
TECHNOLOGY MAPPING FOR VLSI CIRCUITS
EXPLOITING BOOLEAN PROPERTIES AND

OPERATIONS

a dissertation

submitted to the department of electrical engineering

and the committee on graduate studi es

of stanforduniversi ty

in partial fulfi llment of the requirements

for the degree of

doctor of phi losophy

By

Frédéric Mailhot

December 1991

c Copyright 1991

by

Frédéric Mailhot

ii

I certify that I have read this thesis and that in my opinion

it is fully adequate, in scope and in quality, as a dissertation

for the degree of Doctor of Philosophy.

Giovanni De Micheli
(Principal Advisor)

I certify that I have read this thesis and that in my opinion

it is fully adequate, in scope and in quality, as a dissertation

for the degree of Doctor of Philosophy.

Mark A. Horowitz

I certify that I have read this thesis and that in my opinion

it is fully adequate, in scope and in quality, as a dissertation

for the degree of Doctor of Philosophy.

Robert W. Dutton

Approved for the University Committee on Graduate Stud-

ies:

Dean of Graduate Studies & Research

iii

Abstract

Automatic synthesis of digital circuits has gained increasing importance. The synthesis

process consists of transforming an abstract representation of a system into an implemen-

tation in a target technology. The set of transformations has traditionally been broken

into three steps: high-level synthesis, logic synthesis and physical design.

This dissertation is concerned with logic synthesis. More specifically, we study tech-

nology mapping, which is the link between logic synthesis and physical design. The

object of technology mapping is to transform a technology-independent logic description

into an implementation in a target technology. One of the key operations during tech-

nology mapping is to recognize logic equivalence between a portion of the initial logic

description and an element of the target technology.

We introduce new methods for establishing logic equivalence between two logic

functions. The techniques, based on Boolean comparisons, use Binary Decision Diagrams

(BDDs). An algorithm for dealing with completely specified functions is first presented.

Then we introduce a second algorithm, which is applicable to incompletely specified

functions. We also present an ensemble of techniques for optimizing delay, which rely

on an iterative approach. All these methods have proven to be efficient both for run-times

and quality of results, when compared to other existing technology mapping systems.

The algorithms presented have been implemented in a technology mapping program,

Ceres. Results are shown that highlight the application of the different algorithms.

iv

Acknowledgements

I would like to thank Giovanni De Micheli, my advisor, for his guidance and support. He

has been my mentor during my years at Stanford. I am also grateful to Mark Horowitz

and Robert Dutton who read my dissertation and whose comments provided more polish

to the final work. I appreciated the interactions with Abbas El Gamal, who recognized

the importance of FPGA’s.

I would like to mention some of the students with whom I interacted during the years

at Stanford: David Ku, Maurizio Damiani, Thomas Truong, Polly Siegel, Jerry Yang,

David Filo, Rajesh Gupta, Claudionor Coelho. Working with them has been both fun

and stimulating. The list would not be complete without Michiel Ligthart, who spent a

year and a half at Stanford as a Philips/Signetics visiting scholar. I would like to give

special thanks to Polly Siegel and Thomas Truong, who took the time to read and review

this dissertation with great care.

I would also like to thank my officemates, John Vlissides and Faheem Akram, without

whom my years in CIS would not have been the same. The presence of Lilian Betters

has also made CIS more agreeable.

This work was supported in part by DEC and NSF under a PYI award, and by

ARPA under grant J-FBI-88-101. The financial support from the National Research

Council of Canada and from Quebec’s Fonds Canadien pour l’Aide a la Recherche is

also acknowledged. I am also greatly indebted to the University of Sherbrooke for their

help in financing my doctorate.

Throughout the years, my parents have always been supportive and encouraging.

They deserve all my gratitude.

Finally, I keep for the end the person who made all this possible, Marie Papineau, to

v

whom I have the joy of being married. She has been a constant support, an inspiration,

and a dearest friend.

vi

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Automatic digital circuit synthesis: 2

1.1.1 Logic synthesis: a historic perspective: : : : : : : : : : : : : : 2

1.1.2 High level synthesis: 4

1.1.3 Physical design: 5

1.1.4 The Olympus Synthesis System: : : : : : : : : : : : : : : : : : 6

1.2 Terminology and notation: 10

1.3 Contributions: 13

1.4 Thesis outline : 14

2 Technology mapping 16

2.1 The technology mapping problem: 17

2.2 Previous work: 22

2.2.1 Rule-based systems: 23

2.2.2 Algorithmic-based systems: 25

2.3 Comparison of rule-based and algorithmic methods: : : : : : : : : : : : 36

3 An algorithmic approach to technology mapping 38

3.1 Decomposition: 39

3.2 Partitioning: 43

vii

3.3 Covering: 47

4 Boolean matching 52

4.1 Matching logic functions : 53

4.2 Use of Binary Decision Diagrams: 54

4.3 A simple Boolean matching algorithm: : : : : : : : : : : : : : : : : : 55

5 Matching completely specified functions 58

5.1 Search space reduction: 58

5.1.1 Unateness property: 59

5.1.2 Logic symmetry: 60

5.2 Determination of invariant properties: : : : : : : : : : : : : : : : : : : 65

5.2.1 Unateness extraction: 66

5.2.2 Symmetry classes determination: : : : : : : : : : : : : : : : : : 67

5.3 Results: 68

6 Matching incompletely specified functions 77

6.1 Usingdon’t care information : 78

6.2 Compatibility graph : 79

6.3 Computation of relevantdon’t caresets : : : : : : : : : : : : : : : : : : 87

6.3.1 Image-based computation ofdon’t caresets: : : : : : : : : : : : 89

6.3.2 Approximations in image computations: : : : : : : : : : : : : : 95

6.3.3 Relations to testability: 97

6.4 Results: 97

7 Performance-driven technology mapping 101

7.1 Delay model: 102

7.2 The difficulty with timing-driven technology mapping: : : : : : : : : : 103

7.3 Repartitioning : 104

7.4 Redecomposition: 106

7.5 Re-covering : 109

7.6 Iterative mapping : 110

viii

7.7 Buffering/repowering : 111

7.8 Results: 112

8 Conclusion and future directions 116

Bibliography 119

ix

List of Tables

5.1 Mapping results for area (Nodon’t cares, Actel library Act1, restricted

set of gates commercially distributed): : : : : : : : : : : : : : : : : : : 72

5.2 Mapping results for area (Nodon’t cares, Complete Act1 library): : : : 73

5.3 Mapping results for area (Nodon’t cares, Complete Act2 library): : : : 74

5.4 Mapping results for area (Nodon’t cares, LSI Logic library) : : : : : : 75

5.5 Mapping results for area (Nodon’t cares, Library derived from the Quick-

logic Master cell) : 76

6.1 Number ofk-input cells used in mapping 30 benchmarks with the full

Act1 and the LSI Logic libraries (depth = 5): : : : : : : : : : : : : : : 82

6.2 Mapping results for area (Usingdon’t cares, Actel library) : : : : : : : 99

6.3 Mapping results for area (Usingdon’t cares, LSI Logic library) : : : : : 100

7.1 Mapping results for delay (Nodon’t cares, Actel library) : : : : : : : : 114

7.2 Mapping results for delay (Nodon’t cares, LSI Logic library) : : : : : : 115

x

List of Figures

1.1 The Olympus Synthesis System: 9

2.1 Illustration of the recursive covering definition: : : : : : : : : : : : : : 19

2.2 A simple covering example: 20

2.3 Two transformation rules from LSS: 24

2.4 Tree pattern and associated trie (adapted from [HO82]): : : : : : : : : : 27

2.5 Two trees and their associated tries (adapted from [AGT89]): : : : : : : 28

2.6 Aho-Corasick matching automaton (adapted from [AGT89]): : : : : : : 29

2.7 Patterns for a simple library: 30

2.8 Aho-Corasick automaton for patterns of a simple library: : : : : : : : : 31

2.9 Example of pattern-based covering: 32

2.10 Example of a DAG, a leaf-DAG and a tree: : : : : : : : : : : : : : : : 34

3.1 Algorithm for network decomposition: : : : : : : : : : : : : : : : : : : 41

3.2 Two-input decomposition: 42

3.3 Algorithm for network partitioning : 44

3.4 Circuit partitioning: 46

3.5 Graph covering : 48

3.6 Graph of all possibles covers ofj : 49

3.7 Algorithm for network covering: 50

4.1 Simple algorithm for Boolean matching: : : : : : : : : : : : : : : : : : 56

5.1 Distribution of symmetry classesCi : 64

5.2 Algorithm for fast Boolean matching: : : : : : : : : : : : : : : : : : : 65

5.3 Algorithm for unateness extraction: 70

5.4 Algorithm for symmetry extraction: 71

xi

6.1 Two pass-transistor implementations ofF = (a + b)c, DC = bc : : : : : 79

6.2 Mappingmajority with LSI Logic library elements: : : : : : : : : : : : 80

6.3 Matching compatibility graph for 3-variable Boolean space: : : : : : : 81

6.4 Paths from vertex 5 in the matching compatibility graph: : : : : : : : : 84

6.5 Algorithm for compatibility graph traversal usingdon’t cares : : : : : : 86

6.6 Example of a partially mapped network: : : : : : : : : : : : : : : : : : 88

6.7 Algorithm for dynamic controllabilitydon’t carescalculation: : : : : : : 89

6.8 Subnetwork generating the inputs ofF : : : : : : : : : : : : : : : : : : 91

6.9 Algorithm for image-baseddon’t carecalculation: : : : : : : : : : : : : 93

6.10 Shannon cofactor and generalized cofactor: : : : : : : : : : : : : : : : 94

6.11 Width of a Boolean networkN : 95

6.12 Illustration ofdon’t careslimiting heuristic : : : : : : : : : : : : : : : : 96

7.1 Delays in a subcircuit: 105

7.2 Delays in a subcircuit after gate duplication: : : : : : : : : : : : : : : : 106

7.3 Algorithm BDD to Boolean network conversion: : : : : : : : : : : : : 108

7.4 BDD and corresponding Boolean network: : : : : : : : : : : : : : : : 109

7.5 Pseudocode for iterative delay optimization: : : : : : : : : : : : : : : : 111

7.6 Example of area/delay tradeoffs: 113

xii

Chapter 1

Introduction

Automatic synthesis of logic circuits has gained increasing importance in the digital-

circuit-design environment. Synthesis of digital circuits is now widely used because it

allows rapid generation of high quality circuitry. The requirement for fast turn-around

mandates that synthesis tools must produce results quickly, which then allows system

designers to easily experiment with different design options. The necessity for high

quality means that automatically generated circuits must meet or exceed the level of

performance achieved by custom, hand-designed systems.

In order to fulfill these goals of efficiency and quality, highly abstract descriptions of

target systems become the vehicle of choice. The synthesis process is typically broken

into a sequence of steps which gradually transform the abstract description into an actual

implementation. The transformation steps are subdivided into three classes: operations

on abstract representations, operations on logic descriptions and operations on geometric

representations. The first class is called high-level synthesis, the second class logic-level

synthesis and the last physical-design synthesis. Logic-level synthesis is further sub-

divided into technology-independent and technology-dependent operations. Technology

mapping, which is the subject of this thesis, represents the technology-dependent step.

In this chapter, we review current automatic design methodologies. We briefly

overview the origins of logic synthesis, including two-level and multi-level formula-

tions. We explain how current synthesis systems include both high level and logic level

synthesis, as well as physical design. We briefly describeOlympusas a test-case example

1

CHAPTER 1. INTRODUCTION 2

of a synthesis system incorporating high-level and logic-level operations. We emphasize

the importance of technology mapping in the general synthesis framework, and describe

the contributions of the research we did on that subject. We introduce terminology which

will be used later in the thesis, and conclude the chapter with an outline of the remainder

of the thesis.

1.1 Automatic digital circuit synthesis

The quality of automatically synthesized logic circuits depends on the transformations at

each level of the synthesis process. Therefore, before addressing the specifics of tech-

nology mapping, we describe the different steps involved in current automatic synthesis

systems. We will review the operations carried out at each step, looking at existing

systems and tracing their origins. We start with logic synthesis, then briefly present

high-level synthesis, followed by physical design. As a case example, we then describe

Stanford’sOlympus Synthesis System, a vertically integrated, automatic synthesis system.

1.1.1 Logic synthesis: a historic perspective

The origins of logic synthesis date back to the 1950’s, when the emergence of the transis-

tor made the implementation of logic circuits easier. In the mid-1950’s, the first generation

of tube-based digital computers was fully operational, making rudimentary design automa-

tion possible for the next generation of transistor-based computers [Pre72, CK56, Sco58].

An instructive measure of the heightened interest in logic operations was the rapidly in-

creasing number of publications in the field during that decade [Hol61]. Quine introduced

a method of simplifying two-level logic expressions, which was later improved by Mc-

Cluskey [Qui52, McC56b]. Methods for minimizing two-level logic representations were

studied extensively at that time, because sum-of-products were the most common way of

implementing transistor-based digital circuits.

In parallel with the study of two-level logic optimization, multi-level representations

were also investigated. Ashenhurst introduced the idea of logic decomposition [Ash59],

CHAPTER 1. INTRODUCTION 3

which is the basis for recognizing multi-level logic expressions. His method made pos-

sible simple decompositions, which reexpress a logic functionf(x1; x2; . . . ; xn) as a

combination of two new functionsg(xi; . . . ; xj ; �) , �(xk ; . . . ; xl) wherefxi; . . . ; xjg [

fxk; . . . ; xlg = fx1; x2; . . . ; xng and fxi; . . . ; xjg \ fxk; . . . ; xlg � ;. Curtis expanded

the method to allowcomplex decompositions[Cur61, Cur62], that is, decompositions

where the second condition is relaxed (inputs ofgand�can be common to both func-

tions). Roth and Karp presented an algorithm implementing both simple and complex

decompositions [RK62]. Their system could potentially generate the optimum logic cir-

cuit implementing a user-provided logic description. The major limitation was that only

small circuits could be processed, because of the computational complexity of the algo-

rithm.

Schneider and Dietmeyer built a system for multiple-output function synthesis based

on the decomposition techniques of Karp and Roth [SD68]. Muroga introduced the idea

of permissible functions at the beginning of the 1970’s [MKLC89]. Liu was concerned

with the automatic synthesis of MOS networks [Liu77c, Liu77b]. Most of these methods

were computationally too complex at the time for being effectively used on large circuits.

Until the end of the 1970’s, most logic optimization systems would be able to pro-

cess circuits with limited number of inputs and outputs. With the introduction of the

Programmable Logic Array (PLA) and the advent of VLSI during the 1970’s [MC81],

approximate methods for two-level minimization became very important, because the

size of the circuits made the use of exact solutions very difficult [BHMSV84]. In 1974,

Hong et al. developed MINI, a program based on an efficient algorithm for prime im-

plicant generation [HCO74]. Arevalo presented an approximate two-level minimization

method targeted at PLAs [AB78]. Svoboda introduced an efficient heuristic for two-level

logic simplification [SW79], which was later implemented as program PRESTO [Bro81].

Braytonet al. introduced ESPRESSO, a combination of heuristics that proved very suc-

cessful at simplifying two-level logic expressions [BM84]. Dagenais presented an exact

minimization algorithm for two-level logic expressions [DAR86]. Gurunath and Biswas

described an efficient two-level minimization algorithm relying on the generation of only

a small portion of all the possible prime cubes [GB87]. Since PLAs were the technology

CHAPTER 1. INTRODUCTION 4

of choice for hardware implementation of combinational logic, the problem of simplify-

ing the hardware was one of simplifying two-level representations and then taking logic

information into account at the layout level, to allow compression (orfolding) of the

array [DSV83].

With the main technology for digital circuits shifting from NMOS to CMOS, and the

appearance of gate arrays, PLAs proved insufficient to meet the more stringent timing

and area requirements. Two-level logic minimization was augmented to multi-level logic

optimization. Brayton and McMullen proposed a decomposition technique suited for

multi-level logic operations [BM82, BHMSV84]. Many multi-level logic optimization

techniques and systems were developed in the 1980’s [DJBT81, GBdGH86, BDK+86,

BRSVW87, BHJ+87]. One of the new problems that appeared with multi-level logic

synthesis was that the transformation from the optimized logic description to a target

technology was no longer a transformation into a well-defined, regular PLA structure. In

addition to simplifying the logic description of circuits in a technology-independent set

of operations, logic synthesis systems had to be extended to take the target technology

into account, and technology mapping became the necessary technology-dependent step

for automatic synthesis of digital circuits.

The purpose of technology mapping is to transform an arbitrary multiple-level logic

representation into an interconnection of logic elements selected from a fixed library of

elements. Technology mapping is a very crucial step in the synthesis of semi-custom

circuits for different technologies, such as sea-of-gates, gate-arrays, standard cells, or

field programmable gate arrays (FPGA). The quality of the final implementation, both in

terms of area and performance, depends heavily on this step.

1.1.2 High level synthesis

It is possible to use logic synthesis tools directly, and enter the descriptions of desired

circuitry at the logic level. However, the operation of describing a circuit at the logic

level can be very time-consuming. With the very tight time-to-market schedules required

by today’s digital systems, facilitating the designers’ creative process has become of

prime importance. Therefore, there is a need for methods to efficiently describe digital

CHAPTER 1. INTRODUCTION 5

systems. From the beginning, the goal of high level synthesis has been to allow one to

describe digital systems at a very abstract level, thus eliminating the tedious description

at the logic level.

Typical high level synthesis systems operate on behavioral descriptions, which specify

the operations the target system is to carry out, without the need to specify in full detail

the logic circuit that will implement the target system. The role of high level synthesis

systems is therefore to operate on the abstract specifications given by designers and

generate a logic description that satisfies those initial functional requirements. Logic

descriptions produced by high-level synthesis systems are in general simply blueprints

for the required functionality. As a result, logic synthesis is typically used after high-level

synthesis to optimize the logic descriptions.

Starting at the end of the 1970’s, many systems have been created to address the

need for more abstract descriptions, and were typically targeted at very specific appli-

cations. MIMOLA was one of the first such system [Zim79]. HAL was targeted at the

synthesis of telecommunication ASIC circuits [PKG86]. The Cathedral system is aimed

at Digital Signal Processing (DSP) applications [NvMM88]. Other high level synthesis

systems developed in that period include theSystem Architect’s Workbench[TDW+89],

the Yorktown Silicon Compiler[BCD+88], USC’s ADAM system [PPM86], UC Irvine’s

synthesis system [BG87], CADDY/DSL [CR89]. At Stanford,HerculesandHebewere

developed as the high-level end of theOlympus Synthesis System[Ku91].

1.1.3 Physical design

The usefulness of high-level and logic level synthesis hinges on the availability of tools

that generate the geometric description of the target circuits. These tools are called

physical design systems. The geometric description they produce is typically used to

drive the physical implementation, either because it directly represents fabrication masks

(e.g. in semi-custom designs), or it specifies which actions to take to create the final

circuit (e.g. which fuses to blow in a FPGA).

The earliest physical design tools were targeted at automatic layout systems for gate

arrays and standard cells, the Engineering Design System of IBM being among the

CHAPTER 1. INTRODUCTION 6

first such systems [San87]. Because of its computational complexity, the physical de-

sign problem was quickly divided into smaller, more amenable subproblems. A cur-

rent customary subdivision includes partitioning (and floorplanning), placement, global

routing and local routing. Placement involves the positioning of geometrical objects

in a two-dimensional plane. Routing is related to the creation of interconnection links

between placed objects. Since placement and routing are themselves computationally

complex, the goal of partitioning is to isolate smaller circuit portions on which place-

ment and routing can be applied. Among partitioning techniques, Kernighan and Lin’s

heuristic for bipartite partitioning [KL70], and Kirkpatricket al.’s simulated annealing

method [KGV83] are the best known. Current research targets multiple way partition-

ing [YCL91]. Solutions to the placement problem include using slicing structures [Ott82],

min-cut algorithms [Bre77, Lau80] and rectangular dualization methods [HSM82]. In-

terest in wire routing started in the early 1960’s [Lee61]. A major milestone was the

idea of reservingchannelsfor routing, introduced by Hashimoto and Stevens [HS71].

Channel routing was extensively studied during the 1980’s [Bur86]. Global routing is

also an important component in today’s physical design systems [KMS86]. With the

availability of placement and routing tools, symbolic layout and automatic cell gener-

ation have become a viable path from semi-custom designs logic descriptions to lay-

out [New87, Uv81, MH87, MD88, HHLH91].

1.1.4 The Olympus Synthesis System

Most synthesis systems nowadays incorporate both high-level and logic synthesis oper-

ations. Olympusis an example of the current trend [DKMT90]. It is composed of an

ensemble of tools that can be classified as members of either the high-level or logic

synthesis domains. Figure 1.1 is a diagram representing the current tools inOlympus.

The entry point of the system is a behavioral description in a hardware description

language, HardwareC. The behavioral description is processed by programHercules,

which parses the description, does some compiler-like optimizations (e.g. dead code

elimination, constant propagation), and generates SIF (Sequencing Intermediate Format),

an intermediate representation of the operations and data dependencies implied by the

CHAPTER 1. INTRODUCTION 7

original specification. This intermediate representation can be simulated by means of

Ariadne, which allows validation of the HardwareC description against the desired be-

havior. Hebeoperates on the same representation (SIF), performing resource allocation,

scheduling and control generation.Hebe allows design space exploration, which lets

users of the system experiment with different design decisions and evaluate their impact

on the final implementation.Hebeproduces a logic description in SLIF (Structure/Logic

Intermediate Format), which consists of Boolean equations, delay elements, and possibly

hierarchy.

The logic description is passed toMercury, a logic synthesis framework.Mercury

allows for simple logic operations like constant propagation (sweep) and merging of

logic equations (elimination). It contains a simple two-level optimization procedure,

called SANKA [Fil91], based in part on the POP algorithm [DHNSV85].Mercury also

allows users to operate on the hierarchy of the logic descriptions.Mercury contains an

interface to other logic synthesis systems (e.g. MISII and AutologicTM). It allows a

logic description written in SLIF to be optimized by means of these other synthesis tools,

and then to be read back.Mercury contains an event-driven logic simulator. The logic

simulator has different built-in timing models: load-dependent with assumed loads (for

technology-independent logic descriptions), load and drive-dependent (for technology-

dependent logic descriptions), and zero-delay combinational logic (for compatibility with

the results ofAriadne).

Once logic descriptions have been optimized, they are transformed byCeres, the

subject of this thesis.Ceresis a technology mapper which binds technology-independent

logic descriptions to target technologies. The target technologies are represented by anno-

tated libraries, which contain descriptions of available logic gates. The logic description

of each gate includes its logic function, and other parameters like area, input capacitance,

output drive, etc.Ceresshares its internal data representation withMercury, and accord-

ingly incorporates some of the functionality ofMercury (e.g. constant propagation). In

addition, for the more specific tasks involved in technology mapping,Ceresincludes al-

gorithms for logic decomposition, logic equivalence verification for both completely and

incompletely specified functions, and area/delay optimization.Ceresultimately trans-

forms technology-independent descriptions, creating new representations based on target

CHAPTER 1. INTRODUCTION 8

libraries. The resulting netlists are then passed to physical design tools for placement

and routing. Many physical design tools are currently available both from industry

and academia, and therefore are not included in theOlympussystem. This dissertation

presents the ideas and algorithms implemented by programCeres.

CHAPTER 1. INTRODUCTION 9

HardwareC

HERCULES
Behavioral Synthesis

HEBE
Structural Synthesis

MERCURY
Logic Interface

ARIADNE
Behavioral Simulation

CERES
Technology Mapping

THESEUS
Waveform display

HIGH−LEVEL
SYNTHESIS

LOGIC−LEVEL
SYNTHESIS

TECHNOLOGY
MAPPING LIBRARY

NETLIST

(SIF)
PARTIAL ORDER

(SLIF)
LOGIC EQUATIONS

Figure 1.1: The Olympus Synthesis System

CHAPTER 1. INTRODUCTION 10

1.2 Terminology and notation

Descriptions of automatic synthesis systems have a very specific vocabulary and termi-

nology depending on the level of abstraction. Each of the three levels of abstraction

presented earlier, high-level synthesis, logic synthesis and physical design, has its own

representation and modeling paradigms. Since in the remainder of this thesis, we focus

on the logic level of automatic synthesis of digital circuits, we will define the terminology

which will be used throughout.

Customary representations at the logic level involve Boolean algebra, and relations

between Boolean functions. Technology mapping involves the technology-dependent

set of operations in logic synthesis systems. Technology-dependent and technology-

independent operations are closely linked. Therefore, the terminology and notation we use

in this thesis are strongly related to those used in descriptions of technology-independent

logic synthesis operations. In subsequent chapters of this thesis, we rely on the following

definitions and assumptions:

Definition 1.1 B = f0;1g is the Boolean domain.

We denoteBoolean variablesby subscripted strings (e.g. xi; xj ; yk). Boolean vari-

ablescan take on values from the setB.

Definition 1.2 The Boolean operators’+’, ’*’ and ’!’ represent the logic disjunction

(OR), conjunction (AND) and inversion (NOT), respectively. By default, we denote ’*’

by a white space. ’!’ is also represented by an appended apostrophe ”0”.

The phaseof a Boolean variablexi indicates whether the value ofxi is to be used

directly or complemented (inverted). This is denoted by a 0 or 1 superscript:x1
i means

the direct phase ofxi, and x0
i

means the complemented phase. When used without

superscript,xi meansx1
i . Symbolx0

i is also represented byx0i andxi.

Definition 1.3 A Boolean functionF(x1; . . . ; xn) is a composition ofBoolean operators.

A single outputBoolean functionis a functionF : B n ! B. An m-output Boolean

function is a functionF : B n !B m. We denote byxi the variable associated with the

output ofFi
1.

1Note thatxi cannot be one of the inputs ofFi (i.e. xi 62 fx1; . . . ; xng).

CHAPTER 1. INTRODUCTION 11

A Boolean functionF is said to beunatein Boolean variablex i if xi appears always

in only one phase in the expression ofF. F is said to bepositive (or negative) unate

in xi if only xi (or x0i) appears in the expression ofF. F is binate in x i if the variable

appears in both phases in the expression ofF.

Definition 1.4 An input vector� of a single output Boolean functionF : B n !B is one

element of the domainBn. Input vector� of F(x1; . . . ; xn) is represented by a product

� =
Q
n
i=1x

pi
i wherepi 2 f0;1g is the phase of variablexi.

Definition 1.5 We define theON-setof Boolean functionF as the set of input vectors

f�j; j= 1; . . . ; j ON j g of F for whichF(�j) = 1. The input vectors of theON-setare

also called minterms. TheOFF-setof Boolean functionF is defined as the set of input

vectorsf�0j ; j= 1; . . . ; j OFFj g such thatF(� 0
j) = 0.

Definition 1.6 The image of A throughF : B n !B m is the subset ofBm reached

by F(A) , whereAis a subset ofB n. The rangeof F is the image ofB n throughF

(A= B n).

Boolean functionscan becompletelyor incompletely specified. Completely specified

functions follow the previous definition. Incompletely specified functions have their range

B extended toeB = f0;1;Xg, whereXmeans either 0 or 1.

Definition 1.7 Don’t care setsrepresent the conditions under which a Boolean function

takes the valueX.

Don’t care conditions occur in Boolean logic either because some combination of

inputs of a Boolean function never happen (the domain ofF(x1; . . . ; xn) is smaller than

Bn), or because some outputs ofF are not observed. The first class ofdon’t care

conditions is calledcontrollability don’t cares, and the second class,observability don’t

cares. Both are described more thoroughly in Chapter 6.

Definition 1.8 A Boolean functionF is implementableby a Boolean functionG if for

each input combination eitherF andG have the same value, or elseF has a valueX.

Alternatively, we say thatG is compatiblewith F.

CHAPTER 1. INTRODUCTION 12

Definition 1.9 Thesupportof a Boolean functionF(x1; . . . ; xn) is the set of variables

fx1; . . . ; xng used in the expression ofF.

Definition 1.10 A Boolean networkis an ensemble of interrelated Boolean functions.

We represent a Boolean network by a set ofNBoolean variablesV = fy 1; . . . ; yNg and

a set of Boolean functionsfF1; . . . ;FNg such thatN= fy i = Fi; i = 1; . . . ;Ng where

yi = Fi represents an assignment of a single-output Boolean function for every Boolean

variable. FunctionsFi; i = 1; . . . ;N, haveK i � Ninputs (i.e. F i : BKi !B), each

input corresponding to a Boolean variable ofV.

Subsets of Boolean networks are also Boolean networks. Boolean networks are

represented by graphsG(V;E) where the vertex setV is in one-to-one correspondence

with the set of Boolean variablesV= fy 1; . . . ; yNg, andEis the set of edgesfe ij j i; j 2

f1; . . . ;Ngg such thate ij is a member of the setEif y i 2 support(F j). Such networks

are acyclic by definition.

We respectively call fanin and fanout the in-degree and the out-degree of vertices in

a Boolean network.

Definition 1.11 Primary inputsare Boolean variables of a Boolean network that depend

on no other variable (i.e.Fi is the identity function forprimary inputs). Primary outputs

are Boolean variables on which no other variable depends.

Definition 1.12 Thedepthof a Boolean network is the maximum number of vertices in

a directed path between any primary input and any primary output.

Definition 1.13 Collapsingis the action of reducing the depth of a Boolean network to

one. Partial collapsingcorresponds to collapsing subnetworks.

Definition 1.14 The Boolean behaviorof a n-input, m-output Boolean network is the

Boolean functionF : B n ! eBm corresponding to the collapsed Boolean network.

Two Boolean networks are equivalent if there is a one-to-one correspondence between

their respective primary inputs and primary outputs, and if their corresponding Boolean

behaviors are compatible.

CHAPTER 1. INTRODUCTION 13

1.3 Contributions

The research presented in this thesis concerns technology-dependent transformations at

the logic level in automatic synthesis of digital circuits. The goal of technology mapping,

as this operation is called, is to transform arbitrary Boolean networks into networks that

rely only on a predefined, restricted set of Boolean functions. The restricted set of Boolean

functions is called alibrary, and represents logic gates available in some target technology.

Given a cost metric defined in terms of the restricted set of Boolean functions, the quality

of the transformed network increases as its associated cost decreases. Typically, the cost

metric involves area and delay of the gates implementing the Boolean functions in the

library. As will be described in Chapter 2, one of the key operations in the transformation

process is to recognize logic equivalence between two arbitrary Boolean functions. Since

comparisons are done between Boolean functions with supports labeled differently, this

operation, called matching, is difficult.

The contributions of this work are two-fold. First, new algorithms for matching

are introduced. Second, we present an iterative formulation of technology mapping for

performance optimization.

Matching is a key operation in technology mapping systems, and we present two

new classes of algorithms. The first one is based on Boolean techniques for equivalence

detection. These techniques are more powerful than existing methods, and therefore

produce better quality solutions. The second class of algorithms addresses the problem

of matching Boolean functions in the presence ofdon’t care information. This is a new,

and very important addition to technology mapping operations, as it merges operations

that were traditionally technology independent with technology-dependent step of logic

synthesis. Better solutions can be obtained, since optimization decisions are made with

a clearer knowledge of the target technology.

Performance is of utmost importance in digital circuits. We present an iterative

framework based on specific transformations of mapped circuits. The effect of applying

these transformations is to progressively reduce the critical delay in the implemented

circuit, possibly at the expense of increased area.

All the algorithms presented in this thesis have been implemented in a software

CHAPTER 1. INTRODUCTION 14

system,Ceres. Results are presented at the end of Chapters 5, 6 and 7 to exemplify the

value of the algorithms.

1.4 Thesis outline

The remainder of his thesis is structured as follows. In Chapter 2, we formally present the

intrinsically difficult problems related to technology mapping. We then review previous

approaches to solving these problems. In particular, we briefly review rule-based and

algorithmic systems, explaining how these solutions deal with the computationally com-

plex issues. We conclude the chapter by comparing these two approaches, and discussing

their respective limitations.

Chapter 3 introduces the general divide-and-conquer approach used in our solution to

technology mapping. We describe the basic steps of technology mapping: partitioning,

decomposition, and covering. We introduce a new method for solving the covering

problem.

In Chapter 4 we focus on our contributions to the efficient solution of the matching

problem, a key element of the covering problem. We introduce Boolean matching, and

explain how the quality of the solutions it finds is improved over that of previous systems.

We briefly review binary decision diagrams (BDD), as they constitute the major data

structure of the logic operations involved during Boolean matching. We first present a

simple algorithm for matching which can be used for establishing the equivalence of very

small logic functions in the presence ofdon’t care information. This simple algorithm

exemplifies the computational complexity of Boolean matching, and indicates the need

for careful search space reduction when processing large logic functions.

In Chapter 5, we explain how to reduce the potentially very large search space. The

method is based on binary decision diagrams (BDD), and on the use of logic symme-

try. We present a method for computing and exploiting logic symmetry during Boolean

matching. We justify the usefulness of logic symmetry as an efficient way of reducing the

search space, particularly when dealing with standard logic parts offered by semi-custom

and ASIC vendors. We conclude Chapter 5 with comparative results with respect to other

technology mapping systems.

CHAPTER 1. INTRODUCTION 15

Chapter 6 presents methods that considerdon’t care information during the matching

operation. We introduce thematching compatibility graphas a way to recognize logic

equivalence in the presence of incompletely specified functions. We describe howdon’t

care information is derived from the subject circuit. We briefly present how the intro-

duction ofdon’t caresenhances the testability of the final implementation. We complete

Chapter 6 by presenting technology mapping results usingdon’t cares.

Chapter 7 is concerned with circuit performance issues. We present an ensemble

of three performance enhancement techniques: gate duplication, redecomposition and

partitioning modification. We also explain how the three techniques are integrated, using

an iterative framework as the driving mechanism. Results of timing-driven operations

conclude the chapter.

Finally, Chapter 8 concludes the thesis with a summary of the contributions, and a

discussion of future extensions.

Chapter 2

Technology mapping

In this chapter, we first present a general description of the technology mapping problem.

Then we formally define the technology mapping problem, focusing on the intrinsically

complex aspects. Previous solutions fall into two classes: rule-based and algorithmic

systems. We review the two classes of solutions, and finally conclude this chapter by

comparing them and highlighting their limitations.

The goal of technology mapping is to transform a technology-independent description

of a logic circuit into a technology specific representation. The technology dependent

implementation should optimize some cost metric, typically delay and/or area (and some-

times power dissipation). Technology-independent descriptions, obtained, for example,

after logic synthesis, are typically expressed in terms of Boolean equations (and possibly

other components like delay elements). Target technologies are represented by technol-

ogy specific libraries, which are comprised of individual gates implemented in the target

technology. Each library is typically described by enumerating all available logic cells1

(also called gates), where each gate description lists the logic function together with ad-

ditional information related to its electrical and physical characteristics (area, input load,

input to output delay, power requirements, etc.).

The fundamental operation in most existing technology mapping systems restricts

library elements to single-output, combinational gates. Therefore, multi-output gates,

1Some technologies can be characterized by a single master cell, or by some general property common to
all logic functions available,e.g. fanin limit. This is particularly true with some current FPGA technologies.

16

CHAPTER 2. TECHNOLOGY MAPPING 17

registers and buffers are rarely directly taken into account. The apparent limitation of

this assumption is not as restrictive as it may first seem. Most systems use post-processing

steps to add sequential elements and buffers. Similarly, it is possible to replace groups

of gates by multi-output gates as a post-processing step, following a pass where only

single-output gates are taken into account.

2.1 The technology mapping problem

Technology-independent logic descriptions of logic circuits can be cast as aBoolean

Network, i.e. as a set of Boolean equations. These equations do not necessarily represent

logic functions of gates in the target technology under consideration. For example, the

technology-independent optimization step of a logic synthesis system might choose a

complex equation (e.g. x= a+ b(c+ d + e)) for the description of the optimized

circuit, whereas in the target technology there is no gate implementing that complex

logic function (e.g. there may not be an OR-AND-OR gate in the library). Furthermore,

even when there is a corresponding gate in the library for each equation generated by

the logic optimization step, there is no guarantee that the replacement of the equation by

the corresponding library element optimizes some particular figure of merit, such as area

or delay, because the equations are generated without knowledge of the target library.

Therefore, the goal of technology mapping is to find an ensemble of interconnected gates

in the target technology that realizes the same logic function as the original circuit. In

addition, the final realization should be optimized in terms of some cost metric provided

by the library.

This transformation implies two distinct operations: recognizing logic equivalence

between two logic functions, and finding the best set of logically equivalent gates whose

interconnection represents the original circuit.

The first operation is calledmatching, and is defined as follows:

Definition 2.1 Given two logic functionsF : B n !B andG : B n !B, F andG match

if F � G for some input assignmentffx 1; y�(1)g; fx2; y�(2)g; . . . ; fxn; y�(n)gg, where

variablesfx1; . . . ; xng are the inputs ofF, variablesfy 1; . . . ; yng are the inputs ofG,

and� is a bijection from the integer domainf1; . . . ; ng to itself (i.e.�is a permutation).

CHAPTER 2. TECHNOLOGY MAPPING 18

Matching involves two steps: equivalence checking and input assignment. Checking

for logic equivalence can be expressed as aTAUTOLOGYproblem: givenF, G and

the set of variablesY = fy1; y2; . . . ; yng, verify that F(Y) � G(Y) = 1 for all 2n

binary assignments of the variables ofY. TAUTOLOGYhas been proven to be NP-

complete [GJ79]. Input assignment is also computationally complex. In the worst case,

it entails the examination of all combinations ofninputs, which representsn! operations.

The second operation is calledcovering, and is defined as:

Definition 2.2 Given a Boolean networkN and a restricted set of Boolean functions

(called a library) L = fGi : BKi !B; i = 1;2; . . . ; Lg, a cover is a networkM,

represented byM= fx i =
bGj; i = 1; . . . ; j Mj ; j2f1; . . . ; Lgg where bGj is an instance

of Gi 2L, j Mj is the number of vertices inM, andMis equivalent toN.

Covering involves finding an alternate representation of a Boolean network using logic

elements which have been selected from a restricted set. Note that before covering is

considered, the equivalence between elements of the restricted set and portion of the

Boolean network is established using the matching operation described above. In its

most general form, the covering process can be described as follows.

Consider a primary outputvo of networkN. Let G o � L be the subset of library

cells having the property that their output is equivalent tovo when their inputs are either

a subset of vertices inN (excludingv o) or a Boolean function of a subset of variables of

N. Then the setG o represents all matches for the primary outputvo. If a matchGk 2G o

is chosen, then all variables in its support must be available through some other matches

that are chosen. Consider a networkN 0 obtained fromN by removing the primary

outputvo fromNand adding all the variables in the support ofG k as primary outputs of

N 0. Then the new networkN 0 must be covered as well. This operation can be applied

recursively until all the primary outputs ofN 0 correspond directly to the primary inputs

of N (Figure 2.1). Given a cost associated with each library element, the optimum

cover minimizes the overall cost of the alternate representation.

Let us neglect the computational complexity of findingGo andN 0 at each recursion

step. The choice of an elementGk 2 G o implies that the inputs ofGk are available

as the primary outputs of the corresponding networkN 0. Therefore, the selection of a

CHAPTER 2. TECHNOLOGY MAPPING 19

N

Gk

N’

End of recursion:

N

Figure 2.1: Illustration of the recursive covering definition

matching elementGk implies that subsequent selections must make the primary outputs

of N 0 (or alternatively, the inputs ofGk) available. If it were possible to recursively list

all choices for matchesGk, it would be necessary to describe how choosing a matching

gate Gk in turn implies other matches which generate the inputs ofGk. Solving the

set of implications generated in this process is a type of covering problem, which has

been termedbinate covering[Rud89a],covering with cost[RH67], andcovering with

closure. The covering problem has been shown to be equivalent to aSATISFIABILITY

problem, with the additional requirement that each variable in each clause to satisfy has

an associated cost [Rud89a].

In the general covering formulation,N 0 does not need to be a subset ofN. That

is, inputs to the chosen gateGk do not need to correspond to vertices in the network

N. A restricted coveringproblem can be formulated, where the inputs to the matching

gates must pre-exist in the initial Boolean networkN, i.e. the inputs to any matching

cell Gk 2 G o must correspond to a vertex of the Boolean networkN. The restricted

covering problem has been considered by [Keu87, Rud89a] because it is simpler to

handle: no computation ofN 0 is required. Under the restricted covering assumption,

Boolean networkN is defined by a constant set of vertices throughout the covering

process. However, such a problem is still computationally complex, because it again

involves implications among the selection of the matches, and therefore it is still a binate

CHAPTER 2. TECHNOLOGY MAPPING 20

covering problem.

As an example of the occurrence of binate covering in therestricted coveringproblem,

let us consider Figure 2.2, which shows a simple network,N, with a set of target logic

gates,L. We are interested in transformingN into a new network,M, where each

Boolean function belongs to the restricted setL. ForMto be equivalent toN, the

AND2

OR2

ANDOR2

Cost

5

A

B

C

m3

m1

m2
m4

m5

m1: A,OR2
m2: B,AND2
m3: C,AND2

m4: AB,ANDOR2
m5: AC,ANDOR2

matches = {m1,m2,m3,m4,m5}

Boolean Network N

vertices of N = {A,B,C}

Library L

4

4

Figure 2.2: A simple covering example

logic functionality of their respective primary outputs has to be compatible. The primary

outputs of the transformed networkMmust be implemented by gates selected from the

libraryL. Each variable in the support of these gates also must be implemented by some

gate from the library, unless the variable is a primary input. This has to be recursively

true, so that all variables used inMare defined.

Each vertex inNcan be represented by at least one element inL, and possibly more

than one. Conversely, an element inL can possibly represent more than one vertex of

N. Therefore, there are usually many choices of gates inL that can generate a valid

networkM.

For example, in Figure 2.2, functionAcan be represented either by a single two-input

CHAPTER 2. TECHNOLOGY MAPPING 21

OR gate (OR2), or together with functionB (or C) by a AND-OR gate (ANDOR2). We

can associate a binary variable with the choice of a particular gate cover, for examplem1

represents whether the two-input OR gate is chosen to coverA(m 1 = 1), or whether it

is not chosen (m1 = 0). Similarly, in Figure 2.2,m4 represents the use of the AND-OR

gate to cover functionsAandB, andm 5 represents and AND-OR gate coveringAand

C.

Therefore, we can represent the requirement forAto be covered at least by one gate

in L by the Boolean equation(m1 + m4 +m5) . Similarly, the covering requirements

for Band Ccan be represented by Boolean equations(m 2 + m4) and (m3 + m5)

respectively. For all vertices in the original network to be covered in the alternate

representation, the three Boolean equations above must be true at the same time,i.e.

((m1 +m4 +m5) (m2 +m4) (m3 +m5) = 1).

In addition to these requirements, each cover in the alternate network must have its in-

puts generated by other covers (unless the inputs are primary inputs). For instance, choos-

ing a two-input AND gate to coverBrequires that the output ofAbe available, which

is the case only if a two-input OR gate coversA. The choice of the two-input AND gate

coveringBis represented by Boolean variablem 2, and the two-input OR gate coveringA

is represented bym1. This relation can thus be expressed asm2 !m 1. Similarly,m3 !

m1. These additional conditions must be valid simultaneously with the first covering con-

ditions. Therefore, to solve the covering problem, we must find a solution to the following

Boolean equation:(m1 +m4 +m5) (m2 +m4) (m3 +m5) (m2 !m 1) (m3 !m 1) = 1,

which can be rewritten as(m1+m4+m5) (m2+m4) (m3+m5) (m2+m1) (m3+m1) = 1.

We can see from this equation why this is abinate covering problem: some variables

(m2 andm3) appear in both their ON and OFF phases. For every cube that satisfies the

equation(m1m2m3m4m5;m1m2m3m4m5;m1m2m3m4m5;m1m2m3m4m5) , the cost is

calculated as the sum of the costs of variables used with a positive phase (12,13,13,10

for the example2). The satisfying minterm with minimum cost is chosen as the solution

to the covering problem (m1m2m3m4m5).

SATISFIABILITYhas long been known to be NP-complete [Coo71, GJ79].Binate

2Remember that each variable with positive phase corresponds to selecting a gate from the library.

CHAPTER 2. TECHNOLOGY MAPPING 22

covering, which involves the additional requirement of minimal cost is, therefore, com-

putationally harder thanSATISFIABILITY.

2.2 Previous work

In order to find acceptable solutions to the computationally complex problems intrinsic

to technology mapping, simplifications and heuristic approaches have been used in the

past. Two classes of methods exist: rule-based and algorithmic. Rule-based approaches

utilize expert systems to operate on a technology rule-base. A network is modified by

successively applying relevant transformation rules to each of its elements. The operation

continues until either no transformation can be applied or the network has reached some

acceptable state,i.e. the evaluation of some metric of the network gives a cost lower than

some predefined value. A rule-base is created with rules that encapsulate the allowed

transformations on a network as pairs of logically equivalent configurations, with one

preferred element in the pair. Rules are typically very specific to the target technologies.

Therefore modifying or adding rules in the rule set of a technology (or creating a rule

set for a new technology) is usually not simple.

Algorithmic-based approaches use constructive methods to transform networks from

generic Boolean logic into technology-specific design. They follow a sequence of sys-

tematic operations that change the original logic description into an implementation that

conforms to the target technology.

There are currently many systems that support technology mapping to produce actual

implementations of circuits. Both ruled-based and algorithmic-based categories are well

represented. Often, the technology mapping operation is one step in a more general logic

synthesis system. We will now review previous logic synthesis systems, concentrating

on the technology mapping aspect. We will first consider rule-based systems, then follow

with algorithmic-based ones.

CHAPTER 2. TECHNOLOGY MAPPING 23

2.2.1 Rule-based systems

One of the first systems to tackle the technology mapping problem was LSS [DJBT81,

DBJT84, JTB+86], which started at IBM in the early 1980’s. LSS uses local transfor-

mations to first simplify a logic description, and then expresses it in terms of the target

technology. Rules are used as the underlying transformation mechanism. For example,

Figure 2.3 represents two such rules (adapted from [DBJT84]). The first rule,NTR4,

indicates that two successive AND gates with one input in common are equivalent to one

AND gate with a non-inverting buffer in front. The second rule,NTR3, similarly indi-

cates that two connected AND gates are equivalent to three connected AND gates, two

of them with one common input. RulesNTR3andNTR4represent two different types of

operations, one that removes logic gates (NTR4), and one that adds logic gates (NTR3).

On any given set of adjacent gates, every applicable rule is evaluated by estimating the

cost of the resulting circuit, assuming the rule was applied. Rules which improve the

cost of the circuit are accepted as soon as they are found: it is a greedy operation.

Initially, in LSS, the target technology could be described only with simple

gates [DJBT81]. Eventually, more complex gates were introduced, but recognizing

the complex gates (e.g. XORs) involved adding many rules to deal with all possibil-

ities [DBJT84]. LSS has grown over the years from a simple logic synthesis program

to a system capable of taking testability and timing information into account during

technology mapping.

TMS, another rule-based technology mapping system, was also developed at IBM

during the same period [GLWH84]. Specifically designed to aid the transformation of

circuits from one technology to another, TMS relied on an intermediate representation,

GLN (General Logic Notation). Rules represented allowed transformations from one

logic configuration to another, but did not allow for transformation of some simple gates

into more complex ones. For example, parity functions could not be extracted from

interconnections of nands or exclusive-ors.

TRIP is a technology mapping system developed at NEC [SBK+87] which does

both technology mapping and logic optimization. To detect equivalence between circuit

configurations and rule patterns, TRIP uses simulation to compare the initial circuit to

the modified circuit. TRIP also relies on user-aided partitioning to keep the size of the

CHAPTER 2. TECHNOLOGY MAPPING 24

NTR4

NTR3

Figure 2.3: Two transformation rules from LSS

designs manageable.

LORES/EX was developed at Mitsubishi [ISH+88], and bears some similarities to

TRIP. LORES/EX differs from TRIP in that it is a logic synthesis system which uses

different classes or rules during different phases of operation. In particular, it initially uses

standardizingrules, which change the logic representation into a pseudo-canonical form,

where only certain gate configurations are allowed. This has the advantage of reducing

the number of patterns the rules need to recognize, and therefore decreases the size of the

rule-base and simplifies the process of applying the rules. Since run time grows rapidly

with the size of the descriptions, LORES/EX relies on partitioning to reduce the size of

the circuits it applies the rules on.

Recently, Autologic, a commercial ruled-based system for logic synthesis and tech-

nology mapping, was released by Mentor Graphics. Autologic relies onsignaturesto

recognize logic equivalence between different configurations.Signaturesare in essence

truth tables. They are extracted from the portion of the network to be replaced, and com-

pared to those of the library elements. The use ofsignaturesimplies that rule application

in Autologic is based on Boolean comparisons. However, since the entire truth table is

represented, its application is restricted to logic functions with a small number of inputs.

CHAPTER 2. TECHNOLOGY MAPPING 25

Socrates, originally developed at General Electric [GBdGH86] is a rule-based system

that exists in a class of its own3. Socratesstands apart from the other rule-based systems

because it is a hybrid method between rule-based and algorithmic-based. It is a complete

system for logic optimization where the technology-independent portion is algorithmic-

based, and the technology-dependent portion is rule-based. Therefore, for the technology

mapping classification, we categorize it as a rule-based system.Socratesintroduced a

new concept in rule-based systems, the idea of a state search. All rule-based systems

reviewed previously are greedy. They apply a transformation rule only if it lowers the

cost metric of the network. Consequently, it is possible for these systems to get stuck in

local optima. Socratesuses the state search as a way to avoid that problem. The state

search is a mechanism which allows the system to systematically evaluate the application

of a succession of rules, and choose to apply a rule with immediate negative impact

if it leads to a better solution after further rule transformations. The state search is

characterized by its breathB, i.e. the number of rules that are evaluated in parallel, and

by its depthD, i.e. the number of successive rules evaluated before a decision is made.

In theory, by choosingD= 1 andB=j RB j (the size or the rule-base), all possible

rule applications could be considered, with the global optimum being selected in the end.

In practice, since the size of the state search grows asBD, the breath and depth of the

state search is limited. But the method still makes it feasible to overcome local optimum

solutions, possibly finding a better final realization.

2.2.2 Algorithmic-based systems

The second class of systems is based on algorithmic approaches. We review this type of

approaches in detail, since the technology mapping system presented in this dissertation

is algorithmic-based. In particular, we carefully explain pattern matching, which was

the main method used for establishing logic equivalence in previous algorithmic-based

systems, to contrast with Boolean matching, the new method proposed in Chapters 4, 5

and 6.

The idea of algorithmic based technology mapping started from the realization that

3Socrateswas integrated into the initial synthesis system offered by Synopsys.

CHAPTER 2. TECHNOLOGY MAPPING 26

logic function matching is similar to code generation in software compilers [Joh83,

TJB86]. For both compiling and technology mapping, an initial description must be

transformed into an expression involving only a restricted class of operations. In the

most general situation, the initial description is a directed acyclic graph (DAG) in which

nodes represent arbitrary operations, and edges represent data dependencies. Then, the

final description is a DAG where the operations attached to nodes are limited to those

belonging to the restricted class. The final expression should be optimum; that is, given

a cost associated with each operation in the restricted class, the total cost of the final

expression should be minimum.

In the case of software compilers, the initial description is an abstract syntax tree, the

restricted class is the target computer’s instruction set, and the optimum representation

implies the fastest execution of the resulting code. In the case of function matching in

Boolean networks, the initial description is a Boolean function, the restricted set is the set

of logic gates available in a target technology, and the optimum representation gives the

smallest delay between primary inputs and primary outputs. Kahrs showed that library

selection in silicon compilers is analogous to code generation in software compilers, and

he presented a simplified directed graph matching algorithm that covered abstract syntax

trees with parameterized library elements [Kah86].

In the area of software compilers, code generation has received considerable atten-

tion [Flo61, SU70, AJ76, BS76, AJU77]. DAG matching (which in software compilers

appears during the generation of code for expressions with common subexpressions) has

been shown to be computationally complex [BS76, AJU77, GJ79]. Therefore, an often

used simplifying assumption for code generation algorithms is to assume that only trees

are processed rather than DAGs. Since this is a crucial step in compilers, tree matching

has been extensively studied [And64, Nak67, Red69, AJ76, HO82].

In the area of technology mapping, in 1987 Keutzer presented a tree matching based

algorithm [Keu87] that relied on the tree matching systemtwig which was developed for

compilers [AG85]. The code generator-generatortwig was designed in 1985 by Ahoet al.,

as an efficient method for tree matching in compilers [AG85, Tji85, AGT89].Twig uses

a method based on a tree pattern-matching algorithm proposed by Hoffman [HO82],

coupled with dynamic programming [Bel57, BD62, AJ76]. Each tree is described by a

CHAPTER 2. TECHNOLOGY MAPPING 27

a

a

b c

d

a

1 2

a d

1 2

b c

Figure 2.4: Tree pattern and associated trie (adapted from [HO82])

set of strings where each path from the root of the tree to each leaf is represented by a

string in which node symbols alternate with branch numbers. For example, the tree in

Figure 2.4 can be represented by the set of stringsS = fa1a1b; a1a2c; a2dg, assuming

the branches in the tree are numbered from left to right.

In the technology mapping domain, each library element is represented by a target

tree, each with its associated strings. The set of strings derived from all target trees is

then used to create an Aho-Corasick string-matching automaton,i.e. there is a single

matching automaton built for a given library. For example, the two trees in Figure 2.5

form the following pattern set:f+1v, +2!1+1v, +2!1+2v, +2vg. Each string represents

a branch of one or more trees (e.g. +1v represents branchest1.1 and t2.1 of treest1

and t2). The strings in the pattern set are then used to generate the matching automaton

shown in Figure 2.6. Initially, the automaton has a single state, 0. Then, starting from

the 0th state, each string is processed in turn, one character at a time, a new state being

added for each of the characters that is not recognized by the automaton being built

(e.g. states 1,2,3 are added when processing characters+,1,v of the first string+1v).

Each edge between two states is annotated with the character processed when the second

state is added. Each state corresponding to the last character of a string is annotated

CHAPTER 2. TECHNOLOGY MAPPING 28

+

v v

+

v v

+

v !

t1 t2

v

1 2

+

!

+

1 2

v v

1t1.1

t1.2 t1.3

1 2

+

v v

t2.1 t2.2

Figure 2.5: Two trees and their associated tries (adapted from [AGT89])

with an output functionrepresenting the matched string (e.g. state 3 recognizes string

+1v, which represents branchest1.1 and t2.1 of treest1 and t2). When all strings from

the pattern set are processed, the automaton is revisited to generate thefailure function.

This function indicates the state to go to when the running automaton reaches a state

where the processed character does not correspond to any outgoing edge. The failure

function is generated as follows. The automaton, which has a tree structure at this point,

is traversed using a breadth-first search. All the statessi reached by the 0th state are

initially annotated withfi = 0, wherefi is the failure function at statesi. Then, for each

statesj reached by statesk on input character', the failure functionfj is set to point to

the state reached byfk with character'. For example, in Figure 2.6, the failure function

of states7 is (f7 = 1) , since(f6 = 0) and s0 reachess1 on input ”+”. As the failure

functions are created, output functions of states withfj 6= 0 are updated with the output

functions of the state corresponding tofj . For example, when states9 in Figure 2.6 is

processed, it is found thatf9 = 3. Therefore, the output function ofs9 is augmented with

the output function ofs3 (t1.2 is augmented witht1.1, t2.1).

The matching automaton is constructed once for any given library. We now consider

its use in recognizing trees. The process uses both top-down and bottom-up traversals.

CHAPTER 2. TECHNOLOGY MAPPING 29

+ 1 v

2 !

v

1 + 1

2

v

v

0 1 2 3

4 5 6 7 8 9

10 1112

other

1 2

4

0

0

0

00

00
t1.1,t2.1

t2.2

3

12
t1.3,t2.2

t1.1,t1.2,
t2.1

Figure 2.6: Aho-Corasick matching automaton (adapted from [AGT89])

Top-down traversal is used for detecting trees (with the Aho-Corasick automaton), while

bottom-up traversal finds the best tree representation for a particular subtree (based on

dynamic programming).

For a given tree to match (or subject tree), each node of the tree is processed in a depth

first manner through the matching automaton, the path from the root to the processed

node being encoded in a string as explained above. Each time the automaton reaches an

accepting state, the current node of the tree being processed is annotated with the path

that leads to it, together with the pattern tree(s) to which the accepted path belongs to.

When the subtrees under a node accept the entire pattern set of a pattern treeT , then

that node matches the pattern treeT . For each node in the tree, the best pattern tree is

chosen among all the matching trees. For bottom up tree traversals, it has been shown

that this leads to the selection of the optimum set of covering patterns [AJ76]. This is

called dynamic programming.

Keutzer adaptedtwig to recognize logic patterns in Boolean networks [Keu87]. He

introduced the idea of representing the Boolean network by a forest of trees, where the

trees areBoolean functionsexpressed as interconnected two-input NAND gates. To that

end, he partitioned the network at multi-fanout vertices. Library elements were similarly

CHAPTER 2. TECHNOLOGY MAPPING 30

represented by NAND2 trees. The representation of the logic network and library by

NAND2 trees made possible the use oftwig. From a software compiler point of view,

this tree representation eliminated expressions with common subexpressions, which is

equivalent, in a graph theoretical framework, as reducing the complexity of thebinate

coveringproblem.

Figure 2.7 shows a typical set of patterns for matching a library.

Logic Gates Trees Patterns

NAND2 N1v,
N2v

NOR2 B1N1B1v,
B1N2B1v

OR2 N1B1v,
N2B1v

AOI21

B1N1N1v,
B1N1N2v,
B1N2B1v

B1N1B1v,
B1N2N1v,
B1N2N2v

Label

AND2 B1N1v,
B1N2v

INV B1v

t2.1
t2.2

t3.1
t3.2

t4.1
t4.2

t5.1
t5.2

AOI22

B1N1N1v,
B1N1N2v,
B1N2N1v,
B1N2N2v

t7.1
t7.2
t7.3
t7.4

t6A.1
t6A.2
t6A.3

t6B.1
t6B.2
t6B.3

t1.1

B

N

v

Inverting buffer:

2−input nand:

Input variable:

Figure 2.7: Patterns for a simple library

CHAPTER 2. TECHNOLOGY MAPPING 31

These patterns represent a NAND decomposition of the logic functions representing

the gates of the target library. It is assumed that the technology mapping system generates

all possible patterns for each logic expression representing a gate in the library. Note

in particular that gate AOI21 has 2 representative patterns. Figure 2.8 represents the

associated automaton. Each accepting state in the automaton recognizes a set of patterns

representing portions of target trees (e.g. state 27 recognizes stringt2.1, which represents

half of a NAND2 gate).

1 v

other

B

N 1 v

B 1 v

2 v

B 1 v

N 1

2

v

B

N

1 v

1 v

2 v

v

B

N

1

1

2

v

v

v

25 26 27

28 29 30

25 26 27

31 32

0 0 0

31 32

33 34 35

25 26 27

31 320 0 0

1 2 3

0 0

1 2 3

0 1 2 3

4 5 6

7 8 9

10 11 12

13 14

15 16

17 18 19

20 21 22

23 2425 26 27

28 29 30

31 32

33 34 35

t1.1

t2.1,t3.1

t2.2,t3.2

t2.1

t5.1

t2.2

t5.2

t1.1,t4.1,
t5.1,t6B.1

t2.1,t6A.1,
t7.1

t2.2,t6A.2,
t7.2

t4.2,t5.2,
t6A.3

t2.1,t6B.2,
t7.3

t2.2,t6B.3,
t7.4

Figure 2.8: Aho-Corasick automaton for patterns of a simple library

CHAPTER 2. TECHNOLOGY MAPPING 32

Given a technology-independent network to transform into a target technology, the

matchingoperation becomes a problem of finding library trees equivalent to tree structures

in the network.Twigwas used to match the network trees with library trees. For example,

Figure 2.9 shows how a NAND2-decomposed network is represented by a tree, called the

subject graph. The strings generated from the subject graph are passed to the automaton

in Figure 2.8. At each node of the tree, if all strings of a pattern are detected, then that

pattern is a match. It is assumed that a NAND2 gate is always available in the library,

therefore there is guaranteed to be at least one match at each node of the tree. Each

match is evaluated as the cost of the matching gate plus the cost of the best matches at

the inputs. In the example of Figure 2.9, all nodes have a single matching gate except

for nodeo, which has three matches.

Network

a

b c

d

y

x

w

o

z

Subject graph

B

1

N

2

B

v

N

1N

v v

v1 2

x NAND2(b,c) NAND2

y

z

w

o

INV(a)

NAND2(x,d)

NAND2(y,z)

INV(w)

AND2(y,z)

AOI21(x,d,a)

INV

2 NAND2

3 NAND2 + INV

3 NAND2 + 2 INV

NAND2 + AOI21

Vertex

t2

t1

t2

t2

t3

t1

Match Gate Cost

2 NAND2 + AND2
+ INV

t6B

1

2

Figure 2.9: Example of pattern-based covering

CHAPTER 2. TECHNOLOGY MAPPING 33

Twig uses dynamic programming to find the best set of library elements to represent

the subject treeST . The algorithm operates on the tree from the leaves ofST towards the

root. At each vertexvof theST , all library patterns isomorphic to sub-trees rooted atv

are detected, and the library element yielding the best cost is selected. The cost of vertex

v is calculated as the cost of the matching library element plus the cost of all vertices of

ST corresponding to inputs of the matching pattern. It is assumed that there is always at

least one matching pattern for any vertexvof ST . The use of dynamic programming in

twig ensures that each tree in the network is optimally covered by library elements. It is

important to note that NAND2 tree decompositions are in general not unique. Therefore,

the quality of the overall solution depends on the particular NAND2 decomposition of a

network tree, as well as on the partition of the network into trees.

Keutzer’s approach, although very efficient, was limited by the very operation that

made it effective. NAND tree matching did not allow recognition of gates with repeated

literals such as exclusive-ors (XOR), multiplexers, and majority gates. Another limitation

is centered around generation of complement signals. In logic circuits, complements of

signals play an important role. It is sometimes better to complement a signal, and

propagate the new value to the fanouts of the original signal. The DAGON formulation

in terms of NAND2 pattern trees made it difficult to change the polarity of signals,

because inverters were not easily added to the strings processed by the string automaton.

In MIS, Rudell built on the ideas of Keutzer by looking at graph-matching [DGR+87,

Rud89a]. He proposed an algorithm for graph-matching that relies on tentative binding

between pattern graphs and the subject graph, using back-tracking when subject graphs

failed to match complete pattern graphs. The graph-matching algorithm was applied only

to leaf-DAG patterns, that is, graphs where only leaves can have outdegree greater than

one (Figure 2.10).

Given the set of matches found by the graph-matching algorithm for each node in

the Boolean network, Rudell studied how to choose the best set of matches, that is, the

covering problem. Since graph-covering is NP-complete, Rudell used a tree-covering

approximation. Invoking theprinciple of optimality, he based his covering technique

on dynamic programming, which is guaranteed to find the optimum solution for trees.

Rudell also addressed the problem of modifying the polarity of signals to find better

CHAPTER 2. TECHNOLOGY MAPPING 34

TreeDAG Leaf−DAG

Figure 2.10: Example of a DAG, a leaf-DAG and a tree

solutions. He proposed aninverter-pair heuristic, which consisted of adding inverter

pairs at the output of each gate in the original network. This allowed phase assignment

to be done automatically by the dynamic programming-based covering. A special gate

consisting of an inverter pair with no cost was also added to the library, making possible

the elimination of unnecessary inverter pairs. Theinverter-pair heuristic produced the

best phase assignment for every single-fanout vertex. However, this did not guarantee

optimality because it is not possible to locally find the best phase assignment at multi-

fanout vertices. For all systems following Keutzer’s partitioning approach, optimality is

lost at multi-fanout vertices.

To alleviate that problem, Rudell proposed thecross-tree phase assignmentheuristic,

which simply indicated at multi-fanout points if an inverter had already been allocated.

In that case, further use of the inverter came without any area penalty.

Finally, Rudell chose a different partitioning scheme to isolate the pattern trees. Start-

ing from one primary output, he isolated a logic cone going all the way to the primary

inputs. Then all the other primary outputs were processed in turn, each one becoming the

tip of a logic cone whose support consisted of primary inputs or gates within the cones

already processed. The advantage of this partitioning method is that very large trees are

processed initially. However, the results that produced are dependent on the order in

which the primary outputs are processed.

In addition to area-driven technology mapping, Rudell studied delay-driven transfor-

mations. He first considered gates with one fixed load, then extended the idea to gates

with variable input loads. One solution is to extract all possible input loads from the cells

CHAPTER 2. TECHNOLOGY MAPPING 35

in the library, and extend the covering to find the best cost for each possible input load

at each vertex in the subject graph. This extension guarantees that the final solution will

produce the best arrival times. Since some libraries have cells with many different input

loads, Rudell introduced the idea ofload binning, which discretizes all possible input

loads into a finite set of bins. Then, only the loads selected for the bins are considered

during covering. A final extension to the delay-driven algorithm is to take area into

account. Then among the bins with solutions meeting a given timing constraint, the one

with the smallest area is chosen. If no solution meets the timing constraint, the minimum

area solution is chosen among all minimum delay solutions.

Many other technology mappers have used pattern matching to determine logic equiv-

alence. TECHMAP , from University of Colorado at Boulder, also uses structural com-

parisons. TECHMAP differs from DAGON and Berkeley’s MIS in that it tries two

different NAND2 decompositions to get better results for delay. It also uses algebraic

symmetries to reduce the number of comparisons during the matching step. Its results

are comparable to those of MIS [MJH89].

SKOL, written by Bergamaschi [Ber88], partitions library cells by the number of

cubes in the corresponding logic function. The technology mapping step is done on

Boolean factors instead of on an AND/OR decomposed network. It applies a peephole

optimization where the best library element is chosen for each sub-circuit.

McMAP, developed by Lisankeet al. [LBK88], starts from the same ideas as

DAGON and MIS. It breaks the initial network into simple AND/OR gates and then

operates on trees. A specialgatephaseoperation is used to minimize the number of

inverters. It also uses gate merging to create larger gates from smaller ones. However,

the merge operation is highly dependent on the order in which the vertices are processed.

Therefore, a number of random orderings are tried to improve the quality of the results.

MACDAS, introduced in 1986 by Sasao [Sas86], is a multi-level synthesis system

that uses two-bit encoding and multi-valued simplification. Its main goal is to reduce the

number of AND/OR gates under fanin constraints. The fanin constraints are applied as

a last step, usingfactorization on the network, which divides AND/OR gates with large

fanins into an interconnection of smaller AND/OR gates. This step can be viewed as

CHAPTER 2. TECHNOLOGY MAPPING 36

a simplified technology mapping step since the resulting circuit conforms to a technol-

ogy dependent constraint (fanin limitation). However, it is limited in scope since only

AND/OR gates are generated, and in general, target technologies include more complex

functions than AND/OR gates. Therefore the usefulness of the technology mapper in

MACDAS is limited when used stand-alone.

CARLOS, by Mathony and Baitinger, is a multi-level logic design system which

includes a technology mapper [MB88]. The cells in the target technologies are restricted

to NAND and NOR gates, inverters, and combinations of AND and OR gates with a

maximum fanin of 4. As in MACDAS, the technology mapping operation is limited to

very simple libraries.

Recently, a technology mapping system using Binary Decision Diagrams (BDDs) has

been presented by Satoet al. [STMF90]. It is based on the use of permissible functions

coupled with Boolean operations.

Most of the algorithmic systems exposed earlier are based on recognizing similar

structures between the Boolean network and cells in the library. Although efficient,

this has the disadvantage of making difficult and sometimes impossible to recognize

logic gates with repeated inputs. For example the majority gate (represented byF=

ab+ bc+ ac) cannot be found by any of these pattern-based systems.

In the following chapters, a new method for matching will be presented which will

allow finding such matches. Based purely on Boolean operations, it operates as easily

with functions involving repeated literals as it does with functions of single literals.

2.3 Comparison of rule-based and algorithmic methods

In principle, rule-based approaches can find solutions very close to the global optimum.

Given powerful enough rules, and enough trials and modifications of these rules on the

network, it is possible for the network to reach a state where no more rules can be applied

without increasing the overall cost. Obviously, the rules and rule-application mechanism

must be be powerful enough so that the system can escape a local optimum. But that

comes at the price of having to run these systems for a very long time, without a clear

idea of how close to optimum a solution is. Rule creation is also a difficult process,

CHAPTER 2. TECHNOLOGY MAPPING 37

especially when rules begin to interact with one another. The completeness of the rule

set is necessary if solutions that are close to the global optimum are to be found (or

equivalently, to avoid local minima). The performance of rule-based systems is closely

tied to the quality of the rule set for the particular technology. The creation of rules for

new technologies can be a difficult task, especially when some unusual configurations

are made possible by new technologies.

Algorithmic based approaches on the other hand, rely on provable properties of al-

gorithms and logic functions. Their execution time is typically much shorter than that

of rule-based systems, with results of comparable or better quality. One advantage of

algorithmic approaches is that it is possible to study beforehand the type and quality of

solutions. Therefore bounds on both the run time and the quality of the resulting im-

plementation can be found. However, this characteristic of algorithmic-based approaches

turns the advantage to rule-based systems for problems that are not well-defined. There-

fore, rule-based systems are well suited for problems which requiread hoctechniques,

and algorithmic-based systems are preferred for solving problems with provable proper-

ties. In this dissertation, we consider technology mapping of combinational logic, which

is a problem with known characteristics. We therefore base our operations on algorithms.

Most current algorithmic-based technology mapping systems use pattern matching to

recognize logic equivalence between library cells and portions of Boolean networks. The

advantage of pattern matching is fast execution, but it restricts the number of possible

matches. Therefore, the optimality of the overall implementation is limited, when library

cells with repeated literals (or equivalently, non series-parallel gates) are employed.

We propose a more powerful method for detecting logic equivalence. Our method is

based on Boolean operations, and therefore is not limited by expressions with repeated

literals. We further introduce the use ofdon’t care information during logic equivalence

detection, to allow further improvement in the number of detected equivalences. The

resulting number of successful matches gives better quality solutions.

Chapter 3

An algorithmic approach to technology

mapping

It was shown in the previous chapter that there exist two intrinsically difficult problems

to technology mapping,matchingandcovering. The two problems are intertwined within

technology mapping: the goal ofcoveringis to produce the best set ofmatchinglibrary

cells that implements the functionality of a given Boolean network. Therefore, any

solution to the technology mapping problem must integrate solutions to bothmatching

andcovering.

Since solving thegeneral coveringproblem is computationally intractable, we will

solve therestricted coveringproblem presented in the last chapter. We follow the as-

sumption made by previous systems [Keu87, Rud89a] that duringcovering, inputs to

chosen cells correspond to existing vertices in the Boolean network. This has the ad-

vantage of eliminating the need to restructure the Boolean networks for each possible

matching element. Since the structure of the initial Boolean network does not change,

it is then possible to decouple the solutions tomatchingandcovering: coveringhas no

effect on the structure of the Boolean network, and therefore has no influence on the set

of library cells found during thematchingprocess.

We now present a divide-and-conquer approach to the technology mapping problem,

wherematchingand covering are handled in separate steps. Given an initial Boolean

network, we first find the set of subnetworks that match library cells (i.e. we solve the

38

CHAPTER 3. AN ALGORITHMIC APPROACH TO TECHNOLOGY MAPPING39

matchingproblem first). Then, we select a set of matching library cells which, when

properly connected, produce a Boolean network equivalent to the initial one (i.e. we

then solve thecoveringproblem). The remainder of this chapter focuses on the approach

of solving thecovering problem. Algorithms formatchingare explained in detail in

Chapters 4, 5 and 6.

In addition to decoupling thematchingand covering steps, therestricted covering

problem also has some implications on the types of network that are amenable to tech-

nology mapping. Since each matching library element must establish a correspondence

between its inputs and existing vertices in the Boolean network, each element must be

related to an integer number of vertices in the network. Otherwise, the logic function of

some matching element would not correspond to the subnetwork induced by any subset

of the vertices. As a result, the use of such elements would require an adjustment of the

Boolean network by adding to it additional vertices to cover the mismatch. However,

this addition of vertices would contradict the initialrestricted coveringpremise, which

assumed a constant set of vertices.

The Boolean behavior of a network must be preserved across the technology map-

ping process. Assuming that every vertex of the original network is necessary in the

expression of its Boolean behavior, and given that vertices are involved as indivisible

objects in matches with library elements, this implies that every Boolean function as-

signed to a vertex must be included in at least one Boolean function corresponding to

a library element. This condition precludes vertices representing very complex Boolean

functions from being matched. Therefore, Boolean networks must be preprocessed so

that therestricted coveringproblem can be solvable. In particular, vertices representing

large Boolean functions are broken into interconnections of vertices representing smaller

Boolean functions. This preprocessing step is called decomposition.

3.1 Decomposition

The need for decomposition is a side-effect of choosing to solve the restricted covering

problem. Decomposition is a necessary pre-processing step applied to the Boolean net-

work beforehand, making possible the solution of the covering problem on a fixed set of

CHAPTER 3. AN ALGORITHMIC APPROACH TO TECHNOLOGY MAPPING40

vertices.

The ultimate goal of technology mapping is to obtain the best solution possible.

Because of the inherent complexity of the problems involved in technology mapping, an

exact solution is not possible. Therefore, heuristics are used to arrive at a good solution.

One sensible assumption is that finding more matches will produce better solutions.

Therefore, a secondary goal of decomposition is to break the initial network into vertices

that represent the smallest possible Boolean functions. We call these Boolean functions

base functions, and they consist of two-input functions with unate inputs,e.g. two-input

AND/OR/NAND/NOR functions. Most target libraries contain the base functions. In the

remainder of this thesis we assume that the library under consideration includes the base

functions.

As a result of decomposition, each function assigned to a vertex of the Boolean

network can be represented by at least one, but possibly many elements of the library.

Decomposition increases the granularity of the network, provides the covering step with

more possibilities, and thus, leads to a better final mapping.

Decomposition can be viewed as a restructuring of the initial Boolean network. For

any given network, there are many ways to create an equivalent network where the ver-

tices correspond only to base functions. Since the covering operation will not change

the structure of the network it is operating on (inputs to matches correspond to existing

vertices in the network), the results of decomposition will bias the quality of the final solu-

tion. The problem is that it is difficult to evaluate the quality of the final implementation,

since decomposition is performed independently of the target technology.

Different techniques can be used to decompose the network. Both disjoint and non-

disjoint Boolean decompositions are possible [Ash59, Cur62, RK62]. Algebraic meth-

ods, involving for example kernel extraction, are another technique [BM82]. Recently,

Bochmanet al. introduced still another technique, a restricted non-disjoint Boolean

decomposition method based onfunctional groupability[BDS91].

If we assume technology-independent restructuring has already taken place, then the

decomposition does not need to be so powerful that it would radically change the initial

structure. Therefore all that is needed is to break factored forms into two-input functions.

For example,fx= a(b+ c) g becomesfx= ay; y= b+ cg. But even simple splitting of

CHAPTER 3. AN ALGORITHMIC APPROACH TO TECHNOLOGY MAPPING41

existing structures often has more than one solution. For example,fx= a+ b+ c+ dg

can be expressed asfx= a+ y 1; y1 = b+ y 2; y2 = c+ dg, or asfx= y 1 + y2; y1 =

a+ b; y 2 = c+ dg. Depending on the target library and on the input arrival times, one

decomposition can lead to a better solution than the other.

In the technology mapping system presented in this thesis, we use two different

decomposition algorithms. The first one is used as a preprocessing step before covering.

The second decomposition algorithm is used during delay optimization, and its goal is to

restructure a portion of a network such that time critical paths in the network are shortened.

This algorithm, more specific to iterative performance improvement, is presented in detail

in Chapter 7.

decomposeall(network)f /* Network-wide decomposition */
(8 vertexvj 2 N) f /* Process every vertex */

fj = function of(vj) /* Get function assigned to vertex */
vj = decomp(fj) g /* Decompose function and return new assigned vertex */

returng

decomp(f)f /* Function decomposition procedure */
op = operatorof(f) /* Get operator of top factor */
if (op == LITERAL) f /* If top element is a literal, return */

return(vertexof(f)) g
g = setof factorsof(f) /* Get factors immediately under top one */
(8g i 2g) f /* Decompose all factors found above */

gi = functionof(decomp(g i)) g
while (j g j> 1) f /* Process factorlist until only one left */

g1 = nextelementof(g) /* Get first two factors of the list */
g2 = nextelementof(g)
n = newvertex(op,g1,g2) /* Create a new vertex with function ((g1) op (g2)) */
addat the end(g,functionof(n)) g /* Add new literal corresponding to new vertex */

/* Note: adding at the end of the list generates a balanced decomposition, */
/* adding at the beginning of the list produces an unbalanced decomposition. */

return(vertexof(next elementof(g))) g

Figure 3.1: Algorithm for network decomposition

The first decomposition algorithm performs a simple splitting of the large equations

generated by technology-independent logic synthesis operations. Each vertex that has a

corresponding equation with more than 2 inputs is broken between factored forms, or

between elements of factored forms (Figure 3.1). Additional vertices are added when

needed in the Boolean network. This simple splitting reduces all vertices of the Boolean

network to vertices representing simple two-input equations. This modified network is

CHAPTER 3. AN ALGORITHMIC APPROACH TO TECHNOLOGY MAPPING42

then used as the starting point for covering.

D Q

data[0][0]
EN

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

Figure 3.2: Two-input decomposition

Decomposition is recursively applied to each vertexvi of the Boolean Network that

is expressed by a complex Boolean functionFi, i.e. Fi is not a base function. De-

composition yields an equivalent Boolean network, where each vertex is abase function.

(Figure 3.2).

CHAPTER 3. AN ALGORITHMIC APPROACH TO TECHNOLOGY MAPPING43

3.2 Partitioning

Even solving the simplified restricted covering problem is computationally complex. In

particular, to solve the restricted covering problem one must solve the binate covering

problem, which was shown in Chapter 2 to be harder than SATISFIABILITY. Algorithms

have been proposed to solve the binate covering problem, but they are restricted to binate

clauses with at most a few hundred variables [PS90, LS90]. Boolean networks can contain

tens of thousands of vertices. Each vertex will match at least once, but more likely more

than once with an element of the library. Therefore, in the worst case, the binate clauses

encountered during technology mapping can contain on the order of 105 variables. This

is clearly beyond the capabilities of current binate covering solvers. Therefore, more

simplifications must be introduced to solve the fixed network covering problem.

It has been shown [Keu87] that polynomial-time solutions to the binate covering

problem exist when the clauses representing matching library elements come from a

Boolean network that is a tree. When dealing with trees instead of with DAGs, a

polynomial-time solution to the binate covering problem exists, for the following reason:

DAGs differ from trees in that DAGs have vertices with multiple fanouts, and trees do

not. Recall the clauses that need to be satisfied in the general binate covering problem.

If DAGs are covered, then multi-fanout vertices will possibly be represented by more

than one variable being set to 1 in the set of clauses (e.g. vertexAin Figure 2.2 is

represented twice, by both variablesm4 andm5, in the best solutionm1m2m3m4m5).

More than one matching gate of the library can be used to represent the functionality of

a multi-fanout vertex. Given that each of these matches can be chosen at the same time,

then the number of possibilities is a product of all the matches coming from different

multi-fanout branches. In the case of a tree, only one match will be chosen to represent

any one vertex. Therefore, the number of possibilities is a sum of the possible matches

at a certain vertex.

Isolating trees within a Boolean network ensures that polynomial algorithms can

be used to find the best cover for each tree. Therefore, the goal of partitioning is to

isolate subnetworks for which the binate covering problem can be solved efficiently. The

limitation of this simplification is that finding an exact solution to subsets of a larger

CHAPTER 3. AN ALGORITHMIC APPROACH TO TECHNOLOGY MAPPING44

problem does not guarantee an exact solution to the larger problem. Therefore, covering

trees exactly does not guarantee an optimal cover for the overall circuit.

After decomposition has been applied to the entire Boolean network, we have a

network consisting of interconnected 2-input, single-output Boolean functions. The circuit

to be transformed must then be partitioned into single-output subnetworks. Partitioning

is a heuristic step that transforms the technology mapping problem for multiple-output

networks into a sequence of sub-problems involving single-output networks. Partitioning

is performed initially before covering, and also as a part of the iterative improvement of

a mapped network. We comment briefly here on the former case. The latter is described

in Chapter 7.

Single-output subnetworks are created by traversing the network from the primary

outputs to the primary inputs, creating new partitions for every primary output, and for

every multi-fanout vertex traversed (Figure 3.3).

partition all(network)f /* Network-wide partitioning */
(8verticesv j 2N) f /* Process every vertex */

mark asnot in partition(vj) g /* Used to insure each vertex belongs to a single partition */
(8Primary output vertexv o 2N) f /* Process every vertex */

�o = createpartition() /* New empty partition */
partition(�o,vo) g /* Start a new partition */

returng

partition(�,v) f /* Recursive partitioning */
if (is primary input(v) f /* Do not include PI in partitions */

returng
insert in partition(�,v) /* Insert vertex in partition */
s = faninsetof(v) /* Get fanin list of vertex */
(8s i 2s) f /* Process each fanin */

if (fanout number(si) >1) f /* Break partitions at multi-fanout vertices */
if (not in partition(si) f /* Make sure vertex is free */

�r = createpartition()
partition(�r,si) gg /* Recur */

elsef
�r = �

partition(�r,si) gg /* Recur */
returng

Figure 3.3: Algorithm for network partitioning

CHAPTER 3. AN ALGORITHMIC APPROACH TO TECHNOLOGY MAPPING45

The partitions generated by the previous algorithm are subnetworks. When partition-

ing is done, each vertex of a subnetwork has either a single fanout or is the output of the

subnetwork. Ad hoc techniques are used to map sequential elements and I/Os. There-

fore, partitioning is also used to isolate the combinational portion of a network from

the sequential elements and I/Os. The circuit connections to the sequential elements

are removed during the partitioning step. This effectively creates two distinct classes of

partitions, combinational and sequential. At the end of the partitioning step, the circuit

is represented by a set of combinational circuits that can be modeled bysubject graphs,

and a set of generic sequential elements (Figure 3.4).

CHAPTER 3. AN ALGORITHMIC APPROACH TO TECHNOLOGY MAPPING46

data[0][0]
EN

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

+

*

* *

+

*

*

*

Figure 3.4: Circuit partitioning

CHAPTER 3. AN ALGORITHMIC APPROACH TO TECHNOLOGY MAPPING47

3.3 Covering

Given that Boolean networks are first decomposed into a set of vertices whose correspond-

ing Boolean functions are two-input base-functions, and that single-output subnetworks

with no non-reconverging multi-fanout vertices are isolated, it is now possible to solve

the restricted covering problem. Note that the subject graphs thus isolated are not neces-

sarily trees, as in [Keu87, Rud89a]. We call the vertices of the subject graph with zero

indegreeleaves.

A minimum cost cover is found for each decomposed subject graph. The chosen

cover represents the best set of library elements that is logically equivalent to the subject

graph. Our solution to the covering problem is based on dynamic programming. Starting

at the leaves of the subject graph, which represent the subnetwork inputs, the best solution

at each vertex of the subject graph is found. At each vertexv, sub-graphs rooted atv

are isolated (Figure 3.5).

During the covering step, matching is used to establish if there is an entry in the

library that is functionally equivalent to that sub-graph. After resolving whether there is

a logically equivalent element in the library, equivalent library elements are evaluated,

and the best one is chosen. Choosing the best set of library elements representing a

sub-graph is done as follows.

We denote by�f a subject graph whose single output vertex is�f . We consider here

the covering of a subject graph�f that optimizes some cost criteria (e.g. area or timing).

For this purpose we use the notions ofclusterandcluster function.

A cluster is a connected sub-graph of the subject graph�f , having only one vertex

with zero out-degree�j (i.e. having only a single output). It is characterized by its depth

(longest directed path to�j) and number of inputs. The associatedcluster functionis

the Boolean function obtained by collapsing the Boolean expressions associated with the

vertices into a single Boolean function. We denote all possible clusters rooted at vertex

�j of �f by f�j;1; . . . ; �j;Ng.

As an example, consider the Boolean network (after an AND/OR decomposition):

f = j + t

j = xy

CHAPTER 3. AN ALGORITHMIC APPROACH TO TECHNOLOGY MAPPING48

x = e+ z

y = a+ c

z = c+ d

data[0][0]
EN

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

+

*

* *

+

*

*

*

Figure 3.5: Graph covering

CHAPTER 3. AN ALGORITHMIC APPROACH TO TECHNOLOGY MAPPING49

There are six possible cluster functions containing the vertex�j of the subject graph
�f (Figure 3.6):

�j;1 = xy

�j;2 = x(a+ c)

�j;3 = (e+ z) y

�j;4 = (e+ z) (a+ c)

�j;5 = (e+c+ d) y

�j;6 = (e+c+ d) (a+ c)

x

f

y

a ce

d

z

c

*

++

+

!

+

tj

Figure 3.6: Graph of all possibles covers ofj

The covering algorithm attempts to match each cluster function�j;k to a library

element. A cover is a set of clusters matched to library elements that represents the

subject graph, which optimizes the overall area and/or timing. The area cost of a cover is

computed by adding the cost of the clusters corresponding to the support variables in the

cluster function of�j;k to the cost of the library element corresponding to the cluster�j;k

under consideration. For each vertex�j in a subject graph�f , there is always at least

one cluster function�j;k that matches, because the base functions (e.g. AND/OR) exist

CHAPTER 3. AN ALGORITHMIC APPROACH TO TECHNOLOGY MAPPING50

in the library, and the network was decomposed accordingly during the decomposition

phase. When matches exist for multiple clusters, for any tree-like decomposition the

choice of the match of minimal area cost guarantees minimality in the total area cost of

the matched sub-graph [Keu87, DGR+87]. The covering algorithm is implemented by

procedurecovershown in Figure 3.7.

cover(top,equation,list,depth)f /* Reached search depth: stop recursive expansion */
if (depth = maxdepth)f
return

g

if (equation is empty)f /* First recursion on vertex ’top’ */
if (top not yet mapped)f

equation = getequationfrom(top) /* Copy equation defining top originally */
list = get supportfrom(equation) /* Copy original support variables */
cover(top,equation,list,1) /* Start expanding the equation */
setvertexmapped(top) /* Covering of top is done */

g

returng
while list is not emptyf /* Expand all input variables sequentially */

if (vertex(list) is a primary input) skip this one /* Do not try to expand primary inputs */
if (vertex(list) is not mapped)f /* Condition for evaluating the best cost */

cover(vertex(list),NULL,NULL,depth)g /* Map input if it’s not mapped already */
else if (any fanout(vertex(list)) does not reconverge at top)f /* Stop at non-reconverging multi-fanout vertices */

cover(vertex(list),NULL,NULL,depth)g
elsef /* Expand the current input variable */

new list = get supportfrom(equation(vertex(list)) /* Support of the equation for the current variable */
replace current list element by newlist /* Augment the current list of support variables */
new equation = merge(equation,vertex(list)) /* Eliminate current variable into current equation */
cover(top,newequation,newlist,depth+1) /* Recur on the new (expanded) equation */
put back list in original stateg /* Get back the input variable list before expansion */

list = next elementfrom(list) g /* Get next input variable */
checkif in library(top,equation,list) /* Matches equation and a library element */

/* and updates best cost cover */
returng

Figure 3.7: Algorithm for network covering

The cost of any required inverters is also taken into account during the covering step.

Each vertex�j, when mapped, is initially annotated with two library elements: the first

one,CON , gives the best cost for generating the ON setfj , and the second one,COFF ,

gives the best cost for generating the OFF setfj . As soon as variablej is used as an

input to a gate that is being mapped, thenCON or COFF is selected according to the

required phase ofj. If the same variablej is needed at a later stage with the opposite

CHAPTER 3. AN ALGORITHMIC APPROACH TO TECHNOLOGY MAPPING51

phase, then an inverter is automatically taken into account in the cost computation.

The timing cost of a cover can be computed in a similar way by considering a constant

delay model. To compute the local time at the vertex�j, the propagation delay through

a cluster is added to the maximum of the arrival times at its inputs [Rud89a]. When

matches exist for multiple clusters, then for any tree-like decomposition, the choice of

the match of minimal local time guarantees minimality of the total timing cost of the

matched sub-graph.

When considering a more realistic load-dependent delay model, the problem becomes

more complex. The propagation delay through a library cell matching a particular vertex

now depends on the load on its output. Since covering is solved using dynamic program-

ming, a vertex is always processed before its fanouts, so the output load of a vertex is not

known when it is being processed. One solution is to use load-binning [Rud89a, Rud89b].

Then, dynamic programming is used to find the best match at a vertexfor all possible

load values. This can be done by determining beforehand the number of different input

loads among all inputs of all elements of a given target technology.

The above covering method, based on load-dependent delay model, will find the

fastest implementation. A more important goal is to find the smallest implementation that

meets given timing constraints. This was also considered in [Rud89a], but the proposed

solution requires arrival time binning, which for exact results implies very large numbers

of bins. Approximate solutions are therefore proposed, which relax the number of bins,

at possibly a cost in the precision of the delay calculation.

The binning methods are compatible with the covering algorithm presented here. But

we opted for a simpler, possibly more powerful method for dealing with load-dependent

delay. We propose an iterative refinement technique, where circuits are first mapped for

area, and then successively remapped for delay along critical paths. The iterative method

is presented in more detail in Chapter 7.

Chapter 4

Boolean matching

Matching is one of the two intrinsically complex problems in technology mapping. In

Chapter 3, we showed howcoveringandmatchingare decoupled through therestricted

covering assumption. The quality of the solution found during covering is contingent

on the number and quality of matches. Matching is used during the covering phase to

verify that a particular single-output subnetwork is logically equivalent to an element of

the library. Therefore, the algorithm adopted to solve the matching problem is of prime

importance to the quality of the final implementation.

In this chapter, we consider the matching operation. We define more clearly the

general problem to be solved,i.e. logic equivalence in the presence ofdon’t care infor-

mation. We introduce and justify the use of Boolean techniques as a powerful method

for matching. We briefly review binary decision diagrams (BDD), since they constitute

the most appropriate logic representation for the logic operations involved in the Boolean

matching process. We introduce a simple algorithm for Boolean matching, which is pow-

erful enough to accept both completely and incompletely specified logic functions. The

requirements for efficiency when operating on functions with large number of inputs lead

to the more powerful methods introduced in Chapters 5 and 6.

52

CHAPTER 4. BOOLEAN MATCHING 53

4.1 Matching logic functions

We formulate the matching problem as a problem of checking for logic equivalence

between a given Boolean subnetwork (thecluster function, introduced in Section 3.3)

and the Boolean function representing a library element. Since the support of the cluster

function differs from that of the library element, we must find a one-to-one assignment

between the variables in the support of the cluster function and the variables in the support

of the library function. In general, any variable in one support can be assigned to any

variable in the other support. Therefore, all permutations of the variables are possible.

We also consider phase-assignment in conjunction with the matching problem, because

they are closely interrelated in affecting the cost of an implementation. In digital circuits

it is often possible to change the polarity of a signal at no or low cost, and therefore it is

important to detect logic equivalence between two functions after eliminating the input

and output phase information. The need to account for inverters thus shifts from the

matching step to the covering step, where the cost of additional inversion is considered.

Finally, we want to exploitdon’t careconditions during the matching operation. The

importance of the use ofdon’t care conditions in multiple-level logic synthesis is well

recognized [BBH+88]. Since cluster functions are extracted from Boolean networks, their

environment (i.e. the rest of the network) will often createdon’t careconditions on the

inputs or the output of the cluster. We consider heredon’t careconditions specified at the

network boundary or arising from the network interconnection itself [MB89]. Taking

thedon’t care information into account during matching broadens the class of equivalent

logic functions to which a cluster function belongs. This translates into more possible

matches with library elements, and more degrees of freedom during covering.

We denote the cluster functionF : B n !B by: F(x 1; . . . ; xn) . It is an n-input,

single-output logic function. We denote the phase of variablexi by: �i 2f0;1g, where

x�ii = xi for �i = 1, x�ii = xi for �i = 0. We denote thedon’t careset of thecluster

functionby: DC(x1; . . . ; xn) . We assumeDC is a given for now, and defer its calculation

to Chapter 6. We denote the library by:L= fG i : BKi !B; i = 1; . . . ; j L j g, where

Ki is the number of inputs for library elementG i. The elementsGi (or G for short) are

multiple-input, single-output functions. We then define the matching problem as follows:

CHAPTER 4. BOOLEAN MATCHING 54

Given a cluster functionF(x1; . . . ; xn) , an associateddon’t caresetDC(x1; . . . ; xn) ,

and a library elementG(y1; . . . ; yn) , matching consists of finding an orderingfi; . . . ; jg

and a phase assignmentf�1; . . . ; �ng of the input variables ofF, such that either equa-

tion (4.1) or (4.2) is true:

F(x�ii ; . . . ; x�jj) = G(y1; . . . ; yn) (4.1)

F(x�ii ; . . . ; x�jj) = G(y1; . . . ; yn) (4.2)

for each value of(y1; . . . ; yn) and eachcare value of (x�ii ; . . . ; x�jj) 6 2 DC, i.e. either

equation (1) or (2) holds for all minterms in thecare set ofF.

If no such ordering and phase assignment exists, then the elementG does not match

the cluster functionF. Furthermore, if no element in the libraryL= fG i : BKi !B; i=

1; . . . ; j Lj g matchesF, thenF cannot be covered by the libraryL. Note that when the

library contains the base function, then any vertexv of the Boolean network must have

at least one associated cluster function that is covered by a library element: the base

function into whichvwas initially decomposed.

Let us define theNPN-equivalentset of a functionF as the set of all the func-

tions obtained by input variable Negation, input variable Permutation and function Nega-

tion [Mur71]. We then say that a functionF matches a library elementG when there

exists an NPN-equivalent function that is tautological toG modulo thedon’t careset.

For example, any functionF(a; b) in the set:fa+ b; a+ b; a+ b; a+ b; ab; ab; a b; abg

can be covered by the library element:G(x1; x2) = x1 + x2. Note that in this example

G(x1; x2) hasn= 2 inputs, and can matchn! � 2 n
= 8 functions [MJH89].

4.2 Use of Binary Decision Diagrams

The matching algorithms presented here are all based on Boolean operations. The advan-

tage of using Boolean operations over the structural matching algorithm used by others is

that logic equivalence can be established regardless of the representation. For example,

f1 = ab+ ac+ bc and f 2 = a(bc + bc) + bc are logically equivalent, but structurally

entirely different. Previous approaches used matching on trees or graphs representing

the AND/OR (or equivalent) decomposition of a Boolean Factored Form (BFF). These

CHAPTER 4. BOOLEAN MATCHING 55

algorithms could not detect logic equivalence, since no graph operation can transform

the BFF off1 into f2 without taking advantage of the function’s Boolean properties.

It is important to note that different representations of Boolean functions arise because

factoring is not unique, and even different canonical forms, such assum of products,

can represent the same function. Therefore, a covering algorithm recognizing matches

independently from the representation can yield matches of better quality than matches

obtained through structural matching techniques.

Our algorithms use Binary Decision Diagrams (BDDs) as the basis for Boolean

comparisons. BDDs are based on Shannon cofactors. A logic functionf is itera-

tively decomposed by finding the Shannon cofactors of the variables off to form the

BDD [Ake78, Bry86]. We use BDDs in the form proposed by Bryant, where a fixed

ordering of the variables is chosen during Shannon decomposition [Bry86]. Elsewhere,

these have been calledordered binary decision diagrams, or OBDDs for short [BRB90].

Bryant also introduced procedures to reduce the size of BDDs. For the purposes of

technology mapping, where a BDD representation of a portion of the circuit to map is to

be used only once, the computational cost of reducing BDDs is comparable to the cost

of doing a single comparison between unreduced BDDS. Therefore we exploit a simple

way of comparing unreduced, ordered BDDs.

4.3 A simple Boolean matching algorithm

A Boolean match can be determined by verifying the existence of a match of the input

variables such that the cluster functionF and the library elementG are a tautology.

Tautology can be checked by recursive Shannon decomposition [BHMSV84]. The two

Boolean expressions are recursively cofactored generating two decomposition trees. The

two expressions are a tautology if they have the same logic value for all the leaves of

the recursion that are not in thedon’t careset. This process is repeated for all possible

orderings of the variables ofF, or until a match is found.

The matching algorithm is described by the recursive proceduresimplebooleanmatch

shown in Figure 4.1, which returns TRUE when the arguments are a tautology for some

CHAPTER 4. BOOLEAN MATCHING 56

variable ordering. At levelnof the recursion, proceduresimplebooleanmatch is in-

voked repeatedly, with arguments the cofactors of thenth variable ofG and the cofactors

of the variables ofF, until a match is found. In this case the procedure returns TRUE.

If no match is found, the procedure returns FALSE. The recursion stops when the ar-

guments are constants, in the worst case when all variables have been cofactored. The

procedure returns TRUE when the corresponding values match (modulo thedon’t care

condition). Note that when a match is found, the sequence of variables used to cofactor

F in the recursion levels 1 toNrepresents the order in which they are to appear in the

corresponding library element. The algorithm is shown in Figure 4.1.

simple booleanmatch(f,g,dc,varlist f,var list g,whichvar g) f
if (dc == 1) return(TRUE) /* If leaf value of DC = 1, local match */
if (f and g are constant 0 or 1) return (f == g) /* If leaf value of f and g, matches if f == g */
gvar = picka variable(varlist g,whichvar g) /* Get next variable from the list of variables of g */
remainingvar g = getremaining(varlist g,whichvar g) /* Get list of unexpanded variables of g */
which var f = 1 /* Starting pointer for variables of f */
while (which var f � sizeof(var list f)) f /* Try all unexpanded variables of f in turn */

fvar = pick a variable(varlist f,which var f) /* Get next variable to expand */
remainingvar f = get remaining(varlist f,which var f) /* Update the list of unexpanded variables of f */
f0 = shannondecomposition(f,fvar,0) /* Find Shannon cofactor of f with (fvar = 0) */
f1 = shannondecomposition(f,fvar,1) /* Find Shannon cofactor of f with (fvar = 1) */
g0 = shannondecomposition(g,gvar,0) /* Find Shannon cofactor of g with (gvar = 0) */
g1 = shannondecomposition(g,gvar,1) /* Find Shannon cofactor of g with (gvar = 1) */
dc0 = shannondecomposition(dc,fvar,0) /* Find Shannon cofactor of dc with (fvar = 0) */
dc1 = shannondecomposition(dc,fvar,1) /* Find Shannon cofactor of dc with (fvar = 1) */

if (simple booleanmatch(f0,g0,dc0, /* Verify that the cofactors of f and g */
remainingvar f,remainingvar g,whichvar g+1) /* are logically equivalent */
and simplebooleanmatch(f1,g1,dc1,
remainingvar f,remainingvar g,whichvar g+1)) f
return(TRUE)g

else if (simplebooleanmatch(f1,g0,dc0, /* If the previous check failed, */
remainingvar f,remainingvar g,whichvar g+1) /* verify that f is equivalent to the complement of g */
and simplebooleanmatch(f0,g1,dc1,
remainingvar f,remainingvar g,whichvar g+1)) f
return(TRUE)g

which var f = which var f + 1 g
return(FALSE)g

Figure 4.1: Simple algorithm for Boolean matching

Note that in the worst-case all permutations and phase assignments of the input

variables are considered. Therefore, up ton! � 2n different ordered BDDs may be required

for each match. Furthermore, all library elements withnor fewer inputs need to be

CHAPTER 4. BOOLEAN MATCHING 57

considered in turn, sincedon’t care information might reduce the effective number of

inputs. The worst-case computational complexity of the algorithm makes the matching

procedure practical only for small values ofn. Therefore, better algorithms for Boolean

matching are required for more general cases when logic functions with larger number

of inputs are considered.

In the following two chapters, we introduce new matching methods based on Boolean

operations, which are computationally more efficient than the algorithm just described. In

Chapter 5 we consider completely specified cluster functions (i.e. we assumeDC = ;).

We show that we can exploit the symmetry and unateness properties of the Boolean

function to significantly reduce the search space, yielding an average computational com-

plexity which is much lower than the upper bound discussed earlier. Chapter 6 expands

this method to takedon’t care information into consideration during matching operations

to improve the quality of the final result.

Chapter 5

Matching completely specified

functions

In this chapter we consider the matching problem for completely specified functions,i.e.

we neglectdon’t care information. This simplification makes possible the use of some

properties of Boolean functions that otherwise would not be usable. In particular, there

are invariants in completely specified functions that are not in the presence ofdon’t cares.

Unateness and symmetry are two such properties. We propose to use these two properties

of Boolean functions to speed-up the Boolean matching operation, without hampering the

accuracy or completeness of the results. We introduce the two properties as key elements

to search space reduction in Section 5.1. We explain how the properties are extracted in

Section 5.2. We conclude the chapter with benchmark results.

5.1 Search space reduction

The simple Boolean matchingalgorithm presented in Chapter 4 is computationally ex-

pensive for two reasons. First,n! permutations ofn inputs are needed before two

functions can be declared non-equivalent. Second, for each permutation, all 2n input

phase-assignments are required before logic equivalence is asserted. Since all input per-

mutations and phase-assignments must be tried before two logic functions are declared

58

CHAPTER 5. MATCHING COMPLETELY SPECIFIED FUNCTIONS 59

different, then for any arbitraryn-input cluster function this implies thatn! � 2 n com-

parisons are necessary in the worst case,i.e. whenever a match to a library element

fails.

We now look into methods for reducing both the number of permutations and the

number of phase-assignments during the process of determining logic equivalence. The

number of required phase-assignments is reduced by taking the unateness property into

account. The number of input permutations is reduced by using symmetry information.

Note that the computational complexity is intrinsic to the Boolean matching problem;

therefore, the worst case number of comparisons is stilln! � 2n for any arbitrary cluster

function. However, we will show that the upper bound on complexity is related to the

functionality of the library elements, and that most commercially available libraries are

constituted of elements that imply much smaller upper bounds. Therefore, for most

cluster functions, the worst-case bound is much less thann! � 2n. In addition, the average

cost of Boolean matching is much lower than the worst-case bound and it is shown

experimentally to be competitive with other matching techniques.

5.1.1 Unateness property

To increase the efficiency of the Boolean matching process, we take advantage of the

fact that the phase information of unate variables is not needed to determine the logic

equivalence. Therefore we define a transformation� that complements the input variables

that are negative unate. For example, any functionF(y1; y2) in the set:fy1 + y2; y1 +

y2; y1 + y2; y1 + y2; y1y2; y1y2; y1y2; y1y2g can be represented by the set:fy1 + y2; y1y2g.

Note that the phase information still must be kept for binate variables, where both the

positive and negative phases are required to expressF. By using the transformation�,

we reduce the information required for the matching operation and therefore also reduce

its computational cost. In particular, since the phase of unate variables is predefined, the

number of input phase-assignments required for ann-input Boolean function decreases

from 2n to 2b, whereb is the number of binate variables.

As a result of using the unateness property, we redefine the matching problem as

follows:

CHAPTER 5. MATCHING COMPLETELY SPECIFIED FUNCTIONS 60

Given a cluster functionF(x1; . . . ; xn) and a library elementG(y1; . . . ; yn) , find an

orderingfi; . . . ; jg and a phase assignmentf� k; . . . ; �lg of the binate variablesfk; . . . ; lg

of F, such that either (5.1) or (5.2) is true:

�(F(xi; . . . ; x�kk ; . . . ; x�ll ; . . . ; xj)) ��(G(y1; . . . ; yn)) (5.1)

�(F(xi; . . . ; x�kk ; . . . ; x�ll ; . . . ; xj)) ��(G(y1; . . . ; yn)) (5.2)

The unateness property is also important for another aspect of search space reduction.

Since unate and binate variables clearly represent different logic operations in Boolean

functions, any input permutation must associate each unate (binate) variable in the cluster

function to a unate (binate) variable in the function of the library element. This obviously

affects the number of input variables permutations when assigning variables of the cluster

function to variables of the library element. In particular, it implies that if the cluster

function hasbbinate variables, then onlyb! � (n� b) ! permutations of the input variables

are needed. Therefore the worst-case computational cost of matching a cluster function

with b binate variables isb! � (n�b) ! � 2b.

5.1.2 Logic symmetry

One additional factor can be used to reduce the number of required input permutations.

Variables or groups of variables that are interchangeable in the cluster function must be

interchangeable in the function of the library element. This implies that logic symmetry

can be used to simplify the search space.

Variables are symmetric if they can be interchanged without affecting the logic func-

tionality [McC56a]. Techniques based on using symmetry considerations to speed-up

algebraic matching were also presented by Morrison in [MJH89], in a different context.

Definition 5.1 Logic symmetry is represented by the binary relationSRF on the set

of inputsfx1; . . . ; xng of F, whereSR F = ffxi; xjg j F(x1; . . . ; xi; . . . ; xj ; . . . ; xn) �

F(x1; . . . ; xj ; . . . ; xi; . . . ; xn) g. In the following, we writeSRF(xi; xj) to indicate that

fxi; xjg belongs toSRF .

Theorem 5.1 The symmetry property of completely specified functions is an equivalence

relation.

CHAPTER 5. MATCHING COMPLETELY SPECIFIED FUNCTIONS 61

Proof: An equivalence relation is reflexive, symmetric and transitive [Liu77a]. From

the definition ofSRF , it is obvious that relationSRF(xi; xi) is true, thusSRF is re-

flexive. By definition,SRF is symmetric. Finally, if bothSRF (xi; xj) andSRF (xi; xk)

are true, thenSRF (xj ; xk) is also true, becauseSRF (xi; xj) meansxj can replacexi

in F, and in that caseSR F (xi; xk) �SRF(xj ; xk) . Therefore,SRF is transitive.

Corollary 5.1 The symmetry propertySRF of the input variables of Boolean equation

F implies a partition of the variables ofF into disjoint subsets.

Proof: It follows from SRF being an equivalence relation.

Definition 5.2 A symmetry setof a functionF is a set of variables ofF that belongs to

the binary relationSRF .

Two variablesxi andxj of F belong to the same symmetry set ifSR F (xi; xj) .

Let us consider for example functionF= x 1x2x3+x4x5+x6x7. The input variables

of F can be partitioned into three disjoint sets of symmetric variables:fx 1; x2; x3g,

fx4; x5g andfx6; x7g.

Symmetry sets are further grouped into symmetry classes.

Definition 5.3 A symmetry classCi; i 2f1;2; . . .g is an ensemble of symmetry sets with

the same cardinalityi andS i =j Ci j is the cardinality of a symmetry classCi.

In the previous example, there are two symmetry classes:C2 = ffx4; x5g; fx6; x7gg

andC3 = fx1; x2; x3g, with S2 = 2, S3 = 1. Note that all the other symmetry classes

are empty, and therefore8i6=2;3 Si = 0.

The symmetry properties are exploited in technology mapping as follows. Before

invoking the mapping algorithm, the symmetry classes of each library element are cal-

culated once. Symmetry classes are used in three different ways to reduce the search

space during the matching phase. First, they are used as a filter to quickly find good

candidates for matching. A necessary condition for matching a cluster functionF with

a library elementG is that both have exactly the same symmetry classes. Hence only a

small fraction of the library elements must be checked by the full Boolean comparison

algorithm to see if they match the cluster function.

CHAPTER 5. MATCHING COMPLETELY SPECIFIED FUNCTIONS 62

Second, symmetry classes are used during the variable ordering. Once a library

elementG that satisfies the previous requirement is found, the symmetry sets ofF are

compared to those ofG. Then, only assignments of variables belonging to symmetry sets

of the same size can possibly produce a match. Since all variables from a given symmetry

set are equivalent, the ordering of the variables within the set is irrelevant. This implies

that permutations need only be done over symmetry sets of the same size,i.e. symmetry

sets belonging to the same symmetry classCi. Thus the number of permutations required

to detect a match is:
Qq

i=1(Si!) , whereq is the cardinality of the largest symmetry set,

andSi was defined above as the cardinality of a symmetry classCi.

For example, let us enumerate the permutations for matching functionsF= y 1y2(y3+

y4) + y5y6 andG = i1i2 + (i3 + i4) i5i6. FunctionF has one non-empty symmetry class,

C2(F) , which contains three symmetry sets,fy1; y2g, fy3; y4g, andfy5; y6g. We associate

a name,�i, with each of the symmetry sets:C2(F) = ffy1; y2g; fy3; y4g; fy5; y6gg �

f�1; �2; �3g (i.e. we represent the pair of symmetric variablesfy1; y2g by �1, the pair

fy3; y4g by �2, etc.). Similarly, functionG has only one non-empty symmetry class,

C2, with cardinalityS2 = 3. We associate a name,�j, with the symmetry sets ofG:

C2(G) = ffi1; i2g; fi3; i4g; fi5; i6gg �f� 1; �2; �3g. We then use the labels� and � to

represent the different permutations of symmetry sets. The cardinality of the symmetry

classC2 is S2 = 3, and therefore there areS2! = 6 possible assignments of symmetry

sets ofF andG:

(�1; �1) ; (�2; �2) ; (�3; �3)

(�1; �1) ; (�2; �3) ; (�3; �2)

(�1; �2) ; (�2; �1) ; (�3; �3)

(�1; �2) ; (�2; �3) ; (�3; �1)

(�1; �3) ; (�2; �1) ; (�3; �2)

(�1; �3) ; (�2; �2) ; (�3; �1)

Only the last assignment, where the variables ofFandG are paired asffy 1; y2g; fi5; i6gg,

ffy3; y4g; fi3; i4gg, ffy5; y6g; fi1; i2gg, make functionsF andG logically equivalent.

The third use of symmetry classes is during the Boolean comparison itself. Boolean

CHAPTER 5. MATCHING COMPLETELY SPECIFIED FUNCTIONS 63

comparisons are based on iterative Shannon cofactoring. Without symmetry considera-

tions, for ann-input functionF, up to 2 n cofactors are needed. But since variables of a

symmetry set are freely interchangeable, not all 2n cofactors are different. For example,

givenF= abc, wherefa; b; cg are symmetric, then the cofactor offa= 0; b= 1; c= 0g

is equivalent to the cofactor offa= 1; b= 0; c= 0g.

Theorem 5.2 Given a functionF with a symmetry set containingmvariables

fy1; . . . ; ymg, onlym+ 1 of the2 m cofactorsF j
y
�1
1 ���y�mm

are different.

Proof: We defineAk(m; v) , an assignment wherev out of themvariables are set

to 1, and the remainingm�v variables are set to 0. There are

0
@ m

v

1
A suchAk(m; v)

assignments. By definition, themvariables are symmetric. Therefore, any pair of

variables of the symmetry set can exchange their values without changingF. As a result,

any assignmentAk(m; v) ; (k= 1; . . . ;

0
@ m

v

1
A) will correspond to the same value ofF,

because any assignmentAk(m; v) can be transformed into any assignmentAj(m; v)

by simple pairwise permutations of the assigned values. Therefore, only assignments

Ak(m; v) with different values ofvcan potentially makeF different. Since 0�v�m,

thenv can take onlym+ 1 different values (i.e. 0;1; . . . ;mvariables can be set to 1),

and consequently there are at mostm+ 1 different cofactors.

Assuming thenvariables ofFare partitioned intoksymmetry sets of sizen 1; . . . ; nk

(where
P

k

i=0ni = n), then the number of necessary cofactors is
Q
k

i=0(ni + 1) �2n.

Although in the worst case, logic equations have no symmetry at all, our experience

with commercial standard cells and (programmable) gate array libraries shows that the

library elements are highly symmetric. We computed the symmetry classesCi of every

element of three available libraries (CMOS3, LSI Logic and Actel), and established the

cardinalitySi of each symmetry classCi extracted. We found that the average cardinality

Si of all the symmetry sets of the library cells in the three libraries is less than 2, as

shown in Figure 5.1. Therefore, the number of permutations
Qq

i=1(Si!) on the average is

close to 1.

Unateness information and symmetry classes are used together to further reduce the

search space. Unate and binate symmetry sets are distinguished, since both unateness and

CHAPTER 5. MATCHING COMPLETELY SPECIFIED FUNCTIONS 64

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

1 2 3 4

Actel (Act1) LSI Logic (LMA9000) CMOS3

N
um

be
r

in
 th

e
Li

br
ar

y

Cardinality Si of classes Ci (Average: 1.36)

Figure 5.1: Distribution of symmetry classesCi

symmetry properties must be the same for two variables to be interchangeable. We now

compute the worst case bound. We separate symmetry classesCi into disjoint subclasses

Cu
i andCb

i of unate and binate variables (Cu
i [C

b
i = Ci andCu

i \C
b
i = ;). Therefore,

we split the symmetry classes cardinality intoSi = Su
i
+ Sb

i
, whereSu

i
is the cardinality

of Cu
i 2 C i and Sb

i is the cardinality ofC b
i 2 C i. This further reduces the number

of permutations to
Qq

i=1S
u
i ! � Sbi ! =

Qq

i=1S
u
i ! � (Si �S u

i) ! <
Qq

i=1Si!. Hence, when

considering the phase assignment of the binate variables, at most
Qq

i=1S
u
i ! � (Si �S u

i) ! �

2i�(Si�S
u
i) Boolean comparisons must be made in order to find a match.

As an example, in the Actel libraryAct1, the worst case occurs for the library element

MXT = d0c1c3 + d1c1c3 + d2c2c3 + d3c2c3, whereS1 = 7, andSu
1 = 4. In that case,

4! � 3! � 23 = 1152 � 7! � 27
= 645;120, where 7!� 27 represents the number of

comparisons needed if no symmetry or unateness information is used.

Procedurebooleanmatch, a variation on proceduresimplebooleanmatch, is shown

CHAPTER 5. MATCHING COMPLETELY SPECIFIED FUNCTIONS 65

in figure 5.2. It incorporates the symmetry and unateness information to reduce the

search space: permutations are done only over symmetry sets of the same size. In

addition, symmetry sets of unate and binate variables are separated into distinct classes

Cu
i andCb

i . Then only symmetry sets with the same unateness property are permuted.

booleanmatch(f,g,fsymmetrysets,gsymmetrysets)f
if (f and g are constant 0 or 1)f /* If leaf value of f and g, matches if f == g */

return (f = g)g
if (f symmetrysets is empty)f /* All variables of current symm set are assigned */

f symmetrysets = getnext f symmetryset() /* Get next symm set in the list */
symmetrysize = sizeof(f symmetrysets)
while (symmetry sets of g with /* Try all symm sets of g with the same size */

sizesymmetrysizehave still to be tried)f /* and the same unateness property */

g symmetrysets = getnext availableset(g,symmetrysize)
booleanmatch(f,g,fsymmetrysets,gsymmetrysets)
if (it is a match) return(TRUE)
else return(FALSE)gg

fvar = pick a variable(fsymmetrysets) /* Get variables from compatible symm sets */
gvar = picka variable(gsymmetrysets)

f0 = shannondecomposition(f,fvar,0) /* Find Shannon cofactor of f with (fvar = 0) */
f1 = shannondecomposition(f,fvar,1) /* Find Shannon cofactor of f with (fvar = 1) */
g0 = shannondecomposition(g,gvar,0) /* Find Shannon cofactor of g with (gvar = 0) */
g1 = shannondecomposition(g,gvar,1) /* Find Shannon cofactor of g with (gvar = 1) */

if ((booleanmatch(f0,g0,fsymmetrysets,gsymmetrysets))
and (booleanmatch(f1,g1,fsymmetrysets,gsymmetrysets)))f
return(TRUE)g /* Verify that the cofactors of f and g are equivalent */

else if ((booleanmatch(f0,g1,fsymmetrysets,gsymmetrysets))
and (booleanmatch(f1,g0,fsymmetrysets,gsymmetrysets)))f
return(TRUE)g /* Verify that f is equivalent to the complement of g */

else return(FALSE)g

Figure 5.2: Algorithm for fast Boolean matching

5.2 Determination of invariant properties

Unateness and logic symmetry are the two invariant properties we utilize for search space

reduction during Boolean matching. Since cluster functions represent arbitrary portions of

Boolean networks, we preprocess every cluster function to detect possible simplification

before the unateness and symmetry properties are extracted.

CHAPTER 5. MATCHING COMPLETELY SPECIFIED FUNCTIONS 66

In particular, the preprocessing step recognizes and eliminates vacuous variables.

Recall that an equationF is vacuous in a variablev i if the equation can be expressed

without the use ofvi [McC86].

Vacuous variables are detected by checking ifFvi �F vi
for any given variablevi.

When this condition is true, variablevi is vacuous, and therefore does not influence the

value of F. In that case, we arbitrarily set variablev i to 0 or to 1, to simplify the

expression of functionF. Shannon decomposition is used for this detection. SinceF vi

andFvi
are derived from the same equationF, both of their supports are subsets of the

support ofF. Hence the variable ordering ofF vi andFvi
is unique, and no permutation

(nor phase assignment) is needed during the Shannon decomposition.

5.2.1 Unateness extraction

Unateness is the first property to be extracted from Boolean functions. For efficiency

reasons, the unateness determination is done in two successive steps.

The first step consists of considering a decomposition of the functionF into base

functions represented by a leaf-DAG and detecting the phase of each variable ofF. The

phase detection proceeds as follows. Starting at the root of the leaf-DAG representing

functionF, a token representing a positive phase is propagated depth first towards the

leaves of the DAG. When a vertex corresponding to a negative unate function is traversed,

the phase of the token passed down is complemented. Each variable reached during the

graph traversal is annotated with the phase of the current token. This phase-detection

operation is implemented in procedureget unate(Figure 5.3), where we assume that all

base functions are unate. It would be possible to extend procedureget unate to allow

binate vertices as well (by extending the possible values of the token to positive, negative

andboth), but it is unnecessary: we use 2-input unate functions as base-functions during

the decomposition step, therefore the leaf-DAG cannot contain binate vertices.

The traversal of the leaf-DAG in procedureget unate takes at most 2n�1 steps,

wherenis the number of leaves: since the network is decomposed into 2-input gates,

then each level in the levelized DAG has at most half the number of vertices of the

previous level. Therefore, such a DAG withninputs has at mostn+ n

2 +
n

4 + � � � + 1 =

CHAPTER 5. MATCHING COMPLETELY SPECIFIED FUNCTIONS 67

P1
i=0

n

2i �
P1

i=0
1
2i + 1 = 2n�2+ 1 = 2n�1 vertices.

All variables used in only one phase are necessarily unate. However, the first operation

can falsely indicate binate variables, because the algorithm relies on structure, not on

Boolean operations. For example, it would indicate that variableain F= a c+ ab+ abc

is binate, whereas it is unate (F is simply a multiplexerF= a c+ bc). The first step is

used because it is a linear complexity operation. But when binate variables are detected,

a more powerful technique is required to determine that the variables are really binate.

In the second step, the unateness property of the remaining variables (those which the

first step labeled as binate) is detected verifying implications between cofactors [McC86].

The unateness property of thesepossibly binate variables is detected by verifying if

Fvi) Fvi
(negative unate variable) or ifFvi

)F vi (positive unate variable). If neither

implication is true, then variablevi is binate (Figure 5.3).

5.2.2 Symmetry classes determination

Once the unateness information has been determined, symmetry properties are extracted.

The transformation�, presented in Section 5.1.1, is applied to ensure that symmetry will

be detected between unate variables regardless of phase. By definition, two variables

are symmetric if interchanging them in the expression of a function does not change the

original function. We detect that two variables are symmetric simply by verifying that

SRF (xi; xj) is true for that pair of variables. Since logic symmetry is an equivalence

relation, as we established in Section 5.1.2, it is transitive. Therefore, ifvi is symmetric

to vj, andvj to vk, the symmetry ofvi andvk is established without further verification.

Similarly, if vi is symmetric tovj, andvj is not symmetric tovk, thenvi is not symmetric

to vk. As a result, when two variables are symmetric, the symmetry relations of the second

variable are identical to those of the first variable, and do not need to be established

through additional verification. This implies that it is not always necessary to verify all

pairs of variables for symmetry. All pairs of variables must be processed (by verifying

that SRF (xi; xj) is true) only when there is no symmetry. This is the worst case, and
n(n�1)

2 swaps must be done, wherenis the number of inputs to the equation. When a

function is completely symmetric,i.e. when all inputs to a functionF are symmetric,

CHAPTER 5. MATCHING COMPLETELY SPECIFIED FUNCTIONS 68

then onlyn�1 swaps are needed (Figure 5.4).

The unateness property is used to reduce the number of swaps needed. Assuming

b out of then input variables are binate, then at worstb(b�1)2 +
(n�b) (n�b�1)

2 swaps are

required. At bestn�2 swaps are needed, when both binate and unate variables are

maximally symmetric. In order to verify that swapping two variablesfv i; vjg leaves

F unchanged, it is sufficient to verify thatF vivj �F vivj
. As in the first step, this is

done using Shannon decomposition, and a single ordering (and phase assignment) of the

variables is sufficient.

Since the phase information is relevant to binate variables, two swaps must be done

for each pair of binate variables, one swap for each phase assignment of one of the two

variables. Again, Shannon decomposition is used to check if the two instances of the

equation are the same, and, as in the first step, only one variable ordering is used.

From an implementation standpoint, symmetry classes are established once for each

library element. Each library element is then inserted into a database, using its symmetry

sets as the key. Library elements with the same symmetry sets are further grouped by

functionality (e.g. G1 = y1y2 andG2 = y1 + y2 are grouped together in a new entryH of

the database corresponding to functions of 2 equivalent, unate inputs).

5.3 Results

Tables 5.1, 5.2 and 5.4 show mapping results for a set of benchmark circuits which are

optimized for area,i.e. a weighted sum of the matches is minimized. Note that the

algorithms presented in this chapter can be used for delay optimization when assuming a

constant load model, or when using load-binning, as explained at the end of Chapter 3.

However, we decided to use an iterative method to specifically deal with timing issues,

and we defer the presentation of the iterative method until Chapter 7.

Ceres was run using various covering depths, which allow trade-offs between run-

times and quality of results. We noted that remapping (i.e. extracting the logic from a

mapped network, and applying technology mapping again) often improves the results.

Ceres allows for an arbitrary number of remapping operations. The following results

represent the best of two successive mapping operations. Run-times reflect the use of

CHAPTER 5. MATCHING COMPLETELY SPECIFIED FUNCTIONS 69

two complete mapping steps and one logic extraction.

Table 5.1 represents circuits bound to the Actel library, which has a large number of

elements with repeated literals. In this case, results show that using Boolean operations

for matching leads both to better implementation and faster run-times when compared to

pattern matching based comparisons: results range from 3% smaller area with more than

12X faster run-time, to 10% smaller area with 4X faster run-time.

Table 5.2 shows mapping results using the complete Actel (Act1) library, which com-

prises over 700 elements1.

Table 5.3 gives mapping results using the complete Actel (Act2) library, which com-

prises over 730 elements2.

Note that in Tables 5.2 and 5.3 we did not include results from programsis [SSM+92],

for two reasons. First, pattern matching, which is the core matching algorithm insis,

does not utilize complex gates with repeated literals. Since most gates in the fullAct1

andAct2 libraries have repeated literals, the majority of the gates would not have been

usable. Second, the number of patterns generated bysis needed to encompass all the

possible representations would be excessively large. We indeed tried to use programsis

with the full Act1 library, but stopped it after 20 hours, as it was still working on the

pattern generation for the internal library representation.

Table 5.4 shows results using the LSI Logic 10K library. This table shows again how

Ceres can trade-off quality of results for run-time. In particular, results comparable in

area to those ofsis are obtained with 30% faster run-times, or 4% smaller area at a cost

of a 2X increase in run-time.

Table 5.5 gives results using a library derived from the Quick Logic master cell [Bak91].

For that technology, as for the full actel libraries, we do not compare the results to those

of sis because it was not possible to build and use the entire library in programsis.

1The elements of the Actel libraryAct1 are all derived from the master equationA = (a + b)(cd +

ed) + (a +b)(fg +h g), using any possible input bridge or stuck-at combination.
2The elements of the Actel libraryAct2are derived from the master equationA =(a+b)(cdg +e dg)+

(a +b)(f dg +h dg), using any possible input bridge or stuck-at combination.

CHAPTER 5. MATCHING COMPLETELY SPECIFIED FUNCTIONS 70

extractunateness(equation)f
input vars = support(equation) /* Get the list of inputs of eq */
foreach(v2input vars)f /* Process each variable */

resetunateness(v)g /* Initialize v’s unateness to unknown */
get unate(f,POSITIVE) /* First step */
foreach(v2input vars)f /* Process each variable */

if (is binate(v)f /* Leave unate variables */
get binate(f,v)ggg /* Second step */

get unate(f,phase)f
if (is empty(f))f /* no more factored forms (FF) */

returng
if (is annotated(f) .AND. (annotation(f) == phase)f /* f already reached with that phase */

returng
lower level phase = phase /* Phase underneath FF */
if (type(f) == VARIABLE) f /* Reached a leaf */

setunateness(variable(f),phase)g /* Tag the variable with current phase */
else if (type(f) == INVERSION)f /* Phase is inverted underneath FF */

lower level phase = complement(phase)g

setunate(nextlevel(f), lower level phase) /* Process lower level FF */
setunate(samelevel(f), phase) /* Process same level FF */
annotate(f,phase) /* Mark f as processed with that phase */
returng

get binate(f,v)f
resetunateness(v)
f0 = shannondecomposition(equation,v,0) /* Find Shannon cofactor of f with (v= 0) */
f1 = shannondecomposition(equation,v,1) /* Find Shannon cofactor of f with (v= 1) */
fpu = f1 + f0 /* Establish implication */
if (fpu == 1) f /* fpu is a tautology */

setunateness(v,POSITIVE) /* v is positive unate */
returng

fnu = f0 + f1 /* Establish implication */
if (fnu == 1) f /* fnu is a tautology */

setunateness(v,NEGATIVE) /* v is negative unate */
returng

setunateness(v,BINATE) /* v is binate */
returng

Figure 5.3: Algorithm for unateness extraction

CHAPTER 5. MATCHING COMPLETELY SPECIFIED FUNCTIONS 71

extractsymmetry(equation)f
symmclasses = newclasses()
input vars = support(equation) /* Get the list of inputs of eq */
foreach(v2input vars)f /* Process each variable */

if (is tagged(v)) fcontinueg /* Skip v if already in a set */
tag(v) /* Mark v as processed */
symmset = newset()
addto symmset(symmset,v)
foreach(u2untaggedinput vars)f /* Compare with remaining variables */

g1 = shannondecomposition(equation,v,1) /* Find Shannon cofactor of eq with (v= 1) */
g0 = shannondecomposition(equation,v,0) /* Find Shannon cofactor of eq with (v= 0) */
g10 = shannondecomposition(g 1,u,0) /* Find Shannon cofactor ofg 1 with (u= 0) */
g01 = shannondecomposition(g 0,u,1) /* Find Shannon cofactor ofg 0 with (u= 1) */
if (g10 � g01) f /* Condition for (v; u) symmetry */

addto symmset(symmset,u) /* Add to current set */
tag(u) gg /* Mark uas processed */

addset in classes(symmclasses,symmset)g
returng

Figure 5.4: Algorithm for symmetry extraction

CHAPTER 5. MATCHING COMPLETELY SPECIFIED FUNCTIONS 72

Circuit SIS Ceres
depth 3 depth 4 depth 5

cost rtime cost rtime cost rtime cost rtime

C6288 1649 139.0 1425 85.6 1425 86.5 1425 87.1
k2 1308 4408.0 1209 131.9 1209 170.5 1209 253.3

C7552 1250 501.3 1117 97.4 1100 123.6 1062 178.3
C5315 957 264.8 899 79.2 887 107.2 831 151.2
frg2 941 869.3 1049 103.9 1045 141.6 844 193.1
pair 823 179.9 872 69.3 813 90.3 716 120.7
x1 761 630.1 827 95.4 825 150.6 807 328.5

C3540 658 295.0 641 45.3 628 62.0 608 101.9
vda 651 3103.5 543 46.1 543 61.4 543 91.7
x3 637 288.1 639 54.8 620 74.9 527 108.1
rot 570 254.7 583 48.4 582 73.8 551 137.5

alu4 521 1702.5 561 44.9 559 72.0 550 147.7
C2670 431 177.3 379 28.4 359 39.0 317 64.4
apex6 378 65.2 399 23.2 400 30.5 399 45.6
C1355 371 53.2 176 12.5 178 15.1 178 22.2
term1 360 368.0 380 29.3 365 44.6 302 73.0

x4 346 160.9 433 32.5 428 49.0 368 79.5
alu2 297 623.8 325 24.3 329 41.2 320 90.1
frg1 286 83.9 277 30.1 277 51.6 271 120.6

C1908 283 87.2 266 15.9 265 21.5 263 34.0
ttt2 217 167.9 283 23.4 283 37.5 249 69.0

C880 193 47.0 191 11.0 182 14.9 178 23.0
C499 178 51.8 176 9.9 176 14.1 168 21.1

example2 175 50.8 179 11.1 179 14.5 175 21.5
apex7 147 44.6 149 9.8 150 13.3 142 19.3

my adder 128 38.6 112 8.8 96 11.8 64 14.4
C432 125 35.9 93 7.5 93 10.4 93 17.2
f51m 124 120.0 132 12.2 131 21.2 129 44.7
z4ml 106 96.8 113 10.2 113 17.4 91 33.7
c8 103 45.9 143 11.1 136 15.9 116 22.7

Total 14974 14955.0 14571 1213.4 14376 1677.9 13496 2715.1
100 % 1.0 97.3 % 0.08 96.0 % 0.11 90.1 % 0.18

Table 5.1: Mapping results for area (Nodon’t cares, Actel library Act1, restricted set of
gates commercially distributed)

CHAPTER 5. MATCHING COMPLETELY SPECIFIED FUNCTIONS 73

Circuit Ceres
depth 3 depth 4 depth 5

cost rtime cost rtime cost rtime

C6288 1425 89.3 1425 89.2 1425 89.0
k2 1195 158.0 1195 205.4 1195 306.7

C7552 1119 116.8 1085 150.1 1045 250.2
C5315 908 102.0 765 141.8 715 245.8
frg2 1021 129.1 889 174.5 836 270.1
pair 842 88.7 769 122.3 686 180.2
x1 834 121.4 827 200.0 807 140.8

C3540 638 60.0 620 84.9 585 152.8
vda 526 59.4 526 81.3 526 124.2
x3 598 71.3 531 99.8 486 155.3
rot 563 65.3 536 100.3 521 190.3

alu4 559 60.4 546 99.0 520 203.4
C2670 377 39.8 337 56.6 304 106.1
apex6 368 31.2 357 41.2 347 62.2
C1355 178 18.5 178 22.1 176 37.0
term1 369 41.6 305 63.1 272 105.3

x4 396 45.5 360 66.8 342 110.3
alu2 321 35.1 312 58.5 312 122.7
frg1 285 41.3 284 71.5 272 162.5

C1908 270 23.8 269 31.7 265 56.4
ttt2 272 33.7 258 53.1 230 96.0

C880 184 17.9 182 23.5 178 37.1
C499 178 16.8 174 21.4 160 44.4

example2 173 17.4 168 22.4 162 32.1
apex7 146 16.3 134 21.4 125 30.8

my adder 112 15.1 64 18.9 64 29.1
C432 100 13.3 100 17.6 100 27.8
f51m 128 19.5 123 32.1 112 65.0
z4ml 108 16.6 101 26.7 82 50.4
c8 131 17.9 117 24.4 111 35.6

Total 14324 1583.0 13537 2221.6 12961 3519.6
100 % 1.0 94.5 % 1.4 90.5 % 2.2

Table 5.2: Mapping results for area (Nodon’t cares, Complete Act1 library)

CHAPTER 5. MATCHING COMPLETELY SPECIFIED FUNCTIONS 74

Circuit Ceres
depth 3 depth 4 depth 5

cost rtime cost rtime cost rtime

C6288 1454 89.9 1454 90.1 1454 89.9
k2 1285 156.8 1051 201.1 1051 304.7

C7552 1155 117.8 1061 154.2 1019 302.8
C5315 960 101.1 826 138.2 745 248.2
frg2 1122 132.8 822 193.2 696 291.2
pair 865 88.6 756 124.2 647 193.0
x1 850 124.7 769 199.6 747 442.7

C3540 600 58.8 574 91.3 540 162.4
vda 585 61.8 539 86.8 539 133.0
x3 670 74.2 526 107.0 449 162.0
rot 606 67.4 504 107.1 473 200.6

alu4 565 69.7 497 106.8 478 215.4
C2670 404 41.6 331 59.7 304 121.5
apex6 337 31.4 299 45.8 297 69.5
C1355 180 19.4 154 22.4 154 46.9
term1 407 43.3 295 69.1 252 116.8

x4 416 46.7 342 73.5 308 118.0
alu2 324 36.3 280 64.6 274 132.7
frg1 277 41.4 274 77.4 277 170.5

C1908 281 24.6 242 33.2 240 75.2
ttt2 293 35.3 235 58.5 207 103.0

C880 162 18.2 143 25.7 141 44.1
C499 178 16.8 140 22.4 130 62.5

example2 179 18.1 161 23.7 156 34.3
apex7 156 17.2 130 23.2 119 31.5

my adder 127 15.9 64 20.7 64 27.7
C432 101 13.9 102 19.7 101 30.3
f51m 128 20.3 111 35.1 97 70.5
z4ml 98 17.4 89 29.1 80 58.0
c8 146 18.8 106 26.4 93 38.7

Total 14911 1620.2 12877 2329.8 12132 4097.6
100.0 % 1.0 86.4 % 1.4 81.4 % 2.5

Table 5.3: Mapping results for area (Nodon’t cares, Complete Act2 library)

CHAPTER 5. MATCHING COMPLETELY SPECIFIED FUNCTIONS 75

Circuit SIS Ceres
depth 3 depth 4 depth 5

cost rtime cost rtime cost rtime cost rtime

C6288 2429 73.7 2241 53.6 2241 52.4 2241 55.9
k2 2182 149.0 2302 110.5 2302 185.3 2302 340.5

C7552 2699 127.1 2797 95.0 2780 139.0 2749 234.2
C5315 1959 86.1 2103 49.0 2002 114.7 1987 192.3
frg2 2045 122.7 1915 90.5 1869 149.1 1712 254.7
pair 1505 68.7 1529 61.4 1525 96.2 1483 165.7
x1 1410 103.1 1498 85.6 1498 175.7 1491 459.4

C3540 1192 67.6 1208 48.1 1201 78.5 1186 155.8
vda 1039 71.6 1090 45.6 1090 71.7 1090 119.5
x3 1285 68.0 1250 52.0 1254 81.2 1095 130.4
rot 1108 70.7 1120 50.7 1121 91.1 1122 107.1

alu4 1009 78.8 1015 48.5 1015 94.6 999 229.5
C2670 862 45.8 909 22.0 887 49.8 893 93.2
apex6 714 33.6 680 24.5 680 35.2 680 59.3
C1355 561 27.9 404 15.5 404 20.4 402 32.9
term1 721 44.9 706 33.6 687 57.3 573 107.2

x4 690 43.6 734 33.2 734 56.9 643 96.8
alu2 565 44.3 588 29.8 587 56.7 576 140.2
frg1 579 45.3 595 37.2 595 77.2 592 210.0

C1908 592 39.4 600 21.6 600 30.9 587 56.5
ttt2 429 33.5 425 23.1 421 39.2 377 73.3

C880 342 22.5 314 16.8 314 25.0 309 44.7
C499 421 24.6 406 14.0 406 18.7 404 29.2

example2 354 23.6 371 14.7 371 20.9 352 33.1
apex7 283 20.0 285 14.0 285 19.0 268 28.7

my adder 242 17.8 224 13.4 223 18.1 216 24.4
C432 221 17.8 215 12.4 215 17.9 215 32.9
f51m 234 21.1 197 14.5 197 25.0 191 55.0

c8 237 19.1 221 12.6 218 16.7 215 23.7
cht 211 16.6 204 11.5 204 14.5 188 18.8

Total 28120 1628.5 28146 1154.9 27926 1928.9 27138 3604.9
100 % 1.0 100.0 % 0.7 99.2 % 1.2 96.3 % 2.2

Table 5.4: Mapping results for area (Nodon’t cares, LSI Logic library)

CHAPTER 5. MATCHING COMPLETELY SPECIFIED FUNCTIONS 76

Circuit Ceres
depth 3 depth 4 depth 5

cost rtime cost rtime cost rtime

C6288 1424 112.9 1424 112.8 1424 112.7
k2 1071 135.0 860 178.1 696 271.9

C7552 1017 110.8 917 141.8 845 289.6
C5315 823 89.4 667 118.4 566 240.8
frg2 953 115.4 701 159.8 580 247.3
pair 747 78.7 629 106.6 510 171.4
x1 779 100.6 595 163.9 479 370.5

C3540 539 51.8 467 75.0 439 165.5
vda 491 50.7 410 70.0 314 103.1
x3 599 64.2 431 85.6 367 138.3
rot 514 55.8 395 86.8 332 177.4

alu4 473 51.1 378 86.2 328 194.4
C2670 347 36.4 276 49.2 241 102.3
apex6 287 28.4 252 40.0 239 71.1
C1355 170 18.3 154 20.1 152 36.0
term1 339 35.7 251 55.1 200 98.1

x4 349 38.6 263 59.9 232 104.1
alu2 276 29.9 222 52.4 183 117.8
frg1 275 35.2 231 61.2 189 147.8

C1908 260 21.6 212 28.3 207 67.4
ttt2 240 29.6 189 51.0 168 93.2

C880 151 17.0 138 23.4 133 42.7
C499 170 15.4 154 19.4 152 47.5

example2 155 16.3 131 21.0 121 32.9
apex7 123 15.3 101 20.4 85 29.8

my adder 112 14.5 64 18.0 64 25.6
C432 82 13.4 77 16.8 75 28.5
f51m 116 17.8 90 29.4 76 65.6
z4ml 96 15.2 66 24.6 60 51.8
c8 126 16.8 95 22.4 77 33.1

Total 13104 1431.8 10840 1997.6 9534 3678.2
100 % 1.0 82.7 % 1.4 72.8 % 2.6

Table 5.5: Mapping results for area (Nodon’t cares, Library derived from the Quicklogic
Master cell)

Chapter 6

Matching incompletely specified

functions

We explained in Chapter 4 that powerfulmatchingalgorithms correlate to better quality

solutions. One possible enhancement is to exploitdon’t care information while asserting

logic equivalence. We presented in Chapter 4 a conceptually simple, albeit compu-

tationally complex matching algorithm, wheredon’t care information is incorporated.

Chapter 5 introduced a method to efficiently use Boolean techniques when matching

completely specified functions. In the present chapter, we present an efficient method for

matching logic functions in the presence ofdon’t care information.

The topology of the Boolean network changes during the covering stage. As a result,

don’t careconditions must be dynamically established. Therefore a technology mapping

algorithm that exploitsdon’t careconditions must involve two tasks: i) computing and

updating localdon’t care sets and ii) using thedon’t care information to improve the

quality of the mapped circuit. We first present the use ofdon’t care sets and we defer

their computation to Section 6.3.

77

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 78

6.1 Usingdon’t care information

We have considered two approaches to usingdon’t careconditions in technology mapping.

One uses Boolean simplification before matching a function to a library element, and the

other merges simplification and matching in a single step. The former is motivated

by the following rationale:don’t care conditions are usually exploited to minimize the

number of literals (or terms) of each expression in a Boolean network. While such a

minimization leads to a smaller (and faster) implementation in the case of pluri-cell design

style [BCD+88] (or PLA-based design), it may not improve the local area and timing

performance in a cell-based design. For example, cell libraries exploiting pass-transistors

might be faster and/or smaller than other gates having fewer literals. A pass-transistor

based multiplexer is such a gate. Let us assume a function defined by itson setF and

its don’t caresetDC:

F = (a+ b) c

DC = bc

Then (a+ b) c is the representation that requires the least number of literals (3),

and the corresponding logic gate is implemented in CMOS pass-transistor logic by 4

transistors plus two buffers,i.e. 8 transistors total. On the other hand,ab+ bc requires

one more literal (4), but it is implemented by only 4 pass-transistors and one inverter,

i.e. 6 transistors total (Figure 6.1). Note also that in most cell-libraries(a+ b) cwould

be implemented as an AND-OR-INVERT gate, followed by an inverter, using 6+ 2 = 8

transistors. However,ab+ bcwould still be implemented by pass-transistor logic.

A second example, taken from the Microelectronic Center of North Carolina (MCNC)

benchmarkmajority, is also representative of the uses ofdon’t caresduring matching

(Figure 6.2). In that example, the use ofdon’t caresyields better matches, and gives an

overall lower cost for the resulting circuit. Consider the cluster functionOUT = acd+T

that has an associateddon’t care setDC = Td+ Tc. Thus it can be re-expressed as

OUT = cd(a+ T) . The two expressions have the same number of literals (4), and

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 79

a

c

b

f

a

c

b

f

f = (a + b) c f = a b + b’ c

Figure 6.1: Two pass-transistor implementations ofF= (a+ b) c, DC = bc

therefore are equally likely to be chosen by a technology-independent simplify operation

(which relies on literal count). But only one of the two exists in the library, and that

match is essential in finding the best overall cost.

These examples show that applying Boolean simplification before matching may lead

to inferior results, as compared to merging the two steps into a single task. For this

reason, we directly usedon’t care sets in the Boolean matching step to search for the

best implementation in terms of area (or timing).

6.2 Compatibility graph

Boolean matching that incorporates thedon’t care information can be done using the

simple matching algorithm presented in Section 4.3. Unfortunately, whendon’t carecon-

ditions are considered, the cluster functionF cannot be uniquely characterized neither by

unateness properties nor by symmetry classes. Therefore the straightforward techniques,

based on symmetry sets, presented in the previous section no longer apply. The simple

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 80

Cost: 1

Cost: 2

Cost: 2

Cost: 2

NR2

NR3

AO6

AO3
a

b
c
d

X

T

Z

Y
OUT

a

b
c
d T

OUT

Cost: 4

a

b
c
d

X

T

Z

Y
OUT

a

b
c
d T

Z

OUT

Cost: 5

i) mapping without DC

ii) mapping with DC

Relevant library elements
 (LSI Logic)

OUT = a’ c’ d’ + TON set:
OUT = d’ c’ (a + T)Using DC:

DC: T d + T c

Figure 6.2: Mappingmajority with LSI Logic library elements

matching algorithm would require in the worst casen! � 2n variable orderings, each or-

dering requiring up to 2n Shannon cofactorings. Therefore the algorithm is likely to be

inefficient.

Another straightforward approach is to consider all the completely specified functions

Hthat can be derived fromFand itsdon’t caresetDC. FunctionsHare easily computed

by adding successively all possible subsetsDi 2 DC to functionF. In this case, the

symmetry sets can be used to speed-up matching. Unfortunately, there are 2N possible

subsetsDi 2DC, whereNis the number of minterms inDC. Therefore this approach

can be used only for smalldon’t caresets. For largedon’t caresets, a pruning mechanism

must be used to limit the search space.

We consider in this section a formalism that allows us to efficiently usedon’t caresets

during matching. We first introduce a representation ofn-variable functions that exploits

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 81

the notion of symmetry sets and NPN-equivalence (defined in Section 4.1) and that can

be used to determine matches while exploiting the notion ofdon’t careconditions. For

a given number of input variablesn, let G(V;E) be a graph whose vertex setV is in

one-to-one correspondence with the ensemble of all different NPN equivalent classes of

functions. The edge setE= f(vi; vj) g of the graphG(V;E) denotes the vertex pairs

such that adding a minterm to a function included in the NPN-class represented byv i

leads to a new function belonging to the NPN-class represented byvj . Such a graph

G(V;E) for n= 3 is shown in Figure 6.3.

4

8 11 13

Figure 6.3: Matching compatibility graph for 3-variable Boolean space

Each vertexvi in the graph is annotated with one function�i belonging to the cor-

responding NPN-equivalence class ofvi. The function�i is chosen arbitrarily among

the members of the NPN-equivalence class that have the least number of minterms. For

example, vertexv4 in Figure 6.3 corresponds to functionsfabc+ abc; abc+ a bc; abc+

ab c; abc+ abcg and their complements. The four functions listed contain 2 minterms,

and their complements 6. The representative function�4 for vertexv4 is fabc+ abcg, but

could be any of the 4 functions just enumerated. The set of functions�i is used as the

basis for establishing relations between verticesvi. Each vertexvi is also annotated with

the library elements, if any, that match the corresponding function�i. When multiple

library elements are NPN-equivalent, they all correspond to the same vertexvi in the

compatibility graph.

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 82

The graphG(V;E) is calledmatching compatibilitygraph, because it shows which

matches arecompatiblewith the given function. Note that the size of the compatibility

graph is small for functions of 3 and 4 variables, where there are 14 and 222 different

NPN-equivalent functions respectively [Mur71], representing the 256 and 65;536 possible

functions of 3 and 4 variables. Unfortunately, for functions of more than 4 variables, the

number of NPN-equivalent functions grows very quickly (functions of 5 and 6 variables

have 616;126 and' 2� 1014 NPN-equivalent classes respectively [HMM85]), although

it is very sparse in terms of the vertices corresponding to library elements. At present,

we have implemented techniques for technology mapping usingdon’t careconditions for

cluster functions of at most 4 variables. From experimental results of mapped networks,

we found that the majority of the library elements used have 4 or less variables (see

Figure 6.1 for the distribution of the number of inputs of cells used for mapping 30

benchmarks). Therefore, it is a reasonable implementation decision to usedon’t cares

only for cluster functions whose fanin is less or equal to 4.

Number of inputs Number of cells used Percentage of total
Act1 LSI Act1 LSI

1 305 2110 2.9 % 12.9 %
2 3176 6816 30.7 % 41.8 %
3 2998 2705 29.0 % 16.6 %
4 3685 4583 35.6 % 28.1 %
5 182 103 1.8 % 0.6 %
6 0 3 0.0 % 0.0 %

Table 6.1: Number ofk-input cells used in mapping 30 benchmarks with the full Act1
and the LSI Logic libraries (depth = 5)

For functions of 4 variables and less, the compatibility graph is constructed once and

annotated with the library elements. Each vertexvi in the graph is also annotated with

the pathspij from vertexvi to a vertexvj corresponding to library elementGj 2 L.

The set of pathsPiL = fpi0; pi1; . . . ; pimg represents all the paths from vertexvi to all

the vertices corresponding to library elements. Each path represents the set of additional

minterms differencing the function�i corresponding tovi from the function�j of vj ,

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 83

wherevj corresponds to a library element. Therefore, checking if a functionF is logically

equivalent (modulo thedon’t care setDC) to a library elementG j 2 L is the same as

verifying that vertexvi (corresponding to functionF) has some pathp ij to vertexvj

(corresponding to library elementGj), such that the corresponding minterms are in the

don’t caresetDC.

For example, Figure 6.4 illustrates all the paths of the vertex labeled 5 in thematching

compatibility graph. The 8 minterms of the 3-dimensional Boolean space are labeleda

throughh. The paths represent all the possible additions of minterms to the function�5

corresponding to vertexv5. Note that some paths correspond to the complement of the

representative function�j associated to the reached vertexvj . This is indicated by a ”̃”

preceding the vertex number. For this example, verticesv1; v2; v5; v8; v9; v11 andv12 are

assumed to correspond to library elements. Therefore, of all the paths of vertex 5, only

the shaded ones lead to vertices corresponding to library elements.

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 84

abcdefgh

00000000 5
00000001 9
00000100 11
00000101 ~5
00010000 10
00010001 ~6
00010100 ~7
00010101 ~3
00100000 8
00100001 ~5
00100100 ~5
00100101 ~2
00110000 ~5
00110001 ~2
00110100 ~3
00110101 ~1

abcdefgh

01000000 9
01000001 ~6
01000100 ~6
01000101 ~2
01010000 ~6
01010001 ~4
01010100 ~3
01010101 ~1
01100000 ~5
01100001 ~3
01100100 ~2
01100101 ~1
01110000 ~2
01110001 ~1
01110100 ~1
01110101 constant 1

1

2 3 4

5 6 7

8 9 10 11 12 13

x2

x3

x1

a

b

c

d

e

f

g

h

Figure 6.4: Paths from vertex 5 in the matching compatibility graph

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 85

Let us defineM(v i) as the number of minterms of the representative function�i of

vertexvi in a givenN-dimensional Boolean space, and the distance between two vertices

vi andvj asD(vi; vj) =j M(vi) �M(v j) j . Then the number of paths from vertexvi to

any other vertex (including itself) of the compatibility graph is 2(2N�M(vi)). This number

simply indicates that a Boolean function ofNvariables can have at most 2N minterms,

of which M(v i) are already allocated. Therefore only 2N �M(v i) minterms can be

added, and there are 2(2N�M(v i)) possible permutations of these additional minterms.

For a 4-variable compatibility graph, the total number of paths for the entire network

is 375,552. This is reasonable from an implementation point of view, since each path

is represented by 16 bits, and thus the entire set of paths occupies approximately 750

KBytes. Note that in general not all paths must be stored, since the elements of the

library usually represent only a subset of all possible NPN-equivalent classes.

If we consider all possible combinations of minterms, the maximum number of paths

j Pij j between verticesvi andvj is

j Pij j=

0
@ 2N �M(v i)

D(vi; vj)

1
A+

0
@ 2N �M(v i)

2N �M(v i) �M(v j)

1
A

The first term of the expression forj Pij j represents all the combinations of minterms

that can make a function ofM(v i) minterms into a function ofM(vj) minterms, in a

N-dimensional Boolean space. The second term of the expression represents the com-

binations of minterms that yield a function of 2N �M(v j) , i.e. the complement of

the functions computed for in the first part. Although this upper bound function grows

exponentially, experimental results show that the actual number of paths between any

pair of vertices is much smaller. For the 4-variable compatibility graph, the maximum

number of paths between any two vertices is 384, corresponding to verticesvi = abcd

andvj = abcd+ a(bd+ cd) . Given thatM(v i) = 1 andM(vj) = 5, it is clear that the

actual number of paths is much smaller than the worst case of 4004 calculated with the

above formula. This is due to the fact that not all combinations of added minterms will

make function�i logically equivalent to�j . In some cases, it is even impossible to reach

some library elementvj from vertexvi. For example, in Figure 6.3, vertexv4 cannot

reach verticesv8; v11; v13. In addition, some paths do not need to be recorded, because

their head vertex does not correspond to a library cell.

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 86

The matching of a cluster functionF to a library element is redefined in terms of

the compatibility graph as follows. For cluster functions with no applicabledon’t care

set, only procedurebooleanmatchis used. Otherwise, procedurebooleanmatchis used

to find the vertexvF 2G(V;E) corresponding to the NPN-equivalence class of cluster

functionF\ DC (i.e. , the ON-set of cluster functionF). Since the graph represents

all possible functions of 4 or less variables, there exists a vertex in the graph which is

NPN-equivalent toF. At the same time vertexv F is found, the algorithm computes the

transformationT representing the input ordering and phase assignment on the inputs and

output such thatT (F) = �F . The transformationT is applied to thedon’t caresetDC,

to generate a new expression,T (DC) , consistent with the representative function�F of

vF . There exists a match to the library cellG if there is a path in the graphG(V;E)

from vF to vG (possibly of zero length) whose edges are included in the imageT (DC)

of the don’t caresetDC of F. It is necessary thatdon’t caresets are transformed by the

operatorT before the path inclusion is checked, because paths in thecompatibilitygraph

are computed between representative functions�i.

The algorithm for graph traversal is shown in Figure 6.5. It is invoked with the vertex

found by algorithmbooleanmatchingand the imageT (DC) of the correspondingdon’t

care set as parameters. When finished, the algorithm returns the list of all the matching

library elements, among which the minimum-cost one is chosen to coverF.

dc match(f,dc)f
vertex = getvertex(f) /* Find starting point in the compatibility graph */
NPN orientation = castto sameNPN class(vertex,f) /* Find how f and the vertex are related */
NPN dc = changeNPN(dc,NPNorientation) /* Transform dc as f was into the vertex function */
for (all pathspi in vertex)f /* Find paths to library elements covered by dc */

if (included(pi,NPN dc)) f
updatecover list(vertex,coverlist) g g

return(coverlist) g

Figure 6.5: Algorithm for compatibility graph traversal usingdon’t cares

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 87

6.3 Computation of relevant don’t caresets

Don’t care sets are classified into two major categories: external DCs, and internal

DCs. External DCs are assumed to be provided by the user along with the network

specification. They represent conditions that never occur on the primary inputs of the

circuit, and conditions that are never sampled on the primary outputs. Internal DCs occur

because of the Boolean network structure. They are further classified intocontrollability

don’t caresandobservability don’t cares. Controllabilitydon’t caresrepresent impossible

logic relations between internal variables. Observabilitydon’t caresrepresent conditions

under which an internal vertex does not influence any primary output.

The existence of controllability and observabilitydon’t caresets represents two differ-

ent (but complementary) aspects of a network. Controllabilitydon’t caresets are related

to the logic structures in the transitive fanin of a vertex, whereas observabilitydon’t care

sets are related to the logic structures in the transitive fanout of a vertex in the Boolean

network. The dynamic programming formulation of technology mapping implies the net-

work to map is modified starting at the primary inputs, and is completed when all primary

outputs are processed. The technology mapping operation modifies the logic structure of

the network, and potentially modifies the internaldon’t caresets. Therefore,don’t care

sets should be calculated dynamically, as the boundary of the mapped network moves

from primary inputs to primary outputs (Figure 6.6).

Controllability don’t care sets are conceptually easily computed: a vertex is being

mapped only when all its predecessors are mapped. Then all the logic functions express-

ing a vertex are known, and it is straightforward to extract the controllabilitydon’t care

sets from them. For a subset of variablesY, that are inputs to a gate or a subnetwork, the

controllability don’t caresets (CDC) represent the impossible patterns for the variables

Y. TheCDCsets can be derived from the satisfiabilitydon’t caresets (SDC) by taking

the iterated consensus ofSDCon the variables different fromY 1, where the satisfiability

don’t careset is defined asSDC=
P
i�F i [BBH+88]. For example, forx= ab, the

satisfiabilitydon’t careis SDC x = x�(ab) = xab+x(a+ b) . Controllabilitydon’t care

sets can be computed in a straightforward manner fromSDCfor a particular subset of

1Recall that a Boolean network is defined by a set of equationsi = Fi. Therefore the condition
(i 6 = Fi) = i� Fi can never occur.

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 88

mapped

unmapped

Figure 6.6: Example of a partially mapped network

variablesfa; b; c; . . .g. Given the satisfiabilitydon’t caresetSDC=
P
i�F i, each vari-

ablej of SDCnot in the cutsetfa; b; c; . . .g is eliminated by intersectingSDCj j with

SDCj
j
= CDC f a;b;c;...g(f) =

Q
i6 2f a;b;c;...g(

P
j�F j) ji � (

P
j�F j) j

i
. The controllability

don’t caresets are computed dynamically as the mapping operation proceeds through the

network (Figure 6.7).

Observabilitydon’t caresets deal with the successors of vertices. They denote con-

ditions under which a variable does not influence any primary output. For example,

in the following network: x= at; t = b+ c, t is unobservable whena= 0 (in that

case,x= 0 regardless of the value oft). By the very nature of dynamic programming

techniques, when a vertex is being processed, its successors are not yet mapped. This

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 89

updatecdc(vertex,currentcdc)f
sdc = recursivexor(vertex,support(currentcdc)) /* Add all SDCs between vertex and CDC cut set */
unusedsupport = unusedsupportrecursive(vertex,support(currentcdc) /* Get list of cut set vertices now covered by vertex */
new cdc = sdc[currentcdc /* Update CDC with SDC previously calculated */
new cut set = vertex[f support(currentcdc)n unusedsupportg /* Update CDC cut set */
for (v 2 support(newcdc), but 6 2 new cut set)

new cdc = consensus(newcdc, v) /* Eliminate unused variables */
return(newcdc)g

recursivexor(eq,vertex,list)f
eq = equation(vertex)
sdc = xor(eq,vertex)
for (v 2 support(eq), but not in list)

sdc = sdc[recursivexor(v,list)
return(sdc)g

unusedsupportrecursive(vertex,list)f
eq = equation(vertex)
for (v 2 support(eq) and in list)

if (last fanout(v) = vertex)
unusedsupport = unusedsupport[v

for (v 2 support(eq) and not in list)
unusedsupport = unusedsupport[unusedsupportrecursive(v,list)g

Figure 6.7: Algorithm for dynamic controllabilitydon’t carescalculation

implies the exact observability of a vertex is known only after the mapping is com-

pleted. Note that unless the observabilitydon’t caresare recomputed each time a vertex

is modified, it is not possible to use the fullODCset for all the vertices [CM89].

Therefore, compatible subsets of theODCmust be used, as described in [SB90]. Al-

though good algorithms have been proposed to compute compatible observabilitydon’t

care sets [DM91, DM90, SB91], efficient implementations are far from trivial, and we

decided not to include them at present. The results reported in Section 6.4 therefore

represent only the use of controllabilitydon’t caresets.

6.3.1 Image-based computation ofdon’t caresets

Procedureupdatecdcof Figure 6.7 has exponential complexity. This exponential behav-

ior occurs because the iterated consensus operation involves recursively establishing the

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 90

productFxi � Fxi for every variablexi to be eliminated fromF. Note that the consensus

operation is also known as the universal quantification:8x i F�F xi � Fxi. We call eF the

function derived fromF using that procedure,i.e. eF is obtained fromF by eliminating

a subset of the input variables ofF. The final expression ofeF involves the product of up

to 2ne multiplicands, wherene is the number of variables eliminated fromF. As a result,

the consensus operation is not usable for functions with a large number of variables to

eliminate.

Coudertet al. introduced in 1989 an efficient method for implicit state enumeration

in finite state machines [CBM90b, CBM90a], which can be adapted for calculatingdon’t

care conditions. The method is based on image computation, and it is an efficient way

of establishing the characteristic function of the image of a Boolean function. Touati

and Savoj have also presented work inspired by the method of Coudertet al. [TSL+90,

SBT91, Sav91]. We will now review this method and its foundations, and present a

useful extension for efficiently calculating subsets ofCDC.

When matching a cluster functionF(x 1; . . . ; xm), we considered anassociatedcon-

trollability don’t caresetDC(x 1; . . . ; xm) both in algorithmssimplebooleanmatchand

dc match. The don’t care information used in those algorithms must ultimately be

expressed as the impossible relations between the inputs of the cluster function being

matched. Given thatF(x 1; . . . ; xm) belongs to an-input Boolean networkN, the set of

inputs fx1; . . . ; xmg of F can be expressed as themprimary outputs of a subnetwork

N 0 of N, where the Boolean behavior ofN 0 is a multi-output function�: B n !B m

(Figure 6.8).

Since cluster functionF takes as its inputs the outputs of subnetworkN 0, the don’t

caresetDC is simply the set of vectors ofB m that are not in therangeof �, them-output

logic function representing the Boolean behavior of the subnetwork2. The characteristic

function�(�) is a function ofB m !B, whose value is 1 for vectors ofB m in the range

of �, and 0 otherwise. Therefore, thedon’t care information can be expressed simply

asDC = �(�).

Let us represent� : B n !B m by a vector of single-output Boolean functions:

�=[h 1; h2; . . . ; hm], each individual function defined ashi : Bn !B (the inputs to

2Recall therangeof a function is defined as the image of its entire domain, hereBn

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 91

N’

N

F

i1
i2
...
im

...

x1
x2

xn

Figure 6.8: Subnetwork generating the inputs ofF

each functionhi are thenprimary inputs of networkN). Recall that themfunctions

fh1; . . . ; hmg correspond to themverticesfv 1; . . . ; vmg of the Boolean network which

are related to the inputs3 fx1; . . . ; xmg of cluster functionF. Therefore,h i represents

the functionality of its associated variablexi as a function of the primary inputs of the

Boolean network. The algorithm introduced by Coudertet al. is an efficient method to

extract the characteristic function�(�) given the vector expression�=[h 1; h2; . . . ; hm] .

It finds all the mintermsx�1
1 x

�2
2 � � � x

�m
m of the characteristic function�(�) corresponding

to every point ofBm that is in the range of�=[h 1; h2; . . . ; hm] .

The characteristic function�(�) is expressed as�(x 1; . . . ; xm), a function of them

inputs of cluster functionF. Each variablex i of �corresponds to a functionh i in �.

The mintermsx�1
1 x

�2
2 � � � x�mm of �are extracted by establishing the possible values of

functionshj of �. Variablex i is 1 (0) if its corresponding functionhi is 1 (0), but

function hi is 1 (0) only for a subset�i of the domainBn. Therefore, whenhi has a

certain value (say 1), it implies a restriction�i of its domain. Restriction�i applies to

all the other functionshj of �, since all functions of�are evaluated in parallel. This

restriction of the domains of functionshj of �given the value of one functionh i is the

basis for the calculation of the characteristic function�.

3In the rest of this section, we usexi andvi interchangeably, for the sake of simplicity.

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 92

The extraction of�(�) from �involves two operations. The first one involves the

successive assertion of the functionshi of �to 1 (0), and the derivation of an expression

for the minterms of�in terms of the variablesx i. This effectively computes the range of

�. The second operation occurs during the range extraction, and involves the calculation

of a functionhj given the value of another functionhi.

The first operation can be formally described as follows. CallingRk the transfor-

mation of a function�: B n !B k into its characteristic function�(�) : B k !B, then

Rk
([h1; . . . ; hk]) =x k � Rk�1

([h1 jhk ; . . . ; hk�1 jhk]) +xk � Rk�1
([h1 jhk ; . . . ; hk�1 jhk])

[CBM90b]. The previous equation indicates thatxk follows the value ofhk, and

that the portion of the domain for whichhk has that value restricts the domain of

the remaining functionshj; j 6 = k. TransformationR k is applied recursively until

k=1. Note that in the particular case that functionh k is a tautology (i.e. hk �1),

Rk
([h1; . . . ; (hk �1)]) =x k � Rk�1

([h1; . . . ; hk�1]), because whenhk is tautologically

true,xk cannot be 0. Furthermore,hk being a tautology implieshk is 1 regardless of its

inputs, and therefore imposes no constraint on its domain. Similarly, forhk tautologically

false (i.e. hk �0),R k
([h1; . . . ; (hk �0)]) = xk � Rk�1

([h1; . . . ; hk�1]).

The second operation was calledconstraint in [CBM90b, CBM90a]. Touatiet al.

realized the operation is analogous to Shannon cofactor extraction, and renamed itgener-

alized cofactor[TSL+90]. In a traditional Shannon cofactor, the domain of a functionF

is reduced in half by considering only the subset of the domain where a particular variable

xis 1 (or 0). The value of the functionF for the other half of the original domain (i.e.

corresponding tox) becomes irrelevant, and is assumed to take the same value as that of

the restricted domain (Figure 6.10). Then, the traditional formulaF=x� Fj x +x � Fj x

is obtained. This concept is extended to restricting the domain ofFto the subset making

a given functionGequal to 1 (or 0). In that case,F=G� Fj G +G� Fj
G

(Figure 6.10).

Note that in generalFj G containsdon’t cares, because the domain ofFj G is the subset

of the domain ofF for whichGis equal to 1. Therefore, the subset of the domain ofF

for whichGis equal to 0 corresponds todon’t caresin Fj G. Thesedon’t caresare used

to simplify the expression ofF j G. For example, in Figure 6.10, the general cofactor

F j
G

is simplified toFj
G
=1 when considering thedon’t cares. We summarize the al-

gorithm for theCDCcomputation in the following pseudocode, adapted from [TSL+90]

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 93

(Figure 6.9). Note that BDDs are the preferred representation for all the operations on

logic functions carried out in the algorithm.

get cdc(F) f
input list = support(F) /* Get list of inputs ofF
� = bdd vector(inputlist) /* Get BDDs of inputs ofF in terms of Primary Inputs */
careset =Rk-transform(�) /* Get characteristic function of�
DC = complement(careset) /* DC set is complement of�(�) g

Rk-transform([h1; . . . ; hk]) f /* �is an array of single-output functions */
if (k == 0) return(1) /* The transformation is complete */
foreach(hi) f /* If any function is a constant, eliminate it */

if (hi � 1) f /* hi is the constant 1 */
return(xi � F -transform([h1; . . . ; hi �1; hi +1; . . . ; hk])) g

if (hi � 0) f /* hi is the constant 0 */
return(xi � F -transform([h1; . . . ; hi �1; hi +1; . . . ; hk])) g g

return(xk � F -transform([h1 jhk ; . . . ; hk �1jhk])
+xk � F -transform([h1 jhk ; . . . ; hk �1jhk]) g

generalcofactor(F ,G) f
FG = F� G /* Restrict domain ofF to that ofG*/
DC =G /* What is not in the domain ofGis don’t care*/
if (F[DC � 1) return(1)
return(simplify(FG,DC) g /* Try to eliminate variables fromFG */

Figure 6.9: Algorithm for image-baseddon’t carecalculation

As an example of the above algorithm, let us assume� = [h1; h2] , whereh1 = ab

andh2 = a +b . We assume variablesx1 andx2 correspond to functionsh1 andh2. Then,

�(�) = R2([h1; h2])

= x2 � R
1
([h1 jh2]) +x2 � R1([h1 jh2

])

= x2 � R
1
([ab ja+b]) +x2 � R1([ab j

a�b])

= x2 � R
1
([h1]) +x2 � R1([0])

= x2 � (x1 + x1) +x2 � x1

= x2 + x1

)DC = �(�) = x1x2

Therefore, we see that it is impossible for the two-input ANDh1 = ab to be 1 when the

two-input ORh2 = a + b is 0.

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 94

F

a
bc

Fc

Fc

Shannon cofactor: F = Fc
c + Fc

c

F

G

FG

F
G

a
bc

FG

F
G

Generalized cofactor: F = + G
G FG FG

c + c = (a+b) (a b)

 = + GG (b c) (1)

Figure 6.10: Shannon cofactor and generalized cofactor

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 95

6.3.2 Approximations in image computations

There is one problem with the image-based computation as presented in the previous

section. We assumed that the functionshi were expressed as a function of the primary

inputs of the network. Unfortunately, for many Boolean networks, it is impossible to

express the function of every vertex in the network as a function of the primary inputs. In

particular, even for a very efficient logic representation like the BDDs, it was shown that

certain functions require a BDD whose size is exponential in the number of inputs [Bry86].

Recently, Berman related the size of a BDD to the topology of the Boolean network

it represents [Ber91b]. He established a bound on the number of nodes in a BDD, based

on thewidth of a network. Specifically, the size of the BDD cannot exceedn � m�

2w(N), whereN is a Boolean network withn inputs andmoutputs, and a widthw(N) .

The widthw(N) represents the cardinality of the largest cutset through the networkN

(Figure 6.11).

om

o0

in

i0

N

ω (N)

Figure 6.11: Width of a Boolean networkN

For matching purposes,don’t care information represents a source of additional de-

grees of freedom. It provides a mean of possibly finding more matches, and therefore

of potentially improving the quality of the results. Although the use of the entiredon’t

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 96

care information entails the most benefits, the matching method does not require the

don’t caresto be complete. Therefore, when BDDs cannot be efficiently calculated, we

propose a simplification which reduces the size of the BDDs, at the cost of relinquishing

the completeness of thedon’t care information.

Since the bound on the size of a BDD grows rapidly with the width of a Boolean

network, we propose a simple heuristic to reduce the width of the networks from which

BDDs are calculated. Assume a network whose vertices are topologically ordered. The

cutset through the vertices at a certain levelk is larger than the cutset at the previous

level k � 1 only if some vertices at levelk � 1 have more than one fanout. This means

multiple-fanout vertices contribute to the increase of the width of a circuit, and therefore

to the increase in the size of the corresponding BDD. Our simple heuristic consists of

expressing the functionshi using the closest multi-fanout vertices in their transitive fanins.

This simplification effectively uses only subnetworks with limited width to extract the

BDDs used during the image calculation (Figure 6.12).

h
0

h
1

h
2

h
3

h
4

F

DC = h
0

h
1

h
2

h
3

h
4

[]()χ

i
h expressed

as a function of

multi−fanout vertices

Figure 6.12: Illustration ofdon’t careslimiting heuristic

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 97

6.3.3 Relations to testability

Note that when(DC [F =1) (or (DC [F =1), then the algorithm finds a match

with the constant value 1 (0 in the second case). This is always preferred to any other

match, since it has a cost of 0. As a result, for every cell mapped to a library element

there exists at least twocontrollable input patterns (i.e. it is possible to generate these

patterns from the primary inputs), such that the output of the cell is 0 for one pattern and

1 for the other. This is a necessary condition to make a network testable. Assume that

the library cells consist of testable gates (i.e. such that internal nodes are controllable

and observable from the cell input/output pins). Then our method guarantees that the

mapped circuit is 100% testable for stuck-at faults with the recently proposedIDDQ

testing method [FSTH90, CBL91]. However, cell controllability is not sufficient for

achieving 100% testability by using standard testing methods. Indeed, it is possible that

the output of a cell is notobservableat the primary outputs when thecontrollable input

patterns are applied to that cell. But by using a post-processing step involving standard

ATPG and redundancy removal techniques [BBL89], the mapped network can be made

100% testable for single stuck at faults. The post-processing step could in principle be

eliminated by computing observabilitydon’t careconditions. In practice this goal is hard

to achieve, since the network is mapped from primary inputs to primary outputs and the

observability of a vertex being mapped depends on portions of the network yet to be

mapped.

6.4 Results

Tables 6.2 and 6.3 show mapping results for area, takingdon’t care information into

account. For both technologies, the results show that usingdon’t caresduring the tech-

nology binding operation improves the quality of the results when operating on both

optimized and unoptimized circuits. Circuits in the first category were optimized using

UC Berkeley’ssiswith the standard script, which involves technology independent oper-

ations. It is worth noticing that the results of operating on non-optimized circuits using

don’t care information sometimes are better than the ones of optimized circuits mapped

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 98

without usingdon’t cares. This indicates that the use ofdon’t careduring the technology

mapping phase effectively allows logic restructuring, which is traditionally thought of as

a technology-independent operation. Calculation ofdon’t care is computationally inten-

sive, and in some cases we used subsets of the fulldon’t careset. Note that most of the

execution times, when usingdon’t cares, is spent calculating thedon’t care information.

In Tables 6.2 and 6.3, the top portion represents results using subsets of thedon’t care

sets, and the bottom portion represents results using the fulldon’t caresets.

Note that we used UC Berkeley’s BDD package for calculating thedon’t cares. We

found the operations on BDDs to be very efficient. Unfortunately, the use we made of

that code, creating and freeing tens of thousands of BDDs during the dynamicdon’t care

set extraction, unveiled major memory leaks. The leaks eventually made many processes

too large to be handled on our machines. Therefore, we report here only the results of a

subset of the benchmarks used in tables 5.1 and 5.4.

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 99

Original circuits Optimized circuits
No DC With DC No DC With DC

Circuit area rtime area rtime area rtime area rtime

t481 1867 748.9 1495 12520.0 31 3.4 28 28.6
frg2 844 194.7 774 2960.7 369 33.4 361 463.3
x1 807 327.5 761 2979.2 172 35.3 166 171.9

alu4 550 147.5 443 1356.9 457 111.3 410 1151.3
apex6 399 45.9 387 431.8 451 77.0 420 682.2

i6 348 25.0 346 607.7 150 18.0 150 199.8
C1908 263 34.1 248 7687.3 195 26.2 193 7279.5

x4 368 79.4 329 517.4 182 13.9 179 140.1
term1 302 73.2 237 721.0 104 27.2 102 146.7
frg1 271 120.0 249 715.2 106 37.4 106 181.2
alu2 320 90.1 254 369.2 253 65.0 212 303.7
ttt2 249 70.9 147 262.2 92 14.3 89 74.3
i5 178 18.7 178 67.8 66 4.1 66 9.2

example2 175 22.0 150 92.5 160 17.9 149 105.9
c8 116 10.8 74 92.5 66 5.6 54 57.2

apex7 142 19.4 122 105.6 129 18.9 102 166.9
cht 124 22.2 111 116.5 84 5.0 84 32.9

9symml 94 33.2 94 114.8 101 36.8 103 116.4
z4ml 91 34.6 35 119.5 33 8.5 25 34.5
sct 83 17.2 80 53.3 35 6.1 33 65.2
lal 77 12.7 75 35.3 39 5.9 37 50.8

Total 7668 2148.0 6589 31926.4 3275 571.2 3069 11461.6
1.0 1.0 0.86 14.9 0.43 0.27 0.40 5.3

1.0 1.0 0.94 20.1

Table 6.2: Mapping results for area (Usingdon’t cares, Actel library)

CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 100

Original circuits Optimized circuits
No DC With DC No DC With DC

Circuit area rtime area rtime area rtime area rtime

t481 3637 944.3 3463 12581.9 61 11.8 65 22.7
frg2 1754 229.4 1525 2928.9 594 40.9 578 408.2
x1 1695 382.2 1560 2939.7 327 43.8 317 169.2

alu4 999 174.3 894 1302.2 836 130.8 785 1060.7
apex6 680 52.2 679 335.8 803 93.0 799 646.3

i6 581 62.3 579 400.0 318 24.8 318 213.7
C1908 596 40.7 588 7701.7 462 32.6 464 7322.0

x4 670 88.7 595 481.9 317 18.7 313 125.7
term1 598 81.7 450 651.3 219 34.0 217 138.6
frg1 583 144.1 506 705.4 227 46.6 226 182.3
alu2 570 102.6 431 328.1 470 75.7 425 264.2
ttt2 453 73.7 302 188.1 193 18.5 186 63.8
i5 356 23.5 356 67.4 198 7.3 198 12.0
c8 249 27.2 182 77.9 128 14.0 123 59.5

apex7 269 23.4 244 192.2 265 23.2 227 139.7
cht 231 26.6 200 83.7 127 7.9 127 22.8

9symml 214 37.6 215 100.3 216 43.5 216 116.5
z4ml 181 42.7 180 127.6 68 12.3 65 39.6
sct 144 20.3 142 47.0 86 9.6 83 61.4
lal 156 16.2 157 36.9 94 9.6 96 48.8

Total 14616 2593.7 13248 31278.0 6009 698.6 5828 11117.7
1.0 1.0 0.91 12.1 0.41 0.27 0.39 4.3

1.0 1.0 0.97 15.9

Table 6.3: Mapping results for area (Usingdon’t cares, LSI Logic library)

Chapter 7

Performance-driven technology

mapping

Previous chapters introduced methods to improve the quality of the matching operation.

We also presented a covering algorithm, whose goal is to find a good circuit implementa-

tion given a set of matches. The covering method presented in Chapter 3 can base its cost

evaluation on area or delay, if a fixed gate-delay model is chosen. For the more general

cases where load-dependent delays are considered, we now introduce an ensemble of

operations that deal specifically with the optimization of delays through the network, in

conjunction with technology mapping.

We first define the delay model we are using to evaluate the quality of the solutions

during optimization. We then explain why taking delay into account is different and more

difficult than optimizing for area. We follow with a presentation of three operations,

repartitioning, redecomposition and re-covering, which are integrated together within an

iterative refinement procedure. We conclude the chapter with results demonstrating the

area-delay trade-off.

101

CHAPTER 7. PERFORMANCE-DRIVEN TECHNOLOGY MAPPING 102

7.1 Delay model

Most commercial libraries use a delay model which is a linearization of the load-

dependent gate delay. We base our delay calculation on the same idea, and in the

remainder of this chapter, we consider the following delay model for the evaluation of

timing characteristics of the network. Let us consider a vertexvj; j =f 1; 2; . . .g of the

network.

� �j is the intrinsic (unloaded) gate delay;

� Cj is the load capacitance at a gate output;

� �j +� j � Cj is the total gate delay, where�j is a parameter of the library element

representing its drive capability.

� aj =(� j+� j � Cj+max
Ij

ai) is the arrival time at the output of the gate corresponding

to vj, whereai is the arrival time at a gate input, with gatevi 2 PI = Fanin(vj).

In our formulation of the problem, we are given the set of arrival timesf ai; i 2 PI g

of the primary inputsPI , together with the set of required timesf ro; o 2 POg of the

primary outputsPO. For synchronous circuits with periodT, we assume the input

arrival times to be 0, and the required times at the outputs (i.e. register inputs) to be

T � tsetup . We use the concept of slack [HSC82, De 87, De 89], where the slacksj at a

certain vertexvj corresponds to the difference between the required time1 at that vertex

rj and the arrival timeaj , i.e. (sj =r j � aj). Therefore, time critical nets are those

with negative slacks. Note that we do not consider false paths [DKM91, MSSB91] in

our delay calculations. Therefore, the critical paths reported are an upper bound on the

real critical delays through the circuits. Note also that in the current implementation, we

do not distinguish between rise and fall delay, although the algorithms presented can be

easily extended to deal with separate rise and fall times. We use the worst of the rise

and fall delays, and therefore, use a conservative model.

1Note that required time at an internal vertex is calculated by back-propagating through the network
the required times at the primary outputs.

CHAPTER 7. PERFORMANCE-DRIVEN TECHNOLOGY MAPPING 103

7.2 The difficulty with timing-driven technology mapping

We already mentioned in Section 3.3 that dynamic programming techniques can be used

to optimize timing as well as area. But there is an important difference between the

two optimizations: evaluating the area cost of a particular vertex mapping involves only

vertices already mapped (predecessors of the vertex), whereas evaluating the timing cost

involves also the successors of the vertex being mapped. Successors are needed because

the capacitive load on the output of a gate influences its delay. Since the dynamic

programming technique implies the successors of a vertex being processed are not yet

mapped, then the capacitive load on its output is not known.

Therefore specific methods to deal with delay have to be introduced.Binning has

been proposed by Rudell [Rud89b], where each vertex is (possibly) mapped for all the

possible capacitive loads on its output. We propose a different heuristic solution, involv-

ing iterative mapping of the network. The first mapping of the network includes only

the optimization of area. Then, the portions of the network that do not meet the timing

constraints are iteratively remapped. This method has the advantage that the entire envi-

ronment of a vertex is known when it is remapped. In particular, the capacitive load the

vertex is driving is known exactly.

It is important to remark that a solution under given timing constraints may not

exist. Therefore our strategy is to perform a set of transformations that lead to a mapped

network that either satisfies the constraints or that cannot be further improved by the

transformations themselves.

In order to be efficient, iterative remapping has to be powerful enough to modify

substantially the portions of the network that do not meet the timing constraints,i.e. the

vertices with negative slack. To converge to a good solution in a finite number of steps,

it must also be monotonic. We propose an ensemble of three techniques to achieve this

goal:

� repartitioningmodifies the original partition of multi-fanout vertices.

� redecompositionchanges the two-input decomposition, taking into account delay

information.

CHAPTER 7. PERFORMANCE-DRIVEN TECHNOLOGY MAPPING 104

� re-coveringapplies covering using delay as the cost metric.

We now describe repartitioning and redecomposition in detail. We briefly review

re-covering, and then explain how the three operations are integrated in an iterative

operation.

7.3 Repartitioning

Repartitioning takes place after a first mapping has been done, using the traditional

partitioning technique outlined in Section 3.2. Repartitioning targets multiple-fanout

vertices that do not meet the timing constraints. The goal is to change partition block

boundaries, by merging subject graphs, to have other (and possibly more) choices when

matching (and redecomposing) the vertices along the critical paths. Merging multiple

fanout subject graphs means the merged portions have to be duplicated for the other

fanouts to achieve the original functionality.

Consider for example the subcircuit in Figure 7.1, where a gate corresponds to a

multiple-fanout vertexvj on the critical path. The original arrival timeaj at its output

is: aj =max
Ij

(ai) +� j +� j � Cj, whereai is the arrival time on the inputs of gatej , �j

is the intrinsic delay of gatej , �j is the fanout-dependent delay factor of gatej , andCj

is the fanout.

Assumingal is the latest arriving input, we can reexpressaj as: aj =� l +� l � Cl +

�j +� j � Cj Then if we assume one of the fanouts (sayvc) is on the critical path, it is

possible to isolate the critical fanoutvc from the other fanouts of vertexvj by making a

copyfvj of vj , and usingvc as the only fanout offvj . The operation keeps the other fanouts

of vj in their original position. This duplication of vertexvj, with the new gate driving

the critical path only, is shown in Figure 7.2:a0
j
=� l +� l � (Cl +C lj) +� j +� j � Cjk ,

anda00
j
=� l +� l � (Cl +C lj) +� j +� j � (Cj � Cjk), where:

a0j is the new arrival time for the critical path,

a00j is the new arrival time for the other fanouts ofj ,

Clj is the input capacitance ofj at input l ,

CHAPTER 7. PERFORMANCE-DRIVEN TECHNOLOGY MAPPING 105

δl

δm

δj
C

j

crit

a j = δj

C
l δkC

jk

= δj δl + αl Cl+

+ max (a)
i

+ αj C j

+ αj C j

Figure 7.1: Delays in a subcircuit

Cjk is the input capacitance of gatek, which is the gate corresponding to the fanout of

j on the critical path.

Then, the difference in delay is�a0j =a 0
j � aj =� l � Clj +� j � (Cjk � Cj), and

�a 00
j =a

00
j � aj =� l � Clj � �j � Cjk . The arrival time of the fanin-vertices ofvj are also

modified by the duplication process. The difference in delay is�a 0
l
=a 0

l
� al =� l � Clj.

This example shows some important properties for vertices with multiple fanouts:

� Duplicating gatesper sereduces delay along the critical paths, when (�i0 � Cij �

�j � Cjk � 0).

This is usually the case, and it can be verified on a case by case basis.

� The fanins of the duplicated vertex are slowed down by the addition of one gate

load (�ik � Cij).

For a particular vertex which does not meet the timing constraints, it is therefore sim-

ple to verify how much can be gained by duplication, and whether or not the duplication

affects other critical nets. In particular, if all the inputs of the vertex to duplicate have

a single fanout, then duplication is always a good solution. In addition, the duplicated

vertex can now be merged forward into the next partition (it is now a single fanout ver-

tex). Mapping can be redone at this point on the modified partition, possibly improving

CHAPTER 7. PERFORMANCE-DRIVEN TECHNOLOGY MAPPING 106

δl

δm

δj

crit
δk

δj

C
jk

C
l

C
lj

+
aj
,

aj
,,

C
j
− C

jk

= δj + αj δl + αl+aj
,

(+ C
lj

)C
jk

C
l

Clj

Figure 7.2: Delays in a subcircuit after gate duplication

delay even more.

7.4 Redecomposition

Redecomposition is used alone or in combination with repartitioning. The goal is to

restructure the Boolean network in such a way that late arriving signals of a partition are

used as inputs of vertices that are closer to the output of the partition. Redecomposition

has (like decomposition) two important side effects:

� It influences the list of library elements that may cover a subject graph.

� It influences the critical path through the Boolean network.

The first point is related to the fact that different decompositions might give rise to dif-

ferentpossiblecovers. For example, givenf = a+bc+bc, the following decompositions

imply very different covers:

f1 = a+ x f2 = x+ y

x = y + z x = b c

y = bc y = a+ z

z = bc z = bc

CHAPTER 7. PERFORMANCE-DRIVEN TECHNOLOGY MAPPING 107

In particular, the decompositionf1 allows the Exclusive-ORx= bc+ bc to be mapped,

whereas in decompositionf2, the Exclusive-OR gate cannot be found (because variablea

appears as an input to the same gate asz = bc). We address the first point by heuristically

trying to keep repeated literals together during the decomposition. The second point is

important because decomposition can be used to push late arriving signals closer or

further from the output,possiblyreducing or lengthening the critical path. This problem

has been addressed by Singh [SWBSV88] and Paulin [PP89].

Redecomposition implies unmapping a portion of mapped network, changing itsbase

functiondecomposition, and then remapping the modified block. It is a tentative process,

in that mapping the redecomposed partition does not necessarily give better results. We

therefore isolate subgraphs being redecomposed, and use the new decomposition only

when it produces better results. The evaluation of the value of a redecomposed (and

remapped) partition is fairly simple and it involves two steps. First, since the subcircuit

under consideration has a single output, we can just compare the arrival times of the

original and re-decomposed partition blocks. Second, we check if the input loads have

increased, and, if so, if any other critical net was created.

The redecomposition algorithm we are using follows the same principle that Singh

proposed [SWBSV88]. One significant difference is that we use BDDs instead of kernel

extraction for the decomposition. After a subgraph� is isolated for redecomposition,

its inputs are ordered in decreasing order of their arrival times. That input list then

specifies the order in which the variables are processed during the BDD extraction. After

the BDD is reduced, it is then retransformed into a standard Boolean network, which is

finally mapped. Procedureredecomposetransforms a Boolean network into one where

the latest arriving inputs are closer to the output (Fig. 7.3).

CHAPTER 7. PERFORMANCE-DRIVEN TECHNOLOGY MAPPING 108

redecomp(eq)f
eq list = get input list(eq) /* Get support of equation */
order input list(eq list) /* Order support by arrival times (latest first) */
bdd = createreducedbdd(eq,eqlist) /* Create BDD with previous order */
get networkfrom bdd(bdd)g /* Transform BDD into Boolean Factored form */

get networkfrom bdd(bdd)f
if (low(bdd) == ZERO)f

if (high(bdd) == ONE) /* f = x */
return(createequation(LITERAL,controlvar(bdd))
elsef /* f = x h */
eq = createproductof(control var(bdd),

get networkfrom bdd(high(bdd))
return(eq)g g
else if (low(bdd) == ONE)f

if (high(bdd) == ZERO) /* f = x’ */
eq = createcomplement(controlvar(bdd))

return(eq)
elsef /* f = x’ + h */
eq = createsumof(complement(controlvar(bdd)),

get networkfrom bdd(low(bdd))
return(eq)g g
elsef

if (high(bdd) == ZERO)f /* f = x’ l */
eq = createproductof(complement(controlvar(bdd)),

get networkfrom bdd(high(bdd))
return(eq)g
else if (high(bdd) == ONE)f /* f = x + l */
eq = createsum of(control var(bdd),

get networkfrom bdd(low(bdd))
return(eq)g g
elsef /* f = x’ l + x h */

s1 = createproductof(complement(controlvar(bdd)),
get networkfrom bdd(low(bdd))

s2 = createproductof(control var(bdd),
get networkfrom bdd(high(bdd)))

eq = createsumof(s1,s2)
return(eq)g g

Figure 7.3: Algorithm BDD to Boolean network conversion

CHAPTER 7. PERFORMANCE-DRIVEN TECHNOLOGY MAPPING 109

For example, let us reconsider the Boolean network described in Section 3.3:

f = j + t

j = xy

x = e + z

y = a+ c

z = c+ d

Assume vertexvj does not meet its timing requirement, and that the arrival times of the

inputs to the partition block rooted byvj are: faa = 10: 0; ac = 12: 0; ad = 5: 0; ae = 7: 0g.

The variable ordering used for creating the BDD representingj would befc; a; e; dg. The

resulting BDD is shown in Figure 7.4, together with the two-input gate decomposition

derived from the BDD.

0 1

c

a

e

d
c

a c

d e

Figure 7.4: BDD and corresponding Boolean network

7.5 Re-covering

After each modification of the network (repartitioning or redecomposition), we apply

timing-driven covering. The goal is to find better implementations that take advantage of

CHAPTER 7. PERFORMANCE-DRIVEN TECHNOLOGY MAPPING 110

the modified network structure. The operation is carried out as follows. All time-critical

gates of the modified network are isolated. We then extract the corresponding logic of

these time-critical gates, and represent them with unmapped, combinational logic. At

this point, the network represents a hybrid of mapped logic (netlist of library elements)

and unmapped combinational logic. We then apply the matching and covering techniques

described in the previous chapters.

Since the goal of this re-covering step is to optimize the circuit for delay, we use

timing as a cost metric. We explained previously that fanout-dependent delays are difficult

to evaluate during the covering step, since in general the load on the output of a vertex is

not known when it is being matched. During re-covering, some loads are known: those

corresponding to gates that are still mapped. For the loads that are not known, we use an

estimation of the load which is the number of fanout edges times the average input load

of the gates in the library. Therefore, during the re-covering process, the cost evaluation

is an approximation of the actual delay.

7.6 Iterative mapping

The techniques outlined above, repartitioning and redecomposition, are integrated in an

iterative operation. After a first area-oriented mapping, arrival times and required times

are computed for each gate in the network. The required times on the outputs are assumed

to be given, and so are the arrival times on the inputs. The difference between arrival

time and required time, or slack, is computed for each gate. The gates that have negative

slacks are then operated upon in reverse topological order, where primary output gates

appear first, and primary input gates appear last.

Redecomposition and repartitioning are used iteratively until the constraints are sat-

isfied (i.e. no negative slack) or no more improvement is possible. After each of the

two operations, re-covering is applied to take advantage of the modified structure of the

network. Since each step is accepted only if it speeds up the target gate without affecting

negatively the slacks on surrounding gates, this process is guaranteed to complete in a

finite number of steps. Figure 7.5 shows the pseudocode for the iterative operation.

CHAPTER 7. PERFORMANCE-DRIVEN TECHNOLOGY MAPPING 111

iterativemap(network)f
networkchanged = TRUE /* Iteration proceeds until no improvement is found */
while (networkchanged)f

networkchanged = FALSE
computetiming(network)

/* Compute slacks for each vertex */
currentbest = duplicate(network) /* Keep a copy of current network */
(8 critical vertices2network)f

repartition(vertex)g
unmapcritical vertices(network) /* Get combinational logic of all critical vertices */
re-coverfor delay(network) /* Map all vertices that were just unmapped */
if (cost(network)< cost(currentbest)f

networkchanged = TRUE
currentbest = duplicate(network)g /* Update bets solution */

(8 critical vertices2network)f
redecompose(vertex)g

unmapcritical vertices(network) /* Get combinational logic of all critical vertices */
re-coverfor delay(network) /* Map all vertices that were just unmapped */
if (cost(network)<cost(currentbest)f

networkchanged = TRUE
currentbest = duplicate(network)g /* Update bets solution */

g g

Figure 7.5: Pseudocode for iterative delay optimization

7.7 Buffering/repowering

In addition to the operations outlined in this chapter, buffering and repowering can be

used as a last resort to improve timing. Repowering should be used first, using gates

with more drive capability for vertices with high fanout that are on critical paths. After

repowering, buffering can be used to speed up nets with large fanouts, when neither

redecomposition nor repartitioning can be applied, or they would modify other critical

nets.

Buffering was studied by Bermanet al. [BCD89], who proved that the problem

is NP-complete even in its simplest form. In their formulation, buffer trees are used as

a mean to reduce the required times at gates which drive large capacitive loads. They

proposed a polynomial time algorithm for a simplified problem, theadjacent output

buffering problem, where gates are ranked by required times, and adjacent gates in that

rank are adjacent in the buffer tree. Unfortunately, the complexity of the method (N 5),

although polynomial, makes it impractical for large number of fanouts.

CHAPTER 7. PERFORMANCE-DRIVEN TECHNOLOGY MAPPING 112

Touati proposed a simplified buffer tree structure, the LT-tree, noting that the depth

of buffer trees is usually limited, and that fully general solutions are seldom neces-

sary [TMBW90, Tou90]. Singhet al. proposed a heuristic approach to buffering, based

on a divide-and-conquer formulation [SSV90]. Recently, Linet al. proposed a heuristic

solution which tries to minimize the area of buffer trees under timing constraints [LMS91].

Buffering is currently done as a postprocess after all the other modifications fail. We

rely on external systems to carry that operation, for example Touati’s buffering strategy

in Berkeley’ssis. Note that the results presented in the last section of this chapter do not

include any buffering.

7.8 Results

Figure 7.6 shows the area/delay trade-off curve for different circuits. Note that all the

points on these curves are obtained as successive results during the delay optimization

iterations. It is possible for the user to chose between any of these implementation during

a single run of the program. When area as well as delay are constrained, the program

stops the delay optimization iterations to limit the area increase. Tables 7.1 and 7.2 show

the results for the fastest (and usually largest) implementations. Results from program

Ceresare compared to those ofSis, where both systems where used in delay optimization

mode.

CHAPTER 7. PERFORMANCE-DRIVEN TECHNOLOGY MAPPING 113

too_large

i7

i6−3

i6

frg1

cht

Delay (ns)

Relative area

Area VS Delay

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0.0

1.05 1.10 1.15 1.201.00

Figure 7.6: Example of area/delay tradeoffs

CHAPTER 7. PERFORMANCE-DRIVEN TECHNOLOGY MAPPING 114

Sis Ceres
Smallest Fastest

Circuit delay area rtime delay area delay area rtime

C6288 1063.8 2414 147.0 891.9 1425 835.7 2028 608.7
C7552 346.0 2349.0 214.3 172.7 1062 148.8 1567 433.1
C5315 203.8 1775 179.2 197.8 831 186.3 960 230.5
frg2 164.4 1243 146.5 272.2 844 110.9 918 370.2
pair 169.4 1518 138.8 150.9 716 130.2 1074 271.8
x1 70.8 308 54.1 102.3 807 93.0 851 349.2

C3540 287.4 1066 120.6 290.8 608 265.8 682 155.6
vda 139.0 810 162.7 95.2 543 79.4 669 127.4
x3 106.2 770 103.6 117.2 527 87.0 668 140.0
rot 180.6 617 64.4 318.5 551 192.9 1133 398.1

alu4 250.0 685 71.4 312.0 550 258.9 1183 188.0
C2670 229.2 697 89.9 215.2 317 179.8 342 83.6
apex6 90.0 818 66.0 104.6 399 83.7 583 47.7
C1355 208.2 695 51.2 126.4 176 116.4 253 40.4
term1 96.0 356 58.9 128.1 302 124.8 313 85.8

x4 95.8 444 61.5 101.4 368 65.1 397 104.1
alu2 220.8 339 47.3 287.2 320 199.8 1214 208.5
frg1 77.4 104 28.7 79.4 271 74.4 299 133.4

C1908 191.4 529 66.9 195.6 263 170.6 457 50.8
ttt2 64.4 197 40.7 115.2 249 83.7 306 85.2

C880 139.8 330 46.3 171.1 178 145.1 318 50.9
C499 123.0 327 45.6 128.3 168 114.3 233 27.2

example2 90.6 296 38.8 109.9 175 65.1 251 38.7
apex7 96.8 237 35.8 117.8 142 107.3 177 39.3

my adder 188.2 160 29.8 157.8 64 148.8 129 29.6
C432 195.0 223 35.7 200.6 93 182.1 168 56.2
f51m 192.0 115 27.5 56.5 129 56.5 129 47.9

c8 55.0 168 33.2 49.4 116 46.5 173 66.4
i10 399.0 2445 247.4 518.1 1232 305.2 2002 348.9
dalu 341.8 1776 161.0 213.0 909 169.2 1224 344.7
count 165.2 144 28.1 166.5 63 83.7 119 12.7
comp 110.2 150 28.2 111.4 60 95.7 250 46.6

i4 49.2 198 43.5 57.8 122 57.8 122 36.1
cht 56.8 188 32.4 32.9 124 32.9 124 22.5
cc 39.4 58 24.6 27.9 31 27.9 31 4.6

Total 7067.0 25735 3000.9 6614.4 15603 5228.3 22394 5522.9
1.0 1.0 1.0 0.94 0.61 0.74 0.87 1.8

Table 7.1: Mapping results for delay (Nodon’t cares, Actel library)

CHAPTER 7. PERFORMANCE-DRIVEN TECHNOLOGY MAPPING 115

Sis Ceres
Smallest Fastest

Circuit delay area rtime delay area delay area rtime

C6288 84.2 5963 92.0 106.9 2263 106.9 2263 206.9
C7552 43.0 5210 133.0 34.1 2611 25.5 3072 438.8
C5315 22.7 4113 107.1 30.7 1981 28.6 2208 169.5

x1 7.9 764 29.0 11.4 1695 9.0 1709 462.8
C3540 32.9 2423 69.7 42.1 1214 32.3 2951 462.5

vda 14.3 2260 141.6 19.9 1078 10.7 1432 214.7
x3 11.6 2013 56.7 15.8 1125 8.5 1423 211.9
rot 18.6 1345 39.8 37.4 1117 20.1 1866 341.6

alu4 29.7 1434 40.5 45.5 993 27.8 2399 332.8
C2670 23.8 1705 54.7 32.9 864 22.6 1225 90.0
apex6 9.7 1339 38.3 12.7 674 10.8 721 62.8
C1355 19.6 1373 32.0 15.9 404 15.9 404 21.8
term1 11.0 861 32.0 15.0 598 12.7 745 114.4

x4 10.1 1014 34.2 14.0 670 6.7 765 142.2
alu2 27.5 747 26.4 36.8 568 22.1 1261 250.8
frg1 9.3 223 15.9 15.9 583 9.0 613 237.8

C1908 20.8 1234 39.4 29.3 596 23.9 1348 106.4
ttt2 7.4 528 22.4 15.0 452 8.2 572 113.3

C880 17.1 737 26.0 22.3 309 12.7 1444 124.0
C499 13.6 935 26.8 17.1 406 16.4 884 93.6
apex7 9.6 485 20.1 13.5 270 8.1 516 74.3

my adder 21.0 348 16.3 39.1 256 17.8 682 97.2
C432 20.1 524 19.8 28.3 202 25.6 256 36.3
f51m 7.6 257 15.4 7.3 244 6.5 248 62.9

c8 6.05 321 18.3 7.3 249 6.1 338 45.6
i10 40.6 5529 143.6 81.3 2638 58.4 2731 283.0
dalu 36.4 3855 94.7 31.9 2090 23.8 3015 535.8
count 18.0 243 15.4 28.5 112 7.6 279 43.2
comp 11.8 251 15.5 11.6 151 11.3 219 19.3

i4 7.2 500 24.8 5.7 208 5.0 300 22.9
cht 6.4 507 18.4 9.5 231 3.8 254 55.0
cc 4.6 163 13.3 5.5 74 3.4 87 10.6

Total 662.3 52420 1580.1 869.0 28268 614.4 39693 5723.9
1.0 1.0 1.0 1.3 0.54 0.93 0.76 3.6

Table 7.2: Mapping results for delay (Nodon’t cares, LSI Logic library)

Chapter 8

Conclusion and future directions

Technology mapping is an important operation in automatic synthesis of digital circuits.

The usefulness of automatic tools hinges ultimately on the quality of their results. Tech-

nology mapping is the operation that bridges the gap between abstract logic descriptions

and electronic gate implementations. Therefore, the quality of the technology mapping

step is essential in obtaining a good implementation.

There are two difficult problems intrinsic to technology mapping: covering and match-

ing. In this dissertation a general covering problem was described, and we showed that

every technology mapping system, including this one, solves a simpler, restricted covering

problem.

We have presented new algorithms for matching, which proved to be more powerful

than other existing methods. In particular, we introduced the idea of using Boolean

techniques for establishing logic equivalence between two logic functions, which is key

to the solution of the matching problem. In a first set of algorithms, we presented

a technique for efficiently dealing with completely specified functions, using Boolean

operations. These algorithms were based on the use of Binary Decision Diagrams and

exploit invariant logic properties, unateness and logic symmetry.

We also introduced an extension of the previous method, which allowed the detection

of logic equivalence between incompletely specified functions. This second method,

based on thematching compatibility graph, extended the capabilities of Boolean matching,

116

CHAPTER 8. CONCLUSION AND FUTURE DIRECTIONS 117

making possible the use ofdon’t careinformation. In general, usingdon’t caresincreases

the number of matches, which usually imply better quality solutions, as shown by the

experimental results.

We finally presented an iterative framework for performance-driven technology map-

ping. We showed how we can iteratively use local transformations, changing the structure

of the circuit by duplication and decomposition, and obtaining faster implementations.

Results showed that, as the iterations proceeded, it was possible to trade-off area for

delay.

The work presented in this dissertation is based on many assumptions and simplifi-

cations, which had to be made for efficient algorithms to be found. The simplifications

included the restricted covering problem, partitioning at multi-fanout vertices, and match-

ing single-output logic functions. Furthermore, we assumed circuits to be synchronous.

We also adopted a delay model based on the worst-case delay through combinational cir-

cuits. As new techniques emerge for logic synthesis, some of these simplifications might

become unnecessary, and their elimination will open up new possibilities for technology

mapping.

Given the current knowledge on technology mapping and logic synthesis, some new

developments are possible. Among these, there are two avenues which show promises

for the near future. The first one regards asynchronous digital circuits. The use of asyn-

chronous digital circuitry has recently proved to be area-competitive, with improved per-

formance, compared to traditional, synchronous digital design [WH91, Wil90, MBL+89].

Research on automatic synthesis of asynchronous circuits has progressed to the point

where systems for technology-independent description and optimization are now pos-

sible [THYMM89, ND91]. One problem is in the translation to technology-dependent

implementations, which currently needs to be done by hand. A natural extension to actual

technology mapping systems would be handling that transformation automatically. How-

ever, this application of technology mapping to the asynchronous world is not simple,

since logic gates in the final implementation have to be carefully chosen to prevent logic

hazards from occurring.

The second promising direction for technology mapping systems is to incorporate false

paths information during performance optimization. False paths occur in a combinational

CHAPTER 8. CONCLUSION AND FUTURE DIRECTIONS 118

network when the structure of the network makes impossible the sensitization of certain

paths through the network. In that case, the evaluation of the critical delays through the

circuit has to take into account the existence of false paths in order to obtain the true crit-

ical delay [DKM91, MSSB91]. False paths have recently begun to be considered during

digital circuit synthesis [Ber91a, MBSVS91]. One pending difficulty is the complexity

of identifying which paths are the true critical paths in a given implementation [Wan91].

Given an efficient algorithm for false paths identification, the quality of performance-

driven technology mapping could be improved by limiting iterative operations to true

critical paths.

Technology mapping represents one step in the automatic synthesis of digital cir-

cuits. As the design process changes, the requirements on synthesis systems will evolve.

New technologies will require different constraints on technology-specific optimizations.

New design paradigms will imply modifying synthesis systems to allow different user-

interaction models. Looking at the history of digital circuits tools from the first layout

editors to the current use of hardware description languages, one can only guess the

possibilities for the next generation of synthesis systems.

Bibliography

[AB78] Z. Arevalo and J. G. Bredeson. A Method to Simplify a Boolean Function

in a Near Minimal Sum-of-products for Programmable Logic Arrays.IEEE

Transactions on Computers, 27:1028, November 1978.

[AG85] A. V. Aho and M. Ganapathi. Efficient Tree Pattern Matching: an Aid

to Code Generation. InSymposium on Principles of Programming Lan-

guages, pages 334–340. ACM, January 1985.

[AGT89] A. V. Aho, M. Ganapathi, and S. W. K. Tjiang. Code Generation Us-

ing Tree Matching and Dynamic Programming.ACM Transactions on

Programming Languages and Systems, 11(4):491–516, October 1989.

[AJ76] A. V. Aho and S. C. Johnson. Optimal Code Generation for Expression

Trees.Journal of the ACM, 23(3):488–501, July 1976.

[AJU77] A. V. Aho, S. C. Johnson, and J. D. Ullman. Code Generation for Expres-

sions with Common Subexpressions.Journal of the ACM, 24(1):146–160,

January 1977.

[Ake78] S. B. Akers. Binary Decision Diagrams.IEEE Transactions on Computers,

27(6):509–516, June 1978.

[And64] J. P. Anderson. A Note on Some Compiling Algorithms.Communications

of the ACM, 7(3):149–150, March 1964.

[Ash59] R. Ashenhurst. The Decomposition of Switching Functions. InInterna-

tional Symposium on the Theory of Switching, pages 74–116. MIT, 1959.

119

BIBLIOGRAPHY 120

Held 2-5 April 1957.

[Bak91] S. Baker. Quicklogic unveils FPGA.EE Times, 639, April 1991.

[BBH+88] K. A. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, C. R. Morrison,

R. L. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang. Multilevel

Logic Minimization Using Implicit Don’t Cares.IEEE Transactions on

CAD/ICAS, 7(6):723–740, June 1988.

[BBL89] D. Bryan, F. Brglez, and R. Lisanke. Redundancy Identification and Re-

moval. In International Workshop on Logic Synthesis, page 8.3. MCNC,

May 1989.

[BCD+88] R. K. Brayton, R. Camposano, G. De Micheli, R. H. J. M. Otten, and

J. van Eijndhoven. The Yorktown Silicon Compiler System. In D. Gajski,

editor,Silicon Compilation. Addison Wesley, 1988.

[BCD89] C. L. Berman, J. L. Carter, and K. F. Day. The Fanout Problem: From

Theory to Parctice. In C. L. Seitz, editor,Advanced Research in VLSI:

Proceedings of the 1989 Decennial Caltech Conference, pages 69–99. MIT

Press, March 1989.

[BD62] R. E. Bellman and S. E. Dreyfus.Applied Dynamic Programming. Prince-

ton University Press, 1962.

[BDK+86] R. Brayton, E. Detjens, S. Krishna, T. Ma, P. McGeer, L. Pei, N. Phillips,

R. Rudell, R. Segal, A. Wang, R. Yung, and A. Sangiovanni-Vincentelli.

Multiple-Level Logic Optimization System. InInternational Conference

on Computer-Aided Design, pages 356–359. IEEE, November 1986.

[BDS91] D. Bochman, F. Dreisig, and B. Steinbach. A New Decomposition Method

for Multilevel Circuit Design. InEuropean Design Automation Confer-

ence, pages 374–377. IEEE, February 1991.

[Bel57] R. Bellman.Dynamic Programming. Princeton University Press, 1957.

BIBLIOGRAPHY 121

[Ber88] R. A. Bergamaschi. Automatic Synthesis and Technology Mapping of

Combinational Logic. InInternational Conference on Computer-Aided

Design, pages 466–469. IEEE, November 1988.

[Ber91a] R. A. Bergamaschi. The Effects of False Paths in High-Level Synthesis. In

International Conference on Computer-Aided Design, pages 80–83. IEEE,

November 1991.

[Ber91b] C. L. Berman. Circuit Width, Register Allocation, and Ordered Binary

Decision Diagrams.IEEE Transactions on CAD/ICAS, 10(8):1059–1066,

August 1991.

[BG87] F. Brewer and D. Gajski. Knowledge Based Control in Micro-architectural

Design. InDesign Automation Conference, pages 203–209. IEEE, June

1987.

[BHJ+87] D. Bostick, G. D. Hachtel, R. Jacoby, M. R. Lightner, P. Moceyunas,

C. R. Morrison, and D. Ravenscroft. The Boulder Optimal Logic Design

System. InInternational Conference on Computer-Aided Design, pages

62–69. IEEE, November 1987.

[BHMSV84] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. Sangiovanni-

Vincentelli. Logic Minimization Algorithms for VLSI Synthesis. Kluwer

Academic publishers, 1984.

[BM82] R. K. Brayton and C. T. McMullen. The Decomposition and Factoriza-

tion of Boolean Expressions. InInternational Symposium on Circuits and

Systems, pages 49–54. IEEE, 1982.

[BM84] R. K. Brayton and C. T. McMullen. Synthesis and Optimization of Mul-

tistage Logic. InInternational Conference on Computer Design, pages

23–28. IEEE, October 1984.

[BRB90] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient Implementation of

a BDD Package. InDesign Automation Conference, pages 40–45. IEEE,

June 1990.

BIBLIOGRAPHY 122

[Bre77] M. Breuer. Min-cut Placement.Journal of Design Automation of Fault

Tolerant Computers, pages 343–362, October 1977.

[Bro81] D. W. Brown. A State-Machine Synthesizer - SMS. InDesign Automation

Conference, pages 301–304. IEEE, June 1981.

[BRSVW87] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang.

MIS: A Multiple-Level Logic Optimization System.IEEE Transactions

on CAD/ICAS, 6(6):1062–1081, November 1987.

[Bry86] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipula-

tion. IEEE Transactions on Computers, 35(8):677–691, August 1986.

[BS76] J. L. Bruno and R. Sethi. Code Generation for a One-register Machine.

Journal of the ACM, 23(3):502–510, July 1976.

[Bur86] M. Burstein. Channel Routing. In T. Ohtsuki, editor,Layout Design and

Verification, pages 133–167. North-Holland, 1986.

[CBL91] T. J. Chakraborty, S. Bhawmik, and C. J. Lin. Enhanced Controllability

For IDDQ Test Sets Using Partial Scan. InDesign Automation Conference,

pages 278–281. ACM/IEEE, June 1991.

[CBM90a] O. Coudert, C. Berthet, and J. C. Madre. Verification of Sequential Ma-

chines Using Boolean Functional Vectors. In L. J. M. Claesen, editor,

Formal VLSI Correctness Verification: VLSI Design Methods-II, Proceed-

ings of the IFIP International Workshop on Applied Formal Methods for

Correct VLSI Design, Houthalen, 13-16 Nov. 1989, pages 179–196. North-

Holland, 1990.

[CBM90b] O. Coudert, C. Berthet, and J.C. Madre. Verification of Sequential Ma-

chines Based on Symbolic Execution. In J. Sifakis, editor,Lecture Notes

in Computer Science No 407: International Workshop on Automatic Verifi-

cation Methods for Finite State Systems, Grenoble, 12-14 Jun. 1989, pages

365–373. Springer-Verlag, 1990.

BIBLIOGRAPHY 123

[CK56] S. R. Cray and R. N. Kisch. A Progress Report on Computer Applications

in Computer Design. InWestern Joint Computer Conference, pages 82–85,

1956.

[CM89] K. C. Chen and S. Muroga. SYLON-DREAM: A Multi-Level Network

Synthesizer. InInternational Conference on Computer-Aided Design,

pages 552–555. IEEE, November 1989.

[Coo71] S. A. Cook. The Complexity of Theorem-Proving Procedures. In3rd

Symposium on Theory of Computing, pages 151–158. ACM, 1971.

[CR89] R. Camposano and W. Rosenstiel. Synthesizing Circuits from Behavioral

Descriptions. IEEE Transactions on CAD/ICAS, 8(2):171–180, February

1989.

[Cur61] H. A. Curtis. A Generalized Tree Circuit.Journal of the ACM, 8:484–496,

1961.

[Cur62] H. A. Curtis. A New Approach to the Design of Switching Circuits. Van

Nostrand, 1962.

[DAR86] M. R. Dagenais, V. K. Agarwal, and N. C. Rumin. McBoole: A New Pro-

cedure for Exact Logic Minimization.IEEE Transactions on CAD/ICAS,

5(1):229–237, January 1986.

[DBJT84] J. Darringer, D. Brand, W. Joyner, and L. Trevillyan. LSS: A System for

Production Logic Synthesis.IBM J. Res. Develop., September 1984.

[De 87] G. De Micheli. Performance-Oriented Synthesis in the Yorktown Silicon

Compiler. IEEE Transactions on CAD/ICAS, 6(5):751–765, September

1987.

[De 89] G. De Micheli. Synchronous Logic Synthesis. InInternational Workshop

on Logic Synthesis, page 5.2, North Carolina, May 1989.

BIBLIOGRAPHY 124

[DGR+87] E. Detjens, G. Gannot, R. L. Rudell, A. Sangiovanni-Vincentelli, and A. R.

Wang. Technology Mapping in MIS. InInternational Conference on

Computer-Aided Design, pages 116–119. IEEE, November 1987.

[DHNSV85] G. De Micheli, M. Hoffman, R. Newton, and A. Sangiovanni-Vincentelli.

A System for the Automatic Synthesis of Programmable Logic Arrays.

In A. Sangiovanni-Vincentelli, editor,Computer-Aided Design of VLSI

Circuits and Systems. Jai Press, 1985.

[DJBT81] J. Darringer, W. Joyner, C. L. Berman, and L. Trevillyan. Logic Synthesis

Through Local Transformations.IBM J. Res. Develop., 25(4):272–280,

July 1981.

[DKM91] S. Devadas, K. Keutzer, and S. Malik. Delay Computation in Combina-

tional Logic Circuits: Theory and Algorithms. InInternational Conference

on Computer-Aided Design, pages 176–179. IEEE, November 1991.

[DKMT90] G. De Micheli, D. Ku, F. Mailhot, and T. Truong. The Olympus Synthesis

System.IEEE Design & Test of Computers, pages 37–53, October 1990.

[DM90] M. Damiani and G. De Micheli. Observability Don’t Care Sets and

Boolean Relations. InInternational Conference on Computer-Aided De-

sign, pages 502–505. IEEE, November 1990.

[DM91] M. Damiani and G. De Micheli. Derivation of Don’t Care Conditions by

Perturbation Analysis of Combinational Multiple-Level Logic Circuits. In

International Workshop on Logic Synthesis, page 6.1a. MCNC, May 1991.

[DSV83] G. De Micheli and A. Sangiovanni-Vincentelli. Multiple Constrained Fold-

ing of Programmable Logic Arrays: Theory and Applications.IEEE

Transactions on CAD/ICAS, 2(3):167–180, July 1983.

[Fil91] D. Filo, March 1991. Private communication.

[Flo61] R. W. Floyd. An Algorithm for Coding Efficient Arithmetic Operations.

Communications of the ACM, 4(1):42–51, January 1961.

BIBLIOGRAPHY 125

[FSTH90] R. R. Fritzemeir, J. Soden, R. K. Treece, and C. Hawkins. Increased

CMOS IC Stuck-at Fault Coverage with Reduced IDDQ Test Sets. In

International Test Conference, pages 427–435. IEEE, 1990.

[GB87] B. Gurunath and N. N. Biswas. An Algorithm for Multiple Output Mini-

mization. In International Conference on Computer-Aided Design, pages

74–77. IEEE, November 1987.

[GBdGH86] D. Gregory, K. Bartlett, A. de Geus, and G. Hachtel. SOCRATES: A Sys-

tem for Automatically Synthesizing and Optimizing Combinational Logic.

In 23rd Design Automation Conference, pages 79–85. IEEE/ACM, 1986.

[GJ79] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman, 1979.

[GLWH84] J. L. Gilkinson, S. D. Lewis, B. B. Winter, and A. Hekmatpour. Automated

Technology Mapping.IBM J. Res. Develop., 28(5):546–555, September

1984.

[HCO74] S. J. Hong, R. G. Cain, and D. L. Ostapko. MINI: A heuristic apporoach

for logic minimization. IBM J. Res. Develop., 18:443–458, September

1974.

[HHLH91] C. Y. Hwang, Y. C. Hsieh, Y. L. Lin, and Y. C. Hsu. An Efficient Layout

Style for 2-Metal CMOS Leaf Cells and Their Automatic Generation. In

Design Automation Conference, pages 481–486. IEEE, June 1991.

[HMM85] S. L. Hurst, D. M. Miller, and J. C. Muzio.Spectral Techniques in Digital

Logic. Academic Press, 1985.

[HO82] C. M. Hoffmann and M. J. O’Donnell. Pattern Matching in Tress.Journal

of the ACM, 29(1):68–95, January 1982.

[Hol61] P. A. Holst. Bibliography on Switching Theory Circuits and Logical Al-

gebra. IRE Transactions on Electronic Computers, pages 638–661, De-

cember 1961.

BIBLIOGRAPHY 126

[HS71] A. Hashimoto and J. Stevens. Wire Routing by Optimizing Channel

Assignment within Large Apertures. InDesign Automation Conference,

pages 155–169. IEEE, 1971.

[HSC82] R. Hitchcock, G. Smith, and D. Cheng. Timing Analysis of Computer

Hardware.IBM J. Res. Develop., 26(1):100–105, January 1982.

[HSM82] W. Heller, G. Sorkin, and K. Maling. The Planar Package for System

Designers. InDesign Automation Conference, pages 253–260. IEEE, June

1982.

[ISH+88] J. Ishikawa, H. Sato, M. Hiramine, K. Ishida, S. Oguri, Y. Kazuma, and

S. Murai. A Rule Based Logic Reorganization System LORES/EX. In

International Conference on Computer Design, pages 262–266. IEEE, Oc-

tober 1988.

[Joh83] S. C. Johnson. Code Generation for Silicon. InSymposium on Principles

of Programming Languages, pages 14–19. ACM, January 1983.

[JTB+86] W. H. Joyner, L. H. Trevillyan, D. Brand, T. A. Nix, and A. C. Gundersen.

Technology Adaptation in Logic Synthesis. In23rd Design Automation

Conference, pages 94–100. IEEE/ACM, June 1986.

[Kah86] M. Kahrs. Matching a Parts Library in a Silicon Compiler. InInternational

Conference on Computer-Aided Design, pages 169–172. IEEE, November

1986.

[Keu87] K. Keutzer. DAGON: Technology Binding and Local Optimization by

DAG Matching. In24th Design Automation Conference, pages 341–347.

IEEE/ACM, June 1987.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vechi. Optimization by Simulated

Annealing.Science, 220(4598):671–680, May 1983.

[KL70] B. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning

Graphs.Bell Systems Technical Journal, 49(2):291–307, February 1970.

BIBLIOGRAPHY 127

[KMS86] E. S. Kuh and M. Marek-Sadowska. Global Routing. In T. Ohtsuki, editor,

Layout Design and Verification, pages 169–198. North-Holland, 1986.

[Ku91] D. Ku. Constrained Synthesis and Optimization of Digital Integrated Cir-

cuits from Behavioral Specifications. PhD thesis, Stanford University, June

1991. Technical report CSL-TR-91-476.

[Lau80] U. Lauther. A Min-cut Placement Algorithm for General Cell Assemblies

Based on a Graph Representation.Journal of Digital Systems, 4(1):21–34,

1980.

[LBK88] R. Lisanke, F. Brglez, and G. Kedem. McMAP: A Fast Technology Map-

ping Procedure for Multi-Level Logic Synthesis. InInternational Confer-

ence on Computer Design, pages 252–256. IEEE, October 1988.

[Lee61] C. Y. Lee. An Algorithm for Path Corrections and its Applications.IRE

Transactions on Electronic Computers, pages 346–365, September 1961.

[Liu77a] C. L. Liu. Elements of Discrete Mathematics. McGraw-Hill, 1977.

[Liu77b] T. K. Liu. Synthesis of Feed-Forward MOS Networks with Cells of Similar

Complexities. IEEE Transactions on Computers, 26(8):826–831, August

1977.

[Liu77c] T. K. Liu. Synthesis of Multilevel Feed-Forward MOS Networks.IEEE

Transactions on Computers, 26(6):581–588, June 1977.

[LMS91] S. Lin and M. Marek-Sadowska. A Fast and Efficient Algorithm for Deter-

mining Fanout Trees in Large Networks. InEuropean Design Automation

Conference, pages 539–544. IEEE, February 1991.

[LS90] B. Lin and F. Somenzi. Minimization of Symbolic Realtions. InIn-

ternational Conference on Computer-Aided Design, pages 88–91. IEEE,

November 1990.

BIBLIOGRAPHY 128

[MB88] H. J. Mathony and U. G. Baitinger. CARLOS: An Automated Multilevel

Logic Design System for CMOS Semi-Custom Integrated Circuits.IEEE

Transactions on CAD/ICAS, 7(3):346–355, March 1988.

[MB89] P. McGeer and R. K. Brayton. Consistency and Observability Invariance

in Multi-Level Logic Synthesis. InInternational Conference on Computer-

Aided Design, pages 426–429. IEEE, November 1989.

[MBL +89] A. J. Martin, S. M. Burns, T.K. Lee, D. Borkovi´c, and P.J. Hazewindus.

The design of an asynchronous microprocessor. InDecennial Caltech

Conference on VLSI, pages 226–234, 1989.

[MBSVS91] P. C. McGeer, R. K. Brayton, A. L. Sangiovanni-Vincentelli, and S. K.

Sahni. Performance Enhancement through the Generalized Bypass Trans-

form. In International Conference on Computer-Aided Design, pages 184–

187. IEEE, November 1991.

[MC81] C. Mead and L. Conway.Mead and Conway: Introduction to VLSI Sys-

tems. Addison-Wesley, 1981.

[McC56a] E. J. McCluskey. Detection of Group Invariance or Total Symmetry of a

Boolean Function.Bell Syst. tech J., 35(6):1445–1453, November 1956.

[McC56b] E. J. McCluskey. Minimization of Boolean Functions.Bell Syst. tech J.,

35(6):1417–1444, November 1956.

[McC86] E. J. McCluskey. Logic Design Principles With Emphasis on Testable

Semicustom Circuits. Prentice-Hall, 1986.

[MD88] F. Mailhot and G. De Micheli. Automatic Layout and Optimization of

Static CMOS Cells. InInternational Conference on Computer Design,

pages 180–185. IEEE, October 1988.

[MH87] R. L. Maziasz and J. P. Hayes. Layout Optimization of CMOS Functional

Cells. In Design Automation Conference, pages 544–551. IEEE, June

1987.

BIBLIOGRAPHY 129

[MJH89] C. R. Morrison, R. M. Jacoby, and G. D. Hachtel. TECHMAP: Technology

Mapping with Delay and Area Optimization. In G. Saucier and P. M.

McLellan, editors,Logic and Architecture Synthesis for Silicon Compilers,

pages 53–64. North-Holland, 1989.

[MKLC89] S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney. The Transduc-

tion Method: Design of Logic Networks based on Permissible Functions.

IEEE Transactions on Computers, October 1989.

[MSSB91] P. C. McGeer, A. Saldanha, P. R. Stephan, and R. K. Brayton. Timing

Analysis and Delay-Fault Test Generation using Path-Recursive Functions.

In International Conference on Computer-Aided Design, pages 180–183.

IEEE, November 1991.

[Mur71] S. Muroga.Threshold Logic and its Applications. John Wiley, 1971.

[Nak67] I. Nakata. On Compiling Algorithms for Arithmetic Expressions.Com-

munications of the ACM, 10(8):492–494, August 1967.

[ND91] S. Nowick and D. Dill. Automatic Synthesis of Locally-Clocked Asyn-

chronous State Machines. InInternational Conference on Computer-Aided

Design, pages 318–321. IEEE, November 1991.

[New87] A. R. Newton. Symbolic Layout and Procedural Design. In G. De Micheli

and A. Sangiovanni-Vincentelli and P. Antognetti, editor,Design Systems

for VLSI Circuits: Logic Synthesis and Silicon Compilation, pages 65–112.

Martinus Nijhoff, 1987.

[NvMM88] S. Note, J. van Meerbergen, and F. Catthoor H. De Man. Automated

Synthesis of a High-Speed Cordic Algorithm with the Cathedral-III Com-

pilation System. InInternational Symposium on Circuits and Systems,

pages 581–584. IEEE, June 1988.

[Ott82] R. Otten. Automatic Floor-plan Design. InDesign Automation Confer-

ence, pages 261–267. IEEE, June 1982.

BIBLIOGRAPHY 130

[PKG86] P. G. Paulin, J. Knight, and E. Girczyc. HAL: A Multi-paradigm Approach

to Automatic Data-path Synthesis. In23rd Design Automation Conference,

pages 263–270. IEEE/ACM, June 1986.

[PP89] P. G. Paulin and F. J. Poirot. Logic Decomposition Algorithms for the

Timing Optimization of Multi-Level Logic. In26th Design Automation

Conference, pages 329–333. IEEE/ACM, June 1989.

[PPM86] A. Parker, J. Pizarro, and M. Mlinar. MAHA: A Program for Data Path

Synthesis. InDesign Automation Conference, pages 461–466. IEEE, June

1986.

[Pre72] R. J. Preiss. Introduction. In M. A. Breuer, editor,Design Automation of

Digital Systems: Theory and Techniques, pages 1–19. Prentice-Hall, 1972.

[PS90] M. Pipponzi and F. Somenzi. An Alternative Algorithm for the Binate

Covering Problem. InEuropean Design Automation Conference, pages

208–211. IEEE, March 1990.

[Qui52] W. V. Quine. The Problem of Simplifying Truth Functions.American

Mathematical Monthly, 59(8):521–531, October 1952.

[Red69] R. R. Redziejowski. On Arithmetic Expressions and trees.Communica-

tions of the ACM, 12(2):81–84, February 1969.

[RH67] S. U. Robinson and R. W. House. Gimpel’s Reduction Technique Extended

to the Covering Problem with Costs.IEEE Transactions on Electronic

Computers, 16:509–514, August 1967.

[RK62] J. P. Roth and R. M. Karp. Minimization Over Boolean Graphs.IBM

journal of Research and Development, 6(2):227–238, April 1962.

[Rud89a] R. Rudell.Logic Synthesis for VLSI Design. PhD thesis, U. C. Berkeley,

April 1989. Memorandum UCB/ERL M89/49.

BIBLIOGRAPHY 131

[Rud89b] R. Rudell. Technology Mapping for Delay. InInternational Workshop on

Logic Synthesis, page 8.2. MCNC, May 1989.

[San87] A. Sangiovanni-Vincentelli. Automatic Layout of Integrated Circuits. In

G. De Micheli and A. Sangiovanni-Vincentelli and P. Antognetti, editor,

Design Systems for VLSI Circuits: Logic Synthesis and Silicon Compila-

tion, pages 113–195. Martinus Nijhoff, 1987.

[Sas86] T. Sasao. MACDAS: Multi-level AND-OR Circuit Synthesis using Two-

Variable Function Generators. In23rd Design Automation Conference,

pages 86–93. ACM/IEEE, June 1986.

[Sav91] H. Savoj, April 1991. Private communication.

[SB90] H. Savoj and R. K. Brayton. The Use of Observability and External

Don’t Cares for the Simplification of Multi-Level Networks. InDesign

Automation Conference, pages 297–301. ACM/IEEE, June 1990.

[SB91] H. Savoj and R. K. Brayton. Observability Relations and Observability

Don’t Cares. InInternational Conference on Computer-Aided Design,

pages 518–521. IEEE, November 1991.

[SBK+87] S. Suzuki, T. Bitoh, M. Kakimoto, K. Takahashi, and T. Sugimoto. TRIP:

An Automated Technology Mapping System. InDesign Automation Con-

ference, pages 523–529. ACM/IEEE, June 1987.

[SBT91] H. Savoj, R. K. Brayton, and H. Touati. Extracting Local Don’t Cares for

Network Optimization. InInternational Conference on Computer-Aided

Design, pages 514–517. IEEE, November 1991.

[Sco58] N. R. Scott. Notes on Mathematical Logic and Switching Networks. In

Advanced Theory of the Logical Design of Digital Computers. University

of Michigan, June 1958.

BIBLIOGRAPHY 132

[SD68] P. R. Schneider and D. L. Dietmeyer. An Algorithm for Synthesis of

Multiple-Output Combinational Logic.IEEE Transactions on Computers,

17(2):117–128, February 1968.

[SSM+92] E.M. Sentovich, K.J. Singh, C. Moon, H. Savoj, R.K. Brayton, and

A. Sangiovanni-Vincentelli. Sequential Circuit Design Using Synthesis

and Optimization. Insubmitted to the 29th Design Automation Confer-

ence, June 1992.

[SSV90] K. J. Singh and A. Sangiovanni-Vincentelli. A Heuristic Algorithm for

the Fanout Problem. InDesign Automation Conference, pages 357–360.

ACM/IEEE, June 1990.

[STMF90] H. Sato, N. Takahashi, Y. Matsunaga, and M. Fujita. Boolean Technol-

ogy Mapping for Both ECL and CMOS Circuits Based on Permissible

Functions and Binary Decision Diagrams. InInternational Conference on

Computer Design, pages 286–289. IEEE, October 1990.

[SU70] R. Sethi and J. D. Ullman. The Generation of Optimal Code for Arithmetic

Expressions.Journal of the ACM, 17(4):715–728, October 1970.

[SW79] A. Svoboda and D. E. White.Advanced Logical Circuit Design Tech-

niques. Garland STPM Press, New York, 1979.

[SWBSV88] K. J. Singh, A. R. Wang, R. Brayton, and A. Sangiovanni-Vincentelli.

Timing Optimization of Combinational Logic. InInternational Conference

on Computer-Aided Design, pages 282–285. IEEE, November 1988.

[TDW+89] D. Thomas, E. Dirkes, R. Walker, J. Rajan, J. Nestor, and R. Blackburn.

The System Architect’s Workbench. InDesign Automation Conference,

pages 40–45. IEEE, June 1989.

[THYMM89] Robert W. Brodersen Teresa H.-Y. Meng and David G. Messerschmitt.

Automatic Synthesis of Asynchronous Circuits from High-Level Specifi-

cations. IEEE Transactions on CAD/ICAS, 8(11):1185–1205, November

1989.

BIBLIOGRAPHY 133

[TJB86] L. Trevillyan, W. Joyner, and L. Berman. Global Flow Analysis in Au-

tomatic Logic Design. IEEE Transactions on Computers, 35(1):77–81,

January 1986.

[Tji85] S. W. K. Tjiang. Twig Reference Manual. Technical report, AT&T Bell

Labs, 1985. TR 120.

[TMBW90] H. J. Touati, C. W. Moon, R. K. Brayton, and A. Wang. Performance

Oriented Technology Mapping. In W. J. Dally, editor,Advanced Researcgh

in VLSI: Proceedings of the 6th MIT Conference, pages 79–97. MIT Press,

January 1990.

[Tou90] H. Touati.Performance-Oriented Technology Mapping. PhD thesis, U. C.

Berkeley, November 1990. Memorandum UCB/ERL M90/109.

[TSL+90] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-

Vincentelli. Implicit State Enumaration of Finite State Machines Using

BDD’s. In International Conference on Computer-Aided Design, pages

130–133. IEEE, November 1990.

[Uv81] T. Uehara and W. M. vanCleemput. Optimal layout of CMOS Functional

Arrays. IEEE Transactions on Computers, 30(5):305–312, May 1981.

[Wan91] A. Wang, November 1991. Private communication.

[WH91] T. E. Williams and M. A. Horowitz. A Zero-Overhead Self-Timed 160ns

54b CMOS Divider. InInternational Solid-State Circuits Conference,

pages 98–99. IEEE, February 1991.

[Wil90] T. Williams. Latency and Throughput Tradeoffs in Self-timed Speed-

independent Pipelines and Rings. Technical report, Stanford University,

August 1990. CSL-TR-90-431.

[YCL91] C. W. Yeh, C. K. Cheng, and T.T. Y. Lin. A General Purpose Multiple

Way Partitioning Algorithm. InDesign Automation Conference, pages

421–426. IEEE, June 1991.

BIBLIOGRAPHY 134

[Zim79] G. Zimmermann. The MIMOLA Design System: Detailed Description

of the Software System. InDesign Automation Conference, pages 56–63.

ACM/IEEE, June 1979.

