
TERROR: RELIABLE AND EFFICIENT LINK DESIGN

FOR NETWORK ON CHIPS

a thesis

submitted to the department of electrical engineering

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of engineer

Rutuparna Tamhankar

February 2005

c© Copyright by Rutuparna Tamhankar 2005

All Rights Reserved

ii

Approved for the department.

Giovanni De Micheli (Advisor)

Approved for the University Committee on Graduate

Studies.

iii

Abstract

Due to shrinking feature sizes and increasing transistor densities, the number of pro-

cessor/memory cores on a chip and their speed of operation is increasing. In future

Systems on Chips (SoCs), communication between the cores will become a major

bottleneck for system performance as current bus-based communication architectures

will be inefficient in terms of throughput, latency and power consumption. To effec-

tively design future SoCs, Networks on Chips (NoCs), a communication centric design

paradigm that considers the delay and reliability issues of wires has been proposed.

Wires are becoming increasingly susceptible to delay variation caused due to cross-

talk, coupling capacitance, PVT (Process, Voltage, Temperature) variations, ground

bounce, inductive interference etc. The use of conservative design methodologies that

consider all possible delay variations due to the noise sources, targeting safe system

operation under all conditions will result in poor system performance. An aggressive

design approach is required where the communicating link is resilient to timing errors

due to delay variations in wire.

This work presents Terror - timing-error tolerant link design methodology for ag-

gressively designing the NoC links. Three different robust link design schemes are

explored that provide various levels of reliability and latency by trading-off hardware

complexity and link area. These schemes incorporate distributed buffering where the

links are used not only as a communicating medium but also as a storage medium.

Depending on the application needs, NoC characteristics and communication require-

ments, the three schemes can be selectively used and interchanged in a plug and play

fashion. Experimental data and simulations on several benchmark applications show

large performance improvement (up to 1.5×) for the proposed system when compared

to traditional design methodology.

iv

Acknowledgments

I wish to express my sincere thank you to Prof. Giovanni De Micheli for giving me a

wonderful research opportunity to work under his guidance. Through various meet-

ings and discussions, he provided the right direction, motivation and useful technical

insights that helped me to improve upon the basic ideas. I would also like to thank

Mr. Srinivasan Murali whose suggestions, in depth views, detailed comments and

valuable contribution substantially helped to improve the research. I would like to

express my sincere gratitude to Stergiou Stergios, Kresimir Mihic and other members

of the group for their constructive suggestions and assistance.

v

Contents

Abstract iv

Acknowledgments v

1 Introduction 1

2 Terror: Timing ERROR Tolerant Link Design 5

2.1 Timing errors . 5

2.2 Design Principle . 6

2.3 Logic level Implementation . 8

2.4 Comparison with Alternative Schemes 11

2.5 Timing Analysis . 13

2.6 Transistor Level Simulation . 15

2.7 Analysis of Penalty . 16

3 Network on Chips Design Methodology 19

3.1 Introduction . 19

3.2 NoC Design Flow . 20

3.3 NoC Design tools . 21

3.3.1 SUNMAP: Topology mapping tool 21

3.3.2 Xpipes Compiler . 23

3.4 NoC Design components . 24

4 Terror enabled NoC link designs 28

4.1 Storing data on the link, not on the switch 28

4.2 Reliable buffered link design . 30

4.2.1 Scheme 1: Terror Detection 31

4.2.2 Scheme 2: Terror Detection and Correction 32

vi

4.2.3 Scheme 3: Simplified Terror Correction 34

4.2.4 Towards Modular NoC design 36

5 Simulation Results and Experimental Data 38

5.1 Effect of Aggressive Design . 39

5.2 Effect of Delayed Clock . 41

5.3 Retransmission Vs Terror Schemes 42

5.4 Choice of Link Design Schemes . 43

5.5 Summary of Results . 45

6 Conclusion 47

Bibliography 49

vii

List of Tables

2.1 Timing Overheads . 15

3.1 Switch Area and Energy . 23

4.1 Comparison between three schemes 36

5.1 Relative Link Area . 45

viii

List of Figures

2.1 Variation in clock and data arrival times 5

2.2 Causes of timing error . 6

2.3 Typical Buffered Link . 6

2.4 Modified Buffer . 7

2.5 Basic Idea . 7

2.6 Logic level implementation of Terror 8

2.7 Error control circuit . 8

2.8 Link Design using Terror . 9

2.9 Normal to delayed mode . 10

2.10 Delayed to normal mode . 10

2.11 Receiver latency variation with delay between clocks ck and ckd for

ideal case . 11

2.12 Comparison of latency for the retransmission and Terror scheme . . . 12

2.13 Semi-Dynamic Flip Flop Design . 15

2.14 Receiver latency for practical case . 16

2.15 Terror penalty for different data sizes 17

3.1 NoC Design Flow . 21

3.2 Video Object Plane Decoder Core Graph 22

3.3 Mapping of VOPD on a mesh . 22

3.4 Custom mapping of VOPD . 22

3.5 Custom and Mesh Mappings of VOPD 22

3.6 Packet Partitioning into Flits . 24

3.7 SystemC output for VOPD simulation 24

3.8 VOPD average latency . 24

3.9 Pipelined Link Model and latency insensitive link level error control . 25

3.10 Example of 4× 4 switch with two virtual channels 26

ix

4.1 Modified link design with 3 stages . 29

4.2 Entry 3 buffered in secondary flip-flop 29

4.3 stall signal propagated to previous stage 29

4.4 Two-entry FIFO . 30

4.5 Waveforms for reliable scheme . 31

4.6 Control circuit FSM for scheme 1 . 32

4.7 Schematic for scheme 2 . 33

4.8 Waveforms for Scheme 2 . 33

4.9 Control circuit FSM for scheme 2 . 34

4.10 Schematic for Scheme 3 . 35

4.11 Waveforms for Scheme 3 . 35

4.12 Control circuit FSM for scheme 3 . 36

5.1 Amount of over-clocking . 40

5.2 Percentage increase in spacing . 41

5.3 Second flip-flop Usage . 41

5.4 Application effects . 43

5.5 Error rate effects . 43

5.6 Topology effects . 44

5.7 Schemes 1 and 3 . 44

5.8 Schemes 2 and 3 . 45

x

Chapter 1

Introduction

Traditionally, on-chip global communication has been addressed by shared-bus struc-

tures and ad-hoc direct interconnections. Such bus architectures are not scalable on

large System on Chip SoC designs [1] [28] [2]. Hence a new SoC paradigm, Network on

Chips, has evolved which addresses the distinctive challenges of providing an efficient,

functionally correct, reliable operation of interacting system-on-chip components [3].

Faster clock cycles and shrinking feature sizes in the DSM technology have resulted

in using a latency insensitive design approach for designing the communication links

[8]. With continued scaling of transistors the wire delay as a fraction of the total

delay is increasing [4]. The signal propagation delay of an uninterrupted wire grows

quadratically with its length hence after some length the wire needs to be partitioned

into smaller segments with buffers in between [27] such that delay of each segment is

equal to the clock cycle. For example, in a 50nm technology a highly optimized link

will need six to ten clock cycles to cross the chip [4]. The growing need of having high

performance at lower cost has lead to optimizing the utilization of wire. As clock

frequencies increase, scaled wire become relatively slower and on-chip communication

delay becomes the limiting factor of future chips [27]. Ensuring reliability of data

transfer becomes all the more important in such situation. Error-correcting link de-

sign techniques have been proposed which use schemes such as encoding and decoding

the data [13] to detect errors, using asynchronous handshake (acknowledge, request)

protocol [14] and using extra elements such as latches to capture double-capture data

[15] [12].

In DSM technology, wires are becoming thicker and taller but their widths are

not increasing proportionally. Due to this the coupling capacitance to adjacent wires

1

CHAPTER 1. INTRODUCTION 2

is increasing leading to large propagation delays due to capacitive crosstalk and in-

creased susceptibility to errors due to DSM noise [21]. The worst case delay of a line

is (1 + 4λ)τ where τ is the delay of line without any capacitive coupling and λ is

the ratio of the coupling capacitance to bulk capacitance [22]. For λ = 2, the delay

increases by nine fold. Delay penalty due to coupling capacitance is maximum when

adjacent buses transition in opposite directions. In a triple RC-coupled line the sig-

nal propagation delay of the center line may be 50% off from that of a single isolated

line with similar structure [23]. Many bus encoding techniques such as [24] , [25],

[21] have been proposed that decrease crosstalk between wires and avoid adversarial

switching patterns on the data bus. Most of the schemes require additional wires,

encoders and decoders. The use of routing algorithms that decrease the probability

of faults have been explored in [36], [39]. The use of coding techniques for detecting

and correcting on-chip communication errors have been analyzed in [37], [41], [42].

In most of these coding schemes, once an error is detected, retransmission of data is

required. Coding schemes that are used to correct errors at the receiver have higher

hardware complexity due to the use of complex encoders and decoders [37]. Moreover,

correcting multiple errors by such coding schemes is practically infeasible. Worm et

al. [38] present a method to monitor the error rate on the links to dynamically vary

the supply voltage and reduce power dissipation. The method uses encoding and

decoding techniques at sender and receiver ends to detect errors. Li et al., [40] mon-

itor the data bus to detect adverse switching patterns (that increase the wire delay)

and change the clock frequency dynamically to avoid timing errors on the bus. This

requires a bus monitoring system which may not scale with bus width. Also clock

control may not be easily feasible in a heterogenous NoC system. Wire delay can be

affected by other forms of interference such as supply bounce [35], electromagnetic

interference and alpha particle radiation, which eventually lead to transient errors in

data transmission. Device characteristics fluctuate to a large extent and also cause

variations in delay. For a typical 8 inch wafer a 3 sigma speed shift across the chip

[26] is observed. An approximate formula as given by [26] for frequency shift due to

process variation in 0.13u process is shown below.

∆F (L, V t, Tox) ≈ −300∆L/L− 800∆V t (1.1)

It is observed that 20mV shift in Vt causes a change of 16Mhz. For 5%4L/L of

4L/L shift, a frequency deviation of 65Mhz is obtained.

CHAPTER 1. INTRODUCTION 3

Thus the predicted delays during design time may be quite different from the

actual delays on silicon. Worst case or conservative design approach will give lesser

performance benefits as technology further advances since these undesired effects may

consume substantial fraction of the total clock cycle and energy of the chip. Reli-

able link design approaches are needed where the link is tolerant to the variability in

the delay due to unpredictability in the wire characteristics. This work introduces a

Timing-Error tolerant (Terror) design approach towards NoC link design which en-

sures reliability, correctness and has minimum impact on system performance. This

system corrects transient timing delay errors caused due to crosstalk or adversarial

data patterns on adjacent bits of a bus. Errors caused due to manufacturing de-

fects (such as broken link) or permanent failures (such as oxide breakdown) are not

addressed by the proposed system.

There have been several approaches in the design space to detect and correct

timing errors. Unlike Terror scheme, the error penalty of these schemes increases with

the error rate. Teatime [11], tracks the logic delay variation and dynamically adjusts

the clock frequency to accommodate the changes in logic delay. It tries to avoid

timing errors but requires complex analog frequency controller (to change the clock

frequency) and entails an overhead of the delay tracking logic. Also, the correction

efficiency depends upon the time taken between the detection of actual delay variation

and the corresponding change in clock frequency. Razor [12] based system has the

same basic principle as Terror and is used to control power (supply voltage) by

monitoring the error rate. It detects and corrects error but has one cycle penalty per

error occurrence. Also, it gates the global clock to delay the whole pipeline. Clock

control may not be always possible, especially in heterogeneous systems. Favalli et

al. [13] assume an encoded data signal which is checked by a small decoder present

at the input of each flip-flop. In case of an error, clock is delayed for one cycle, till

the correct value of data settles. This results in one cycle penalty for a single timing

error. Mousetrap [14] is a high speed asynchronous pipeline which ensures correct data

availability to consecutive stages, but has a substantial overhead of communication

signals (acknowledge and request signals). Iroc [15] suggests to include a latch with

delayed clock to detect transient faults due to soft errors. This technique is similar

but gives error penalty per occurrence of soft error and involves clock control circuitry.

There are many coding techniques for correcting errors such as the Hamming code,

but they require extra wires, decoding and encoding circuitry at sender and receiver

CHAPTER 1. INTRODUCTION 4

ends and do not scale well with bus widths [37]. Moreover correcting multiple errors

in the data is difficult in such coding schemes. All of these techniques introduce large

latency overheads depending on the error rate and have substantial overhead for large

bus widths. Terror -enabled systems scale well with bus width and give a bounded

penalty that is only dependent on the number of buffer stages between the sender

and the receiver and not dependent on the data error rate.

Terror -enabled systems address only transient timing errors. Static errors such

as stuck-at faults or cosmic radiation induced faults are assumed to be detected and

corrected by other means such as parity encoding, cyclic redundancy checks etc.

Terror -based systems are suitable for designs having high error rate. Such high rates

are possible in a aggressive design approach, where the clock frequency in higher than

conservative design or the physical inter-buffer spacing on a link is increased beyond

conservative limits. High error rates can be also present in scenarios where the system

voltage is reduced for power savings. Terror -enabled systems may not be the suitable

for low error rate conditions or low congestion scenarios where simpler schemes can

be more useful. In this work, we assume that sufficient routing resources are available

to route the extra control signals used in the system.

This thesis is organized as follows. Chapter 2 introduces Terror design technique,

communication protocol and analysis of its latency benefits. Chapter 3 presents a

NoC design flow Netchip which is used to design application-specific synthesizable

NoC architectures. Chapter 4 describes the implementation and benefits of a Ter-

ror -enabled NoC that explores three different robust link design methodologies based

on Terror design principle. Chapter 5 presents simulation and experimental results

for proposed error-resilient NoC link designs on Netchip architecture, using different

benchmark suites. Chapter 6 summarizes the conclusion.

Chapter 2

Terror: Timing ERROR Tolerant

Link Design

2.1 Timing errors

Timing errors occur when the correct data does not arrive at the capturing (rising)

edge of the clock (assuming positive edge triggered flops). This happens when there

is a relative deviation in the arrival times of the clock and the correct data. Figure

2.1 shows how a relative shift between clock and data arrival times causes a timing

error.

logic 1

cba

logic 0

DATA

CLOCK

Figure 2.1: Variation in clock and data arrival times

In figure 2.1 the correct value (logic 1) of data comes at time instant b and is

captured by the rising edge of the clock. If the data arrives late at time instant c or if

the clock arrives early at a then a wrong data is captured and we get a timing error.

Such timing errors can occur due to a number of reasons such as clock skew, clock

jitter, variation in logic delay computation, crosstalk induced delay variation [23] [22],

PVT (Process, Temperature, Voltage) variations [26], delay changes due to ground

bounce [35] etc. Such effects result in temporary variations in data value, such that

5

CHAPTER 2. TERROR: TIMING ERROR TOLERANT LINK DESIGN 6

the correct value of data settles down after the rising edge of clock. Figure 2.2 shows

various scenarios in which an error can occur. In figure 2.2 correct data is available

at time instant t1 and not t0. A timing error can be detected by comparing the data

captured at t0 and t1.

t0
t0 t0t1

High Slew Rate Noise spike
Late arrival time

t1

t1

Figure 2.2: Causes of timing error

Faster clock cycles and shrinking features sizes have resulted in smaller logic delays

but wire delay has remained relatively constant. A long wire crossing the chip cannot

be traversed in one clock cycle. Hence the wire is divided into smaller segments

separated by buffers (flops) [45] [44]. The wire delay can now be expressed in integral

multiples of clock cycles. Figure 2.3 shows a typical buffered link.

pipeline
buffer 1

ReceiverSender pipeline pipeline
buffer 2 buffer b

...
Figure 2.3: Typical Buffered Link

Each buffer is a single flop which captures data at the rising edge of clock. In

a Terror enabled link, this buffer is modified and an error correcting circuit is also

added, as shown in figure 2.4.

2.2 Design Principle

In a Terror system, the buffer (henceforth called Terror flop) has two flops - main

flop and delayed flop. As shown in figure 2.5, the main flop is clocked by ck and

the delayed flop is clocked by ckd, which is delayed with respect to clock ck. The

incoming data is sampled twice, once by the main flop (at rising edge of clock ck)

and then by the delayed flop (at rising edge of clock ckd). The clock-delay between

CHAPTER 2. TERROR: TIMING ERROR TOLERANT LINK DESIGN 7

error
control
circuit

pipeline

buffer

pipeline

buffer
to

changed

Figure 2.4: Modified Buffer

ck

input

flip−flop

flip−flop

main

delayed

XOR

errq

ckd

Figure 2.5: Basic Idea

the main and the delayed flops (i.e. the delay between the clock edges ck and ckd)

is designed such that even in the presence of unpredictability in the wire delay, the

correct data bit is obtained at clock edge ckd. Thus the delayed flop is designed to

operate in an error-free manner. The EXOR gate is used to compare the data captured

by the main flop and delayed flop. Signal errq is high when there is a timing error i.e.

when the outputs of the two flops are different. There are two modes of operation

of the Terror flop: normal mode and delayed mode. Initially all the Terror flops on

the link are set to the normal mode and data transmission begins. In every cycle,

at the clock edge ck, the main flop captures and transmits the incoming data. At

clock edge ckd, the delayed flop captures the incoming data and the error detection

circuit checks whether there is any difference between the main flop and the delayed

flop values. If there is a difference, there is an error in the main flop value and the

data that was transmitted at ck is incorrect. The correct data from the delayed flop

is sent at the next clock edge ck and the Terror flop enters the delayed mode. Suitable

control signals for the downstream buffers/receiver to recover from the error are also

generated and sent. A wrong data is sent for one cycle and thus there is one cycle

penalty for occurrence of an error.

Once the Terror flop has entered the delayed mode, all subsequent data is captured

by the delayed flop and sent by the main flop in the next cycle. Once the Terror flop

goes into delayed mode it always operates in an error-free manner. This is because

the data gets more time to settle to the correct value since it is captured by the

delayed flop at rising edge of clock ckd. Thus after a single cycle penalty, there is no

additional penalty for the rest of the data transmitted through the Terror flop. The

same argument applies to all the pipeline buffers of the link. Thus in case of errors,

CHAPTER 2. TERROR: TIMING ERROR TOLERANT LINK DESIGN 8

the maximum (worst-case) overhead in sending data through the Terror-based link

is just the number of pipeline buffers in that link, independent of the data size and

error-rate. When the data transmission is completed, the Terror flops that are in the

delayed mode return back to the normal mode.

2.3 Logic level Implementation

delayed
flip−flop

input data

sel

errq

ck

ckd

XOR

outputM

U

X

main

flip−flop

Figure 2.6: Logic level implementation of Terror

SR

prev_corr

sel

err

sel

err

AND
OR

AND

prev_corr

ckd

ck

tion circuit
Clk genera

OR

errqw

errq2
errq1

...

corr_out

ckdd

correction

flip−flop

Figure 2.7: Error control circuit

In the Terror-based communication scheme, each pipeline flop is replaced by the

Terror flop, which consists of two flops (main flop and delayed flop), a 2:1 multiplexer

(MUX) and an XOR gate (refer Figure 2.6). The delayed clock ckd for the delayed flop is

derived from the main clock ck locally at each buffer by using a delay chain (a chain

of inverters). At each pipeline stage, an error control circuit (Figure 2.7) is added for

generating suitable control signals when an error is detected.

CHAPTER 2. TERROR: TIMING ERROR TOLERANT LINK DESIGN 9

Bit 1

 1
Control Control

 2

Terror

 2 1

Terror

..

.

 1

Terror Terror

 2

Terror

 b

OR

...
OR

...

. . .

Terror

 b

OR

...

 b

. . .

. . .
Control

Bit w

sel2 selbsel1

errq1

errqw

Figure 2.8: Link Design using Terror

Let the number of bit-lines in the link be w lines. The XOR outputs (errq signals)

generated at all the w bit lines, at each pipeline stage of the link are ORed and fed

as an input to the error control circuit. The error control circuit consists of a SR

latch, AND, OR gates and a correction flop. For proper operation, the correction flop

is clocked by ckdd, which is delayed from clock ckd and locally generated at each

pipeline stage. A Terror-based link with w bit-lines (width of the link) and b pipeline

buffers (on each bit line) is shown in Figure 2.8. Note that only one error-correction

circuit is used at each pipeline stage for all the w bit-lines of the link, so that all the

bit-lines of the link are in synchronization with each other. Moreover, the overhead

of the error correction circuitry is also reduced by this design.

When an error is detected by any of the Terror pipeline stages, the err signal,

which is an input to the SR latch is set. The SR latch output, sel is then set to 1,

so that the 2:1 MUX starts sampling the delayed flop output and the Terror flops at

this pipeline stage enter the delayed mode. Control signal corr out is set to 1 and

sent to the next pipeline stage/receiver to indicate that the previously sent data was

incorrect (this corr out signal is received as the prev corr signal by the next pipeline

stage/receiver). Once the Terror buffer enters delayed mode, no more errors occur as

the data sampling is through the delayed flop (refer Figure 2.6). After all the data

is transmitted, the MUX control signal is reset to 0 and the Terror buffer returns to

normal mode. In Figure 2.9, we show an example where an error is corrected in cycle

2 and the Terror buffer operation transitions from normal mode to delayed mode.

In the above scheme, we note that if the current pipeline stage had an error at

clock cycle t and any previous pipeline stage has an error at clock cycle t+k (k > 0),

then if the current pipeline receives a prev corr signal, it switches back to the normal

CHAPTER 2. TERROR: TIMING ERROR TOLERANT LINK DESIGN 10

ERR

CKDD

OUT
CORR

OUT

SEL

CKD

DATA

CK

Figure 2.9: Normal to delayed mode

SEL

OUT

 CORR
 PREV

DATA

CKDD

CK

Figure 2.10: Delayed to normal mode

mode and sends the new data coming from the previous pipeline stage. There is no

need to resend the data at the current pipeline stage in the next cycle as anyway it

is incorrect (because of the error in the previous stage, as indicated by the prev corr

signal). This is shown in Figure 2.10. To implement this scheme, the SR latch is

modified, such that the output is 0 when prev corr is 1 (meaning that the previously

received data is wrong and the current data is correct) and the output is 1 when

errq is one. When a Terror flop returns from delayed mode to normal mode, the

input prev corr is not propagated to the next stage. This is because Terror flop is

not sending an incorrect data. For proper Terror operation, the prev corr line used

for signaling the occurrence of an error should be error-free. The prev corr line can

be made error free by various means such as shielding the line from other bit lines,

routing the line in higher metal layer so that it propagates faster, providing parity

checker to detect an error in the line, etc. As only a single prev corr line is added to the

link that typically has multiple bit-lines, the overhead in shielding or conservatively

designing the prev corr line is low.

Figure 2.11 plots the latency for transmitting 1000 bits of data on the link as a

function of the delay between the clocks ck and ckd of the main and delayed flip flops

for an on-chip bus length of 1.2mm operating at 1 GHz. For a conservative design the

number of pipeline stages on the bus is 6 (assuming 0.2mm spacing between adjacent

buffers). In a Terror-enabled system, since the clock ckd can be delayed by one cycle

(ideally) from clock ck the maximum spacing between consecutive Terror buffers can

be twice the clock cycle (as the delayed flop can capture data one cycle late). Thus

for an aggressively design link, the number of pipeline stages are halved to 3. The

plot in figure 2.11 shows that, as the delay between the clocks, ck and ckd increases,

CHAPTER 2. TERROR: TIMING ERROR TOLERANT LINK DESIGN 11

0 20 40 60 80 100 120
800

900

1000

1100

1200

1300

1400

1500

% ckd delay
R

e
ce

iv
e
r

la
te

n
cy

 (
cy

cl
e
s) 1% error rate

3% error rate
5% error rate

Figure 2.11: Receiver latency variation with delay between clocks ck and ckd for ideal
case

the number of errors detected and corrected by the Terror scheme starts to increase

as the delayed flip-flop gets a larger time window to sample the incoming data. When

the difference between the clocks is less than one cycle, it is assumed that the data

bit errors that are not corrected by Terror buffers are retransmitted using an end-to-

end flow control mechanism. In most network designs, a Go Back-N retransmission

strategy is used, where all the data bits following the data with error will be resent

[10]. In this case, the latency penalty is much higher. As seen from the plot, there

is a significant reduction in the latency as the delay between the clocks ck and ckd

increases.

2.4 Comparison with Alternative Schemes

In this section we compare the performance (latency savings) of a Terror system with

a typical error correcting scheme such as Razor [12]. Razor based system has same

basic principle as Terror. In a Razor based system, the supply voltage is adjusted

by monitoring the error rate. Error recovery is done by delaying the pipeline by

one cycle, which results in one cycle penalty per error occurrence. We evaluate the

benefits of Razor and Terror systems, in terms of consumption of clock cycles to send

data.

For example, consider a Razor based system, in which an error occurs at each

cycle. For transmitting N cycles of data, we will need 2N cycles. This is because,

each error occurrence results in a single cycle overhead. Thus the percentage of useful

CHAPTER 2. TERROR: TIMING ERROR TOLERANT LINK DESIGN 12

cycles is just N/2N=50% and the whole pipeline is delayed by N cycles. Now consider

a Terror-based system, where the maximum error penalty is limited by the number

of Terror elements in the communication link. This is because one cycle penalty for

error correction is incurred only for the first occurrence of error at the input of a

Terror element. The operation is such that subsequent data transmissions are error-

free. Thus, if the total number of Terror elements between the sender and receiver

is b, then the percentage of useful cycles is N/(N + b) and the pipeline is delayed by

only b cycles. For b < N , there are substantial benefits.

5000 10000 15000

0.5

1

1.5

2
x 10

4

R
ec

ei
ve

r l
at

en
cy

 (c
yc

le
s)

Number of bits sent

1% (retransmit)
1% (terror)
5% (retransmit)
5% (terror)

Figure 2.12: Comparison of latency for the retransmission and Terror scheme

Figure 2.12 shows the comparison of receiver latency for a Terror-based scheme

and a traditional retransmission based scheme. The latency for data transmission for

two different error rates (1% and 5%) is plotted for various data sizes for the two

schemes. As seen from the figure, the latency for the Terror system for various error

rates is almost equal to the latency for an ideal case when there are no timing errors.

For a chosen error rate, as the size of data transferred increases, there is significant

latency savings in the Terror system when compared to the traditional scheme of

retransmission. Moreover, as the error rate starts to increase, there is much larger

savings in latency for the Terror based system. For the data size of 1000 bits and

error rate of 5%, there is a 35% reduction in latency in the Terror-based system when

compared to the retransmission scheme.

CHAPTER 2. TERROR: TIMING ERROR TOLERANT LINK DESIGN 13

2.5 Timing Analysis

In a Terror-based system, the reduction in latency when compared to a traditional

design approach depends on the delay between the clock edges ck and ckd. Ideally,

the clock ckd can be delayed by one cycle from ck, so that the number of pipeline

stages in the link (and hence the latency) is reduced by 50%. This is because delay

variations upto 1 clock cycle can be tolerated. Thus the physical distance between

adjacent buffers can be doubled and hence the number of buffers can be halved. In

practice, the delay between the clock edges ck and ckd is much lower than one cycle

as it is bounded by the delay and timing requirements (setup time, hold time) of the

logic elements. Note that the effect of the logic delay can be decreased significantly

by optimizing the transistor level implementation of the design.

As shown in figure 2.6, the main flop (clocked by ck) has 2:1 MUX at its input. This

introduces additional delay in the data path. Now the data has to arrive earlier at

the input pin as compared to a flop without MUX . This increases the setup time of the

data input to the Terror element. This increase in setup time is given by tmux (which

is the MUX delay). Similarly, we have an AND gate and an OR gate at the input of the

correction flop, which are in the path of prev corr signal. This increases the setup

time requirement of the prev corr signal over the normal set-up time (tsetup(nominal)).

The new set-up time for the correction flop is given by:

tsetup = tand + tor + tsetup(nominal). (2.1)

The minimum spacing required between rising edges (assuming all flops are rising

edge triggered) of ckd and ckdd is determined by the total path delay of the err signal.

The err signal has to satisfy the setup time of the correction flop. The err signal path

delay starts from the clock ckd to q delay of the delayed flop , through the XOR and

OR gate (ORs errq signals) and then through the AND and OR gates. The clock ckdd

to the correction -flop should arrive such that it captures the correct value of the err

signal. This correct value of err signal is only available sometime after the rising edge

of ckd and this time delay is the summation of all the delays in the err path and the

nominal setup time of the correction flop. Thus ckdd should be spaced from ckd to

accommodate the err path delay. The minimum spacing tckd between rising edges of

ckd and ckdd is given by the equation.

CHAPTER 2. TERROR: TIMING ERROR TOLERANT LINK DESIGN 14

tckd = tckq + txor + tor−tree + tand + tor + tsetup(nominal) (2.2)

In the case of a bus, the errq signals of all bit lines in a link are ORed. This ensures

that all the bit lines in the link are in synchronization with each other, simplifying the

receiver design. The OR tree can be implemented as a domino gate to reduce delay.

This domino gate can precharge when clock ckd is low and evaluate when ckd is high.

There is some delay for Terror to go from delayed to normal mode. Terror goes from

delayed to normal mode when prev corr is set to one. This resets the SR latch output

(sel signal). This sel signal is an input to the 2:1 MUXs. For correct functionality, the

sel signal should change value before the rising edge of ck. The minimum spacing

between rising edges of clocks ckdd and ck is determined by the total path delay of

the sel signal. The prev corr signal satisfies the setup time of the correction flop and

hence comes sometime before the rising edge of ckdd. Path delay of sel signal starts

when prev corr arrives, then it goes through the SR latch and then the 2:1 MUX .

Minimum spacing (tckdd) between ckdd and ck is the total path delay minus the setup

time of the prev corr signal.

tckdd = tSRlatch + tmux − tsetup(correctionflop) (2.3)

In the error correcting circuit, the err signal (which is the output of the OR of the

errq signals) asserts the sel signal. The sel and err signals are also fed as inputs to

the correction flop of the error control circuitry. Thus sel should not change before

thold of the correction flop. It should satisfy below hold-time condition:

thold < tSRlatch + tand + tor (2.4)

The timing delays and overheads can be minimized by transistor level optimiza-

tions such as including the input MUX into the flop, using a domino OR gate instead of

a static OR tree, using a simplified latch design, combining AND-OR logic into the cor-

rection flop. Figure 2.13 shows the optimized transistor-level circuit diagram where

flip-flops with embedded logic have been used.

The clock (ckd) to the delayed flop could ideally be delayed by one cycle, such

that even if the data arrives one cycle late it is captured and sent the next cycle.

But due to timing overheads this window is decreased by (tckdd + tckd). This gives

an upper bound on the frequency by which the clock cycle can be decreased beyond

CHAPTER 2. TERROR: TIMING ERROR TOLERANT LINK DESIGN 15

FLOP

2:1 MUX

CK

CK

CK

CK

Q

Vdd

Gnd

Gnd

Vdd

D1D0

SEL

Figure 2.13: Semi-Dynamic Flip Flop Design

Table 2.1: Timing Overheads
Parameter % Overhead
Hold Time 10

32-bit OR delay 8.6
tckdd 9.7
tckd 27.0

ckd delay 36.7

specifications.

2.6 Transistor Level Simulation

A transistor level Terror element was designed for a 32 bit bus in 100 nm technology

targeted for 1GHz operating frequency, operating at 1.2 V. From SPICE simula-

tions, we obtained values for timing overheads, presented in Table 2.1, where the

overheads are expressed as a percentage of cycle. This table is an estimate of the

timing constraints and the timing overheads can be reduced substantially by using

better transistor sizing techniques, process technology and commercially available

CAD tools.

The table 2.1 shows that practically clock ckd cannot be delayed beyond 63.3%

of cycle time. This is because there is a minimum spacing requirement tckd + tckdd =

36.7% which should be satisfied. Hence only 100-36.7 = 63.3% of cycle is available for

ckd delay. Also, to satisfy hold time requirement (10%) of the main flop, minimum

spacing between ck and ckd should be 10% of the cycle. Due to this, range for

CHAPTER 2. TERROR: TIMING ERROR TOLERANT LINK DESIGN 16

variation of ckd is limited to 53.3% of the clock cycle. To simplify calculations, we

use the range for variation of ckd as 50.0% of the clock cycle.

0 20 40 60
800

1000

1200

1400

1600

% ckd delay

R
ec

ei
ve

r
la

te
nc

y
(c

yc
le

s) 1% error rate
3% error rate
5% error rate

Figure 2.14: Receiver latency for practical case

Figure 2.14 shows the latency for transmitting 1000 bits of data for various error

rates as a function of the delay between the clocks ck and ckd for the practical case.

Using conservative design approach, the number of buffers on the link is 6. Ideally

the delay between clocks ck and ckd can be one cycle which reduces the number of

buffers on the link by 50% (3 buffers on the link). Practically, due to timing overheads

associated with the flip-flops and the logic elements, the delay between clocks ck and

ckd can be increased only by half the clock cycle, so that the on-chip link is pipelined

with 4 stages. Thus in figure 2.14 the percentage ckd delay stops at 50%.

Errors due to meta-stability of data, as discussed in [12] can occur at the input

of the delayed flop. These can not be completely eliminated but can be minimized.

Since we use a delayed flop instead of a delayed latch used in [12] we significantly

minimize short-path constraint problem.

2.7 Analysis of Penalty

The maximum latency penalty in the Terror system is bounded by the number of

pipeline stages in the link and is independent of the amount of data sent and the

error rate. This is because, a single cycle latency penalty is incurred at a pipeline

stage only for the first detection and correction of an error. Once an error occurs at

a pipeline stage, the pipeline stage enters the delayed mode, so that subsequent data

transmission at this pipeline stage is guaranteed to be error free.

CHAPTER 2. TERROR: TIMING ERROR TOLERANT LINK DESIGN 17

The actual latency penalty is a function of temporal and spatial probability of

error occurrence. For a Terror link with b pipeline stages, we get

1 ≤ Penalty ≤ b (2.5)

The magnitude of penalty is a function of when and where the timing error occurs

in the pipeline. In Figure 2.3, if a timing error occurs first at the pipeline stage b,

followed by an error at pipeline stage (b − 1) and so on up to the pipeline stage 1,

then the total penalty for error correction is just one cycle. This is because the error

in pipeline stage (b− 1) is absorbed by Terror at pipeline stage b (since Terror b goes

from delayed to normal mode, incoming error is not propagated by Terror b).

On the other hand, if a timing error occurs first at the pipeline stage 1, followed by

an error at pipeline stage 2 and so on up to Terror b, then penalty for error correction

is b cycles. This is because at each pipeline stage, a single cycle penalty is incurred

for error detection and correction.

Thus, the maximum penalty in the Terror scheme is b cycles, while the actual

penalty lies between 1 and b cycles. Also, we note that maximum penalty is indepen-

dent of the total amount of data sent. This makes Terror design very attractive for

high bandwidth data communication of current and future SoCs.

200 400 600 800
0

1

2

3

4

5

6

Number of bits

P
en

al
ty

 (
cy

cl
es

)

0.5% error rate
1% error rate
1.5% error rate
2% error rate
3% error rate
4% error rate

Figure 2.15: Terror penalty for different data sizes

Figure 2.15 shows the variation of maximum penalty for error correction in the

Terror system, with respect to the total number of bits sent on the link. With increase

in error rate and size of data transmitted, the penalty increases until it reaches 4.

After the penalty of 4 cycles, which is the number of pipeline stages in the link, the

CHAPTER 2. TERROR: TIMING ERROR TOLERANT LINK DESIGN 18

penalty is constant with increasing data size and error rate. Note that a typical error

correction mechanism would degrade at higher error rates and large data size. But in

Terror enabled system, the latency overhead does not increase with error rate or data

size, making it suitable for large bandwidth data transmission of SoCs. Moreover,

as explained in [12], the system can be operated at lower voltage levels when errors

are permitted to occur in the system. In such a design, significant power savings can

be achieved as the error-rate increases and Terror-based communication mechanism

supports such a design.

Chapter 3

Network on Chips Design

Methodology

This chapter describes Network-on-Chips Design Flow, which is the background in-

formation required for next chapter, to describe Terror enabled NoC links. This

information is given here only for the sake of completeness.

The growing complexity of customizable single-chip multi-processors has necessi-

tated the use of a highly-scalable communication infrastructure. The system archi-

tecture is becoming more communication centric than computation centric and hence

efforts are made to design efficient and reliable communication networks. Growing

number of Network-on-Chip (NoC) architectures have been proposed recently for

System-on-Chip (SoC) integration. Depending upon the application requirements, a

NoC design framework can derive an optimized configuration with respect to differ-

ent design objectives and instantiate the selected application specific on-chip micro-

network. The NoC design flow NetChip partitions the development work into major

steps (topology mapping, selection and generation) and provides proper tools for their

automatic execution (SUNMAP [32], ×pipesCompiler [33]).

3.1 Introduction

A typical SoC is a highly complex system consisting of building blocks from mul-

tiple sources (either in-house made or externally supplied), such as general-purpose

fully programmable processors, co-processors, DSPs, dedicated hardware accelerators,

memory blocks, I/O blocks, etc. A scalable communication architecture that supports

19

CHAPTER 3. NETWORK ON CHIPS DESIGN METHODOLOGY 20

the trend of SoC integration consists of an on-chip packet-switched micro-network of

interconnects, generally known as Network-on-Chip [3, 27, 28]. Interface protocols

such as Virtual Component Interface (VCI) [29] and Open Core Protocol (OCP) [30]

are used for integrating domain-specific computation resources. In the NoC design

methodology, various computing tasks at the application level are captured into mod-

els of computation. With the help of a mapping tool, area and power estimates are

made and feasibility of different topologies is explored. An instantiation tool builds

an architecture of network components depending upon the mapping information.

3.2 NoC Design Flow

The design flow of NetChip is presented in Figure 3.1. NetChip assumes that the

application has already been mapped onto cores by using pre-existing tools (such as

[31]) during the hardware/software co-design phase. The resulting cores together with

their communication requirements represent the inputs to our NoC synthesis flow.

The average rate of data transfer between the cores is determined by static analysis

or simulation. A graph called core graph is made which represents the resulting cores

and communication demands.

NetChip has three phases of operation: topology mapping phase, topology selec-

tion phase and topology generation phase. NetChip in-turn has two tools built into

it: SUNMAP [32] which performs the topology mapping and selection phases and the

×pipesCompiler [33] which generates the selected topology.

In the topology mapping phase, NetChip takes as inputs:

• the core graph with communication among cores annotated as edge weights

• the design objective function that needs to be optimized

• the design constraints that are to be satisfied by the mapping.

Netchip has a Graphical User Interface (GUI) designed in TCL/TK for entering

the inputs. The input core graph is then mapped onto various standard topologies

(mesh, torus, hypercube, Clos and butterfly) defined in the topology library. Netchip

explores various design objectives such as minimizing average hop delay, area and

power dissipation. In the topology selection phase, the various topologies (with map-

pings produced from the mapping phase) are evaluated for several design objectives

CHAPTER 3. NETWORK ON CHIPS DESIGN METHODOLOGY 21

SUNMAP

Selection
Phase

Rout
Func

Topo
Lib

Plan
Floor

Lib
Pow

Lib
Area

Simulation

& Simul
xpipes
Arch

Topologies

HW/SW

Selec
Topol xpipes

Compiler

Codesign

onto

Topology Mapping Phase

Generation Phase

Files
SystemC

of whole
design

Appln

Topology
Custom

Mapping

Figure 3.1: NoC Design Flow

and the best topology for the application is chosen. The design file describing the

selected topology and routing files describing the routes (or paths) to be taken (which

depends on the chosen routing function) are automatically generated.

In the topology generation phase, NetChip reads the design and routing files and

generates SystemC description of network components for the selected topology us-

ing ×pipesCompiler. The network components generated are optimized for that

particular network and support reliable, latency- insensitive operation.

3.3 NoC Design tools

3.3.1 SUNMAP: Topology mapping tool

SUNMAP produces a mapping of cores onto various NoC topologies that are defined

in a topology library. The mappings are optimized for the chosen design objective

(such as minimizing area, power or hop delay) and satisfy the design constraints

(such as area or bandwidth constraints). SUNMAP uses floorplanning information early

in the mapping process to determine the area-power estimates of a mapping and

to produce feasible mappings (satisfying the design constraints). The tool supports

various routing functions (dimension ordered, minimum-path, traffic splitting across

minimum-paths, traffic splitting across all paths) and chooses the mapping onto the

CHAPTER 3. NETWORK ON CHIPS DESIGN METHODOLOGY 22

best topology from the library of available ones.

ST

SR
AM2

RI
SCBAB

UP
SAMP

ADSP

SD
RAM

MED
CPU

IDCT

32910

670

173 500

250

40

0.5

600
60

40
0.5190

ETC

RA

AM1
SR

AUVU

Figure 3.2: Video Object Plane
Decoder Core Graph

up

iQuantiDCT
AC/DC

Predict

scan

inverse

decoder
length

run
VLD

samp

s1

− repeater

s3 − 5x5

s2 − 4x4

s1 − 3x3

s1s2

s2

s3s2

s2s3s2

s1s2s1

Padding
Mem

VOP

core

ARM

Mem

Stripe
reconstr

VOP

Figure 3.3: Mapping of VOPD on
a mesh

Figure 3.2 shows the the core graph of Video Object Plan decoder and figure

3.3 shows the mapping on a Mesh topology. In the VOPD, about half the cores

communicate to more than a single core. This motivates the configuration of this

custom NoC, having less than half the number of switches than the mesh NoC. Figure

3.4 shows custom-mapping of the VOPD. By using the area-power models built into

NetChip, the area and power consumption of the network components of the custom

NoC were automatically obtained. Significant area and power improvements are

obtained with the custom NoC, as fewer number of switches are used and the switches

have smaller size than the mesh switches as shown in Table 3.5

samp

Predict

AC/DC
iDCT iQuant

scan

inverse

decoder
length
run

VLD

up

− repeater

s1 − 3x3
s2 − 3x2
s3 − 2x3

S2S3

Padding

S2 S1

Mem

Stripe

Mem

VOP
core

ARM

S2

reconstr

VOP

Figure 3.4: Custom map-
ping of VOPD

Figure 3.5: Custom and
Mesh Mappings of VOPD
Param Mesh Custom Ratio
Area 1.26 0.22 5.73

(mm2)
Power 108.74 40.08 2.71
(mW)

CHAPTER 3. NETWORK ON CHIPS DESIGN METHODOLOGY 23

Table 3.1: Switch Area and Energy

Size Area Energy
(in×out) (mm2) (pJ/bit)

1×1 0.018 7.08
2×2 0.037 21.94
3×3 0.08 45.96
4×4 0.10 79.08
8×8 0.74 313.04

Area-power models are obtained through tools such as ORION [34] for 0.1µ tech-

nology node. Wiring parameters from [4] can be used to estimate link power dissipa-

tion. Area and power consumption for some example switch configurations are given

in Table 3.1.

3.3.2 Xpipes Compiler

×pipesCompiler is used to generate a customized NoC configuration. ×pipesCompiler
uses the ×pipes library, which consists of highly parameterized network components

that can be tailored to the communication needs of the selected architecture.

×pipesCompiler offer high degree of parameterization in which both global network-

specific parameters and local block-specific parameters can be changed as required.

These parameters include flit size, degree of redundancy of error control logic, address

space of the cores, maximum number of hops between any two nodes, maximum num-

ber of bits allocated within a packet for end-to-end flow control etc. Also parameters

related to network interface such as the type of interface (master, slave or both), flit

buffer size at the output port and other interface parameters to the cores such as

number of address/data lines, maximum burst length, etc can also be changed. In

the NoC, data is transmitted in the form of packets. A packet is divided into flits.

Flits can be of various types such as head flit, tail flit or payload flit as shown in

figure 3.6

For the VOPD application described in previous section, cycle-accurate simula-

tions of the NoCs were performed. Two-state Markov Models as stochastic traffic

generators were used to model the bursty nature of the application traffic, with av-

erage communication bandwidth matching the applications’ average communication

bandwidth. Snapshots of SystemC simulations of mesh and custom NoCs for some of

the cores of VOPD are shown in Figure 3.7. The time between transmission of a flit

CHAPTER 3. NETWORK ON CHIPS DESIGN METHODOLOGY 24

. . .Flit

Flit Type = 11

Tail FltHead Flit

Flit Typr = 00 Flit Type = 01

Body Flit Body Flit

Flit Flit Flit

Flit Type = 01

Packet

Figure 3.6: Packet Partitioning into Flits

and its reception, which includes the switch delay, link delay and contention delay,

is marked in the Figure 3.7 . The variation of average packet latency (for 64 byte

packets, 32 bit flits and 7 cycle switch delay) with link bandwidth is shown in Figure

3.8 Application-specific NoCs have lower packet latency as the average number of

switch and link traversals is lower. Moreover, the latency increases more rapidly for

the mesh NoCs with decrease in bandwidth. With the custom NoC, we achieve an

average of 25% savings in latency (see Figure 3.8).

Figure 3.7: SystemC output for VOPD
simulation

1.6 1.8 2 2.2 2.4 2.6
26

28

30

32

34

36

38

40

42

44

Av
g

Pa
ck

 L
at

 (
Cy

)

Cust
Mesh

BW (GB/s)

Figure 3.8: VOPD average latency

3.4 NoC Design components

NoC Link

Switch-to-switch links are subdivided into basic segments whose length guarantees

that the desired clock frequency (up to the maximum speed achievable by a certain

technology) can be used and that the system operating frequency is not bound by

the delay of the longest link. Depending on the specific link length, a certain number

CHAPTER 3. NETWORK ON CHIPS DESIGN METHODOLOGY 25

of clock cycles is needed by a flit to cross that interconnect. As shown in figure

3.9 typically, multiple outstanding flits propagate across the link during the same

clock cycle. When flits are correctly received at the destination switch, an ACK is

propagated back to the source, and after N clock cycles (where N is the length of

the link expressed as number of repeater stages) the flit will be discarded from the

buffer of the source switch. On the contrary, a corrupted flit is NACKed and will be

retransmitted in due time.

By means of a proper buffering policy, network switches have been designed in

such a way that their functional correctness depends on the flit arriving order and

not on their exact timing, so that input links of the switches can be different and of

any length.

D C B A

ACK_VALID=1

ACK=1

ABCDBCD

BCD

ABC

D C B A

A

BCD

A

CD

ACK_VALID=1

ACK=1
ACK_VALID=1

ACK=0

ACK_VALID=1

ACK=0

A

B

A

BCD

D C B

BD C B A

A
Propagazione ACK/NACK

Rilevazione NACK

Rilevazione ACK

Trasmissione

Locazione libera

Go−back−N

ACK/NACK propagation

Detection of corrupted flit

Flit acknowledgment

Transmission

Retransmission

GO−BACK−N

FLITS AT SOURCE SWITCH LINK DESTIONATION SWITCH

Figure 3.9: Pipelined Link Model and latency insensitive link level error control

Noc Switch

NoC switch uses output buffering and is pipelined to maximize the operating clock

frequency of the switch. All switch inputs are connected to the inputs of each output

module. Flow-control signals generated by each module (such as ACK and NACK

CHAPTER 3. NETWORK ON CHIPS DESIGN METHODOLOGY 26

for incoming flits) are collected by a centralized switch unit, that directs them back

to the proper source switch. The CRC decoders for error detection work in parallel

with the switch operation, thereby hiding their latency.

For latency insensitive operation, the switch has virtual channel registers to store

2N+M flits, where N is the link length (expressed as number of basic repeater stages)

and M is a switch architecture related contribution (12 cycles in this design). The

reason is that each transmitted flit has to be acknowledged before being discarded

from the buffer. Before an ACK is received, the flit has to travel across the link N

cycles, an ACK/NACK decision has to be taken at the destination switch (a portion

of M cycles), the ACK/NACK signal has to be propagated back (N cycles) and

recognized by the source switch (remaining portion of M cycles). During this time,

other 2N + M flits have been transmitted but not yet ACKed. Figure 3.10 shows a

typical switch configuration with two virtual channels.

2N+M
flits

OUT[0]

OUT[1]

OUT[2]

OUT[3]

IN[0]

IN[1]

IN[2]

IN[3]

Switch

Figure 3.10: Example of 4× 4 switch with two virtual channels

NoC Network Interface

×pipes Network interface communicates with cores using OCP and performs proto-

col conversion to adapt to network protocol. The NoC architecture uses wormhole

switching and static routing. Routes are obtained by the network interface by access-

ing a look-up table based on the destination address. Each route is represented by a

set of direction bits. Each switch directs the flits belonging to a certain packet to the

particular output port, based on the direction bits.

CHAPTER 3. NETWORK ON CHIPS DESIGN METHODOLOGY 27

The ×pipesCompiler

A high-level description of NoC as created by ×pipesCompiler consists of the defini-

tion of the cores, network interfaces, switches, links and their interconnections. The

number of pipeline stages of each link is also dictated, based on link length estima-

tions by the floorplanner and target clock speed. The ×pipes library of SystemC soft

macros is used by ×pipesCompiler to generate the network components for the cho-

sen topology. The output of ×pipesCompiler is a SystemC hierarchical description

of all the switches, links, network nodes and interfaces that specifies their topolog-

ical connectivity. The structure of the SystemC output can be optimized either for

simulation or synthesis. The final description can be compiled and simulated at the

cycle-accurate and signal-accurate level, and can be synthesized by back-end RTL

synthesis tools for silicon implementation.

Chapter 4

Terror enabled NoC link designs

As devices shrink and interconnect wire delay becomes more susceptible to cross-

talk, coupling, process variations and other noisy interferences, reliable link design

approaches are needed where the NoC link is tolerant to variations in delay caused by

the noisy environment. This chapter describes three robust link design methodologies

(based on Terror) that provide different levels of reliability for data transferred on the

links with different performance and hardware complexity. The link buffers (flip-flops)

are used to store data, so that the link is used as a storage medium, rather than just a

communication medium. By distributing the input buffers of a NoC switch on to the

links, the number of buffers used in the switches of the NoC reduces considerably (up

to 33%) when compared to traditional input-queued switches, while the performance

of the NoC remains unaffected. These enhanced link designs use an aggressive design

approach, where the links are designed for normal (ignoring data-dependent delay

variations) operating conditions, instead of worst-case operating conditions. Terror

(Timing Error-Tolerant) design methodology is extended in order to cope with the

timing errors that may occur in the aggressive design approach. All the three designs

have the same terminal interfaces such that the three designs can be interchanged in

a plug and play fashion.

4.1 Storing data on the link, not on the switch

This section explains the distributed buffering scheme where the link is used as a

storage medium rather than just a communication medium. The buffer (flip-flop)

on a NoC link is replaced by a two-entry FIFO, which is similar to the Terror flop

28

CHAPTER 4. TERROR ENABLED NOC LINK DESIGNS 29

as shown in figure 2.6 (without the EXOR gate). Figure 4.1 shows a 3-stage link

pipeline using 2-entry FIFO at each pipe-line stage. The scheme has two control

inputs - stall and valid signals. Stall signal is sent by the receiver and flows in the

opposite direction to that of the data, while valid signal is sent by the sender and it

flows in the same direction as that of the data.

RECEIVERSENDER 4 3 2

Valid

Data
..

Figure 4.1: Modified link design with 3 stages

RECEIVERSENDER 2

Data

Stall

45 3
..

Figure 4.2: Entry 3 buffered in secondary flip-flop

RECEIVERSENDER 2

Data

Stall

4 356
..

Figure 4.3: stall signal propagated to previous stage

The sender or receiver may be a switch or a network interface. The receiver

generates a stall signal when its storage capacity is full or if it receives a stall request

from the following stage. The valid signal informs that the data which was received

in the previous cycle (at previous rising edge of clock ck) is valid. During normal

operation (i.e. when there is no stall request) only one of the flip-flops in the 2-entry

FIFO is used, as shown in Figure 4.1. When a stall signal is received by the 2-entry

FIFO (shown in Figure 4.2), then data on output of the main flip-flop is stalled and

new data is received in the secondary flip-flop. The stall is propagated to the previous

stage as shown in Figure 4.3. The schematic of the 2-entry FIFO is shown in Figure

4.4.

As shown in Figure 4.4, when a stall is received, the main flip-flop is stalled, and

the new data is captured by the secondary flip-flop. The control circuit generates the

stall signals for the main flip-flop and secondary flip-flop and the muxselect signal.

The control circuit has two inputs - stall signal and valid signal and five outputs -

stall and valid signals for the previous and next stages respectively, and three control

CHAPTER 4. TERROR ENABLED NOC LINK DESIGNS 30

D Q
flop

dary

Secon−

Main

flop

QD

IN

OUT

ck

ck

M

U

X

Control circuit

Stall in

muxselect

BIT SLICE

Stall out

stall2 stall1

Valid in Valid out

Figure 4.4: Two-entry FIFO

signals for controlling the operation of the two-entry FIFO (shown in Figure 4.4). In

the traditional input-queued scheme, the number of buffers needed at each input of

the switch and the link is 3b (2b at the switch input and b on link) [46] as compared to

the 2b+2 buffers (2b at the link and 2 at the switch input) in this scheme. Moreover,

as all the inputs of a switch have same buffer count, the switch design becomes more

modular, when compared to the traditional switch design. The control circuit used

at link pipeline stage in this scheme is common for all the w data bits of the NoC

link, and thus the overall cost of the control circuit is negligible.

4.2 Reliable buffered link design

This sections presents three robust link design methodologies, based on Terror to de-

tect and correct the timing errors that can occur in a NoC link, without substantially

affecting the performance of the NoC. In the first scheme, timing errors are only

detected and are not corrected. Error correction is assumed to be done by retrans-

mission. The second scheme can detect and correct timing errors. Error penalty in

the second scheme is only dependent on the number of buffers on the link and does

not depend upon the error rate. The third scheme can also detect and correct timing

errors but its penalty increases with the number of errors. In all these approaches the

semantics (timing relation and logical interpretation) of the control signals, namely,

stall and valid signals remain same. Thus the switch-to-link interface for the schemes

remains the same and hence the different link design schemes can be interchanged in

a plug and play fashion.

CHAPTER 4. TERROR ENABLED NOC LINK DESIGNS 31

4.2.1 Scheme 1: Terror Detection

To make the design more resilient to timing errors, delayed clock ckd is used to trigger

the secondary flip-flop (henceforth called delayed flip-flop) of the two-entry FIFO. The

delay between the clock edges ck and ckd is designed such that, even in the presence

of unpredictability in the wire characteristics, there is sufficient time for the data to

reach the delayed flip-flop by clock edge ckd. Thus the data captured by the delayed

flip-flop is always timing-error free. The main flip-flop is clocked aggressively such

that the data captured by the main flip-flop can have a timing error. The delayed

clock ckd is derived locally from clock ck by using a delay chain (chain of inverters).

CK

IN

OUT

VAL−
ID IN

STA−

STA−

MUX−

SEL

cycle 2 cycle 3 cycle 4 cycle 5cycle

1

CKD

t0 t2 t3 t4t1

LL1

LL2

STALL
IN

Figure 4.5: Waveforms for reliable scheme

Figure 4.5 explains the operation of this scheme. The stall signal arrives at time

instant t0 which causes the main flip-flop to stall. Suppose due to coupling noise or

other interferences, the delay of the wire segment increased and hence the correct

value of input data is available at time instant t1. Since the clock ckd to the delayed

flip-flop was delayed, it captured the correct value of data at time instant t2. When

the stall signal becomes low (at t3) the stall1 and stall2 signals are set to zero by

the control circuit (at t4) and the main flip-flop sends the data that was captured by

the delayed flop-flop. When the main flip-flop gets stalled, the input stall signal is

propagated to the previous stage. The main flip-flop or the delayed flip-flop is not

stalled if the data captured is not valid. Since the delayed flip-flop always captures

data at a delayed clock ckd, the input data always has more time to settle to the

correct value. Thus timing errors do not occur when the data is captured by the

delayed flip-flop. Penalty for timing error occurs when data is captured by the main

CHAPTER 4. TERROR ENABLED NOC LINK DESIGNS 32

flip-flop and when there is no stall signal.

The control circuit that generates the muxselect, stall1 and stall2 signals is shown

in Figure 4.6. The control circuit is a FSM having two states - delayed state and

normal state. In normal state, data is captured by the main flip-flop, while in delayed

state data is captured by the delayed flip-flop.

stall in / muxsel

stall in / muxsel

muxsel

Valid out

Stall in

stall2stall1

 STATE
DELAYED

Valid in

Stall out

 STATE
NORMAL

Figure 4.6: Control circuit FSM for scheme 1

Additional signals and some flow control mechanism (either switch-to-switch or

end-to-end retransmission) is used to detect and correct the timing errors that occur

when the data is captured by the main flip-flop. The use of the delayed clock adds

negligible hardware overhead to the link buffer scheme, but avoids many of the timing

errors. An interesting fact about the scheme is that, when the the network has

significant congestion most of the timing errors are avoided. This is because, most

of the data in the congested network passes through the delayed flip-flop, as the

main flip-flop stalls more often due to congestion. Effect of retransmitting data

has more impact on performance of a heavily loaded network, as latency penalty

for retransmission is much higher on a congested network than on a lightly loaded

network. Moreover, retransmission also increases the congestion on the network,

thereby indirectly increasing the latency for the packets that don’t incur timing errors.

Thus, this simple scheme for avoiding timing errors is in fact sufficient for many

systems.

4.2.2 Scheme 2: Terror Detection and Correction

The previous scheme detects timing errors but corrects them, only when the data

is captured by the delayed flip-flop. When data is captured by the main flip-flop,

error correction is done by retransmission. We enhance scheme 1 such that all timing

errors are detected and corrected, irrespective of which flip-flop captures the data.

The semantics for stall and valid signals remain same for both the schemes.

Figure 4.7 shows the schematic for this scheme. A three-entry FIFO (instead of

CHAPTER 4. TERROR ENABLED NOC LINK DESIGNS 33

flop
QDX

U

M

flop
QD

D Q

flop

Main
M

err
stallmck

OUT

IN

ary

Auxill−

stallackd

muxselectd

muxselectm

stalld

ed

Delay−

ckd

X

U

EXOR

Figure 4.7: Schematic for scheme 2

the two-entry FIFO used in the previous scheme) is used in this scheme. A third flip-

flop, called auxiliary flip-flop is added in series with the delayed and main flip-flops.

An EXOR gate is connected to the outputs of the main flip-flop and delayed flip-flop.

It compares the data captured by the main flip-flop (at rising edge of clock ck) and

the data captured by the delayed flip-flop (at rising edge of clock ckd) and set its

output err to 1, if the two values are different i.e., if a timing error has occurred. The

err signals of all w buffers (vertically across the width of the bus) are ORed and fed

as an input to the control circuit.

CK

cycle 2 cycle 3 cycle 4cycle

1

CKD

IN

ERR

OUT

MUX−

SELM

t0 t1

VALID

OUT

Figure 4.8: Waveforms for Scheme 2

As shown in Figure 4.8, during normal operating condition data is captured and

sent by the main flip-flop. When a timing error occurs, err is set to one at time

instant t0 and muxselectm is set to one at t1 such that the output of delayed flip-flop

is connected to input of main flip-flop. The main flip-flop sends the correct data

(captured by the delayed flip-flop) in next cycle (cycle 3). The muxselectm is reset

CHAPTER 4. TERROR ENABLED NOC LINK DESIGNS 34

to zero when the input data is not valid. When the data is sampled through the

delayed flip-flop and a stall signal arrives, the incoming data is stored in the auxiliary

flip-flop. This scheme incurs one cycle penalty for the first occurrence of a timing

error, and as long as there is continuous data flow on the link, further timing errors

are avoided.

Figure 4.9 shows the control logic for this scheme. It is a FSM with three states -

normal state, delayed state and auxiliary state. In normal state, only main flip-flop

is used. In delayed state, delayed flip-flop and main flip-flop are connected in series,

while in auxiliary state, all the three flops are connected in series. The control circuit

determines the current state based on the previous state and the status of the input

signals.

NORMAL
 STATE

Stall out

Valid in
DELAYED

 STATE

err | stall in / muxselm

AUXILIARY
 STATE

muxselm & stall in / muxseld
Stall in

Valid out

errstallmstalldstallamuxselmmuxseld

prev_bad | stall in / muxselm stall in / muxseld

Figure 4.9: Control circuit FSM for scheme 2

4.2.3 Scheme 3: Simplified Terror Correction

Scheme 3 is a simplification of scheme 2, with less area. In scheme 3, the error penalty

increases with the error rate while in scheme 2, error penalty does not increase with

the error rate, but is bounded by the number of buffers on the link between the

sender and the receiver. In scheme 3, one cycle penalty is present for each occurrence

of error. Compared to previous scheme, scheme 3 has simpler control logic and uses

a two-entry FIFO instead of a three-entry FIFO.

In normal operation, input data is captured and sent by main flip-flop on the

rising edge of clock ck. As shown in Figure 4.10, an EXOR gate is connected to the

outputs of the main flip-flop and delayed flip-flop to detect a timing error. Whenever

a timing error occurs (i.e. err signal is set to one), a stall signal is sent to the previous

stage such that the previous stage is stalled for one cycle. Also, a valid signal is sent

to the following stage, informing that the data sent on previous cycle was non-valid.

The current stage (which had a timing error) sends the correct data on the next cycle.

Each occurrence of timing error causes a stall of one cycle.

The operation of this scheme is shown in figure 4.11. The value of data captured

CHAPTER 4. TERROR ENABLED NOC LINK DESIGNS 35

Main

flop

QD

D Q
flop

M

U

XDelay−

ed

muxselectm

OUT

IN

err

stalldckd ck stallm

EXOR

Figure 4.10: Schematic for Scheme 3

cycle 2

CK

cycle 3

OUT
STALL

OUT

VALID

OUT

SEL

MUX−

cycle 6

ERR

IN

CKD

1

cycle cycle 5cycle 4

t4t3t2t1t0

Figure 4.11: Waveforms for Scheme 3

by main flip-flop at time instant t0 is different from the value captured by delayed

flip-flop at time instant t1. Hence a timing error has occurred and the err signal is

set high at t1. The control logic sets the muxselectm signal to one which connects the

output of the delayed flip-flop to the input of the main flip-flop. A stall signal is also

generated (at t2) for one cycle which is sent to the previous stage to stall its output.

Hence the previous stage does not send a new data on the next clock cycle. A valid

signal is sent (at t2) to the next stage informing that the data sent on previous cycle

was not valid. The main flip-flop sends the correct data (that was captured by the

delayed flip-flop) in cycle 3. At time instant t3 delayed flip-flop captures new data

and at time instant t4 in cycle 4 main flip-flop sends this captured data. Due to the

stall signal the previous stage does not send new data in cycle 4. The muxselectm

is reset to zero in cycle 4 due to which the main flip-flop input is connected to the

data input (IN). The main flip-flop sends a new data (which was stalled by previous

CHAPTER 4. TERROR ENABLED NOC LINK DESIGNS 36

stage in cycle 4) in cycle 5. Since the previous stage was stalled only for one cycle, it

sends a new data in cycle 5 which is captured and sent by the main flip-flop of the

current stage at cycle 6. If the data captured by the delayed flip-flop is not valid,

then muxselectm is not set to one and a stall signal is not sent to the previous stage.

NORMAL
 STATEValid in

stall in | err / muxsel
DELAYED
 STATE

stall in | prev_bad / muxsel

Stall in

Valid out

Stall out

stalldstallmmuxsel err

Figure 4.12: Control circuit FSM for scheme 3

Figure 4.12 shows the control logic FSM for this scheme. Similar to scheme 1, the

control circuit has two states - normal state and delayed state. In normal state, data

is captured by the main flip-flop. In delayed state, data is captured by the delayed

flip-flop and the previous stage is stalled. Since a stall request is generated for each

timing error, the error penalty increases with the number of errors.

4.2.4 Towards Modular NoC design

In summary, we observe that the three schemes provide different levels of reliability

and error tolerance. Table 4.1 shows comparison between the three schemes.

Table 4.1: Comparison between three schemes
Criterion Scheme 1 Scheme 2 Scheme 3

Error Only detects Detect and Detect and
tolerance Correct Correct

Error Depends on Depends on number Increases with
Penalty correction scheme of link buffers error rate

Control logic Simplest Complex Moderate
Area 1 1 1.72 1.24

Control signals 3 5 4

The sender and receiver interfaces remain same for all the three schemes. In case

of buffered links between switches, the switch design becomes less complex, modular,

consumes less area and facilitates layout of NoC. We do not need switches having same

ports but different requirements for storage (input or output) buffers, since the storage

is done on the link. The link is used as a storage medium as well as communicating

1Normalized to scheme 1. Quantitative results are reported in section 5.4

CHAPTER 4. TERROR ENABLED NOC LINK DESIGNS 37

medium. Depending upon the application needs and NoC characteristics different

link designs can be chosen and interchanged in a plug and play fashion. NoC design

and layout becomes more regular, structured and can be easily optimized.

Chapter 5

Simulation Results and

Experimental Data

This chapter explores the latency benefits and characteristics of Timing -Error toler-

ant link design. The simulation platform consists of cycle-accurate SystemC models

of the robust link design schemes (as described in previous chapter). The number

of pipeline stages on each link, which is application and topology dependent, and

the choice of the link design scheme are taken as input parameters for the architec-

ture. The choice of the link design scheme depends on the application characteristics

and the error-rate of the system. Functional System C simulations were carried out

on a variety of application benchmarks using ×pipes NoC architecture. Following

benchmarks were used for simulations :-

• Matrix multiplication benchmark suite without shared memory (MAT1)

• Matrix multiplication benchmark suite with shared memory (MAT2)

• Fast Fourier transform benchmark suite using fixed point arithmetic (FFT)

• Quick sort benchmark suite (Qsort)

Using the ×pipes architecture we instantiated the following network topologies

to evaluate the relative performance of the three schemes.

1. Two processors, 2× 2 mesh (T1)

2. Twenty-four processors, one 11× 11 switch and eight 8× 8 switches (T2)

3. Four processors, one 11× 11 crossbar-like switch (T3)

38

CHAPTER 5. SIMULATION RESULTS AND EXPERIMENTAL DATA 39

4. Four processors, three 5 clusters (T4)

5. Eight processors, one 19× 19 crossbar-like switch (T5)

6. Eight processors, 3× 4 mesh with 6× 6 nodes (T6)

Functional error models based on data dependent errors were developed. The wire

delay for data transmission on a link depends on the switching activities in the data

patterns transmitted. As presented in [23], the wire delay for adversarial switching

patterns (such as the 3-bit transitions from 101 to 010) varies by 50% of normal wire

delay. To introduce such data dependent timing errors, the link is monitored and

checked for various adversarial switching patterns to inject timing errors. Variations

in delay due to ground bounce and PVT (Process, Temperature, Voltage) variations

are also accounted by using the probability of such error occurrences, as obtained

from [26], to introduce timing errors.

5.1 Effect of Aggressive Design

We compare aggressive and conservative design approaches and show that in spite

of large error rates, aggressive clocking results in smaller execution time as opposed

to conservative clocking mechanism with no errors. Aggressive link design can be

achieved in two ways: by either using a higher clock rate for the aggressive design as

compared to the conservative design, or by increasing the physical spacing between ad-

jacent link pipeline stage flip-flops, thereby decreasing the number of pipeline stages

on a link. As the aggressive design methodology targets safe operation only un-

der normal operating conditions, occasionally timing errors may occur in both these

schemes. By incorporating the Terror methodology on the aggressive designs, the im-

pact of the timing errors can be reduced and achieve large latency savings compared

to conventional design methodologies.

To see the effects of the aggressive design methodology, two sets of experiments

are performed: in the first experiment, we over-clock the system, keeping the spacing

between adjacent link pipeline stage flip-flops same as that of a conservative design,

and in the second experiment, we increase the spacing between the adjacent link

pipeline stage flip-flops, keeping the same clock rate. We use the timing error-tolerant

methodology, for correcting the timing errors that occur in the aggressive design.

CHAPTER 5. SIMULATION RESULTS AND EXPERIMENTAL DATA 40

0% 10% 20% 30% 40% 50%
0

2

4

6

8

10

12

14
x 10

4

Amount of over−clocking

E
xe

cu
tio

n
Ti

m
e

(in
 n

s)

Figure 5.1: Amount of over-clocking

The total execution time (in ns) for the Mat2 benchmark suite for a set of ag-

gressively designed links using Scheme 2 , with over-clocking is shown in Figure 5.1.

The execution times plotted (the y-axis), includes the time taken for both compu-

tation and communication of data in the system. The base clock frequency of the

conservative system is assumed to be 1 Ghz. The x-axis represents the percentage

by which we over-clock the system. As the clock frequency increases, the amount of

errors that occur at each link starts to increase. As an example, the flit-error rate

(the probability that a flit arriving at a link pipeline stage has a timing error) for

this benchmark example is 6% when the system is over-clocked by 10% and is around

29%, when the system is over-clocked by 50%. As the system is over-clocked, ide-

ally, the execution time for an application should decrease. However, as the system

is over-clocked, the error-rate starts to increase and the penalty for error detection

and correction increases. Thus the execution time for the system is dependent on

both these effects: of reduced clock delay and increased error detection/correction

penalty. As the penalty for error detection and correction for Scheme 2 is very small,

there is a large reduction in application execution time for the aggressive design. As

seen from Figure 5.1, large performance improvement is achieved by over-clocking the

timing-error tolerant system.

Figure 5.2 shows the difference in execution times of the various aggressive designs

obtained by increasing the spacing between adjacent flip-flops. As the design becomes

more aggressive, the performance of the system increases. Note that in all these plots,

the delay of the secondary flip-flops stop at 50%, as SPICE simulations (described in

Chapter 2) , showed that the maximum delay between the main and delayed flip-flops

CHAPTER 5. SIMULATION RESULTS AND EXPERIMENTAL DATA 41

0% 10% 20% 30% 40% 50%
0

2000

4000

6000

8000

10000

12000

Delay of secondary flip−flop

E
xe

cu
tio

n
T

im
e

D
iff

er
en

ce

Figure 5.2: Percentage increase in spacing

cannot be increased beyond 50% due to timing overheads of the circuit.

5.2 Effect of Delayed Clock

In this sub-section we explore the performance of Scheme 1 for different congestion

levels in the network. In Scheme 1, the timing errors are avoided when the data is

captured by the secondary flip-flop of the 2-entry FIFO, since it is clocked by delayed

clock ckd. Figure 5.3 shows the normalized execution times as a function of the

percentage of time the secondary flip-flop is used, for the FFT benchmark suite.

0% 20% 40% 60% 80% 100%
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Second Flip−Flop Usage

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

FFT

Figure 5.3: Second flip-flop Usage

As the amount of time the secondary flip-flop is used increases, the error rate

CHAPTER 5. SIMULATION RESULTS AND EXPERIMENTAL DATA 42

decreases. For this example, the error-rates vary from 5% (when the secondary flip-

flop is not used at all) to nearly 0% (when the secondary flip-flop is used for almost

100% of the time). The execution times (the y-axis in the plot) are normalized to the

ideal application execution time (i.e. when there are no errors). We simulated errors

by using error models that were based on [23], [26].

When the network has low congestion, the percentage of time the secondary flip-

flops are used is small, as the secondary flip-flops are used only when there is some

congestion, which causes back-pressure to happen in the network. In this case, when

errors happen, the retransmission of data doesn’t have much impact on the congestion

(as the congestion itself is small). For a heavily congested network, most of the data

passes through the secondary flip-flops and thus, most of the timing errors are avoided.

Thus Scheme 1 (using delayed clock for the second flip-flop) is a good choice, when the

retransmission penalty for zero-load latency is acceptable for the application (which

depends on the error rate in the system and the application characteristics). (Note

that the 100% usage point, plotted in Figure 5.3, will never occur in reality as initially

flits have to pass through the first flip-flop and only when some congestion starts to

happen, the secondary flip-flops are used).

5.3 Retransmission Vs Terror Schemes

In this sub-section, we compare the performance of systems that use traditional re-

transmission mechanism (we assume switch-to-switch retransmission) when timing

errors are detected, with systems that use Scheme 2 presented in this paper. In Fig-

ure 5.4, we plot the total execution time for the various benchmark applications for

these two schemes, for 5% error rate.

For all the benchmarks the total execution cycles for the retransmission scheme

is much higher than the proposed scheme (up to 2x for FFT). As the error rate

increases, the penalty incurred by the retransmission scheme increases exponentially

(refer Figure 5.5 for results on the FFT benchmark), while there is very little change

in penalty for the T-error scheme. The reason for the almost constant penalty of

this scheme (Scheme 2) is that, once a first timing error occurs at a pipeline stage

of a link (which incurs a single cycle penalty for correction), and as long as there is

a continuous data flow on the link, further timing errors are avoided at this pipeline

stage (refer Section 4.2).

CHAPTER 5. SIMULATION RESULTS AND EXPERIMENTAL DATA 43

FFT Mat1 Mat2 QSort
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Application Benchmarks

E
xe

cu
tio

n
C

yc
le

s

Retran.
Terror

Figure 5.4: Application effects

0% 1% 2% 3% 4% 5%
0

2

4

6

8

10

12

14
x 10

4

E
xe

cu
tio

n
C

yc
le

s

Error Rate

Retran.
Terror

Figure 5.5: Error rate effects

Figure 5.6 shows the effect of retransmission and T-error schemes for different

NoC topologies for the MAT2 benchmark. The topologies compared vary from small

7 core NoCs to 51 core NoCs. For all the topologies, Scheme 2 gives substantial

performance improvement over the retransmission scheme.

5.4 Choice of Link Design Schemes

In this sub-section we present experimental data that shows the trade-offs between

the three schemes for different network conditions and traffic flow patterns. In Figure

5.7 we plot the relative execution times of the Mat2 benchmark for Scheme 1 (use of

delayed clock) and Scheme 3 for different amount of congestion in the network, for

4% error rate. The plots are normalized with respect to the execution time of the

CHAPTER 5. SIMULATION RESULTS AND EXPERIMENTAL DATA 44

T1 T2 T3 T4 T5 T6
0

2

4

6

8

10

12

14
x 10

5

Topologies

E
xe

cu
tio

n
C

yc
le

s

Retran.
Terror

Figure 5.6: Topology effects

ideal situation, where timing errors don’t occur.

0% 50% 100%

1.0

1.1

1.2

1.3

1.4

1.5

% Congestion in Network

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

Scheme1
Scheme3

Figure 5.7: Schemes 1 and 3

We refer to the percentage congestion as the amount of time the delayed flip-

flop is used in the system (as the delayed flip-flop is used more in a more congested

network). As the congestion in the network starts to increase, the amount of penalty

incurred by Scheme 1 starts to decrease, an effect explored in detail in Section 5.3.

The penalty of the T-error scheme also decreases slightly with increase in congestion.

Depending on the amount of congestion in the network, application characteristics

and error rate, the choice between the two schemes can be made. For networks that

have high congestion or low error rates, Scheme 1 provides almost similar performance

as Schemes 2 and 3.

CHAPTER 5. SIMULATION RESULTS AND EXPERIMENTAL DATA 45

Figure 5.8: Schemes 2 and 3

In Figure 5.8 we plot the relative latency penalty for Schemes 2 and 3 for transmit-

ting 1000 flits of data for two classes of applications: applications with normal data

traffic (where the cores send data at random times that follow a uniform distribution)

and applications with bursty data traffic. As discussed earlier, for continuous flow of

data traffic on the link, Scheme 2 incurs a single cycle penalty at a link pipeline stage

for only the first timing error that occurs in the continuous stream (as further timing

errors are avoided). Thus Scheme 2 has low penalty for the bursty data traffic when

compared to the normal traffic flow. As Scheme 3 incurs a single cycle penalty for

each timing error, it has higher penalty for error correction than Scheme 2.

We synthesized (using Synopsys DC compiler) the robust links to get area esti-

mates of the proposed schemes. Table 5.1 shows the total link area for the different

schemes (normalized to the area of Scheme 1) for 32 and 64-bit flit-sizes (the width

of the links) for a 5× 5 mesh with each each link having 4 pipeline stages.

Table 5.1: Relative Link Area
32 64

Scheme 1 1 1
Scheme 2 1.91 1.72
Scheme 3 1.3 1.24

5.5 Summary of Results

In this chapter, we have presented experimental data and simulation plots that enu-

merate the characteristics and relative performance of the three timing-error tolerant

CHAPTER 5. SIMULATION RESULTS AND EXPERIMENTAL DATA 46

schemes. Compared to traditional error correcting schemes, the proposed designs

give substantial improvements in latency, even at high error rates upto 5%. Our re-

sults present quantitative differences in area, receiver latency and overall performance

between the three schemes for different topologies, applications and network condi-

tions. We observe that the effective error penalty at the receiver not only depends

on the chosen scheme but also depends upon the network flow (congested or smooth)

and traffic conditions (bursty or continuous). Given some performance specifications

and NoC architecture, the simulation results can be used to make an appropriate

choice between three robust link design methodologies, for a reliable communication

network.

Chapter 6

Conclusion

With shrinking feature sizes and faster clock cycles, wire delay as a percentage of total

delay is increasing. A communication centric design approach - Network on Chip is

used to address the problems of latency, throughput and scalability of interconnection

network between cores. Wires are becoming more susceptible to various noise sources

such as cross-talk, coupling noise, soft errors, process variations, inductive loops etc.

The delay variations due to such interferences consume an increasing percentage of

the useful clock cycle. Conservative design approaches that consider worst case con-

ditions will lead to inefficiency and poor performance since they account for worst

case noise-induced delay variability that may not occur frequently. Aggressive design

approaches are required where designs are built for normal (ignoring data-dependent

delay variations) operating conditions and they provide minimal penalty in presence

of noise-induced timing errors. This work presents a Timing-Error Tolerant Design

methodology (Terror) to design NoC links. It is used to design links aggressively such

that the communication system is tolerant to timing errors and has minimal effect on

the performance. Terror system focusses on correcting transient timing errors such

as those caused by cross-talk and does not address static errors caused by stuck-at

faults, permanent failures etc. In a Terror enabled system, latency does not increase

linearly with error rate but is bounded by the number of buffers on the link. This

makes it more suitable for high-error rate conditions where traditional error correcting

systems would degrade. As compared to retransmission scheme for correcting errors

on links, a Terror enabled scheme gives up to 35% savings in latency.

Based on the Terror design, three different robust link design methodologies were

explored which had a trade-off between hardware complexity, area and performance

47

CHAPTER 6. CONCLUSION 48

(latency, throughput). Buffer storage requirements on a typical NoC switch were

almost avoided by using the link as a storage medium to store data. Depending

upon the application characteristics and communication patterns, the schemes can

be selectively used and interchanged in a plug and play fashion. Comparisons and

experiments made on various benchmark suites and network topologies showed a

substantial improvement (as large as 1.5×) over conservative system.

Bibliography

[1] Pierre Guerrier , Alain Greiner, “A generic architecture for on-chip packet-

switched interconnections”, Design, Automation and Test in Europe Conference

and Exhibition 2000. Proceedings , 2000, pp. 250-256.

[2] Andrei Radulescu and Kees Goossens. In Shuvra Bhattacharyya and Ed De-

prettere and Juergen Teich, editors, “Communication Se rvices for Networks

on Silicon”, Domain-Specific Processors: Systems, Architectures, Modeling, and

Simulation. Marcel Dekk er, 2003.

[3] L.Benini and G.De Micheli, “Networks on Chips: A New SoC Paradigm”, IEEE

Computers, pp. 70-78, Jan. 2002.

[4] R. Ho, K.Mai, M. Horowitz, ”The Future of Wires”, Proceedings of the IEEE,

pp. 490-504, April 2001.

[5] K.Aingaran et al., ”Coupling Noise Analysis for VLSI and ULSI Circuits”, IEEE

ISQED 2000, pages 485- 489, March 2000.

[6] K. L. Shepard and V. Narayanan. ”Noise in Deep Submicron Digital Design”.

IEEE/ACM ICCAD-96, pages 524- 531, November 1996.

[7] N. R. Shanbhag, ”Reliable and efficient system-on-chip design”, IEEE Computer,

Vol. 3, Issue: 3, pp. 42-50, March 2004.

[8] L.P.Carloni, K.L.McMillan, A.L.Sangiovanni Vincentelli, ”Theory of Latency-

Insensitive Design”, IEEE Trans. on CAD of ICs and Systems, Vol.20, No.9, pp.

1059-1076, Sep 2001.

[9] Y.Zhao, L.Chen and S.Dey, “Online Testing of Multi-source Noise-induced Er-

rors in the Interconnects and Buese of System-on-Chips”, IEEE proceeding of

International Test Conference 2002, 10, October, 2002.

49

BIBLIOGRAPHY 50

[10] J.Warland, P.Varaiya, High-Performance Communication Networks, Morgan

Kauffmann Publishers Inc, 1996.

[11] A.K.Uht, “Going Beyond Worst-Case Specs with TEAtime”, IEEE Computer,

pp. 51-56, March 2004.

[12] D.Ernst e al., ”Razor: A Low-Power Pipeline Based on Circuit-Level Timing

Speculation”, Micro Conference, Dec 2003.

[13] M. Favalli, C.Metra, “Low-level error recovery mechanism for self-checking se-

quential circuit”, DFT 97, pp. 234-242, oct. 1997.

[14] M.Singh, S. M.Nowick, “MOUSETRAP: Ultra-High-Speed Transition-Signaling

Asynchronous Pipelines”, Proc. ICCD 01, Sept. 2001.

[15] E.Dupont,, M.Nicolaidis, P.Rohr, “Embedded Robustness IPs for Transient-

Error-Free ICs”, IEEE Design & Test, vol. 19 ,Issue 3,pp. 56-70, May 2002.

[16] F.Klass, “Semi-dynamic and dynamic flip-flops with embedded logic”, VLSI Cir-

cuits 98, pp. 108-109, June 1998.

[17] S.Matsushita, “Design experience of a chip multiprocessor merlot and expecta-

tion to functional verification”, ISSS 2002, pp. 103-108, Oct 2002.

[18] B. Ackland et al., “A single-chip, 1.6-billion, 16-b MAC/s multiprocessor DSP”,

IEEE Journal of Solid-State Circuits, vol. 35, Issue 3, pp. 412-424, Mar 2000.

[19] M.B.Taylor et al., “Evaluation of the Raw Microprocessor: An Exposed-Wire-

Delay Architecture for ILP and Streams”, ISCA 2004.

[20] A. Jain et al., “A 1.2GHz Alpha Microprocessor with 44.8GB/s. Chip Pin Band-

width”, ISSCC Digest of Technical Papers, pp.240-241, Feb. 2001.

[21] Srinivasa R. Sridhara, Naresh R. Shanbhag.,“ Coding for system-on-chip net-

works: a unified framework”, Design Automation Conference, 103-106, June,

2004.

[22] Paul Peter P. Sotiriadis., “Interconnect Modeling and Optimizationin Deep Sub-

Micron Technologies”, Ph.D dissertation, Massachusetts Institute of Technology,

2002

BIBLIOGRAPHY 51

[23] Yungseon Eo, Seongkyun Shin, William R. Eisenstadt, and Jongin Shim, “A

decoupling technique for efficient timing analysis of VLSI interconnects with

dynamic circuit switching”, IEEE Transactions on Computer-aided design of

Integrated Circuits and Systems, September, 2002.

[24] Patel, K.N. Markov, I.L, “Error-Correction and Crosstalk Avoidance in DSM

Busses”, Oct, 2004, 1076-1080, vol 12, issue: 10

[25] Kei Hirose, Hiroto Yasuura, “A Bus Delay Reduction Technique Considering

Crosstalk”, Design, Automation and Test in Europe, 2000.

[26] Wang, D.T.; Mcnall, “A statistical model based ASIC skew selection method”,

2004 IEEE Workshop on Microelectronics and Electron Devices, 64-66.

[27] Paul Wielage and Kees Goossens, “Networks on Silicon: Blessing or Nightmare ”,

KeyNote speech, Euromicro Symposium On Digital System Design (DSD 2002),

September, 2002

[28] W.J.Dally, B.Towles, “Route Packets, not Wires: On-Chip Interconnection Net-

works”, Design and Automation Conference DAC 2001, pp. 684-689, Jun 2001.

[29] VSI Alliance, “http://www.vsi.org/”

[30] Open Core Protocol, “http://www.ocpip.org/”

[31] S.J.Krolikoski, et. al, “Methodology and Technology for Virtual Component

Driven Hardware/Software Co-Design on the System-Level”, ISCAS 99, pp. 456-

459, June 1999.

[32] Srinivasan Murali, Giovanni De Micheli, “SUNMAP: A Tool for Automatic

Topology Selection and Generation for NoCs”, DAC 2004.

[33] Antoine Jalabert, Srinivasan Murali, Luca Benini, Giovanni De Micheli,

“xpipesCompiler: A Tool for instantiating application specific Networks on

Chip”, Proc, DATE 2004.

[34] H.S Wang et al., “Orion: A Power-Performance Simulator for Interconnection

Networks”, MICRO, Nov. 2002.

[35] Chen, L.H.; Marek-Sadowska, M.; Brewer, F, “Coping with buffer delay change

due to power and ground noise”, DAC, 2002, pp.860 - 865.

BIBLIOGRAPHY 52

[36] Marculescu, R, “Networks-on-chip: the quest for on-chip fault-tolerant commu-

nication”, Proc. IEEE Computer Society Annual Symposium on VLSI, pp. 8-12,

2003.

[37] D. Bertozzi et al., “Low Power Error-Resilient Encoding for On-Chip Data

Buses”, DATE 2002, pp. 102-109.

[38] F. Worm et al., “An Adaptive Low-power Transmission Scheme for On-chip

Networks” , ISSSA ISSS, October 2002, pp. 92-100

[39] M. Pirretti et al.,“Fault Tolerant Algorithms for Network-On-Chip Intercon-

nect”, Proc. of ISVLSI, Feb 2004.

[40] L. Li et al., “A Crosstalk Aware Interconnect with Variable Cycle Transmission”,

DATE’04. February 2004

[41] P. Vellanki et al., “Quality-of-Service and Error Control Techniques for Network

on Chip Architectures”, GLSVLSI 04, Apr 2004 .

[42] H. Zimmer et al.,“A Fault Model Notation and Error-Control Scheme for switch-

to-Switch Buses in a Network-on-Chip”, ISSS/CODES, 2003.

[43] Mizuno et al., “Elastic interconnects: repeater-inserted long wiring capable of

compressing and decompressing data”, SSC Conf., pp. 346-347, Feb 2001.

[44] V. Chandra et al., “A Power aware system level interconnect design methodology

for latency insensitive systems”, ICCAD 2004, pp. 275-282, Nov 2004.

[45] Mizuno et al., “Elastic interconnects: repeater-inserted long wiring capable of

compressing and decompressing data”, SSC Conf., pp. 346-347, Feb 2001.

[46] W. J. Dally et al., “Principles and Practices of Interconnection Networks”, Mor-

gan Kaufmann, Dec, 2003.

