mode and delayed

mode. Initially all the pipeline FIFOs are set to the main mode and data transmission

begins. In every cycle, at the clock edge ck, the main flip-flop captures and transmits

the incoming data. At clock edge ckd, the delayed flip-flop captures the incoming
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data and the error detection control circuit checks whether there is any difference

between the main and the delayed flip-flop values. As shown in Figure 8.9, an EXOR

gate is connected to the outputs of the main flip-flop and delayed flip-flop to detect

a timing error. The err signals of all w bits of the flit (vertically across the width

of the link) at a pipeline stage are ORed and fed as an input to the control circuit.

Thus a timing error in any bit of the flit causes the entire flit to be re-sampled at the

pipeline stage. The control circuit at each pipeline stage, which is common for all the

bit-lines of the link, is presented in Figure 8.10.

If there is an error in the data sampled by the main flip-flop, the data that was

transmitted at clock edge ck is incorrect. The correct data from the delayed flip-flop

is sent at the next clock edge (at time instant t2). Whenever a timing error occurs

(i.e. err signal is set to one), a stall signal is sent to the previous stage such that the

previous stage is stalled for one cycle. Also, a valid signal is sent to the following

stage, informing that the data sent in the previous cycle was non-valid.

A FIFO at a pipeline stage of the link enters the delayed mode when a stall

signal from the next stage causes queuing of data at the FIFO. The stall signal can

be issued to handle regular congestion, that is as a flow control wire, or to let the

downstream stage sort out an error condition. When a FIFO is in delayed mode,

all timing errors are automatically avoided, as the incoming data is always sampled

through the delayed flip-flop. Thus, in networks with severe congestion, most timing

errors are automatically avoided. Examples of operation of the FIFOs for a network

with no congestion and with congestion are presented in Figures 8.12, 8.13. In the

network with no congestion, at each pipeline stage, data is always directly sampled

by the main flip-flop and sent out by it. In the network with congestion, the data

from the preceding pipeline stage is always captured by the delayed flip-flop at the

current pipeline stage, and later sent out by the main flip-flop. Since data is always

sent at ck from the preceding stage and sampled at ckd in the current stage, the

wire transitions have more than one clock period to settle and thus timing errors are

automatically avoided. In the worst case, if the FIFO always operates in the main

mode, each timing error occurrence will incur one clock cycle penalty for recovery.

However, in the worst case, when there is no congestion and the FIFO always tries
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to operate in main mode, each timing error occurrence incurs 1 clock cycle penalty for

recovery. The link stage switches from main mode to delayed mode and back for each

faulty piece of data. Detailed performance analysis of this scheme and comparison

with the next link design scheme for several benchmark applications is presented in

Section 8.6.6.

The amount of timing delay that is tolerated by the T-error design depends on

the phase shift between the clocks of the main and the delayed flip-flops. This shift

should be as large as possible, so that the delayed flip-flop is guaranteed to sample

the right data and to provide correct system operation. However, the maximum

shift is constrained by internal repeater delays (the error detection logic must operate

between a ckd edge and the following ck edge). Detailed timing analysis and SPICE

simulations (for a link size of 32 bits) showed that clock ckd can be delayed by 53.3%

of the clock period with respect to ck. In this work, I assume that a maximum delay

of 50% of the clock is tolerable with a T-error enabled system. Thus, the delayed

clock ckd is just the inverted value of the main clock, and delay chains are not needed

to generate it. At the same time, the maximum delay which is tolerated on a wire is

150% of the clock period, providing ample margin for timing error correction. In the

T-error scheme, meta-stability conditions may occur and are corrected using efficient

transistor-level implementation of the FIFO circuit, which are presented in [142]. The

control lines (stall, valid) that need to have error-free operation can be made robust

using a variety of methods (such as using wider metal lines, shielding). I refer the

interested reader to [142] for transistor-level implementation details, timing analysis

and SPICE simulation results of the T-error scheme. The detailed description of the

control signals that are used in the design is available at [151].

8.3.2 Scheme 2: High-Performance T-error Links

The performance of the above link design can be improved by having an additional

flip-flop to store incoming data whenever a stall is encountered. A 3-entry FIFO,

instead of the 2-entry FIFO previously described, is used in this scheme (refer to

Figures 8.14 and 8.15). The third flip-flop, called auxiliary flip-flop, is added in series
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to the delayed and main flip-flops; it also samples data on rising edges of the delayed

clock ckd. The operation is similar to the above design, except that for a continuous

stream of data, even if all incoming pieces of data were to be corrupted, only a single

1-cycle penalty would incurred to correct timing errors at a pipeline stage. This is

because the FIFO enters the delayed mode upon the first error occurrence; once in this

mode, all subsequent pieces of data are sampled through the delayed and auxiliary

flip-flops, making them automatically error free. The presence of the auxiliary flip-

flop lets the link stage continue operating even upon fault occurrences; the sender

does not perceive any interruption in data flow. Only at the end of the whole data

stream, the stage empties and switches back to main mode. An example is presented

in Figure 8.16. Note that even in absence of timing errors, the auxiliary flip-flops can

still improve general system performance, as they also behave as queuing buffers to

minimize congestion-related penalties.

8.4 Aggressive Switch/NI Design

In this section, I describe the changes needed in the basic architecture to support

the over-clocked mode of operation. The � pipes NI is composed of two modules:

a front-end interface with the cores and a back-end interface with the switches and

links. The NI back-end is the only part that needs to support NoC over-clocking.

Since its architecture is similar to that of the switches, I describe only the changes

required in the switches.

There are two changes required in the switches to support NoC over-clocking. The

first is that the switches should also be able to operate at higher frequencies to utilize

the faster links. The other is that the switches should be able to handle the data

from the links that may have timing errors. A NoC switch, as shown in Figure 8.8,

consists of input buffers, allocator/arbiter, crossbar and output buffers. In the link

based flow-control, there is a two entry FIFO at the input of the switch, which can

be made timing-error tolerant, similar to the link FIFO T-error schemes presented in

the previous section. The switch design changes will now be presented.



160 CHAPTER 8. TIMING-ERROR TOLERANT NOC DESIGN

8.4.1 Output buffer changes

In an input-queued switch, normally a single register is used at each output to store

data, before sending the data onto the links. Note that in some designs, the output

buffer can be taken to be part of the link design, depending on the targeted operating

frequency of the switch. In some other cases, more than one buffer may be used at

each output, so that the performance of the NoC can be improved. In the � pipes

architecture, the number of buffers at the output is a parameter that can be configured

by the user according to his or her application needs.

As a starting point, the architecture of a � pipes switch with a single output

buffer is shown in Figure 8.8. The � pipes switch already supports distributed buffer-

ing along the links. In this architecture, the switch has a latency of 2 cycles for

data transfers. There are two sets of flip-flops in the switch that may cause timing

violations when over-clocked: output buffers and flip-flops that are used to maintain

the allocator/arbiter states. From synthesis of the � pipes architecture, I found the

operating frequency of the original switch to be 1 GHz. The path from the input of

the switch to the state flip-flops was 0.4 ns, while the critical path was from the input

to the output (which also samples the arbiter/allocator states). With over-clocking, I

target a 1.5× increase in frequency (i.e. 1.5 GHz operating frequency) of the switches.

Therefore, I found that the state flip-flops are safe even under over-clocking, since

the available cycle time is 0.66 ns, and that only the output buffers need to be made

timing error tolerant. Note that in other switch architectures, if the state flip-flops

are not safe when over-clocked, they should be T-error enabled as well. Otherwise,

the amount of over-clocking will be limited by them. Also, if the switch has more

pipeline stages, the T-error principle needs to be applied to each pipeline stage.

In order to over-clock the switch, I apply the T-error design to the head flip-flop

of the output FIFO and the other flip-flops in the output FIFO are made to sample

data at ckd. Figure 8.17 shows the changes in the output buffer of the switch. Note

that errors can occur only when the data is sampled through the head of the FIFO

and when the NoC operates in the over-clocked mode.
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Figure 8.17: Overclocked switch design with output and input buffer changes

8.4.2 Input buffer changes

When timing errors occur at a link pipeline stage, wrong data can reach the switch

input before the correct data is received. If the switch samples wrong data, several

complications can arise. As an example, timing errors on the routing fields of the

header flit may result in misrouting a packet. In order for the switch to handle data

errors, there are several cases to be considered and recovering the switch state from

such cases require complex hardware and control circuits [99]. Another way to detect

wrong data at the switch input is to use some error detecting code (such as cyclic

redundancy check) for each flit of the packet. However, in the over-clocked mode, all

the bits of the data could encounter timing errors and such schemes may be inefficient.

Thus, to simplify the switch hardware, I use a look-ahead stage at the input of the

switch that ensures that correct data is always fed to the internal switch logic (see

again Figure 8.17). The look-ahead stage stores an incoming flit for one clock cycle,

i.e. until the valid line indicates whether the received data was correct or not. In

case of correct reception, data is fed to the switch arbiter/allocator. Otherwise, it is

discarded by the look-ahead stage. Note that even when there are no errors occurring

in the system, a latency penalty could arise from insertion of the look-ahead buffers,

unless properly tackled, as explained in the next section.

8.5 Dynamic Configuration of the NoC

When the frequency of the NoC is varied based upon DFS/DPM techniques, the NoC

may operate at frequencies lower than or equal to the conservative design frequency.
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Figure 8.18: The look ahead stage at the switch input.

In such a normal operating mode, the error resiliency penalty due to T-error needs to

be completely hidden. The T-error mechanism at the link FIFO and the switch/NI

output buffers incur error resilience penalty only when an error occurs. Thus, they

dynamically adjust to the errors happening in the system. However, the look-ahead

stage at the input of the switch incurs a 1-cycle penalty even under the normal

operating mode. To avoid this 1-cycle penalty in the normal mode, I use a global

BOOST signal that is issued at the application level by (one or more) processing

cores. A value of BOOST=1 indicates that the NoC is in over-clocked mode, while

BOOST=0 indicates normal mode of operation. The BOOST signal may take several

clock cycles (tens of cycles) to spread to all the switches and NIs in the NoC. The

actual transition between the normal and over-clocked modes occur after the BOOST

signal is completely spread around the NoC.

The input buffer control logic is modified such that the look-ahead stage is used

only when BOOST=1, as shown in Figure 8.18. The transition from the normal

mode to over-clocked mode is smooth in the design, as the look-ahead is started when

the BOOST signal is spread. However, transition from the over-clocked mode to the

normal mode requires special care, as there may be some residual errors in the NoC.

To make a smooth transition dynamically (i.e. without flushing all the data in the

network), I use the following design change. In the T-error NoC, all residual errors

are maintained on the links between the switches, as the switches always receive the

right data due to the look-ahead mechanism. When a transition to the normal mode

occurs, the look-ahead stage is bypassed only when there is no incoming data from the
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link. Thus, any data from the output buffer of the switch or the link that may have

residual errors goes through the look-ahead stage, which ensures that the right data is

fed to the switch inputs. As the transitions between normal and over-clocked modes

occur at the application level (which may occur every tens of thousands of cycles),

the performance overhead incurred due to this dynamic configuration is negligible.

8.6 Experimental Results

In this section, I present the simulation case studies for the T-error designs.

8.6.1 Simulation platform

The simulation platform consists of cycle-accurate SystemC models of the T-error

designs for the switches, links and NIs, incorporated on the � pipes architecture.

Functional SystemC simulations were carried out on a variety of application bench-

marks.

8.6.2 Experiments on a multi-media benchmark

I plugged 3 ARM7 processors, 3 private memories (one for each processor) and 3

shared memories for inter-processor communication on the MPARM platform. I ran

functional benchmarks modeling multi-media processing on the general purpose cores.

The benchmarks include heavy synchronization activity through the shared memories,

since they model producer/consumer pipelines of multimedia processing. The bench-

marks create a large number of connections (around 30) between the various cores.

I hand-mapped the application onto two topologies (Figures 8.19(a) and 8.19(b)): a

3×2 mesh topology, with the processors connected to their private memories using a

single switch, and a custom topology with 2 switches. The mappings were performed

such that the most demanding traffic flows traverse fewer switches in the NoC.

I assume the size of each pre-designed processor and memory core to be 2mm×2mm,

typical of today’s small processors and on-chip memories. From the approximate floor-

plans of the topologies, I conservatively assume that the links of the mesh topology
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Figure 8.19: Mesh and custom topology mappings and comparison of traditional
schemes with T-error
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have 1 pipeline stage, while those of the custom topology have 2 pipeline stages.

I perform experiments on 3 schemes: a traditional CONServative (CONS) design

approach, a General Double-Sampling (GDS) scheme that is not integrated with the

network flow control (such as presented in the earlier works [118] and the T-error

scheme with 3-stage FIFO presented in this work. From synthesis of the original

� pipes architecture, the conservative NoC’s maximum operating frequency is found

to be 1 GHz. With 50% delay between the clocks to the main and delayed flip-

flops, the GDS and T-error designs’ maximum frequency (under over-clocked mode)

is assumed to be 1.5 GHz. To evaluate the designs, I define a new metric: Potential

Error-Rate (PER). The PER represents the percentage chance that a flit reaching a

FIFO incurs one or more timing errors if sampled directly on a ck edge. Note that

even if the PER is 100%, the actual errors happening at the T-error FIFO can be

very few, as most of the errors after the first are automatically avoided by the design.

This is because, in most scenarios, data is sampled first by the delayed flip-flop and

only afterwards sent out by the main flip-flop, avoiding all potential errors. For an

over-clocked system, the PER value depends on how much the system is over-clocked,

the actual operating conditions of the system (such as effect of process variations

on the FIFO, operating temperature, other noise effects), actual data patterns on

the link, etc. As an example, if bus encoding techniques are not used to reduce the

effects of capacitive cross-talk, the conservative design is capable of operating with the

worst-case data patterns on the links. In such a case, even at the highest frequency

in the over-clocked mode, if the adversarial switching patterns do not occur on the

link, the PER can be 0%. The T-error design dynamically adapts to all these effects

and operates under the entire range of PER values. For simulations, I vary the PER

values and I inject potential errors at each T-error FIFO randomly based on the

chosen PER value.

The average packet latency for the mesh and custom topologies for the various

schemes for different PER values are presented in Figures 8.19(c) and 8.20. As I

over-clock only the communication architecture, I compare the schemes based on the

average packet latency for communication, instead of comparing the total application
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Figure 8.23: Performance comparison of conservative and T-error designs for different
PER values for read and write transactions

run-time. When compared to the traditional conservative design (CONS), the T-

error design results in significant performance improvements. Latency is reduced by

33.33% in the best case (0% PER) and by 23.42% in the worst case (100% PER).

When compared to the general double sampling scheme (GDS), the T-error scheme

still shows up to 21.2% reduction in latency, as much of the error recover penalty is

hidden under the network operation. When compared to the GDS technique applied

to input-queued switches, the T-error scheme (with 3-stage FIFOs at the links) also

results in 30% reduction in the number of queuing buffers used. In fact, the 3-entry

T-error FIFO scheme utilizes 3×(N-1) buffers on each link (where N is the number of

cycles needed to traverse the link) and 2 buffers at the switch input, while the input

queued switches with the general double sampling technique needs 2N+1 buffers at

the input of the switch and 2×(N-1) buffers on the links (refer to Section 8.2, where

results for 2-entry FIFOs are presented).

To see the impact of the length of the links on the T-error scheme, I simulated

the design mapped onto the custom topology with varying number of pipeline stages

on the links. As seen from Figure 8.21, even on significantly long links, the T-error

scheme gives a large improvement in performance when compared to the conservative
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design approach.

8.6.3 Effect of application-level power management

I conducted experiments on the multi-media benchmarks to show the usefulness of

the application-level DPM policies. I model 4 different application scenarios in the

platform: Standard Definition video decoding and display (SD), High Definition video

decoding and display (HD), Picture-in-Picture Standard Definition (PiP-SD) and

Picture-in-Picture High Definition (PiP-HD). The voltage and frequency of operation

of the network was tuned individually for each application. The power consumption of

the network for the various applications when the DPM policies are used, normalized

with respect to that of the base system (where no DPM policy is used), is presented

in Figure 8.22. The use of application level DPM policies results in an average of 57%

reduction in power consumption of the NoC.

8.6.4 Experiments on other benchmarks

I performed experiments on the conservative and T-error designs on several other

benchmarks:

� Matrix multiplication benchmark suite without shared memory (MAT1)

� Matrix multiplication benchmark suite with shared memory (MAT2)

� Fast Fourier transform benchmark suite using fixed point arithmetic (FFT)

� Quick sort benchmark suite (Qsort)

Many of these benchmarks are application kernels that can be used to inject different

traffic rates onto the NoC and test various aspects of the NoC. I assume the delay

to traverse the links in the NoC to be 2 cycles, i.e. the links have 2 pipeline stages.

I conducted experiments varying the number of processor/memory cores used by

the applications (application partitioning) and topologies of the NoC. For all the

experiments, except for those presented in Section 8.6.6, I use the 3-entry T-error
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Figure 8.24: (a) and (b): Performance comparison for various topologies, benchmarks
and (c): Effect of dynamic NoC configuration

FIFO design. In Section 8.6.6, I compare the performance of the two T-error link

designs.

In Figures 8.23(a) and 8.23(b), the average packet latency (in ns) observed for the

conservative and T-error design for the MAT2 benchmark for read (Figure 8.23(a))

and write transactions (Figure 8.23(b)) is presented. The read transactions require

two way data transfer on the network: a request is sent by the processor and a response

with the data item is sent back by the memory. The write transactions require only

one way data transfer: the processor sends the data to be written to the memory. I

denote the entire transaction latency for each data word by the average packet latency

metric. Thus the read transactions incur a higher latency for communication. As seen

from the figures, for the MAT2 benchmark, the T-error design results in a significant

performance improvement, with the best case of 28.5% reduction in read latency (for

0% PER) and worst-case of 19.6% (for 100% PER). For the write transactions, the

average reduction in latency for the T-error designs vary from 32.5% (for 0% PER)

to 31.1% (for 100% PER). Note that the increase in latency due to the higher PER

values is not overly significant, showing that the T-error scheme effectively hides

much of the error recovery penalty under the network operation.
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Figure 8.25: (a): NoC configuration and (b): Choice of
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Table 8.1: Area Over-
head

Design Area
(mm2)

Base NoC 4.90
T-error Scheme 1 NoC 4.95
T-error Scheme 2 NoC 5.10

The performance of the T-error system for various topologies for the MAT2 bench-

mark for read and write transactions are presented in Figures 8.23(c) and 8.24(a).

The designs compared vary from small 7-core NoCs to 51-core NoCs with different

application partitioning. The topologies vary from regular (like mesh) to custom,

manually developed ones. As seen from the figures, for all the topologies for both

read and write transactions, the T-error design results in significant performance

improvement over the conservative design. In Figure 8.24(b), I present the average

packet latencies (averaged across both read and write transactions) for the designs for

several benchmark applications. The average reduction in latency for the benchmarks

for the T-error designs varies from 25.7% (for 0% PER) to 12.7% (for 100% PER).

8.6.5 Effect of NoC Configuration

Dynamic configuration of the NoC is designed to avoid any latency penalty for the

switch look-ahead mechanism under the normal mode, where the frequency of oper-

ation is ≤ 1 GHz. In Figures 8.24(c) and 8.25(a), I present the packet latencies for

the NoC with and without the configuration mechanism for various topologies and
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benchmarks. The configuration mechanism results in significant reduction in packet

latency (up to 13.8%) for the applications. This reduction is attributed to two rea-

sons: one is the reduction in pipeline depth of the NoC (i.e. reduction in the number

of cycles needed to transfer a packet under zero load conditions) and the other is the

fact that congestion in the NoC reduces, as packets spend less time in the network.

8.6.6 Choice of Link Design Schemes

In Section 8.3, I presented two link design schemes with scheme 1 having very little

hardware overhead and scheme 2 having higher performance. The efficiency of the

schemes depends on the congestion levels in the NoC and the application’s traffic

patterns. For heavily congested NoCs, most of the traffic would be sampled through

the delayed flip-flops in both schemes, resulting in similar performance. For un-

congested networks supporting bursty application traffic, scheme 2 has much higher

performance than the scheme 1 design. These effects are illustrated in Figure 8.25(b),

where the average packet latencies in a mesh network using scheme 1 design are

presented. The latency values are normalized with respect to the latency incurred by

the scheme 2 design for an un-congested NoC. The traffic pattern is such that each

core injects bursty traffic onto the NoC. For such a bursty traffic pattern, scheme 2

design has minimum overhead for all congestion levels, while the performance of the

scheme 1 design depends on the particular congestion level. I varied the congestion in

the network, which is represented in Figure 8.25(b) by the percentage of time data is

sampled by the delayed flip-flop. As seen, as the congestion in the network starts to

increase, the performance of scheme 1 design approaches that of the scheme 2 design.

The different link design schemes can be used in different parts of the same NoC if

needed, as they have the same interface to the switches/NIs. Thus, particular links

that need higher performance can be designed using scheme 2.

8.6.7 Synthesis Results

Using Synopsys Design Compiler, I synthesized the T-error schemes to get area esti-

mates of the proposed schemes. For synthesis, I use a UMC 0.13µ technology library,
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a base NoC operating frequency of 1 GHz and an operating voltage of 1.2 V. Ta-

ble 8.1 shows the area overhead for the different T-error schemes for 32-bit flit-size

for a 5 × 5 mesh NoC. The base NoC area is the sum of the areas of switches, links

and NIs without the T-error design changes. As seen from the table, the schemes

incur only a modest increase in area (around 4% increase in the base NoC area).

8.7 Summary

The use of conservative methods to design NoCs, that target safe operation under all

conditions leads to sub-optimal system performance. In this chapter, I have presented

aggressive Timing Error-Tolerant (T-error) design methodologies for designing the

switches, links and NIs of NoCs. The NoC in the T-error system is designed aggres-

sively to operate at frequencies higher than conservative designs and to recover from

the resulting timing errors in an efficient manner. The error recovery mechanism is

integrated with a new link-based flow control mechanism, so that most of the error

recovery penalty is hidden under the network operation. Experiments show large

performance improvements (up to 1.5x) for the communication architecture in the

proposed system, when compared to traditional conservative designs. The methods

are also applicable to remove timing errors in conservative designs.



Chapter 9

Analysis of NoC Error Recovery

Schemes

Once the NoC components are made timing-error tolerant, we need to still handle

other transient and permanent errors that can occur in the system, such as soft-

errors. To handle such errors, we need support at the design level, as well as at the

architectural level. In this chapter, I present architectural level support for fault-

tolerance, while in the next chapter, I present design level support. Please note that

an additional level of error protection at the application level can also be used in

conjunction with these two levels.

In order to protect the system from transient errors that occur in the communica-

tion sub-system, we can use error detection/correction mechanisms that are used in

traditional macro-networks. The error detection/correction schemes can be based on

end-to-end flow control (network level) or switch-to-switch flow control (link-level).

In a simple retransmission scheme, error detection codes (parity or Cyclic Redundancy

Check (CRC) codes) can be added to the original data by the sender and the receiver

can check for the correctness of the received data. If an error is detected, it can

request the sender to retransmit the data.

Alternatively, error correcting codes (such as Hamming codes) can be added to

the data and errors can be corrected at the receiver. Hybrid schemes with combined

retransmission and error correction capabilities can also be envisioned. As the error

172
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detection/correction capability, area-power overhead and performance of the various

error detection/correction schemes differ, the choice of the error recovery scheme for

an application involves multiple power-performance-reliability trade-offs that have to

be explored.

In this work, I collectively relate these three major design constraints in an attempt

to characterize efficient error recovery mechanisms for the NoC design environment.

We explore error control mechanisms at the data link and network layers and present

the architectural details of the schemes. I investigate the energy efficiency, error

protection efficiency and impact on performance of various error recovery mechanisms.

The objective of the work presented in this chapter is twofold: one is to identify

the major power overhead issues of various error recovery schemes, so that efficient

mechanisms can be designed to address them. The other objective is to provide the

designer with the necessary information, aiding in the choice of appropriate error

control mechanism for the targeted application. In practice, different network archi-

tectures (topologies, switch architecture, routing, flow control) exist, making gener-

alized quantitative comparisons difficult. Nevertheless, this work presents a general

methodology and attempts to provide comparisons based on reasonable assumptions

on network architecture, incorporating features that have been successful in most ex-

isting NoC design methodologies. In this work, I explore error control mechanisms at

the data link and network layers and investigate the energy efficiency, error protection

efficiency and impact on performance of the various schemes.

9.1 Switch Architecture Design

I identify 3 different classes of error recovery schemes as explained in the following

subsections:

9.1.1 End-to-End Error Detection

In the end-to-end error detection (ee) scheme, parity (ee-par) or CRC codes (ee-crc)

are added to the packet (refer Figure 9.1(a)). A CRC or parity encoder is added to the
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sender NI and decoders are added at the receiver NI. The sender NI has one or more

packet buffers in which it stores the packets that are transmitted. The receiver NI

sends a NACK or an ACK signal back to the sender, depending on whether the data

had an error or not. The ACK/NACK signal can be piggy-backed on the response

packet, if this is a request-response transaction (as in Open Core Protocol [96]). To

account for errors on the ACK/NACK packets, I also have a time-out mechanism

for retransmission at the sender. I use sequence identifiers for packets to detect

reception of duplicate packets. As header flit carries critical information (like routing

information), it is protected with parity/CRC codes that are checked at each hop

traversal. If a switch detects an error on the header flit of a packet, then it drops the

packet. Also, the flit-type (that identifies header, body or tail flit) bits are protected

using redundancy.

9.1.2 Switch-to-Switch Error Detection

In switch-to-switch error detection schemes, the error detection hardware is added

at each switch input and retransmission of data is between adjacent switches. Here

I identify two different schemes: parity/CRC at flit-level and at packet level. The

switch architecture is modified to support these schemes, as shown in Figure 9.1(b).

The additional buffers added at each input of the switch are used to store packets till

an ACK/NACK comes from the next switch/NI. The number of buffers needed to

support switch-to-switch retransmission depends on whether error detection is done

at the packet level or flit level.

In the switch-to-switch flit-level error detection (ssf) scheme, the parity/CRC bits

are added to each flit of the packet by the sender NI. At each input of the switch,

there are two set of buffers: queuing buffers that are used for the credit-based flow

control as in the base switch architecture and retransmission buffers for supporting

switch-to-switch retransmission mechanism. Similar to the case of queuing buffers,

the retransmission buffers at each switch input should have a capacity of 2Nl +1 flits

for full throughput operation. I use redundancy (such as Triple Modular Redundancy

(TMR)) to handle errors on the control lines (such as the ACK line).
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In the packet level error detection (ssp) scheme, the parity/CRC bits are added

to the tail flit of the packet. For this scheme, the number of retransmission buffers

needed at each switch input is 2Nl + f , where f is the number of flits in the packet,

as the error checking is done only when the tail flit reaches the next switch. I also

need header flit protection, as in the ee scheme.

9.1.3 Hybrid Single Error Correcting, Multiple Error De-

tecting scheme:

In this scheme (ec+ed), the receiver corrects any single bit error on a flit, but for

multiple bit errors, it requests end-to-end retransmission of data from the sender NI.

I do not consider pure error correcting schemes in this work, as in such a scheme

when a packet is dropped by a switch (due to errors in the header flit), it is difficult

to recover from the situation as there is no mechanism for the sender to retransmit

the packet.

9.2 Energy Estimation and Models

9.2.1 Energy Estimation

A generic energy estimation model in [154] relates the energy consumption of each

packet to the number of hop traversals and the energy consumed by the packet at each

hop. I expanded this estimation a step further by designing and characterizing the

circuit schematics of individual components of the switch in 70nm technology using

Berkeley Predictive Technology Model [130]. From this, I estimated the average

dynamic power as well as the leakage power per flit per component. I imported

these values into the architectural level cycle-accurate NoC simulator and simulated

all individual components in unison to estimate both dynamic and leakage power in

routing a flit.

For correct functionality of the system, the error detection/correction circuitry

and the retransmission buffers need to be error-free. I use relaxed scaling rules and
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Figure 9.2: Power consumption of schemes
Figure 9.3: Latency of error detection and cor-
rection schemes

soft-error tolerant design methodologies for designing these components [152]. In the

power estimations, I take into account the additional overhead incurred in making

these components error-free (which increases the power consumption of these compo-

nents by around 8% − 10%) .

9.2.2 Error Models

In order to analyze the error recovery schemes, I fix a constraint on the residual flit

error probability, that is I impose each scheme to have the same probability of an

undetected error (per flit) at the decoder side. I assume that an undetected error in

the system causes the system to crash.

I consider two set of experiments: in one set of experiments I assume the operating

voltage of the system (with different error recovery schemes) is varied to match a

certain residual flit-error rate requirement. For this, I make use of the error models

from [132]. In another set of experiments, I assume the voltage for the various schemes

to be the same, but investigate the effect of different error rates on the schemes.



178 CHAPTER 9. ANALYSIS OF NOC ERROR RECOVERY SCHEMES

9.3 Experiments and Simulation Results

9.3.1 Power Consumption of schemes for Fixed Residual Er-

ror Rates

In this sub-section, I assume that the power supply voltage is chosen for each of

the error detection/correction schemes based on the residual flit-error rate that the

system needs to support. I compare the power consumption of systems with parity

based encoding, CRC based encoding and hybrid single error correcting multiple

error detecting encoding with that of the original system (without error protection

codes). As the objective is to compare the error protection efficiency of various

coding schemes, I consider only end-to-end schemes in this sub-section. I consider a

4×4 mesh network with 16 cores and 16 switches. I assume the number of flits in a

packet to be 4 and the flit-size to be 64 bits. The network power consumption for

the various schemes are presented in Figure 9.2, for an injection rate of 0.2 flits/cycle

from each core and for uniform traffic pattern. The residual flit-error rates in the x-

axis represent the Mean Time To Failure (MTTF) for the systems. As an example, a

residual flit-error rate of 10−12 signifies that on average the system operates for 3.1211

cycles (assuming 16 cores, with each core injecting 0.2 flits/cycle, so that 1012 flits

are generated in 3.1211 cycles), before an undetected error causes the system to crash.

For a 200 MHz system, this represents an MTTF of 26 minutes. Note that for most

applications reasonable MTTF values would be of the order of months or years. The

power numbers are plotted for the original system (orig) that has no error control

circuitry, parity-based end-to-end error detection scheme (ee-par), CRC based error

detection scheme (ee-crc) and hybrid single error correcting, multiple error detecting

scheme (ec+ed).

The orig and ee-par schemes have higher power consumption than the ee-crc

and ec+ed schemes, as the error detection capability of these schemes is lower and

hence they require a higher operating voltage to achieve the same residual flit-error

rate. The hybrid ec+ed scheme has lower power consumption at high residual flit error

rates and the ee-crc has lower power consumption for lower residual error rates. This
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Table 9.1: Component-wise Power Consumption
Component Dynamic Static

Power(mW) Power(mW)
Switch (5x5)

Buffers 13.10 1.69
Crossbar 4.57 -
Control 1.87 0.02

Total (Psw) 19.54 1.71
CRC Encoder (Pcrce) 0.12 -
CRC Decoder (Pcrcd) 0.15 -
SEC Encoder (Psece) 0.15 -
SEC Decoder (Psecd) 0.22 -

Switch Retrans. Flit Buffer (1 flit) (Psrfb) 0.52 0.07
Packet Buffer (1 packet) (Ppb) 2.29 0.31
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Figure 9.4: Power consumption of error recovery
schemes (0.1 flits/cycle)

is because, at high error rates, in the ee-crc scheme there is more traffic injected in

the network, thereby causing more power consumption than the ec+ed scheme. At

lower error rates, the power overhead due to error correction in the ec+ed scheme is

more than the power consumed in retransmission in the ee-crc scheme. Also, in the

ec+ed scheme, the number of bits needed for error correction and detection codes is

more than the pure detection scheme.
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9.3.2 Performance Comparison of Reliability Schemes

In this sub-section I investigate the performance of pure end-to-end and switch-to-

switch error detection schemes (ee, ssf, ssp) and the hybrid error detection/correction

scheme (ec+ed). I perform experiments on the 16-core mesh with varying injection

rates for uniform traffic pattern. In this and following experiments, I assume that

the operating voltage for the system is fixed at design time (to be equal to 0.85 V)

and investigate the effect of varying error rates in the system. I use the flit-error rate

(flit error rate is defined as the probability of one or more errors occurring in a flit)

metric for defining the error rate of the system.

For low flit-error rate and low injection rate, the average packet latency for the

various schemes (Figure 9.3) are almost same. However, as the error rate and/or the

flit injection rate increases, the end-to-end retransmission scheme (ee) incurs a large

latency penalty compared to the other schemes. The packet-based switch-to-switch

retransmission scheme (ssp) has slightly higher packet latency than the flit-based

switch-to-switch retransmission scheme (ssf), as in the flit-based scheme errors on

packets are detected earlier. As expected, the hybrid single error correcting multiple

error detecting scheme (ec+ed) has the least average packet latency of the schemes.

9.3.3 Power Consumption Overhead of Reliability Schemes

The power consumption of a switch (with 5 inputs, 5 outputs, Nl = 2), error detec-

tion/correction coders, retransmission and packet buffers (for 50% switching activity

at each component, each cycle) are presented in Table 9.1. I assume an operating

frequency of 200 MHz, flit-size of 64 bits and packet size of 4 flits. In this chapter, I

assume that the base NI power consumption (when there are no packet buffers for re-

transmission) is taken to be part of the processor/memory core power consumption,

as it is invariant for all the schemes. To facilitate comparison of the various error

recovery schemes, I analyze the power overhead associated with the schemes for er-

ror detection and recovery. We need the following definitions to formulate analytical

expressions for the power overhead for the schemes:
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Let inj rate be the traffic injected by each of the NI. For the ee, ec+ed schemes,

let the number of packet buffers required at each NI for retransmission be Npb. Let

sw traf be the rate of traffic injected at each switch. For the ee scheme, let the in-

crease in traffic at each switch due to retransmission be represented by sw incrtraf .

Let Ppacketsizeinc be the total power overhead due to increase in packet size due to

addition of code words and other control bits.

In the formulation of the power overhead, for simplicity of notation, I represent

the parameters (such as traffic rate, link length, buffering) to be same for all the NIs

and all the switches. Also, for simplicity of notation I represent both dynamic and

static power consumption by single set of variables (refer Table 9.1 for notations). It

is assumed that when the power numbers are scaled based on the traffic through the

components, only the component of dynamic power consumption is scaled.

In the above set of parameters, the traffic rates from/to the NIs, switches and the

traffic overhead for retransmission (in ee, ec+ed schemes) are obtained from simu-

lations. The link lengths are decided by the physical implementation of the topology.

The number of packet buffers required in the ee scheme to support an application

performance level can be obtained from (possibly multiple sets of) simulations.

The power overhead associated with the ee scheme is given by:

Poverhead ee =
∑

∀ NIs

(inj rate × (Pcrce + Pcrcd + Npb × Ppb))

+
∑

∀ Switches

(sw incrtraf × Psw) + Ppacketsizeinc (9.1)

In this equation, there are two major components of power overhead: one is the

power overhead associated with the packet buffers at the NIs for retransmission and

the other is due to the increase in power consumption due to increased network traf-

fic. For the ee scheme to work, we need to have sequence identifiers for packets and

mechanisms to detect reception of duplicate packets. I consider the power consump-

tion due to look-up tables and control circuitry associated with these mechanisms

to be part of the packet buffer power consumption (these typically increase packet
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buffer power overhead by 10%). The increase in traffic in the ee scheme is due to two

reasons:

(a) when ACK/NACK packets cannot be piggy-backed to the source (as an ex-

ample, ”writes” to memory locations normally do not require response back to the

source), they need to be sent as separate packets. An optimization can be performed

in this case, as the ACK/NACK packet needs to be only one flit long. Even with this

optimization, I found that total power consumption increases by 10% − 15% due to

this overhead.

(b) at higher error rates, the network traffic increases due to retransmission of

packets. However even at flit error rates of 1%, I found that this increase has much

lower impact than the above case.

As the Ppacketsizeinc affects the schemes almost in a similar manner (as the ssf

needs code bits on each flit, while the ee scheme needs additional information for

packet identification, header flit protection and packet code words) this has lesser

effect on deciding the choice of scheme.

The power overhead of the ssf scheme is represented by:

Poverhead ssf =
∑

∀ NIs

(inj rate × Pcrce) +

∑

∀ switches

(sw traf × ((2Nl + 1) × Psrfb + Pcrcd)) + Ppacketsizeinc (9.2)

The power consumption of the switch retransmission buffers is the major compo-

nent of the overhead, and it depends linearly on the link lengths. The power overhead

of (ssp) and ec+ed schemes can be easily derived from the overhead equations for

ssf and ee schemes, respectively.

The network power consumption for the various error recovery schemes for the 16-

core mesh network is presented in Figure 9.4. I assumed the link lengths to be 2 cycles

long. I performed simulations with uniform traffic pattern, with each core injecting 0.1

flits/cycle. For the ee and ec+ed schemes, the number of packet retransmission buffers

needed to support the application performance level were obtained from simulations

(which turned out to be 2 packet buffers/NI). For this experiment we observe that the
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Table 9.2: Packet Buffers, with Nl = 2
Npb ee

power
(mW)

1 76
2 84
3 93
4 102
5 111
6 120

Table 9.3: Link Length
Nl ee, Npb = 2 ssf

power power
(cycles) (mW) (mW)

1 65.1 59.2
2 84.0 97.0
3 102.8 134.8
4 121.8 172.5
5 141.2 216.5
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Figure 9.5: Effect of Hop Count
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power consumption of switch-based error detection schemes (ssf,ssp) is higher than

end-to-end retransmission schemes (ee,ec+ed). This is attributed to two factors: (a)

the switch buffering needed for retransmission in ssf, ssp schemes for this set-up is

large compared to the packet buffering needs of the ee,ec+ed schemes (b) due to

uniform traffic pattern, the traffic through each switch is more (as the average number

of hops is more), thus increasing ssf and ssp retransmission overhead. I examine

these two points in detail in the following sub-section.

9.3.4 Effect of Buffering Requirements, Traffic Patterns and

Packet Size

One of the major power overheads for the schemes is the amount of packet and switch

buffering needed for retransmission. To see the impact of buffering requirements, I

performed experiments on the mesh network, varying the number of packet buffers

and link lengths (and hence the number of retransmission buffers for ssf scheme).

The results are presented in Tables 9.2 and 9.3. For small link lengths and when

the packet buffering requirements of the ee scheme is large, the ssf scheme is more

power efficient than the ee scheme. On the other hand, when the link lengths are

large, ee scheme is more power efficient. But in the realm where link lengths are

short and packet buffering needs are small, it is difficult to make generalization on

the efficiency of the schemes. However, if the parameters (such as link length, packet

buffering needs, etc.) are obtained from user input and simulations, they can be fed

into the above methodology to compare the error recovery schemes.

Another important parameter that affects the choice of the schemes is the applica-

tion traffic characteristics. To see the impact of various traffic scenarios, I performed

experiments varying the average hop delay for data transfer. The power overhead of

the ee and ssf schemes (assuming Npb = 2, Nl = 2) for the different scenarios is shown

in Figure 9.5. In the figure, average hop count of 2 corresponds to neighbor traffic

pattern and other hop delay numbers can be interpreted as representing other traffic

patterns. As the average hop count for data transfer increases, the power overhead
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Table 9.4: NoC Area

Scheme area
mm2

orig 3.36
ee 4.41
ssf 5.76

ec+ed 5.32

of ssf increases rapidly, as more traffic passes through each switch, thereby con-

suming more power on the switch retransmission buffers. Thus for traffic flows that

traverses longer number of hops or when the network size is large, switch-to-switch

retransmission schemes incur a large power penalty.

The power consumption of the flit-based (ssf) and packet-based (ssp) schemes

for varying number of flits/packet is presented in Figure 9.6. In this experiment,

I assume that the packet size is kept constant (256 bits) and I vary the number

of flits/packet. As the number of flits/packet increases, the buffering needs of the

packet-based scheme increases, hence the power consumption of the packet based

scheme increases rapidly. The flit-based scheme also incurs more power consumption

with increasing flits/packet as the ratio of useful bits to overhead bits (i.e. the CRC

code bits) decreases as flits/packet increases. However, for reasonable flit-sizes, I

found that flit-based scheme is more power efficient than the packet based scheme.

The area of network components (of switches and the additional hardware for

error recovery) for various schemes for the 16-node mesh network (with Npb = 2 and

Nl = 2) is presented in Table 9.4. The area overhead of the schemes are comparable.

9.4 Summary

For the ee and ec+ed schemes, the major components of power overhead are the

packet buffering needs at the NIs and the increase in network traffic due to ACK/NACK
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packets. For the ssf and ssp schemes, the major power overhead is due to the re-

transmission buffers needed at the switches. Design methodologies that trade-off ap-

plication performance for the buffering needs would result in smaller power overhead.

Methods from queuing theory can be explored to design these buffers. Methods that

reduce the ACK/NACK traffic (such as multiple packets sharing a single ACK/NACK

signal) would be interesting to explore at. Another avenue is to explore mechanisms

that reduce the control overhead associated with duplicate packet reception in the ee

scheme.

From the experiments we observe that for networks with long link lengths or

hop counts, end-to-end detection schemes are power efficient. Switch level detection

mechanisms are power-efficient when the link lengths are small and when the end-to-

end scheme needs large packet buffering at the NIs. At low error rates the average

latencies incurred in all the schemes are similar. At higher error rates, a hybrid error

detection and correction mechanism has higher performance than other schemes. As

the ee scheme uses a subset of the hardware resources used for the ec+ed scheme,

depending on the error rates prevailing in the system, the error correction circuitry

can be selectively switched on/off. For hierarchical networks, switch based error

control can be implemented for local communication and end-to-end error control

can be implemented for global communication (that traverses longer links and hop

counts).



Chapter 10

Fault-Tolerant Route Generation

In this chapter, I present design level support for handling temporary and permanent

errors in the NoCs. I present routing mechanisms that achieve an application-specific

reliability level against temporary and permanent failures.

The routing scheme used in the NoC can be either static or dynamic in nature.

In static routing, one or more paths are selected for the traffic flows in the NoC at

design time.

In the case of dynamic routing, the paths are selected based on the current traffic

characteristics of the network. Due to its simplicity and the fact that application traf-

fic can be well characterized for most SoC designs, static routing is widely employed

for NoCs [48]. When compared to static single-path routing, the static multi-path

routing scheme improves path diversity, thereby minimizing network congestion and

traffic bottlenecks. When the NoC is pre-designed, with the NoC having a fixed

operating frequency, data width and hence bandwidth (bandwidth available on each

network link is the product of the link data width and the NoC operating frequency),

reducing congestion results in improved network performance.

For most SoC designs, the NoC operating frequency can be set to match the

application requirements. In this case, reducing the traffic bottlenecks leads to lower

required NoC operating frequency, as traffic is spread evenly in the network, thereby

reducing the peak link bandwidth needs. A reduced operating frequency translates

to a lower power consumption in the NoC. As an example, consider a MPEG video

187
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Table 10.1: Re-order Buffer Overhead
Design Area Power

(sq mm) (mW)
1. Base NoC 1.04 183.75

2. 2 buffers/core 1.14 201.02
3. 10 buffers/core 1.65 281.25

application mapped onto a 4 × 3 mesh NoC. Detailed analysis of the application

and the performance of traditional single path schemes and the proposed multi-path

scheme are presented later in this chapter. When the NoC operating frequency for the

schemes is set so that both schemes provide the same performance level (same average

latency for traffic streams), the multi-path scheme results in 35% reduction in network

operating frequency, leading to 22.22% reduction in network power consumption (after

accounting for the overhead involved in the multi-path scheme). Another important

property of the multi-path routing strategy is that there is spatial redundancy for

transporting a packet in the on-chip network. A packet can be sent across multiple

paths for achieving resiliency against transient or permanent failures in the network

links.

Many of today’s NoC architectures are based on static single path routing. This is

because, with multi-path routing, packets can reach the destination in an out-of-order

fashion due to the difference in path lengths or due to difference in congestion levels on

the paths. For many applications, such out-of-order packet delivery is not acceptable

and packet re-ordering is needed at the receivers. As an example, in chip multi-

processor applications for maintaining coherency and consistency, packets reaching

the destination need to be in-order. In video and other multi-media applications,

packet ordering needs to be maintained for displays and for many of the processing

blocks in the application.

With multi-path routing, packet re-order buffers can be used at the receiver to

re-order the arriving packets. However, the re-order buffers have large area and power

overhead and deterministically choosing the size of them is infeasible in practice. In

Table 10.1, the area and power consumption of a 4 × 3 mesh NoC (the area-power

values include the area-power of the switches, links, Network Interfaces (NIs)) with
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different number of packet buffers in the receiving NIs is presented. The network

operating frequency is assumed to be 500 MHz with 50% switching activity at the

sub-components. The flit size is assumed to be 16 bits, with the base switch/NI having

4 flit queuing buffers at each output. The base NoC component area, power values are

obtained from synthesizing the component designs that are based on the architecture

presented in Chapter 2. As seen from the table, a NoC design with 10 packet re-

order buffers/core has 59% higher NoC area and 43% higher NoC power consumption

when compared to the base NoC without re-order buffers. Another important point

is that at design time it is not possible to size the re-order buffers to prevent packets

from being dropped at the receiver. As an example, if a packet travels a congested

route and takes an arbitrarily long time to reach the destination, several subsequent

packets that take a different route can reach the destination before this packet. In

this case, the re-order buffers, unless they have infinite storage capacity, can be full

for a particular scenario and can no longer receive packets. This leads to dropping of

packets to recover from the situation and requires end-to-end ACK/NACK protocols

for resuming the transaction.

End-to-end ACK/NACK protocols are used in most macro-networks for error

recovery and in such networks these protocols are extended to handle this packet

buffering problem as well [117]. However, such protocols have significant overhead

in terms of network resource usage and congestion. Thus, they are not commonly

used in the NoC domain [135], [117]. Moreover, the performance penalty to recover

from such a situation can be very high and most applications cannot tolerate such

variations in performance. This motivates the need to find efficient solutions to the

packet re-ordering problem for the on-chip domain.

To the best of my knowledge, this is the first work that presents a multi-path

routing strategy with guaranteed in-order packet delivery (without packet dropping)

for on-chip networks [24]. It is based on the idea of routing packets on non-intersecting

paths and re-building packet order at path re-convergent nodes. By using an efficient

flow control mechanism, the routing strategy avoids the packet dropping situation that

arises in the traditional multi-path routing schemes. I present algorithms to find the

set of paths in a NoC topology to support the routing strategy and present a method
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Figure 10.1: Switch Design to support multi-path routing with in-order packet
delivery

to split the application traffic across the paths to obtain a network with minimum

power consumption. I explore the use of temporal and spatial redundancy during

multi-path routing to provide resilience against temporary and permanent errors in

the NoC links. When sending multiple copies of a packet, it is important to achieve

the required reliability level for packet delivery with minimum data replication. I

integrate reliability constraints in the multi-path design methods to provide a reliable

NoC operation with least increase in network traffic.

Experiments on several benchmarks show large power savings for the proposed

scheme when compared to traditional single-path schemes and multi-path schemes

with re-order buffers. The area overhead of the proposed scheme is small (a modest

5% increase in network area). Hence, it is practical to be used in the on-chip domain.

10.1 Multi-Path Routing with In-Order Delivery

In this section, I present the conceptual idea of the multi-path routing strategy with

in-order packet delivery. For analysis purposes, I define the NoC topology by the

NoC topology graph:
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Definition 23 The topology graph is a directed graph G(V,E) with each vertex vk ∈

V representing a switch/NI in the topology and the directed link (or edge) el ∈ E

representing a direct communication between two switches/NIs. I represent the traffic

flow between a pair of cores in the NoC as a commodity i, with the source switch/NI

of the commodity being si and the destination of the commodity being di. Let the

total number of commodities be I. The rate of traffic transferred by commodity i is

represented by ri.

The traffic rate for each commodity (ri) can either be the average rate of com-

munication between the source and destination of the commodity or can be obtained

in an efficient manner that considers the Quality-of-Service (QoS) provisions for the

application. I define the paths for the traffic flow of a commodity as follows:

Definition 24 Let the set SPi represent the set of all paths for the commodity i,

∀i ∈ 1 · · · I. Let P j
i be an element of SPi, ∀j ∈ 1 · · · |SPi|. Thus P j

i represents a

single path from the source to destination for commodity i. Each path P j
i consists of

a set of links.

I define a set of paths to be non-intersecting if the paths originate from the same

source vertex but do not intersect each other in the network, except at the destination

vertex.Consider packets that are routed on the two non-intersecting paths. Note that

with worm-hole flow control [99], packets of a commodity on a particular path are

in-order at all time instances. However, packets on the two different paths can be

out-of-order.

To implement the re-ordering mechanism at network re-convergent nodes, the

following architectural changes to the switches/NIs of the NoC are required (shown in

Figure 10.1). I assume that the packet is divided into multiple flow control units called

flits. The first flit of the packet (known as the header flit) has the routing information

for the packet. To support multi-path routing, individual packet identifiers are used

for packets belonging to a single commodity. At the re-convergent switch, I use a look-

up table to store the identifier of the next packet to be received for the commodity.

Initially (when the NoC is reset), the identifiers in the look-up tables are set to 1 for
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all the commodities. When packets arrive at the input of the re-convergent switch,

the identifier of the packet is compared with the corresponding look-up table entry. If

the identifiers match, the packet is granted arbitration and the look-up table identifier

value for this commodity is incremented by 1. If the identifiers do not match, then

this is an out-of-order packet and access to the output is not granted by the arbiter

circuit, and it remains at the input buffer.

As the packets on a particular path are in-order, the mechanism only stalls pack-

ets that would also be out-of-order if they reach the switch. Due to the disjoint

property of the paths reaching the switch, the actual packet (matching the identi-

fier on the look-up table) that needs to be received by the switch is on a different

path. As a result, such a stalling mechanism (integrated with credit-based or on-off

flow control mechanisms [99]) does not lead to packet dropping, which is encoun-

tered in traditional schemes when the re-order buffers at the receivers are full. Note

that routing-dependent deadlocks that can occur in the network can be avoided using

virtual channel flow control [99].

10.2 Path Selection Algorithm

In this section, I describe the algorithms that can be used to efficiently find non-

intersecting paths for each commodity of the NoC. As in general the number of paths

between a source and destination vertex of a graph is exponential, I present heuristic

algorithms to compute the paths [100]. For each commodity, I first find the set of all

possible paths for the commodity. Then, from the chosen paths, I find those paths

that are non-intersecting. I use such a two-phase approach to achieve fast heuristic

solutions to tackle the exponential problem complexity.

Consider a source vertex si (which corresponds to the source core/NI that sends

a packet) and destination vertex di of a commodity i. The Algorithm 7 is used to

find the set of possible paths between the two vertices. The Example 10 presented

below illustrates how the working algorithm works. The objective of the algorithm is

to find maximum number of paths possible, so that large path diversity is available

for the traffic flow. In the algorithm, after finding a path, I remove one of the edges
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of the path so that the same path is not considered in further iterations. As most

NoC vertices have only a small degree, I remove one of the middle edges (instead of

the edges at the source and destination), because it helps in increasing the number

of paths found. As in each iteration of the algorithm I remove an edge, the number

of iterations (and hence the maximum number of paths found) is at most |E| for one

pair of source and destination vertices.

Example 10 Consider the NoC topology graph presented in Figure 10.2(a). The

vertices represent switches/NIs in the NoC. Let v1 and v7 be the source and destination

vertices of a traffic flow. In the first iteration of the algorithm, one of the paths (e.g.,

the path v1 − v2 − v3 − v7) is chosen and the middle edge (edge from v2 − v3) is

removed. In the next iteration of the algorithm, another path (v1 − v4 − v3 − v7) is

chosen and the edge v4 − v3 is removed. In the last iteration v1 − v5 − v6 − v7 is

chosen and the edge v5 − 6 is removed, after which no more paths exist from v1 to

v7. Note that if we had removed the edge v1− v2 or v3− v7 in the first iteration, we

would have obtained only two paths (instead of three paths).

The paths resulting from the algorithm may converge at one or more vertices. In

order to obtain non-intersecting paths, I form a compatibility graph, with each vertex

of the graph representing a path. An edge between two vertices in the graph implies

that the corresponding paths do not intersect. An example compatibility graph for

the paths from Example 1 is shown in Figure 10.2(b). The objective is to obtain the

maximum number of non-intersecting paths from the set of paths. This is equivalent

to finding the maximum size clique1 in the compatibility graph, which is a well known

NP-Hard problem [100]. I use a commonly used heuristic algorithm for finding the

maximum clique (refer Algorithm 8) [23]. The working of the algorithm is illustrated

in Example 2. I repeat the two algorithms for all the commodities in the NoC. When

applying Algorithm 7 for each commodity, I start with the original topology graph.

Example 11 The compatibility graph for the 3 paths from Example 10 is shown in

Figure 10.2(b). The vertex p1 represents the path v1 − v2 − v3 − v7, p2 represents

1Clique of a graph is a fully connected subgraph.
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the path v1− v4− v3− v7 and p3 represents the path v1− v5− v6− v7. As the paths

v1− v2− v3− v7 and v1− v5− v6− v7 do not intersect each other, there is an edge

between p1 and p3 in the compatibility graph. Similarly, for the paths v1−v4−v3−v7

and v1 − v5 − v6 − v7, there is an edge between p2 and p3. There are two maximum

size cliques in the graph (formed by p1, p3 and p2, p3) and one of them is arbitrarily

chosen (say, p1, p3). Thus, the paths v1 − v2 − v3 − v7 and v1 − v5 − v6 − v7 are

used for the traffic flow between vertices v1 and v7.

The time complexity of each iteration in Algorithm 7 is dominated by the Depth-

First Search (DFS) procedure and is O(|E| + |V |) [100]. The number of iterations

is O(|E|). The time complexity of the maximum clique calculation step is O(|E|2).

The algorithms are repeated once for each commodity. Therefore, the run time of

the non-intersecting path finding algorithms is O(|I||E|(|E| + |V |)). In practice, the

run-time of the algorithms is less than few minutes for all the experimental studies I

have performed.

In cases where we are interested in having as many minimum paths as possible,

we can modify the call to DFS in Algorithm 7 to a call to Dijkstra’s shortest path

algorithm, choosing shorter paths first. Then, the Algorithm 8 can also be modi-

fied to first choose the minimum paths that are non-intersecting and then choosing

non-minimum paths that are non-intersecting with each other and with the chosen
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minimum paths. Note that in situations where we only need few paths for each com-

modity (to have small route look-up tables), we can select the needed number of paths

from the above algorithms. Similarly, for networks that require deadlock avoidance

using restricted routing functions, we can use turn models to select the paths [48],

[99], with only a marginal increase in the complexity of the presented algorithms.

Algorithm 7 Path selection algorithm for a single commodity

1. Choose a path from the source to destination of the commodity using Depth
First Search (DFS).
2. Remove one of the middle edges of the chosen path.
3. Repeat the above steps until there are no paths between the vertices.

Algorithm 8 Determining non-intersecting paths for a single commodity

1. Build a compatibility graph for the paths and initialize the set MAX CLIQUE
to NULL.
2. Add vertex with largest degree to MAX CLIQUE.
3. From remaining vertices, choose vertex that is adjacent to all vertices in set
MAX CLIQUE and add it to the set.
4. Repeat the above step until no more vertex can be added.

10.3 Multi-path Traffic Splitting

Once we have obtained the set of non-intersecting paths for each commodity, we need

to determine the amount of flow of each commodity across the paths that minimizes

congestion. Then, we can assign probability values for each path of every commodity,

based on the traffic flow across that path for the commodity. At run time, we can

choose the path for each packet from the set of paths based on the probability values

assigned to them. To achieve this traffic splitting, I use a Linear Programming (LP)

based method to solve the corresponding multi-commodity flow problem. The objec-

tive of the LP is to minimize the maximum traffic on each link of the NoC topology,

satisfying the bandwidth constraints on the links and routing the traffic of all the

commodities in the NoC. The LP is represented by the following set of equations:
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Table 10.2: Sample Paths
Comm. Source Dest. Paths

(Edges Traversed)
1 au sdram 32-12, 10-29
2 mcpu sdram 12, 23-10-29, 33-14-21
3 upsamp sram2 27, 3-30-13
4 risc sram2 19, 7-22-13

min: t (10.1)

s.t
∑

∀j∈1···|SPi|

f j
i = ri, ∀i (10.2)

∑

∀i

∑

∀j,el∈P
j
i

f j
i = flowel

∀el (10.3)

flowel
≤ bandwidthel

∀el (10.4)

flowel
≤ t ∀el ∈ P j

i , ∀i, j (10.5)

f j
i ≥ 0 (10.6)

In the objective function I use the variable t to represent the maximum flow on any

link in the NoC (refer Equations 10.1, 10.5). Equation 10.2 represents the constraint

that the NoC has to satisfy the traffic flow for each commodity, with the variable f j
i

representing the traffic flow on the path P j
i of commodity i. The flow on each link
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of the NoC and the bandwidth constraints are represented by Equations 10.3 and

10.4. Other objectives (such as minimizing the sum of traffic flow on the links) and

constraints (like latency constraints for each commodity) can also be used in the LP.

As an example, the latency constraints for each commodity can be represented by the

following equation:

∑

∀j∈1···|SPi|

(f j
i × lj) /

∑

∀j∈1···|SPi|

f j
i ≤ di (10.7)

where di is the hop delay constraint for commodity i and lj is the hop delay of

path j. Once the flows on each path of a commodity are obtained, we can order or

assign probability values to the paths based on the corresponding flows.

10.4 Fault-Tolerance Support with Multi-path Rout-

ing

The errors that occur on the NoC links can be broadly classified into two categories:

transient and permanent errors.

10.4.1 Resilience Against Transient Errors

To recover from transient errors, error detection or correction schemes can be utilized

in the on-chip network [135]. Forward error correcting codes such as Hamming codes

can be used to correct single-bit errors at the receiving NI. However, the area-power

overhead of the encoders, decoders and control wires for such error correcting schemes

increases rapidly with the number of bit errors to be corrected. In practice, it is

infeasible to apply forward error correcting codes to correct multi-bit errors [135]. To

recover from such multi-bit errors, switch-to-switch (link-level) or end-to-end error

detection and retransmission of data can be performed. This is applicable to normal

data packets. However, control packets such as interrupts carry critical information

that need to meet real-time requirements. Using retransmission mechanisms can

have significant latency penalty that would be unacceptable to meet the real-time
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requirements of critical packets. Error resiliency for such critical packets can be

achieved by sending multiple copies of the packets across one or more paths. At

the receiving switch/NI, the error detection circuitry can check the packets for errors

and can accept an error free packet. When sending multiple copies of a packet, it is

important to achieve the required reliability level for packet delivery with minimum

data replication. I formulate the mathematical models for the reliability constraints

and consider them in the LP formulation presented in previous section, as follows:

Definition 25 Let the transient Bit-Error Rate (BER) encountered in crossing a

path with maximum number of hops in the NoC be βt. Let the bit-width of the link

(also equal to the flit-width) be W .

The maximum probability of a single-bit error when a flit reaches the destination

is given by:

P(Single-bit error in a flit) = CW
1 × β1

t × (1 − βt)
W−1 (10.8)

That is, any one of the W bits can have an error, while the other bits should be

error free.

I assume a single-bit error correcting Hamming code is used to recover from single-

bit errors in the critical packets and packet duplication is used to recover from multi-

bit errors. The probability of having two or more errors in a flit received at the

receiving NI is given by:

P( ≥ 2 errors) = γt =
W
∑

k = 2

CW
k × βk

t × (1 − βt)
W−k (10.9)

I assume that the error rates on the multiple copies of a flit are statistically

independent in nature, which is true for many transient noise sources such as soft

errors (for those transient errors for which such statistical independence cannot be

assumed, we can apply the method for recovering from permanent failures presented

later in this section). When a flit is transmitted nt times, the probability of having

two or more errors in all the flits is given by:
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θt = γnt

t (10.10)

As in earlier works ([131]-[135]), I assume that an undetected or uncorrected error

causes the entire system to crash. The objective is to make sure that the packets

received at the destination have a very low probability of undetected/uncorrected

errors, ensuring the system operates for a pre-determined Mean Time To Failure

(MTFF) of few years. The acceptable residual flit error-rate, defined as the probability

of one or more errors on a flit that can be undetected by the receiver is given by the

following equation:

Errres = Tcycle/(MTTF × Nc × inj) (10.11)

where Tcycle is the cycle time of the NoC, Nc is the number of cores in the system

and inj is the average flit injection rate per core. As an example, for 500 MHz system

with 12 cores, with an average injection rate of 0.1 flits/core and MTTF of 5 years,

the Errres value is 1.07 × 10−17. Each critical packet should be duplicated as many

times as necessary to make the θt value to be greater than the Errres value, i.e.:

θt = γnt

t ≥ Errres

i.e. nt ≥ ln(Errres)/ln(γt)

The minimum number of times the critical packets should be replicated to satisfy

the reliability constraints is given by:

nt = dln(Errres)/ln(γt)e (10.12)

To consider the replication mechanism in the LP, the traffic rates of the critical

commodities are multiplied by nt and Equation 10.2 is modified for such commodities

as follows:
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∑

∀j∈1···|SPi|

f j
i = nt × ri ∀i, critical (10.13)

10.4.2 Resilience Against Permanent Errors

To recover from permanent link failures, packets need to be sent across multiple non-

intersecting paths. The non-intersecting nature of the paths makes sure that a link

failure on one path does not affect the packets that are transmitted on the other

paths. As in the transient error recovery case, the critical packets can be sent across

multiple paths. For non-critical packets, I assume that hardware mechanisms such as

presented in [22] exist to detect and inform the sender of a permanent link failure in

a path. Then, the sender does not consider the faulty path for further routing and

retransmits the lost flits across other non-intersecting paths. The probability of a

path failure in the NoC is given by:

P(path failure) = γp =
W
∑

k = 1

CW
k × βk

p × (1 − βp)
W−k (10.14)

where βp is the maximum permanent bit-error rate of any path in the NoC.

The maximum number of permanent path failures for each commodity (denoted

by np) can be obtained similar to the derivation of nt, and is given by:

np = dln(Errres)/ln(γp)e (10.15)

Let the total number of paths for a commodity i be denoted by ntot,i. Once the

number of possible path failures is obtained, we have to model the system such that

for each commodity, any set of (ntot,i −np) paths should be able to support the traffic

demands of the commodity. Thus, even when np paths fail, the set of other paths

would be able to handle the traffic demands of the commodity and proper system op-

eration would be ensured. I add a set of ntot,i!/(np!× (ntot,i − np)!) linear constraints

in place of Equation 10.2 for each commodity in the LP, with each constraint repre-

senting the fact that the traffic on (ntot,i − np) paths can handle the traffic demands

of the commodity. As an example, when ntot,i is 3 and np is 1 (which means that any
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1 path can fail from the set of 3 paths) for a commodity i, I need to add the following

3 constraints:

f 1
i + f 2

i >= ri

f 2
i + f 3

i >= ri

f 1
i + f 3

i >= ri

Thus the paths of each commodity can support the failure of np paths for the

commodity, provided more than np paths exist. When I introduce these additional

linear constraints, the impact on the run-time of the LP is small (for the experiments,

I did not observe any noticeable delay in the run-time). This is due to the fact

that the number of paths available for each commodity is usually small (less than

4 or 5) and hence only few tens of additional constraints are introduced for each

commodity. Note that we can modify the mapping procedures to ensure that each

commodity has more than np paths available for data transfer. In cases where the

mapping procedure cannot produce more than np paths for some commodities, we

can introduce additional links between switches to get such additional paths for the

commodity. Modifying the NoC mapping and topology design processes to achieve

these effects is beyond the scope of this chapter.

10.5 Simulation Results

10.5.1 Area, Power and Timing Overhead

The estimated power overhead (based on gate count and synthesis results for switches/NIs)

at the switches/NIs to support the multi-path routing scheme for the 4× 3 mesh net-

work considered earlier (in Table 10.1) is found to be 18.09 mW, which is around

5% of the base NoC power consumption. For the power estimation, without loss of

generality, I assume that 8 bits are used for representing the source and destination

addresses and 8-bit packet identifiers are utilized. The power overhead accounts for

the look-up tables and the combinational logic associated with multi-path routing
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Figure 10.5: (a) Performance of routing schemes for MPEG NoC. (b), (c) Effect of
routing and fault-tolerance on NoC power consumption

scheme. The numbers assume a 500 MHz operating frequency for the network. The

estimated area overhead (from gate and memory cell count) for the multi-path rout-

ing scheme is low (less than 5 % of the NoC component area). The maximum possible

frequency estimate of the switch design with support for the multi-path routing tables

is above 500 MHz.

10.5.2 Case Study: MPEG Decoder

I assume that the tasks of the MPEG application are assigned to processor/memory

cores and the best mapping (minimizing the average communication hop delay) onto

a mesh network is obtained using the SUNMAP tool (presented in Chapter 2). The

communication between the various cores and the resulting mapped NoC are pre-

sented in Figures 10.3, 10.4. The various paths obtained using the algorithms pre-

sented earlier, for some of the commodities, are presented in Table 10.2. Applying

the LP procedure to split the traffic across the obtained paths results in 35% reduc-

tion in the bandwidth requirements for the application when compared to single-path

routing (both dimension-ordered and minimum-path routing). The bandwidth sav-

ings translates to 35% reduction in the required NoC operating frequency. For 16-bit
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link data width, the multi-path routing requires 300 MHz frequency for the NoC to

support the application traffic, while the single-path routing schemes require a NoC

frequency of 405 MHz. The NoC frequency reduction leads to 22.22% reduction in

power consumption of the NoC for the multi-path scheme compared to single-path

schemes, after accounting for the power overhead of the multi-path scheme. The

average packet latencies incurred for the MPEG NoC for dimension ordered (Dim),

minimum path (Min) and the proposed multi-path (Multi) strategy for the MPEG

NoC is presented in Figure 10.5(a). The simulations are performed on a flit-accurate

NoC simulator designed in C++. The multi-path routing strategy results in reduced

frequency requirements to achieve the same latency as the single-path schemes for a

large part of the design space.

When compared to the multi-path routing scheme with re-order buffers (10 packet

buffers/receiver), the current scheme results in 28.25% reduction in network power

consumption.

10.5.3 Comparisons with Single-Path Routing

The network power consumption for the various routing schemes for different applica-

tions is presented in Figure 10.5(b). The numbers are normalized with respect to the

power consumption of dimension-ordered routing. I use several benchmark applica-

tions for comparison: Video Object Plane Decoder (VOPD - mapped onto 12 cores),

MPEG decoder (MPEG - 12 cores), Multi-Window Display application (MWD - 12

cores) and Picture-in-Picture (PIP - 8 cores) application. Without loss of generality,

I assume that the applications are mapped onto mesh topologies, although the multi-

path routing strategy can be used for any topology. By using the proposed routing

scheme, on average I obtain 33.5% and 27.52% power savings compared to the dimen-

sion ordered and minimum path routing, respectively. The total run time for applying

the proposed methodology (includes the run time for path selection algorithms for

all commodities and for solving the resulting LP) is less than few minutes for all the

benchmarks, when run on a 1 GHz Sun workstation.
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10.5.4 Effect of Fault-Tolerance Support

The amount of power overhead incurred in achieving fault-tolerance against tempo-

rary errors depends on the transient bit-error rate (βt) of each link and the amount

of data that is critical and needs replication. The effect of both factors on power

consumption for the MPEG decoder NoC is presented in Figure 10.5(c). The power

consumption numbers are normalized with respect to the base NoC power consump-

tion (when no fault-tolerance support is provided). As the amount of critical traffic

increases, the power overhead of packet replication is significant. Also, as the bit-error

rate of the NoC increases (higher BER value in the figure, which imply a higher prob-

ability of bit-errors happening in the NoC), the amount of power overhead increases.

I found that for all BER values lower than or equal to 1e-6, having a single duplicate

for each packet was sufficient to provide the required MTTF of 5 years. Adding sup-

port for resiliency against a single-path permanent failure for each commodity of the

MPEG NoC resulted in a 2.33× increase in power consumption of the base NoC.

10.6 Summary

In this chapter, I have presented a multi-path routing strategy that guarantees in-

order packet delivery at the receiver. I introduced a methodology to find paths for

the routing strategy and to split the application traffic across the paths to obtain

a network operation with minimum power consumption. With technology scaling,

reliable operation of on-chip wires is also rapidly deteriorating and various transient

and permanent errors can affect them. With the proposed multi-path routing strategy,

I explored the use of spatial and temporal redundancy to tolerate transient as well as

permanent errors occurring on the NoC links. The proposed method results in large

NoC power savings for several SoC designs when compared to traditional single-path

systems.



Chapter 11

NoC Support for Reliable On-Chip

Memories

One of the key elements in MPSoCs that are affected by variability in sub-micron

technologies are on-chip memories [147]. The on-chip memories are especially suscep-

tible to Single Event Upsets (SEUs) such as soft errors, as the transient noise sources

can flip the bits in the memory cells. Since the memories store the instructions and

data that are used by the processors, having permanent or temporary failures in

memories can result in complete failure of the system. Current memories already

include extensive mechanisms to correct transient single-bit errors, e.g. by using

error-correcting codes such as Hamming code [148] in the memory arrays. However

these mechanisms are expensive and the overhead in area, power and delay to be im-

plemented massively inside memories to automatically recover from multi-bit errors

would be very high [147]. Hence, suitable system-level support to provide efficient

fault-tolerant mechanisms for memories will be mandatory to ensure proper operation

of future MPSoC designs.

From the hardware point of view, the use of NoCs helps the designer to overcome

the reliability issues of future technologies. The high flexibility of NoCs allows the

designer to add redundant cores in the same chip (e.g. processing elements, backup

memories) without largely increasing the design complexity. From the software point

of view, the type of applications that will be present in future MPSoC designs are

205
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various multimedia services, such as scalable video rendering, video-games, etc. In

order to provide the required reliability level for the system, the characteristics of

these applications need to be studied in detail.

As a major contribution of this chapter, I address the design of a reliable on-

chip memory subsystem. The key idea of the proposed approach is to automatically

keep backup copies of critical data on a reliable memory; upon a fault event, data

is transparently fetched from the backup copy in hardware, without any software

intervention. To achieve this, I present a novel hardware solution that utilizes NoCs

to provide a scalable, efficient and transparent mechanism for fault tolerance. At the

software level, I characterize the application data into two different types: critical

and non-critical. I show that for many multi-media applications, for proper system

operation, I only need to back up the critical data (and the instructions), which is a

small fraction of the total. I validate this by presenting case studies on two real-life

multimedia applications. I handle two kinds of faults in the memories: intermittent

and permanent. When a permanent or intermittent fault occurs on the main memory,

the NoC is dynamically reconfigured to switch all critical transactions to the backup

memory. For an intermittent failure, when the main memory recovers from the failure,

the NoC switches back all transactions to the main memory.

The use of NoCs to provide fault tolerance has several implications. First, we

achieve a modular and scalable design. Thus, backup devices can be added to ex-

isting designs without increasing the design complexity. It also allows us to add

communication bandwidth where needed in the chip, so that performance bottle-

necks due to replicated traffic is minimized. Second, we are able to provide dynamic

fault tolerance support that is decoupled from the software. This implies that the

processors are unaware of the memory failures. Thus, for reliability support, only a

limited effort by the application designer is required. Third, the NoC paradigm makes

it very easy to place the main and backup memories far away in the chip floorplan;

this is a key point to counter failures due to phenomena such as thermal hot-spots.

Finally, the NoC architecture enables the decoupling of the frequency of the inter-

connect from those of the attached cores, allowing for clocking backup memories at a

lower frequency. Thus, we can use backup memories that are slower and hence more
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reliable than the main memories, without additional components for clock conversion.

I implement the proposed fault tolerance mechanism on top of the existing NoC

platform and integrate it within the Netchip tool flow (presented in Chapter 2). I

perform experiments on realistic multimedia applications, which show that the per-

formance penalty in adding the fault tolerance support is negligible. I present sev-

eral experiments to explore various parameters that impact the performance and area

overhead of the fault tolerance mechanism. I synthesize the additional hardware com-

ponents that are added in the NoC to provide the fault tolerance support. The silicon

overhead is less than 10% the area of an extra backup memory bank itself (assuming

a 32 kB size), which represents the baseline requirement for any replication-based

fault tolerance strategy.

11.1 Analysis of Multimedia Software

New multimedia applications cover a wide range of functionality (video processing,

video conferencing, games, etc.); one of their main common features is that they

process large amounts of incoming data in a streaming-based way (e.g. a continuous

flow of frames). We can observe that certain parts of these streams are essential to

produce a correct output, while others are not so critical and only partially affect the

deployed quality to the user. In many multimedia applications, it is possible to dis-

tinguish critical from non-critical data because each type is stored in different classes

and variables within the applications. Let us briefly illustrate these characteristics

in the implementation of a real-life multimedia application that is used as one of the

case studies in Section 11.4, i.e. an MPEG-4 Video Texture Coder (VTC). VTC is

the part of the MPEG4 standard that deals with still texture object decoding. It

is a wavelet transform coder, which can be seen as a set of filter-banks [149] sent

in a stream of packets. Each packet represents a portion of an image in different

sub-bands, i.e. at different resolutions.

As an example, a portion of an input image with 3 levels of resolution is shown in

Figure 11.1. As this figure depicts, the first packet of the stream includes the basic

elements of the image, but at low resolution. This part is called the DC sub-band
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Figure 11.1: Complete 2D wavelet decomposition in VTC for one image encoded with
DC and 3 AC levels

of the wavelet (top-left corner of Figure 11.1). If the data that represents the DC

sub-band is lost, the image cannot be reconstructed. As typical of critical data in

streaming applications, it is very small in size (few kBytes for 800x640 images) and

is stored in a dedicated variable and class within the VTC code.

The following packets of the stream are called AC or Spatial Levels and

contain additional details about the image. They have a much larger size than the

DC sub-band, but they only refine the image represented by the DC sub-band. If data

representing these levels is lost, the user still sees an image, just at lower resolution.

Moreover, whenever a new frame arrives, the previous (faulty) picture is to be updated

with the newly received information. Hence, any low resolution output only lasts a

very limited amount of time.

From this example, we can derive fault tolerance requirements for the data set of
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Figure 11.2: General view of a NoC

typical multimedia applications. Only a small subset of the data structures is critical

to the quality of output as perceived by the user, while most of the data set to be

processed is actually of little importance in this respect. Therefore, it is essential to

preserve correct copies only of the former data set, while faults in the latter may be

safely accepted.

11.2 Baseline SoC Architecture and Extensions

11.2.1 SoC Template Architecture

The reference SoC that I consider is composed of computation cores, a communication

backbone implemented by means of the � pipes NoC, and a set of system memories.

A typical NoC is built around three main conceptual blocks: Network inter-

face (NI), Switch (also called router) and Link (Figure 11.2). Network interfaces

perform protocol conversion from the native pin-out of IP cores to NoC packets;

routers deliver packets to their recipients; and finally, links connect the previous

blocks to each other, handling propagation delay issues. I modify the NoC architec-

ture by extending its building blocks to support reliability-aware features.

For the reference system, I assume the availability of at least two specific classes
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of memories: “error-detecting” and “reliable”. While not specifically designed to

prevent data corruption, error-detecting memories, which can be commonly found

today, are at least capable of detecting such occurrences, for example by CRC codes,

and notifying them to their controller. I also postulate the availability of memories

with much higher reliability for backing up critical data. This assumption is motivated

by ad-hoc circuit level solutions and strengthened by three design choices I enable for

these memories: (i) they have a small capacity, (ii) they are run at a lower-than-usual

clock frequency (in this chapter, I assume one half that of regular memories), (iii)

during typical system operation, they face a smaller workload than regular memories.

I assume the existence of main memories having error detection capability; nor-

mal SoC operation leverages upon them, including storage of critical and non-critical

data. I add smaller spare backup memories, featuring higher reliability, to hold shadow

copies of critical data only. Each main memory requires the existence of one such

backup, although a single storage device can hold backups for multiple main memo-

ries.

To identify the critical data set, I assume that the programmer defines the set of

variables to be backed up, and maps them to a specific memory address range. This

address range is then used to configure the NoC, either at design time or at runtime

during the boot of the system. The accesses to this particular memory region are

thereafter handled with the proposed schemes, improving the fault tolerance of the

MPSoC design. Application code is assumed to be a vital resource too. Therefore,

instructions are always treated in the same way as the critical data; in the remainder

of the chapter, I will not mention this distinction for the sake of simplicity. Note that

the classification of data into critical and non-critical can also be done using efficient

compiler support. In this case, the user can define the critical data using special

macros and the compiler can map the data to a specific address range.

The size of the critical data set will depend on the application at hand, and is im-

possible to predict in general. I aim this work at streaming applications, mostly in the

multimedia field, for which the amount of critical information can be safely assumed

to be small in percentage. These applications do however represent a significant slice

of the embedded device market.
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11.2.2 Proposed Hardware Extensions

To implement the approach, I perform changes to the NoC building blocks. The

flexible packet-switching design of NoCs ensures that these changes are transparent

to the transport layer (switches and links), but NIs need to be made aware of fault

events. Two NIs exist natively: initiator NI (attached to a system master, such as a

processor) and target NI (attached to a system slave, such as a memory). Both follow

some connection protocol specification at the IP core side, such as OCP 2.0 [96], and

perform source routing by checking the target of the transaction against a routing

lookup table.

The target NI is devoted most of the attention, as can be seen by comparing

Figure 11.3(a) (native) and Figure 11.3(b) (extended for reliability purposes). The

original target NI is still plugged to backup memories, while the extended version

is used for main memories. A plain target NI features an input request channel,

where request transactions from system masters are conveyed, and an output response

channel, where memory responses are packeted and pushed towards the NoC. A third

channel (redundancy channel) is now added in the extended target NI; this channel

is an output, and re-injects some of the request packets back again into the NoC.

By this arrangement, critical-data accesses to the memory (i.e. within a predefined

address range) can be forwarded to the backup storage element. Not all packets are

forwarded; during normal operation, that is until a fault is detected, only writes to

critical address regions follow this path. This ensures that the backup memory is

kept up to date with changes in critical data, but minimizes network traffic overhead

and increases reliability of the backup memory, which faces less workload than the

main device. Since the backup memory only receives write commands, it remains

silent, i.e. it does not send unneeded messages onto the NoC. This prevents conflicts

such as two memories responding to the same processor request. As a result, the flow

of packets with the forwarding mechanism being active during normal operation is

depicted in Figure 11.4(a). The forwarding behavior is controlled by a Dispatcher

block, that sits in the middle of the NI and supervises input and output packet flows.

This block also takes care of flow control issues. For example, when a packet has to

go towards both the memory and the redundancy channel, and one of them is busy,
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the dispatcher issues the proper stalls. For the purposes of packet forwarding, I add

an extra routing lookup table, which however consists of a single entry since there is

only one backup memory per each main memory.

The extended target NI also features an extra interrupt interface by the memory

side. Whenever a fault is detected, the memory can raise its interrupt wire. This

triggers a change in the activity of the dispatcher, which responds by beginning to

forward critical read packets to the backup memory according to the extra routing

table entry. In this way, reads that would fail due to data corruption are instead

transparently forwarded to the backup memory and safely handled (see Section 11.3

for more details). Critical writes continue to be forwarded, as they already were

before the fault occurrence.

The initiator NI is also extended in two ways. First, it checks all outgoing requests

for their target address. If the address falls in the specific range provided by the

application designer as storage of critical data, then a flag bit is set in the packet

header. This allows the dispatcher in the extended target NI to very easily decide

whether to forward packets or not. A second change in this NI involves an extra

entry in its routing lookup table, and a very small amount of extra logic that checks

the header field of response packets. Like request packets, response packets contain a

SourceID field. This means that the initiator NI can detect whether a read request it

sent got a response from the intended slave or from a different one. As I will show, in

this approach, upon a fault, critical reads receive responses from the backup memory

instead of the main one. Therefore, noticing a mismatch is an indirect indicator of

whether there was a fault in the main memory. This can trigger different actions

depending on the type of error that needs to be handled, as described in Section 11.3.

11.3 Run-time Fault Tolerant NoC-Based Schemes

Two types of errors can occur in on-chip memories of MPSoC designs, namely, inter-

mittent or permanent. I assume that the system is able to recognize transient errors

by detecting some known combination of parameters, either upon the error event it-

self or even before any error appears. For example, a thermal sensor detecting that a
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threshold overheating temperature has been surpassed may signal a “transient error”

condition before any real fault is observed. The “transient error” condition would be

de-asserted once the temperature returns to acceptable levels. The same prevention

or detection principle could be applied to other electrical or functional parameters

that may indicate that a critical point of operation is being approached, such as an

increased delay in the toggling of some wires, or possibly the insertion of more wait

states by the memory before responding. In the case of highly fault tolerant systems

where the main memory is itself equipped with error correction (not only detection)

logic, any internal correction event could be pessimistically assumed as a hint of

a possible imminent failure; this hypothesis could be reversed after a configurable

period of time, once the isolated correction event can be safely assumed to be an oc-

casional glitch, or when the functionality of the main memory can be somehow again

assumed as reliable, e.g. thanks to some (self-)testing routine. Any known-critical or

unexpected events should however be treated by the system as permanent faults, and

accordingly handled.

In the following subsections I describe how the proposed extensions can be used

to design schemes capable of handling both transient and permanent failures in a

way that is transparent to the software designer. As a common feature in both cases,

the backup memories do not contain any data at the beginning of the execution and

are filled at run-time by copying data from the coupled main memory. The recovery

process is carried on in two phases.

11.3.1 Permanent Error Recovery Support

In the case of permanent errors, as soon as the error is identified, the recovery begins.

During the first phase, critical write operations continue to be forwarded to the main

memory as in normal operation (see Section 11.2.2), but the extended target NI now

also starts diverting the read requests to the associated backup memory. From this

moment on, the backup memory, which had been silent, begins to generate responses

as a reaction to the master reads. At the same time, requests being diverted, the main

memory stops replying to the initiator for accesses into the critical address range.
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Since NoC responses are sent to a device or another depending on the SourceID field

of request packets, and the diverted packets keep this field unchanged, the backup

memory automatically sends its reply to the system master that had originally asked

for it. This does not require any lookup conversion in the NIs of the backup memories.

Figure 11.4(b) shows the handling mechanism of a read transaction upon a fault.

Since going through the main memory and then the backup memory to fetch data

is time consuming, the second phase of the recovery process for permanent faults

tries to minimize the performance impact of this three-way handling of critical reads.

To this end, the extended initiator NI (Section 11.2.2) is able to identify whether

the source of read responses is the main or the backup memory. The first critical

read after the fault occurrence triggers a mismatch detection, which in turn forces

the initiator NI to access a different entry within its routing lookup table. Hence,

all following memory reads within the critical address range are directly sent to the

backup memory after the fault. This clearly improves latencies during the remainder

of operations. The resulting flow of packets is shown in Figure 11.4(c).

It is worth to stress that the approach does not introduce any data coherency

issue. During normal operation, the forwarding of write transactions guarantees that

critical data is always consistent among the main and backup memories. Writes are

forwarded just before hitting the main memory bank, not after having been performed;

in this way, a faulty main memory has no chance of polluting the backup copy of

the data. The contents of the backup memory are updated after a slight delay,

but this causes no issue as the sequence of packets is strictly maintained. Upon a

fault occurrence, transactions are initially directed to the main memory, and only

afterwards, when needed, are routed to the backup device; this arrangement avoids

skipping transactions and guarantees that all pending transactions (reads and/or

writes) are completed on the correct copy of the data. Therefore, proper functionality

is strictly maintained when introducing the extra storage bank.

Similarly, when adding the backup memory to the NoC, deadlock issues do not

arise given a proper design of the NoC routing scheme. In this respect, the NoC

designer must accommodate for one extra IP core and some extra routing paths

during the deadlock-free NoC mapping stage. Remarkably, under certain common
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circumstances (such as X-Y routing on regular mesh topologies), no extra effort is

required to the designer at all. No specific traffic priority mechanisms are required

in the NoC, even though the designer may choose to prioritize some traffic flows

according to specific needs, as in any interconnect fabric.

11.3.2 Intermittent Error Recovery Support

In the case of transient errors (e.g. due to overheating detection), the first phase

of the recovery process is the same as in the case of the permanent errors, namely,

the read transactions are automatically forwarded to the backup memory, which au-

tomatically responds to the initiator. However, the second phase differs due to the

nature of transient failures, where the main memory is supposed to recover complete

functionality at a certain moment in time. All traffic, including the critical one, con-

tinues to be sent from the processor to the main memory. The extended target NI,

being aware that a fault condition is pending, diverts all critical reads towards the

backup memory, but lets critical writes be performed towards both the main and

backup locations. When the main memory detects that it is able to return to normal

operation (e.g. after the temperature has returned to normal levels), it is allowed to

issue a different interrupt to indicate the new condition. The extended target NI at

this point resumes normal operation.

The main assumption in this approach is that updates to the critical data set in

main memory can be successfully performed even during the “transient fault” state.

This might be allowed, e.g. by choosing conservative temperature thresholds to assert

the fault warning. Otherwise, if this solution is not acceptable and the designer does

not want to consider the fault permanent, I assume that a higher-level protocol (e.g.

MAC or Network layer) will transfer the safe backup copies of critical data back to

the main memory after its return to full functionality.
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11.4 Experimental Results

To assess the validity of the approach, I employ two different benchmarks from the

multimedia domain. The first one is the MPEG-4 VTC application already described

in Section 11.1. As a second test, I use one of the sub-algorithms of a 3D Image

Reconstruction algorithm [150], 3DR for short, where the relative displacement be-

tween every two frames is used to reconstruct the third dimension. Similarly to the

VTC benchmark, the amount of critical data that stores control information about

the matching process (e.g. 160 kB for images of 640 × 480 pixels) is much smaller

than the overall input data per each 2-frame matching process (2 MB of data at the

same resolution), and it is stored in two data structures which are easily identifiable

by the application designer.

In tge experiments, I run the 3DR and the VTC benchmarks on top of three

reliability-enhanced topologies, as shown in Figure 11.5. Both benchmarks are im-

plemented using 10 processing cores and a single main memory. The first topology

is a NoC crossbar, the second is a star, and the third is a mesh. The topologies and

benchmarks are chosen to illustrate different situations of performance penalty for

adding reliability support, since the applications demand different features. In fact,

3DR tends to saturate the main memory bandwidth, while VTC is less demanding.

The NoC is simulated within a cycle-true simulation environment. I clock the NoCs

at 900 MHz, twice the frequency of the cores and memories.

11.4.1 Performance Studies

I run the benchmarks in five different setups. The first two are reference baselines,

the remaining ones represent the proposed scheme.

� Reference-Unreliable: The reference run is a system without reliability support

at all, where accesses are to a fast (450 MHz) main memory. No faults are

supposed to happen.

� Reference-Robust: I model the same system with a reliable main memory run-

ning at a lower frequency, therefore minimizing error occurrences [146] and
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accounting for the overhead of extra circuitry. System performance is obviously

impacted, but robust operation can be assumed.

� Proposed-Replication: I create a system with a fast main memory and deploy

a slow backup memory, but I do not yet inject any fault in the system. As a

result, the overhead for the backup of critical data can be observed. I assume

the backup memory to be clocked at half the clock speed of regular memories,

for the same reasons outlined in the previous setup.

� Proposed-Permanent: I create a system with a fast main memory and deploy

a slow backup memory, then inject a permanent fault right at the beginning

of the simulation. This enables the evaluation of the impact of accessing the

backup copy of critical data.

� Proposed-Transient: I create a system with a fast main memory and deploy a

slow backup memory, then inject a transient fault right at the beginning of the

simulation, and never recover from it. This analysis helps to understand what

happens to system performance during the period where the main memory is

accessed first, but critical traffic needs to be rerouted to the backup memory.

Figure 11.6 reports performance, measured in completed transactions per second,

for all three topologies, both benchmarks and all five fault scenarios.

The system throughput of most of the scenarios is close, with Reference-Robust

being much worse than average and Proposed-Permanent performing much better, at

least in the 3DR case, than even the Reference-Unreliable scenario. I explain these

major effects by observing that both benchmarks, like most multimedia applications,

place heavy demands in terms of memory bandwidth; this is a very logical conse-

quence of parallel computing on a 10-core system. In Reference-Robust the available

memory bandwidth is decreased to provide more reliability, which causes performance

to worsen dramatically. In the tests, VTC throughput drops by about 24% and 3DR

by as much as 43%, since 3DR is even more demanding. For the same reasons,

the Proposed-Permanent scenario, where critical data is stored in a separate device,

actually guarantees a performance boost related to load balancing among the two
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memories; the boost is barely 1% for VTC, but around 40% for 3DR, which is more

bandwidth-limited and more heavily accesses the memory regions tagged as critical.

Under less demanding applications, I expect Reference-Robust to get closer to the

reference system and Proposed-Permanent to perform more or less on par with it.

The Proposed-Replication scenario exhibits a minimal penalty compared to the

unreliable case, since the traffic associated to shadowing of the critical writes is well

handled by the NoC. VTC rarely accesses critical addresses, so no overhead is notice-

able, while in 3DR the throughput decrease is of 1% to 9%, with the star topology

experiencing the worst congestion.

The Proposed-Transient case exhibits a performance level close to Reference-

Unreliable, because non-critical traffic behaves exactly as in the base scenario, but

several effects related to critical traffic have to be accounted for. On the one side,

critical traffic creates NoC congestion and incurs a latency overhead. On the other

hand, the main memory does not have to process critical reads, therefore the non-

critical transactions can be executed with less delay. In VTC, the overall balance

is roughly even. In 3DR, where a larger amount of critical reads (e.g. instruction

cache refills) takes place, the main memory benefits from large latency gains, boosting

performance.

Experimental results show that, in order to improve system reliability, deploying

a single highly fault tolerant main memory (Reference-Robust) may not be a wise

choice in terms of performance within complex multimedia systems. In the proposed

architecture, the main memory is left running at a high frequency, and a slower

secondary memory bank is added. This choice incurs minor throughput overheads

both during normal operation and after fault occurrences. These results justify the

feasibility of deploying the architecture even in throughput-constrained environments.

The gains I outline for the Proposed-Permanent scenario suggest that always map-

ping critical information to a separate reliable memory, without inter-memory trans-

actions, may be a simpler yet efficient, due to load balancing, approach. However,

such a choice does not improve reliability as much as the backup mechanism, due to

two main factors. First, having two copies of critical data is certainly more reliable

than having a single one. Second, using the main memory as the default resource
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permits a lower workload for the backup memory during normal operation (only write

transactions need to be processed), which further increases its reliability. Since the

focus of this work is high fault tolerance, I feel that a redundant data mapping is

justified, and my aim is simply to verify that performance is not seriously impacted

as a result. Performance optimizations through reduction of local congestion can, in

any case, be achieved by the system designer by tuning the memory hierarchy, which

includes deploying multiple storage elements; these steps can be taken in combination

with the proposed approach, and are out of the scope of this work.

11.4.2 Architectural Exploration of NoC Features

I extend the analysis to different NoC-based hardware architectures using the same

NoC backbone. I vary some parameters of the baseline topologies. First, I modify

the star topology of Figure 11.5(b) by attaching the backup memory beyond a fur-

ther dedicated switch. The total distance from the central hub is therefore of two

hops instead of one. In this way I model backup memories further apart from main

memories in the chip floorplan, which improves tolerance in case of overheating. Per-

formance is unchanged under the Reference scenarios, where the backup memory is

never accessed. In Proposed scenarios, where the backup storage is in fact accessed,

throughput worsens by less than 0.3%. This is because the latency to go through an

extra hop in the NoC is very small, provided there is limited congestion as in this

star topology. If the number of hops needed to reach the backup memory is large

enough to potentially affect latency, or if such hops suffer from heavy congestion, the

topology designer may want to add dedicated NoC links.

To test the dependency of performance on the buffer depth of the redundancy

channel, I try a sweep by setting this parameter within the extended target NI from

3 to 6 stages. The results indicate that, both in VTC and 3DR, deep FIFOs only

improve system performance by less than 2%, which indicates that large buffering is

not mandatory in the extended target NI. Hence, area can be saved.

To validate the effectiveness of the routing shortcut that is enabled in the initiator

NI after permanent faults, I measure the latency of two different transactions on the
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star topology: (1) a critical read going from the core to a faulty main memory,

bouncing towards the backup memory, and from there to the processor again and

(2) a read directly towards the backup memory after the processor has updated its

internal lookup tables. The minimum latency is cut from 78 to 68 (-13%) clock

cycles, and the average one goes down from 103 to 95 (-8%). Although this metric is

topology-dependent, it shows the advantage of updating the routing decisions of the

initiator upon the occurrence of permanent faults.

11.4.3 Effects of Varying Percentages of Critical Data

An important topic is the exploration of different reliability/performance trade-offs

according to the amount of variables that are considered critical: the more data needs

to be backed up, the larger the safe backup memories need to be. Since backup mem-

ories are supposed to be reliable also thanks to being smaller, slower and relatively

little accessed, the effect of having large backups upon reliability is unclear. To shed

some light onto the performance side of the issue, I analyze the behavior under dif-

ferent rates of possible critical vs. non-critical data in Figure 11.7. The star topology

is taken as an example. In the plots, the Reference-Unreliable bar can be assumed to

represent an ideal case where no data is critical. For the Proposed cases I configure

two different memory spaces to be protected against faults: the actual critical set of

the benchmark (the same of the studies in Figure 11.6, labeled “critical set”), and as

an extreme bound, the whole address space (“all set”).

The first interesting remark is that the Proposed-Replication performance, i.e.

the system throughput before any fault occurrence, but in presence of the backup

overhead, is only moderately impacted by the size of the critical data set. In VTC,

Proposed-Replication performance is always close to the baseline case; in 3DR, which

is more bandwidth-limited, even backing up the whole address space incurs a penalty

of just 18%.

As expected, in case of a fault occurrence, the size of the protected memory space

is a key performance parameter. While choosing a small critical set allows for very

good throughput, extending the fault tolerance to the whole main memory content
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incurs a dramatic penalty. This is however to be fully expected. In the Proposed-

Permanent case, all traffic is redirected to the backup memory, which is running at

a lower frequency: therefore, throughput becomes identical to the Reference-Robust

baseline. The Proposed-Transient scenario is even slightly worse, since the same traffic

has to go through an extra hop first.

This bracket of results frames the applicability of this approach. If the critical set

of the application can be kept small, throughput penalties are minimal and advantages

are clear. Otherwise, performance degrades up to a worst case equivalent to a system

with a single reliable memory.

11.4.4 Synthesis Results

Regarding the modifications in the NoC to support a backup memory, four changes

are needed: (i) the NI associated to the main memory must be augmented, (ii) the

backup memory needs an extra (plain) target NI device, (iii) the initiator NI becomes

a bit more complex, (iv) extra links and switch ports may be needed for routing data

to the backup memory.

To assess the silicon cost of adding reliability features to the NIs, I perform a full

synthesis of both the original and extended ones with a 0.13 µm UMC technology

library. Initiator NIs (not depicted) experience no operating frequency penalty to

support the reliability functionality, while area increases by about 7% (0.031 mm2

against 0.029 mm2). Results for target NIs are plotted in Figure 11.8(a) and Fig-

ure 11.8(b). The two figures show the results for a reference target NI with a 4-slot

output buffer in the response channel, contrasted against the extended target NIs,

having 3- to 9-slot buffers in the extra redundancy channel. The impact on maxi-

mum achievable frequency is just of 2% to 6%. This penalty can be negligible in a

NoC where the maximum frequency is determined by the switches and not by the

NIs [93]. By adopting a buffer as deep as that of the response channel (4 slots), area

is increased from 0.032 mm2 to 0.039 mm2.

As a result, the area cost due to NI changes is 0.041 mm2. Overall, even including

other possible overheads in the NoC (i.e. extra ports in switches and extra links), the
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final overhead is still small in comparison to the area of the extra backup memory

bank itself, which can take on average 1 mm2 of area for a 32 kB on-die SRAM in

0.13 µm technology.

11.5 Summary

One of the main challenges for designers will be the deployment of fault tolerant

architectures. In this chapter, I have presented a complete approach to countering

transient and permanent failures in on-chip memories, by taking advantage of the

communication infrastructure provided by the reliable NoC backbone presented in

the preceding chapters. The design is based on modular extensions of the network

interfaces of the cores, and is transparent to the software designer. The only activity

required by the programmer is minimal code annotation to tell the compiler which

parts of the data set are critical. The extensions are integrated within the NoC

mapping flow, which transparently handles instantiation issues. The experimental

results show that the proposed approach has a very limited area overhead compared

to non-reliable designs, while being scalable for any number of cores. The experiments

also show the power of NoCs in handling reliability and scalability challenges of SoCs.
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(a)

(b)

Figure 11.3: (a) Plain target NI architecture, (b) Extended target NI architecture
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(a) (b) (c)

(d)

Figure 11.4: Handling of packet flow in the system. (a) Normal operation with
backup, (b) First phase of recovery for permanent and transient failures: read trans-
action handling upon fault occurrence, (c) Final operation mode after recovery from
permanent failure, (d) Operation mode while a transient failure is pending
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(a) (b)

(c)

Figure 11.5: The three topologies under test: (a) crossbar, (b) star, (c) mesh



226 CHAPTER 11. NOC SUPPORT FOR RELIABLE ON-CHIP MEMORIES

(a) (b)

(c) (d)

(e) (f)

Figure 11.6: Comparative performance of adding reliability support for (a, b, c) the
VTC benchmark on crossbar, star and mesh topologies respectively, (d, e, f) the 3DR
benchmark on crossbar, star and mesh topologies respectively
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(a)

(b)

Figure 11.7: Impact of adding reliability support on the star, with different sizes of
the critical data set, for (a) VTC, (b) 3DR
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(a)

(b)

Figure 11.8: Comparative (a) maximum operating frequency, (b) area for plain and
extended target NIs



Chapter 12

Conclusions and Future Directions

In this chapter, I summarize the major contributions of this thesis and show how the

NoC design methods and reliability mechanisms are integrated in the design flow.

12.1 Putting it All Together

The reliability enhanced Netchip tool flow is presented in Figure 12.1. Initially, along

with the application traffic characteristics, the system reliability specifications and

requirements are also taken as inputs to the tool flow. In Chapter 11, I had presented

the mechanisms to provide NoC support for using back-up memories. The number of

back-up memories used and the additional traffic flow rates related to them are given

as part of the system reliability specifications. In the Netchip flow, I automatically

design the NoC to meet the bandwidth demands of the additional traffic that is

generated, due to the use of multiple memories. The tool flow also ensures that the

traffic streams to the back-up memories do not create deadlocks with the other traffic

flows.

I had presented methods to achieve tolerance against temporary errors in Chapters

8 and Chapter 9. The T-error scheme presented in Chapter 8, is required when multi-

bit timing errors can occur in the system. Based on the error-rates of the system,

which is given as part of the system reliability specifications, I determine whether

T-error scheme is needed for the NoC. I also determine the most power optimal

229
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Figure 12.1: Reliability Enhanced Netchip Design Flow
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encoding needed to tolerate other transient errors in the system (such as soft-errors).

To determine the best scheme, I use the analysis method presented in Chapter 9.

Once the error recovery schemes needed for the NoC components are determined,

I proceed with the design of the NoC topology. The systems that utilize NoCs can

be broadly classified into two types: Application-Specific Systems-on-Chip (ASSoCs)

and Chip Multi-Processors (CMPs). In ASSoCs, single or a fixed set of applications

are statically mapped onto the different processor and hardware cores in the design.

In CMPs, software tasks are dynamically assigned to the cores. I distinguish three

major application classes for NoCs here: (1) ASSoCs that run a single application,

(2) ASSoCs that run multiple applications and (3) CMPs that run general software

tasks.

For designing ASSoCs that run a single application, I apply the SUNMAP and

SUNFLOOR tools presented in Chapters 4 and 5. The SUNMAP tool is used to

design a standard topology (such as a mesh, torus) for the application, while the

SUNFLOOR tool designs a custom topology. For designing ASSoCs that support

multiple applications, I apply the extended synthesis procedure presented in Chapter

6. When the design is a CMP that runs software tasks, I apply the synthesis approach

presented in 7. The individual crossbar switches of the NoC can be further optimized

using the method presented in Chapter 2.

When choosing paths for traffic flows, I determine whether it is efficient to apply

the multi-path routing presented in Chapter 10. I also determine the fault-tolerance

level achievable using such a method. I iterate between the error recovery methods

chosen in the previous steps with the multi-path method, until a design with least

area-power overhead that still satisfies the reliability constraints is obtained.

Once a NoC topology that satisfies the reliability constraints is obtained, I proceed

to generate the RTL design of the NoC components, as presented in Chapter 3. For

this, I use ×pipes, a library of SystemC soft macros for the network components, and

the associated tool ×pipesCompiler to generate the entire design. I proceed with the

RTL simulation, synthesis, emulation and layout of the design using standard tool

chains.

Thus, this work presents a complete methodology that automates some of the most
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critical and time intensive NoC design steps such as topology synthesis, core mapping,

crossbar sizing, route generation, resource reservation, achieving fault-tolerance, RTL

code and layout generation.

I have applied the Netchip tool flow to design several realistic MPSoC designs.

The layout of a multi-media MPSoC with the NoC designed using the proposed

methodology is presented in Chapter 5. It achieves a post-layout clock frequency

close to 900 MHz. I could design the NoC architecture from input specifications to

layout in 4 hours, a process that used to take weeks. A layout level comparison with

a hand-designed architecture for this example is also presented, which shows that the

automatic design methodology produces good results (in terms of power consumption

and performance), matching those of carefully hand-crafted designs.

12.2 Summary of Contributions of this Thesis

The nature of contributions of this thesis are of two kinds: scientific and engineering.

� Scientific contributions: I have presented novel and state-of-the-art algorithmic

methods to solve several important problems encountered during NoC design.

As examples, I have presented algorithms for performing efficient mapping of

cores onto NoC topologies, designing custom topologies, routing traffic flows,

building predictable networks, etc. I have also modeled several of the problems,

such as sizing the resources of crossbar matrices, as mathematical optimization

problems, which can be solved optimally. These methods will be useful for

designers to tackle specific problems in NoC design or can even be applied to

solve analogous problems in other domains.

� Engineering contributions: The SoC designer builds a computation architecture

and needs to design a NoC interconnect for the applications. The designer can

then use the presented tool flow to automatically design the NoC architecture,

which satisfies the application traffic characteristics. The tool flow will enhance

the design productivity and bridge the gap between computation and commu-

nication architecture. It simplifies the task of the SoC designer by seamlessly
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encapsulating the network operation to the end user.

12.3 Future Work

I am advancing the research further in several directions. There are several exciting

and important avenues of research that can be performed in this area. In this section,

I summarize the current works in progress and future research directions:

� Test-Chip manufacture and test:

I have performed extensive post-layout performance measurements, verifications

and validations of the NoCs designed using the Netchip tool flow. Pushing this

work one step further, I am currently working in co-operation with ETH-Zurich

to build a test-chip for an example NoC design obtained using the Netchip tool

flow. I expect the chip tape-out to take place in early 2007. Then, I will be

performing detailed testing of the chips to validate the flow.

� Quality-of-Service (QoS) support:

As further directions for research, I envision several possible extensions the

design flow: currently, the tool flow supports soft QoS constraints for the ap-

plications (presented in Chapter 4). Current methods to achieve hard QoS

guarantees in NoCs incur a large area/power overhead. Exploring area/power

efficient QoS schemes that can provide hard real-time guarantees is needed.

� Support for Globally Asynchronous, Locally Synchronous (GALS) paradigm:

The NoC architecture currently supports frequency crossings between the net-

work and the cores. However, the NoC as such has a fully synchronous oper-

ation. In future, the architecture and design flow can be extended to suit the

GALS paradigm, where the NoC components can operate at different frequen-

cies.

� Exploration of different topologies for Chip Multiprocessors (CMPs):

In this thesis, I investigated the design predictable NoC architectures for CMPS.

Even though the presented methods are general and can be applied to any NoC
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topology and routing function, I performed experiments using mesh topologies

and dimension ordered routing functions. A design space exploration of different

regular NoC topologies and different routing functions for CMPs would be an

interesting and important contribution.

� Extension of timing-error tolerant schemes:

I have presented timing-error tolerant methods that can be used to aggressively

design the communication architecture to support higher clock frequencies. A

good direction to advance this work would be to integrate the methods onto the

computation architecture as well.

� Impact of future technology generations:

For the experimental studies, I have utilized the UMC 0.13 µm technology li-

brary. It will be interesting to see how the topology synthesis processes scale to

future technology generations. I am currently actively investigating the poten-

tial of NoCs in future technologies.
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