
Optimizing Quantum Compilers :

E�cient and E�ective Algorithms

Thèse n. 9472 2023
présentée le 27 Avril 2023
à la Faculté des sciences et techniques de l’ingénieur
Laboratoire des Systèmes Intégrés – LSI
programme doctoral en Génie électrique
École polytechnique fédérale de Lausanne
pour l’obtention du grade de Docteur ès Sciences
par

Fereshte Mozafari

acceptée sur proposition du jury :
Prof. Andreas Peter Burg, président du jury
Prof. Giovanni De Micheli, directeur de thèse
Prof. Paolo Ienne, rapporteur
Prof. Robert Wille, rapporteur
Prof. Jason Cong, rapporteur

Lausanne, EPFL, 2023





To my beloved husband, parents, brother, and sisters.





Acknowledgements
First and foremost, I would like to express my heartfelt appreciation to Prof. Giovanni De
Micheli, my supervisor, for his exceptional support, guidance, and encouragement during
my Ph.D. journey. His mentorship and insightful feedback have been crucial in shaping my
research and professional growth, particularly during the difficult times of the COVID-19
pandemic. His personality, passion and commitment to his students have been a constant
source of inspiration, and I feel privileged to have had the opportunity to work under his
supervision. I am truly grateful for his unwavering support and dedication.
I would like to thank my jury members Prof. Andreas Peter Burg, Prof. Paolo Ienne, Prof.
Robert Wille, and Prof. Jason Cong for their time and their valuable feedbacks. I look forward
to the opportunity to further discuss my research with them in the future.
I would like to thank Dr. Mathias Soeken for his invaluable guidance. His insights and expertise
have been instrumental in shaping my research, and I am grateful for all the valuable ideas
and discussions we have had together. I would like to extend my sincere thanks to Dr. Heinz
Riener for his invaluable contributions to my research. His availability to answer my questions
and his willingness to engage in valuable discussions have been very helpful in my work, and I
am truly grateful for his guidance and support.
I would like to express my heartfelt appreciation to Dr. Yuxinag Yang, formerly a Postdoctoral
Researcher at ETH and now a Professor at the University of Hong Kong, for all invaluable ideas
and discussions. His knowledge, expertise, and unwavering dedication to our research have
been instrumental in shaping my skills and expanding my knowledge of the field. I am deeply
thankful for all collaborations and publications that we have had together.
I would like to express my gratitude to Dr. Harun Bayraktar, Dr. John Gunnel, Dr. Leo Fang, Dr.
Yang Gao, and Dr. Andreas Hehn for the opportunity to work on exciting internship projects at
NVIDIA. I am grateful for both research and software development collaborations, as well as
the interactions I have had with my colleagues.
I would like to extend a special thanks to my current and former logic synthesis colleagues for
engaging in fruitful discussions: Winston, Giulia, Kaitlin, Eleonora, Bruno, Ivan, Alessandro,
Andrea, Dewmini, Sonia, Mingfei, and Rassul.
I want to express my sincere gratitude to Cristina, Carol, Chantal, and Valérie for their invalu-
able help in assisting me with various bureaucratic and non-bureaucratic issues.
I am grateful to my friends for their support, advice, and all fun times that we have had together
during my academic journey.
Lastly, I thank my husband, my parents, and my family, to whom I dedicate this thesis, for
unwavering support, love, and sacrifices throughout my academic journey. They inspire me to
strive for greater goals in my life.

Lausanne, April 27, 2023 Fereshte Mozafari

i





Abstract
Quantum computing has made significant progress in recent years, with Google and IBM
releasing quantum computers with 72 and 50 qubits, respectively. Google has also achieved
quantum supremacy with its 54-qubit device, and IBM has announced the release of the Osprey
quantum computer with 433 qubits. These developments suggest that quantum computers
with even greater qubit counts may be available in the near future. This upcoming period is
termed Noisy Intermediate Scale Quantum (NISQ) era, because of the noisy characteristics of
near-term devices.

Computation on NISQ hardware is modeled using a library of supported quantum gates
which can be directly implemented on it and a coupling graph that specifies available qubits
interactions for multi-qubit quantum gates. While improvements to quantum hardware are
continuously being made by experimentalists, quantum computing experts can contribute to
the utility of quantum devices by developing software. This software would aim to adapt text-
book quantum algorithms (e.g., for factoring or quantum simulation) to hardware constraints,
that include: (1) limited number of qubits, (2) limited connectivity between qubits, (3) limited
hardware-specific gate sets, and (4) limited circuit depth due to noise. Algorithms adapted to
these constraints will likely look dramatically different from their textbook counterparts. Such
software, which performs the task of translating quantum algorithms into quantum circuits
according to hardware constraints, is called a quantum compiler. In conclusion, without a
good compiler, most quantum algorithms are not applicable in practice.

Quantum compilers typically undertake three primary tasks: quantum state preparation,
circuit synthesis, and qubit mapping. Quantum state preparation involves preparing the initial
state of the quantum system before running the algorithm. The preparation of such a state
itself requires a computation performed by a quantum circuit. This task can be challenging, as
quantum algorithms assume some specific initial states in superposition before performing
the desired application-specific computations. Circuit synthesis involves the process of
constructing a quantum circuit that implements the desired quantum algorithm. Qubit
mapping is another important task for quantum compilers, which involves mapping the
logical qubits of the algorithm to the physical qubits of the quantum computer. In this thesis,
I focus on the first two tasks of quantum compilers, quantum state preparation, and circuit
synthesis. These tasks are essential for the successful execution of quantum algorithms,
and developing efficient and effective algorithms for these tasks is crucial for the continued
advancement of quantum computing.

Keywords: Logic Synthesis, Boolean Functions, Decision Diagrams, Quantum Computing,
Quantum Compiler, Quantum State Preparation.

iii





Zusammenfassung
Die Quanteninformatik hat in den letzten Jahren erhebliche Fortschritte gemacht. So haben
Google und IBM Quantencomputer mit 72 bzw. 50 Qubits auf den Markt gebracht. Goo-
gle hat mit seinem 54-Qubit-Gerät ebenfalls die Quantenüberlegenheit erreicht, und IBM
hat die Veröffentlichung des Quantencomputers Osprey mit 433 Qubits angekündigt. Diese
Entwicklungen deuten darauf hin, dass in naher Zukunft Quantencomputer mit einer noch
größeren Anzahl von Qubits verfügbar sein könnten. Diese kommende Periode wird aufgrund
der verrauschten Eigenschaften der in naher Zukunft verfügbaren Geräte als NISQ-Ära (Noisy
Intermediate Scale Quantum) bezeichnet.

Die Berechnung auf NISQ-Hardware wird mit Hilfe einer Bibliothek von unterstützten Quan-
tengattern, die direkt darauf implementiert werden können, und einem Kopplungsgraphen
modelliert, der die verfügbaren Qubit-Wechselwirkungen für Multi-Qubit-Quantengatter an-
gibt. Während Experimentalphysiker kontinuierlich Verbesserungen an der Quantenhardware
vornehmen, können Quanten Experten für Quanteninformatik können durch die Entwicklung
von Software zum Nutzen von Quantengeräten beitragen. Diese Software würde darauf abzie-
len, Lehrbuch-Quantenalgorithmen (z. B. für das Factoring oder die Quantensimulation) an
die Hardwarebeschränkungen anzupassen, zu denen Folgendes gehört: (1) begrenzte Anzahl
von Qubits, (2) begrenzte Konnektivität zwischen Qubits, (3) begrenzte hardwarespezifische
Gattersätze und (4) begrenzte Schaltungstiefe aufgrund von Rauschen. Algorithmen, die an
diese Beschränkungen angepasst sind, werden sich wahrscheinlich drastisch von ihren Ge-
genstücken aus dem Lehrbuch unterscheiden. Eine solche Software, die die Aufgabe hat,
Quantenalgorithmen in Quantenschaltungen entsprechend den Hardwarebeschränkungen
zu übersetzen, wird als Quantencompiler bezeichnet. Zusammenfassend lässt sich sagen, dass
ohne einen guten Compiler die meisten Quantenalgorithmen in der Praxis nicht anwendbar
sind.

Quantencompiler übernehmen typischerweise drei Hauptaufgaben: Quantenzustandsvor-
bereitung, Schaltungssynthese und Qubit-Mapping. Die Vorbereitung des Quantenzustands
umfasst die Vorbereitung des Anfangszustands des Quantensystems, bevor der Algorithmus
ausgeführt wird. Die Herstellung eines solchen Zustands selbst erfordert eine Berechnung, die
von einem Quantenschaltkreis durchgeführt wird. Diese Aufgabe kann eine Herausforderung
darstellen, da Quantenalgorithmen einige spezifische Anfangszustände in Überlagerung an-
nehmen, bevor sie die gewünschten anwendungsspezifischen Berechnungen durchführen.
Die Schaltungssynthese umfasst den Prozess des Aufbaus einer Quantenschaltung, die den
gewünschten Quantenalgorithmus implementiert. Qubit-Mapping ist eine weitere wichtige
Aufgabe für Quantencompiler, bei der die logischen Qubits des Algorithmus auf die physi-
schen Qubits des Quantencomputers abgebildet werden. In dieser Arbeit konzentriere ich
mich auf die ersten beiden Aufgaben von Quantenkompilierern, Schaltungssynthese und

v



Zusammenfassung

Quantenzustandspräparation. Diese Aufgaben sind für die erfolgreiche Ausführung von Quan-
tenalgorithmen unerlässlich, und die Entwicklung effizienter und effektiver Algorithmen für
diese Aufgaben ist entscheidend für die kontinuierliche Weiterentwicklung des Quantencom-
putings.

Schlüsselwörter: Logische Synthese, Boolesche Funktionen, Entscheidungs diagramme, Quanten-
computer, Quanten-Compiler, Quantenzustandsvorbereitung.

vi



Résumé
L’informatique quantique a fait d’importants progrès ces dernières années, Google et IBM
ayant mis sur le marché des ordinateurs quantiques dotés respectivement de 72 et 50 qubits.
Google a également atteint la suprématie quantique avec son dispositif de 54 qubits, et IBM
a annoncé la sortie de l’ordinateur quantique Osprey avec 433 qubits. Ces développements
suggèrent que des ordinateurs quantiques avec un nombre de qubits encore plus élevé pour-
raient être disponibles dans un avenir proche. Cette période à venir est appelée l’ère Noisy
Intermediate Scale Quantum (NISQ), en raison des caractéristiques bruyantes des dispositifs à
court terme.

Le calcul sur le matériel NISQ est modélisé à l’aide d’une bibliothèque de portes quantiques
prises en charge qui peuvent être directement mises en œuvre et d’un graphe de couplage qui
spécifie les interactions de qubits disponibles pour les portes quantiques multi-qubits. Alors
que les expérimentateurs ne cessent d’apporter des améliorations au matériel quantique, les
experts en informatique quantique peuvent contribuer à l’utilité de ce matériel. Les experts
en informatique quantique peuvent contribuer à l’utilité des dispositifs quantiques en déve-
loppant des logiciels. Ce logiciel viserait à adapter les algorithmes quantiques classiques (par
exemple, pour la factorisation ou la simulation quantique) aux contraintes matérielles, qui
incluent : (1) le nombre limité de qubits, (2) une connectivité limitée entre les qubits, (3) des
jeux de portes spécifiques au matériel limités, et (4) une profondeur de circuit limitée en raison
du bruit. Les algorithmes adaptés à ces contraintes seront probablement très différents de
leurs équivalents dans les manuels. Un tel logiciel, qui traduit les algorithmes quantiques en
circuits quantiques en fonction des contraintes matérielles, est appelé compilateur quantique.
En conclusion, sans un bon compilateur, la plupart des algorithmes quantiques ne sont pas
applicables en pratique.

Les compilateurs quantiques entreprennent généralement trois tâches principales : la prépa-
ration de l’état quantique, la synthèse de circuits et la cartographie des qubits. La préparation
de l’état quantique consiste à préparer l’état initial du système quantique avant d’exécuter
l’algorithme. La préparation d’un tel état nécessite elle-même un calcul effectué par un circuit
quantique. Cette tâche peut être difficile, car les algorithmes quantiques supposent certains
états initiaux spécifiques en superposition avant d’effectuer les calculs spécifiques à l’appli-
cation souhaités. La synthèse de circuits implique le processus de construction d’un circuit
quantique qui implémente l’algorithme quantique souhaité. Le mappage des qubits est une
autre tâche importante pour les compilateurs quantiques, qui consiste à mapper les qubits
logiques de l’algorithme aux qubits physiques de l’ordinateur quantique. Dans cette thèse,
je me concentre sur les deux premières tâches des compilateurs quantiques, la synthèse de
circuits et la préparation d’états quantiques. Ces tâches sont essentielles pour l’exécution
réussie des algorithmes quantiques, et le développement d’algorithmes efficaces et efficients

vii



Résumé

pour ces tâches est crucial pour l’avancement continu de l’informatique quantique.

Mots-clés : Synthèse logique, fonctions booléennes, diagrammes de décision, calcul quantique,
compilateur quantique, préparation d’états quantiques.

viii



Contents

Acknowledgements i

Abstract (English/German/French) iii

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I Background 9

2 Logic Synthesis 11

2.1 Boolean functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Boolean function representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 SOP form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 POS form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Minterm canonical form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Truth table form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.5 ESOP form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.6 Decision diagram form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Spectral technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 SAT-based exact ESOP synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Quantum Computing 21

3.1 Dirac notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Quantum bits & quantum states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Bloch sphere representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Quantum gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.1 Single-qubit gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.2 Two-qubit gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.3 Multi-qubit gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Universal quantum gates sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

ix



Contents

3.7 Quantum circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.8 Quantum algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.8.1 Quantum oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.8.2 Quantum Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.8.3 Deutsch-Joza algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.8.4 Grover’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8.5 Shor’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

II Quantum Circuit Synthesis 39

4 Compiling Permutations 41

4.1 Proposed compilation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Compiling single-target gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Rewiring optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.2 Quantum gate libraries and quantum architectures . . . . . . . . . . . . . 45
4.4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

III Quantum State Preparation 51

5 Problem Definition 53

6 Uniform Quantum State Preparation 55

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 UQSP motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3.1 UQSP problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.2 Motivational examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4 Using functional decomposition for UQSP . . . . . . . . . . . . . . . . . . . . . . 59
6.5 UQSP using binary decision diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.5.1 Proposed algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.5.2 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.6 UQSP using dependency analysis methods . . . . . . . . . . . . . . . . . . . . . . 66
6.6.1 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.6.2 Dependency analysis methods . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.6.3 CNOT costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.6.4 Variable reordering methods . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.6.5 Results & discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7 Cyclic Quantum State Preparation 77

7.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Cyclic states and their properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

x



Contents

7.3 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3.1 Cyclic state preparation algorithm . . . . . . . . . . . . . . . . . . . . . . . 79
7.3.2 Cyclic state circuit construction . . . . . . . . . . . . . . . . . . . . . . . . 80
7.3.3 Proof of correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.4 Results & evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8 Sparse Quantum State Preparation 87

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.2 Proposed representation of quantum states using ADDs . . . . . . . . . . . . . . 88
8.3 Proposed algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.5 Algorithm performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

IV Open-source Development 101

9 angel 103

9.1 Uniform quantum state preparation . . . . . . . . . . . . . . . . . . . . . . . . . 104
9.2 Sparse quantum state preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

10 Conclusions 107

10.1 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Bibliography 111

Curriculum Vitae 121

xi





List of Figures

2.1 The OBDD and ROBDD for f = x1x̄2 + x̄1x2 + x̄1x̄2. . . . . . . . . . . . . . . . . . 16
2.2 The ADD representation for the function f in example 2.2.7. . . . . . . . . . . . 17

3.1 The representation of a quantum state |'i on Bloch sphere. . . . . . . . . . . . . 23
3.2 The symbolic representation of the measurement operator in quantum circuits. 24
3.3 Decomposing a 2-controlled Ry (2µ) gate into elementary quantum gates. . . . 29
3.4 A uniformly-controlled single-qubit gate with two controls. . . . . . . . . . . . . 30
3.5 The quantum circuit parts related to the quantum program in the Exp. 3.7.1. . . 31
3.6 The quantum circuit of the Deutsch-Jozsa algorithm. . . . . . . . . . . . . . . . . 34
3.7 The quantum circuit of Grover’s algorithm. . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Birds-eye overview of the proposed compilation algorithm. . . . . . . . . . . . . 42
4.2 Compilation flows for experimental results. . . . . . . . . . . . . . . . . . . . . . 47

6.1 The problem of preparing the UQS corresponding to the given Boolean function
f (x1, x2, ..., xn) as input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 The preparation of the quantum state associated by Boolean function f using
functional decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3 Multi-controlled single-target gates of UQSP( fW ). . . . . . . . . . . . . . . . . . . 60
6.4 A sequence of MC-Ry gates for UQSP( fW ). . . . . . . . . . . . . . . . . . . . . . . 61
6.5 BDD representation of fW and the procedure of the preparing it. . . . . . . . . . 63
6.6 Reducing the number of controls for GHZ state. . . . . . . . . . . . . . . . . . . . 66
6.7 The general structure of the sequential preparation of qubits using uniformly-

controlled single-target gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.8 The quantum circuit to prepare fW by UQSPFD algorithm. . . . . . . . . . . . . . 71

7.1 General structure of cyclic state preparation algorithm. . . . . . . . . . . . . . . 80
7.2 The construction of SO block iteratively. . . . . . . . . . . . . . . . . . . . . . . . 81
7.3 The circuit implementation of Shi f tOnes(o,k). . . . . . . . . . . . . . . . . . . . 81
7.4 Construction of SZ block iteratively. . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.5 The circuit implementation of Shi f t Z er os(z,m). . . . . . . . . . . . . . . . . . . 82

8.1 Decision diagram representation of the quantum state in the Example 8.2.1. (a)
Before applying reduction rules. (b) After applying reduction rules. . . . . . . . 89

8.2 The general structure of the quantum circuit for QSP over DDS. . . . . . . . . . . 93
8.3 The generated quantum circuit for preparing the state presented as DD in

Fig. 8.1.b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xiii



List of Figures

8.4 Comparison between the CNOT complexities of my proposed method (PM)

and the state-of-the-art (SOTA) method. My PM is compared to the best-known
algorithm (STOA) in [1] on random sparse states of n qubits. For different n, I
plot the number of CNOTs required in both algorithms as a function of m, the
number of non-zero amplitudes. It can be seen that PM requires fewer CNOTs
in the interval between 2n2 and n3 for n = 16,20, and 8n2 and n3 for n = 25,28.
Moreover, the more increasing of m results in the more reduction of CNOTs. (a)
n = 16. (b) n = 20. (c) n = 25. (d) n = 28. . . . . . . . . . . . . . . . . . . . . . . . . 94

8.5 Coupling map for the IBM Q Tokyo. Here 0, 1, . . . , 19 stand for physical qubits,
and the edges indicate their connectivity. . . . . . . . . . . . . . . . . . . . . . . . 98

9.1 angel’s logo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xiv



List of Tables

2.1 Truth table representation of the majority-3 function. . . . . . . . . . . . . . . . 14

3.1 The symbolic representations of the single-qubit quantum gates. . . . . . . . . 27
3.2 The symbolic representations of the two-qubit quantum gates. . . . . . . . . . . 28
3.3 The symbolic representations of the multi-qubit gates. . . . . . . . . . . . . . . . 29

4.1 Experimental results after compilation for Rigetti computer Agave 8Q. . . . . . 49
4.2 Experimental results after compilation for Rigetti computer Acorn 19Q. . . . . . 49
4.3 Experimental results after compilation for IBM Yorktown and Tenerife 5Q. . . . 49
4.4 Experimental results after compilation for IBM computer Rueschlikon 16Q. . . 50

6.1 Experimental results regarding the number of MC-Ry rotation gates, elementary
quantum gates and time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 A list of common patterns of dependency functions, their CNOT costs, and an
example of their realization as a quantum circuit (for two inputs). . . . . . . . . 71

6.3 Experimental results regarding different dependency analysis methods. . . . . 73
6.4 Experimental results regarding different variable reordering methods. . . . . . . 74
6.5 UQSPFD results in comparison to Qiskit results for the practical quantum states. 75

7.1 Proposed method comparison over methods in [2, 3]. . . . . . . . . . . . . . . . 85
7.2 Comparing the number of CNOTs for the proposed method and the preparation

method in [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.1 Experimental results for quantum states (qs) that have a sparse DD. . . . . . . . 95

xv





1 Introduction

The concept of quantum computing was first introduced by the physicist Richard Feynman in
1981 [5]. He proposed that quantum computers could be used to simulate quantum systems
that are too complex for classical computers. In 1994, the mathematician Peter Shor developed
a quantum algorithm for factoring large numbers, which can be exponentially faster than
any known classical algorithm [6]. This algorithm demonstrated the potential of quantum
computers to solve problems that are beyond the reach of classical computers. In 1995, the
first experimental demonstration of quantum computing was performed by the physicist Isaac
Chuang [7] and his colleagues at IBM, who implemented Shor’s algorithm using a small-scale
quantum computer based on nuclear magnetic resonance technology [8].

There are several types of quantum computer technologies developed by various companies
and research institutions, such as:

• Superconducting qubits: This architecture uses superconducting circuits to create
qubits [9, 10]. The qubit states are changed by applying microwave pulses. These qubits
are easy to control as they can be easily integrated with classical electronic circuits.
Superconducting qubits are highly scalable, but their creation requires extremely low
temperatures near absolute zero. Despite their advantages, these qubits face challenges,
including decoherence and error rates. Decoherence occurs when qubits lose their
quantum information over time due to interactions with the environment. Additionally,
quantum operations on superconducting qubits are subject to errors, necessitating
the development of advanced error correction techniques to maintain computational
accuracy. Companies such as IBM, Google, and Rigetti are working on developing
superconducting qubit-based quantum computers. Google and IBM released quantum
computers with 72 and 50 qubits, respectively [11, 12] in the beginning. While IBM has
announced the release of the Osprey quantum computer with 433 qubits [13], recently.

• Ion trap qubits: This architecture uses ions suspended in an electromagnetic field
to create qubits [14]. Multiple ions are trapped in a vacuum and the state of qubits
is specified using the energy level of ions, which are manipulated using laser pulses.
The main advantage of ion qubits is their long coherence time, which means they can
keep quantum states safe for a long time. However, ion trap quantum computers face
challenges such as scalability, readout error, physical footprint, speed, and gate fidelity.

1



Introduction

Companies such as IonQ and Honeywell are developing ion trap qubit-based quantum
computers. IonQ’s quantum computer has 32 qubits.

• Photonic qubits: This architecture uses photons to create qubits [15, 16]; Information is
encoded using polarization of photons and manipulated by various optical components.
Photonic qubits are able to transmit over long distances using optical fibers, which
makes them well-suited for quantum communication applications. The main challenge
is the difficulty of generating and manipulating single photons with high efficiency
and fidelity. Another challenge is the lack of a universal gate set. Companies such as
PsiQuantum and Xanadu are developing photonic qubit-based quantum computers.
PsiQuantum aims to build a million-qubit photonic quantum computer.

• Topological qubits: This architecture uses topological materials such as Majorana
fermions or anyons to implement qubits [17]. The state of the qubit is protected from
outside influences by the topology, or geometry, of the qubit itself. These materials
exhibit exotic properties that allow quantum information to be stored in a highly robust
manner. Hence, a topological qubit-based quantum computer is very useful for fault-
tolerant computing. The main challenge is the need for extremely low temperatures and
precise control over the qubits. Microsoft is one of the major player working on develop-
ing topological qubit-based quantum computers. Its topological quantum computer,
called Station Q, is still in the research phase.

• Neutral atom qubits: This architecture uses arrays of single neutral atoms manipulated
by light beams to encode and read out quantum states. Each qubit in this architecture
is defined by one of two electronic states of an atom, and these single neutral atoms
can be arranged in configurable arrays, similar to classical registers. One advantage of
neutral atom quantum computing is that the neutral atoms used as qubits offer long
coherence times. The main challenges include the limited two-qubit gate fidelities and
gate operation speeds.

It is worth noting that the number of qubits in a quantum computer is constantly evolving as
companies and research institutions continue to improve and scale their systems. The current
period in quantum computing is often referred to as the Noisy Intermediate Scale Quantum
(NISQ) era [18], due to the noisy and error-prone characteristics of near-term quantum devices.
In this thesis, I focus on superconducting-based quantum computers, which has achieved
impressive progress in terms of qubit counts and coherence times in recent years.

Quantum computing is an emerging field that has the potential to revolutionize the way of
processing information. Traditional computers use classical bits, which can only be in one of
two states (0 or 1) at any given time. However, quantum computers use quantum bits, or qubits,
which can exist in multiple states simultaneously. This allows quantum computers to perform
certain calculations exponentially faster than classical computers, making them well-suited
for tackling complex problems in fields such as cryptography [19, 20], chemistry [21], machine
learning [22], materials science [23], and algorithms for quantum linear equations [24].

Superposition and entanglement are both key features of quantum systems that make them
fundamentally different from classical systems [25]. Superposition is the principle that a
quantum system can exist in multiple states simultaneously. For example, an electron can

2



1.1 Contribution

exist in a superposition of two different energy levels at the same time. This is different from
classical systems, where a system can only be in one state at a time. Superposition is critical for
quantum computing because it allows qubits to represent many more states simultaneously
than classical bits. Entanglement is the phenomenon where two or more quantum systems
become correlated in such a way that their states are interdependent. This means that the
state of one particle can instantaneously affect the state of the other particle, even if they are
separated by large distances. Entanglement is important for quantum computing because it
allows for the creation of quantum gates that can manipulate the state of multiple qubits at
the same time.

In recent years, there has been a surge of interest in quantum computing from both academia
and industry. Major technology companies such as IBM, Google, Microsoft, and Rigetti have
all invested significant resources in the development of quantum computing technologies.
These companies are working to build quantum computers with ever-increasing numbers of
qubits and to develop software tools and applications that can run on these machines.

One of the key challenges facing the quantum computing industry is the issue of scaling.
While researchers have been able to build small-scale quantum computers with a handful
of qubits, it remains a significant challenge to build large-scale, fault-tolerant machines that
can outperform classical computers on a wide range of tasks. Additionally, there are also
significant challenges in developing software tools and algorithms that can run efficiently
on these devices while taking into account specific hardware constraints. These constraints
include the coupling graph, which shows the connectivity between qubits, the available
gate set library, and the number of qubits. Several studies, including those referenced in
[26, 27, 28, 29, 30, 31, 32, 33, 34], have focused on incorporating these hardware constraints
into the design of quantum algorithms and circuits synthesis. These studies aim to minimize
the cost of quantum computation by reducing the number of gates and the circuit depth.

1.1 Contribution

Quantum computers are physical machines that consist of an array of qubits, which in contrast
to classical bits, can be in a superposition state and can be entangled [25]. The state of an array
of n qubits is described in terms of 2n complex-valued amplitudes, which can be denoted as
ØØ'

Æ
=

2n°1P
i=0

Æi |i i. Each norm squared amplitude corresponds to the probability of the quantum

state being in one of the 2n possible Boolean states after measuring all qubits. A quantum
state can be altered by means of a set of quantum operations, typically referred to as quantum
gates.

In the last few years several physical implementations of quantum computers have been
demonstrated by, e.g., Google [11], IBM [12], Rigetti [35], Intel [36], IonQ [37], and Alibaba [38].
The number of qubits is often considered the primary distinguishing characteristic of quantum
computers; however, several other factors significantly impact the quality and performance
of a quantum computer. These factors include qubit coherence times, coupling constraints
that determine which qubits can interact with each other during quantum operations, and
the supported quantum gate set that defines the available operations for manipulating qubits.

3



Introduction

In addition to the development of the hardware for quantum computing, there has been a
growing interest in the development of quantum compilers. These are tools that can take
high-level quantum algorithms and automatically translate them into low-level instructions
that can be executed on a specific quantum computer architecture.

One of the key challenges in quantum computing is that there are many different types of
hardware architectures and constraints, each with its own strengths and weaknesses. This
means that quantum algorithms must be tailored to the specific hardware they will be run on,
which can be a time-consuming and challenging task. Quantum compilers aim to simplify
this process by automating the translation of algorithms into executable instructions for
specific hardware architectures. There are several different approaches to developing quantum
compilers, each presenting its own advantages and disadvantages. Some compilers use a
brute-force approach, generating a large number of possible circuit implementations and
selecting the most efficient one. Other compilers use heuristic algorithms to guide the circuit
synthesis process. In addition, some others use machine learning techniques to optimize the
translation process.

One of the key challenges facing quantum compilers is the issue of optimization. As quantum
computers continue to increase in scale and complexity, the need for automated tools for
translating high-level algorithms into low-level hardware instructions becomes increasingly
important. Quantum circuits can be very complex, and even small changes to the circuit can
have a significant impact on its performance. Therefore, developing efficient and accurate
optimization techniques is essential for the development of practical quantum compilers.
Quantum compilers have the potential to make quantum computing more accessible and
usable for a wider range of researchers and developers, which could help accelerate the
development of practical quantum applications.

This thesis aims to present methods to automate and optimize quantum compilers for several
important tasks. As the first contribution, I propose a compilation algorithm to permute a
given set of 2n elements which is very important in combinatorial optimization. Another task
addressed in this thesis is preparing quantum states. Loading classical data into quantum
registers is one of the most important primitives of quantum computing. Moreover, Some
quantum algorithms require a specific quantum state at the beginning of the computation.
Hence, in addition to the quantum circuit that performs the quantum algorithm, a specific
quantum circuit is required that prepares the desired quantum state, and called quantum
state preparation. Consequently, an efficient quantum state preparation is an important task
for quantum compilers. By developing methods that automate and optimize these crucial
tasks, this thesis aims to contribute to the progress and enhancement of quantum compiler
design and performance.

I propose an automatic hardware-dependent compilation algorithm to translate quantum
operations that realizes permutations. The algorithm takes as input a permutation over
2n elements, the gate library, and coupling constraints of the targeted quantum computer.
It returns a quantum circuit composed of gates from the gate library, which respects the
coupling constraints. The proposed approach utilizes Young-subgroup based reversible logic
synthesis [39], which for a given permutation over n qubits, finds a sequence of 2n °1 single-
target gates. I describe a general algorithm to translate a single-target gate into a quantum

4



1.1 Contribution

circuit composed of Clifford+Rz library gates. Finally, I employ an explicit rewiring technique
in order to reduce the number of quantum gates.

The preparation of quantum states is performed by a quantum circuit consisting of Controlled-
NOT (CNOT) and single-qubit quantum gates. Known algorithms to prepare arbitrary n-qubit
quantum states create quantum circuits in O(2n) runtime and use O(2n) CNOTs, which are
more expensive than single-qubit gates in NISQ architectures. Some approaches [40, 41, 42,
43, 44, 45] have been considered in the past to prepare arbitrary quantum states. Since these
approaches can generate arbitrary quantum states, the input to such algorithms is 2n complex-
valued amplitudes, which limits their scalability drastically. Further, some of the algorithms
require a rather abstract set of gates, and an additional compilation step in order to run on
physical quantum computers. To reduce runtime and the number of CNOTs, I simplify the
problem by considering important families of quantum states, which are Uniform Quantum
States (UQSs), cyclic quantum states, and sparse quantum states.

A uniform quantum state is a superposition of a non-empty subset of basis states, where
all basis states have equal probability amplitudes. In other words, all non-zero amplitudes
in such a state have the same value. Uniform quantum states are important because they
are considered as initial quantum state for algorithms such as Grover walk [46]. Moreover,
many important quantum states are uniform, such as the Bell state, the W state [47], the GHZ
state [48], and the uniform superposition of all basis states. The W and GHZ states are used
as fundamental resources in distributed quantum information processing [49]. Such states
can be characterized by a Boolean function where each minterm corresponds to a non-zero
amplitude. As a result, the quantum state can be represented in a compact form, if the Boolean
function permits a compact representation. Preparing UQSs using Boolean functions can help
to take advantage of different representations of Boolean functions.

I propose a quantum state preparation algorithm that works directly on decision diagrams,
which is a symbolic representation of Boolean functions. This enables a scalable quantum
state preparation, since many Boolean functions of practical interest have small represen-
tations, e.g., in terms of binary decision diagrams (BDDs) [50]. The algorithm produces a
sequence of multi-controlled gates. Afterwards, to run on a physical quantum computer, I use
decomposition methods to generate a quantum circuit over CNOTs and single-qubit quantum
gates. The detailed contributions are summarized as follows:

• Utilizing Boolean functions in order to provide a recursive algorithm.

• Proposing an algorithm that works on BDDs to enable a fast execution when the function
representation is small (algorithm runs in polynomial time with respect to the number
of BDD nodes).

• Reducing the number of elementary quantum gates by removing redundancies in the
BDDs as well as applying a post-optimization technique for the GHZ state.

Experimental results show that the proposed approach can achieve a significant reduction in
runtime compared to a state-of-the-art approach which relies on an explicit quantum state
representation implemented in IBM’s Qiskit quantum programming framework. Moreover,

5



Introduction

the results show that I can reduce the number of elementary quantum gates over the state of
the art.

To further reduce the number of CNOTs, I utilize variable reordering and functional depen-
dencies among the variables. My state preparation method requires an exponential number
of CNOTs in the worst case but it reduces CNOTs significantly for practical benchmarks. More-
over, my method generates an exact representation of quantum states without using any
ancillary qubits. To evaluate the efficacy of my approach, I compare the results generated by
my algorithm to those obtained using Qiskit. The comparison indicates that my method can
reduce the average number of CNOTs required by 75.31% for practical benchmarks. Moreover,
the runtime is almost halved as a result of utilizing my technique.

Multipartite quantum states that remain invariant under permutations, such as Dicke states,
possess unique and interesting properties. In my research, I focus on quantum states that
remain invariant under cyclic permutations, which I refer to as cyclic states. I propose a
quantum algorithm that deterministically prepares cyclic states, with a gate complexity of O(n),
without requiring any ancillary qubits. Through both theoretical analysis and experimentation,
I show that my algorithm is more efficient than existing ones.

Preparing a generic quantum state can be an exponentially complex task with respect to
the number of qubits involved. However, in many practical tasks the state to be prepared
possesses a particular structure that allows for a sparse and compact representation, enabling
faster preparation. I mainly consider sparse quantum states, where the number of non-zero
amplitudes is relatively small. I propose an algorithm that utilizes the structure of decision dia-
grams to prepare the corresponding quantum states efficiently. The algorithm takes advantage
of the sparsity of the quantum states and can be implemented with a circuit complexity that is
linear in the number of paths in the decision diagram. Numerical experiments show that my
algorithm reduces the circuit complexity by up to 31.85% compared to the state-of-the-art
algorithm, when preparing generic n-qubit states with n3 non-zero amplitudes. Additionally,
for states with sparse decision diagrams, including the initial state of the quantum Byzantine
agreement protocol, my algorithm reduces the number of CNOTs by 86.61% ª 99.9%.

Finally, I present angel, a C++ library for quantum state preparation. The angel library is
designed to synthesize optimized quantum circuits for specific quantum states. My proposed
algorithms for preparing uniform quantum states and sparse quantum states are implemented
in this library. The objective function of these algorithms is to minimize the depth of the
quantum circuit and the number of elementary quantum gates required. The algorithms also
aim to reduce the number of CNOTs since they tend to be relatively expensive compared to
other elementary quantum gates in many experimental NISQ architectures. The angel library
is open-source and it can be freely downloaded, used, and modified by anyone. It provides a
useful tool for researchers in the field of quantum computing who are interested in optimizing
the preparation of specific quantum states.

The above contributions are published in [51, 52, 53, 4, 54, 55, 56]. Moreover, other publica-
tions I contributed include [57, 58, 59].

6



1.2 Outline

1.2 Outline

This thesis is organized as follows:

• Chapter 2: introduces the field of logic synthesis. It defines Boolean functions as well as
various data structures for representing them. Spectral techniques used in this field is
introduced. Finally, it covers the ESOP synthesis method.

• Chapter 3: aims to provide readers with the necessary background knowledge of quan-
tum computing to understand the remaining content of the thesis. It begins with an
overview of basic quantum computing concepts, such as Dirac notation, qubits, quan-
tum states, gates, Bloch sphere representation, and measurement. Moreover, the chapter
provides a detailed description of quantum circuits and important quantum algorithms.

• Chapter 4: the topic of quantum circuit synthesis and my specific contribution in
compiling single-target gates. I discuss how this technique can be applied to compile
permutations and achieve more efficient circuit implementations. Additionally, I detail
my approach to optimizing circuits through rewiring techniques, which can further
reduce the number of gates required for a given circuit.

• Chapter 5: introduces the problem of quantum state preparation, which is a fundamen-
tal task in quantum computing.

• Chapter 6: provides an introduction to uniform quantum states and their importance.
Afterwards, it presents my proposed methods to efficiently prepare them. I utilize
Boolean functions and logic synthesis techniques, including decision diagram repre-
sentations and functional dependency analysis, to outperform current state-of-the-art
methods.

• Chapter 7: presents another family of quantum states called cyclic quantum states that
exhibit interesting properties. This chapter shows the method that I propose to prepare
these states. By carefully designing the circuit, I prepare cyclic quantum states in just
linear circuit size. This is a significant improvement over previous methods, which
typically require much larger circuits to prepare cyclic quantum states.

• Chapter 8: presents a novel contribution to the field of quantum computing, as it offers
a new method for preparing sparse quantum states that can be efficiently represented by
decision diagrams. The algorithm has a circuit complexity that is linear in the number
of paths in the decision diagram. Furthermore, for states with sparse decision diagrams,
the algorithm significantly reduces the number of CNOTs.

• Chapter 9: introduces an open-source C++ library dedicated to the quantum state
preparation called angel. This library offers algorithms for preparing uniform quantum
states using both Binary Decision Diagrams (BDDs) and truth tables. Additionally, the
library provides functional dependency analysis to identify dependencies between
qubits and improve the efficiency of the preparation process. Furthermore, the library
also includes a method for preparing sparse quantum states using the Algebraic Decision
Diagrams (ADDs). The angel library offers a modular and extensible framework, making
it a useful tool for researchers in the field of quantum computing.

7





Part IBackground

9





2 Logic Synthesis

Logic synthesis is the process by which a high-level description, typically at Register Transfer
Level (RTL), is transformed into an optimized gate-level representation, using a computer
program called a synthesis tool [60, 61]. A standard cell library in logic synthesis consists
of simple logic gates, such as AND, OR, and NOR, or macrocells, such as ADDERs, MUXes,
Memory, and Flip-Flops. A collection of standard cells is called a technology library.

Logic synthesis techniques are very helpful in many applications such as quantum compila-
tion. In this chapter, I present useful logic data structures and techniques which I utilize in
compiling quantum circuits.

2.1 Boolean functions

In this section, I define Boolean functions [62, 63] and their properties. Boolean functions
are very helpful in the context of quantum state preparation, especially when the state to
be prepared is a uniform superposition state. Boolean functions can also be used to define
quantum oracles, which are black boxes that perform a specific computation. Quantum
oracles can be used in various quantum algorithms, such as Grover’s algorithm for quantum
search and Shor’s algorithm for integer factorization.

Let B= {0,1}, which represents a binary space.

Definition 2.1.1. A Boolean function f : Bn ! B of n Boolean variables x = x1, . . . , xn is a
mapping of n Boolean input values x̂ = x̂1, . . . , x̂n to a single Boolean output value f (x̂). Each
Boolean function is given as input 2n input assignments 0, 1, . . . , 2n °1.

Definition 2.1.2. A Boolean function f :Bn !Bm is multi-output when m > 1.

Definition 2.1.3. A Boolean function f :Bn !Bm is reversible if and only if f is a one-to-one
function which m = n and performs a permutation of the set of input assignments.

Definition 2.1.4. The positive cofactor of f (x1, x2, . . . , xi , . . . , xn) with respect to variable xi is
fxi = f (x1, x2, . . . ,1, . . . , xn). Similarly, the negative cofactor of f (x1, x2, . . . , xi , . . . , xn) with respect
to variable x̄i is fx̄i = f (x1, x2, . . . ,0, . . . , xn).

11



Chapter 2. Logic Synthesis

I use cofactors to compute the influence of each variable on the function’s output. To compute
the probability of xi being 1 and 0 in f , I define

p f (xi ) =
| fxi |
| f | and p f (x̄i ) =

| fx̄i |
| f | , (2.1)

respectively. In this notation, | f | shows the number of input assignments in which their
corresponding output values are 1.

Note that p f (xi )+p f (x̄i ) = 1. Moreover, I utilize Shannon’s decomposition theorem, which
states f = xi fxi + x̄i fx̄i for variables xi of f . The intuition is that Shannon’s decomposition
uses cofactors to partition a function into two halves.

2.2 Boolean function representations

Here, I present several forms to represent Boolean functions, which are frequently used by logic
synthesis algorithms. Before going through representations, I will provide some definitions as
follows.

In this thesis, for convenience I define a literal as a Boolean variable x j
i , j 2 {0,1,2} in which

x j
i =

8
>><
>>:

x̄i , if j = 0

xi , if j = 1

1, if j = 2

(2.2)

A product term (or cube) t (x) is a conjunction of literals as

t (x) =
nY

i=1
x j

i . (2.3)

The size |t | of a product term t is the number of literals appearing in t .

2.2.1 SOP form

The sum-of-products (SOP) is a form of simplifying the Boolean expressions of logic gates.
In the SOP form, the variables are operated by AND (product) to form a product term and
all these product terms are ORed (summed or added) together to get the final function. The
sum-of-products form is also called Disjunctive Normal Form (DNF) [64] as the product terms
are ORed together and the Disjunction operation is logical OR.

Example 2.2.1. Let f (x1, x2, x3) = hx1, x2, x3i be majority-of-three (majority-3) function. Its
SOP is represented by

f (x1, x2, x3) = hx1, x2, x3i= x1x2 +x1x3 +x2x3. (2.4)

12



2.2 Boolean function representations

2.2.2 POS form

In product-of-sums (POS) form, variables are ORed, i.e. written as sums to form sum terms,
and all these sum terms are ANDed (producted) together to get the final form. This form is
exactly the opposite of the SOP form which can be said it is a dual of SOP form. POS form is
also called Conjunctive Normal Form (CNF).

Example 2.2.2. Consider majority-3 function f (x1, x2, x3). A POS form is

f (x1, x2, x3) = (x1 +x2)(x1 +x3)(x2 +x3). (2.5)

2.2.3 Minterm canonical form

A product term in which all Boolean variables x1, . . . , xn appear exactly once is a minterm.
Each Boolean function f :Bn !B can be uniquely represented in its minterm canonical form

f (x) = f (0,0, . . . ,0) · x̄1x̄2 · · · x̄n+
+ f (0,0, . . . ,1) · x̄1x̄2 · · ·xn+

...

+ f (1,1, . . . ,1) · x1x2 · · ·xn ,

(2.6)

where f (x̂1, . . . , x̂n) are Boolean values, called discriminants, and xx̂1
1 xx̂2

2 . . . xx̂n
n are product

terms. Consequently, the set

Minterms( f ) = {xx̂1
1 . . . xx̂n

n | f (x̂1, . . . , x̂n) = 1} (2.7)

of all minterms of a Boolean function f characterizes the function uniquely. The size | f | of f
is defined as the number of minterms of f .

Example 2.2.3. Consider majority-3 function f (x1, x2, x3). A minterm canonical form is

f (x1, x2, x3) = x̄1x2x3 +x1x̄2x3 +x1x2x̄3 +x1x2x3. (2.8)

2.2.4 Truth table form

A truth table is an explicit representation where all input assignments in the Boolean input
space (Bn) and their corresponding output values are listed. The input part can be omitted if
a specific ordering of input assignments is assumed. In general, a truth table for a Boolean
function f (x1, ..., xn) corresponds to a column vector f = ( f2n°1 , . . . , f0)T containing 2n values.
In other words, it is a bit-string b2n°1b2n°2 . . .b1b0 containing 2n bits, where f (x) = bx such
that x = (x1 . . . xn)2 is the integer representation of the input assignment. Consequently, I may
also consider a truth table as a number in the half-open interval [0,22n

) , for which the truth
table representation is the binary expansion of that number.

Example 2.2.4. Consider a majority-3 function f (x1, x2, x3). A truth table representing the
function is shown in Table 2.1. It can also be expressed as a bit-string of 23 = 8 bits, 11101000.
To prevent the rapid growth of binary notation, it is common to use hexadecimal notation,

13



Chapter 2. Logic Synthesis

Table 2.1: Truth table representation of the majority-3 function.

x1x2x3 f
000 0
001 0
010 0
011 1
100 0
101 1
110 1
111 1

where each block of 4 bits corresponds to a single hexadecimal digit. The majority-3 function is
represented by the truth table #e8 in hexadecimal. A hash prefix is used to indicate a hexadecimal
number.

Clearly, truth tables cannot provide a scalable function representation. Nevertheless, for small
functions, they can be beneficial as they enable very fast implementations. For example,
a truth table for a six-variable function requires 26 = 64 bits and therefore fits into a single
unsigned integer of a 64-bit computer architecture. Many operations, e.g., computing the AND
of two functions can be performed using bitwise AND, which accounts for a single processor
instruction. Such an approach works reasonably well in practice up to 16-variable functions,
which require 210 = 1024, 64-bit unsigned integers, and therefore 8 KB of memory. A truth table
is a canonical (i.e., unique) representation of a function. Consequently, for small functions,
the truth tables can be used for a simple equivalence check of two functions, if a truth table
can be efficiently derived from them.

2.2.5 ESOP form

Each Boolean function can also be represented in Exclusive-or Sum-Of-Products (ESOP) forms.
ESOPs are a classical two-level logic representation consisting of one level of AND gates,
followed by one level of XOR gates. Hence, an ESOP form in Boolean variables x = x1, . . . , xn is
a Boolean function

f (x) = t1(x)© · · ·© tm(x), (2.9)

where m is a positive integer called the degree of the ESOP form, and t1, . . . , tm are product
terms.

ESOPs provide a compact logic representation of Boolean functions, and are, for some classes
of functions, exponentially more compact when compared to the SOP representation. The
ESOP representation of a Boolean function is not unique, i.e., the same Boolean function can
be expressed as multiple structurally different, but semantically equivalent ESOP forms. In
practice, it is important to find a small representation of an ESOP form to reduce the overall
costs for realizing it in hardware or implementing it in software.

The problem of synthesizing an ESOP form for a given Boolean function is to identify a set
of product terms over the Boolean variables of the function such that each minterm in the

14



2.2 Boolean function representations

OFF-set (set of minterms for which the Boolean function evaluates to 0) of the function is
covered by the product terms an even number of times and each minterm in the ON-set (set of
minterms for which the Boolean function evaluates to 1) of the Boolean function is covered an
odd number of times. Exact algorithms, such as [65, 66], and heuristics, such as [67], have been
proposed for finding and minimizing the degree of an ESOP form of a Boolean function f .

ESOP forms play an important role in logic synthesis due to their improved compactness for
arithmetic and communication circuits with respect to other two-level representations [68]
and their excellent testability properties [69]. The inherent reversibility of the XOR opera-
tion, moreover, makes ESOP forms particularly suitable in applications such as security [70].
Moreover, ESOP forms have applications in quantum compilation flows since they allow
us to decompose multi-controlled single-target gates into a sequence of generalized Toffoli
gates [57, 71, 72, 73, 74, 75].

Example 2.2.5. Given majority-3 function f (x1, x2, x3), one possible ESOP representation for f
is

f (x1, x2, x3) = x1x2 ©x1x3 ©x2x3. (2.10)

2.2.6 Decision diagram form

The Decision Diagram (DD) form of a Boolean function is a symbolic representation that
shows a compact representation for it. Here I give a brief introduction to DDs.

Binary decision diagram. A Binary Decision Diagram (BDD) [76, 77, 78] is a rooted, directed
acyclic graph ( f [ {0,1}[V ) representing a Boolean function f where

• f represents the root node with out-degree one.

• {0,1} are terminal nodes with out-degree zero.

• V is the set of nodes corresponding to a set of variables x = x1, . . . , xn of out-degree two.
The two outgoing edges of each xi are given by two functions low(xi ) and hi g h(xi )
which represent that xi evaluates to 0 and 1, respectively, and I call them zero-child
and one-child. Note that in the symbolic representation, l ow and hi g h functions are
represented by dotted and solid arrows.

A BDD is Ordered (OBDD) if on all paths through the graph, the variables respect a given linear
order x1 < x2 < ·· · < xn .

An OBDD is Reduced (ROBDD) if the rules below are applied:

1. Two nodes are merged and their incoming edges are redirected to the merged node, if i )
they are both terminal and have the same value, or i i ) they are both internal and have
the same sub-graphs.

2. An internal node is eliminated, if its two edges point to the same child. After elimination,
its incoming edges are redirected to the child.

15



Chapter 2. Logic Synthesis

f

x1

x2 x2

10 1 1

(a) Ordered BDD.

10

f

x1

x2

(b) Reduced Ordered
BDD.

Figure 2.1: The OBDD and ROBDD for f = x1x̄2 + x̄1x2 + x̄1x̄2.

ROBDDs have some interesting properties. They provide compact representations of Boolean
expressions, and there are efficient algorithms for performing all kinds of logic operations on
ROBDDs. They are all based on the crucial fact that for any function f :Bn !B there is exactly
one ROBDD representing it. This means, in particular, that there is exactly one ROBDD for
the constant true (and constant false) function on Bn : the terminal node 1 (and 0 in case of
false). Hence, it is possible to test in constant time whether an ROBDD is constantly true or
false. (Recall that for Boolean expressions this problem is NP-complete.)

Example 2.2.6. Fig. 2.1 shows the OBDD and ROBDD of f = x1x̄2 + x̄1x2 + x̄1x̄2. The ROBDD
shown in 2.1.b is obtained from the OBDD in Fig. 2.1.a by applying reduction rules. First, three
terminal nodes with value 1 merge into one. Next, node b in the right-side of the tree eliminates
as both children are terminal node 1.

It is worth mentioning that ROBDD commonly referred to as BDD for simplicity. Therefore, I
use the term BDD to refer to ROBDD in this thesis.

Algebraic decision diagram. An Algebraic Decision Diagram (ADD) is similar to a BDD, except
that its terminal nodes can have any values [79] different than the set {0,1}. In other words,
BDDs are ADDs whose terminal nodes have binary values. I can still apply reduction rules and
get a ROADD, called ADD for short.

An ADD is a tuple (x,S,º,G) where

• x is a set of Boolean variables {x1, x2, . . . , xn},

• S is an arbitrary set of values.

• º : X !Z+ shows diagram variable order.

16



2.3 Spectral technique

2 5 3 70

f

x1

x2 x2

x3 x3 x3

Figure 2.2: The ADD representation for the function f in example 2.2.7.

• G is a rooted, directed acyclic graph satisfying the following three properties. First, every
terminal node of G is labeled with an element of S. Second, every non-terminal node of
G is labeled with an element of X and has two outgoing edges labeled 0 and 1. Finally,
for every path in G , the labels of the visited non-terminal nodes must occur in increasing
order under º.

An ADD (x,S,º,G) is a compact representation of a function f :Bn ! S. Although there are
many ADDs representing each such function f , for each injection º : X !Z+, there is a unique
minimal ADD that represents f with º as the diagram variable order, called the canonical ADD.
ADDs can be minimized in polynomial time, so it is typical to only work with canonical ADDs.

ADDs were originally designed for matrix multiplication and shortest path algorithms [79].
ADDs have also been used for stochastic model checking [80, 81, 82].

Example 2.2.7. Fig. 2.2 shows the ADD representation for function

f = 2x1x2x3 +5x1x2x̄3 +3x1x̄2 +7x̄1x2x̄3 +7x̄1x̄2x3, (2.11)

with S = {0,2,3,5,7}.

2.3 Spectral technique

The Boolean function f (x1, . . . , xn) can be represented in terms of a truth table form as a
column vector f = ( f2n°1, . . . , f0)T .

The {°1,1} encoding of a truth table is a column vector f̂ = ( f̂2n°1, . . . , f̂0)T where f̂i = 1°2 fi

for 0 ∑ i < 2n . In other words, f̂i =°1, if fi = 1, and f̂i = 1, if fi = 0.

17



Chapter 2. Logic Synthesis

Example 2.3.1. For majority-3 function f (x1, x2, x3) = (1,1,1,0,1,0,0,0)T , the {°1,1} encoding
equals to

f̂ = (°1,°1,°1,1,°1,1,1,1)T . (2.12)

The recursive Hadamard matrix is

Hn =
µ

Hn°1 Hn°1

Hn°1 °Hn°1

∂
, and H0 = 1. (2.13)

Then for an n-variable Boolean function f , the vector s = Hn f̂ is called the Rademacher-Walsh
spectrum of f . I will refer to s as spectrum.

Example 2.3.2. For majority-3 function f (x1, x2, x3), the spectrum is

s = (0,4,4,0,4,0,0,°4)T . (2.14)

2.4 SAT-based exact ESOP synthesis

The Boolean Satisfiability problem (SAT) is defined as follows:

Definition 2.4.1. Suppose f is a Boolean function expressed in POS form, also known as CNF
representation. The SAT problem involves determining whether there exists a truth assignment
to the variables of f that makes f evaluate to true. If such an assignment exists, f is satisfiable.
Otherwise, if no such assignment exists, f is unsatisfiable.

SAT is the central NP-complete problem. Today SAT is not only used in theorem proving,
but in many application domains like automatic test pattern generation, logic synthesis, and
verification. In the last ten years significant improvements have been made in the area of
SAT solvers. Several powerful tools have been developed that make use of Boolean constraint
propagation and efficient learning techniques to speed up the proof process.

Authors in [66] present an exact synthesis approach for computing ESOP forms with a mini-
mum number of product terms. Their approach starts with an incomplete Boolean function
as a specification, and iteratively constructs a constraint satisfaction problem that can only
be satisfied if and only if there is an ESOP form with k product terms (at first k = 1). An
SAT-solver is used to solve the problem and, if satisfiable, an ESOP form is returned with k
product terms. Alternatively, if k fails to satisfy, it is increased and the synthesis process is
restarted. In the synthesis process, the number of Boolean variables is hardly important, and
it is particularly fast when the Boolean function can be expressed using only a few product
terms. ESOP-based synthesis is very useful in functional dependency analysis, which involves
identifying relationships between variables in a Boolean function. During this thesis, I use
functional dependency analysis to identify relationships between qubits, which can be used
to optimize quantum circuit implementations.

18



2.5 Summary

2.5 Summary

Classical logic synthesis is a process used in Electronic Design Automation (EDA) tools to
optimize logic circuits for factors such as performance, power consumption, and area uti-
lization. The process involves converting a high-level Hardware Description Language (HDL)
specification into a low-level representation of the circuit using logic gates. The output of the
logic synthesis process is a gate-level netlist that can be used for further design verification
and implementation. In this chapter, I introduced logic synthesis techniques that are useful
during my thesis. I described Boolean functions, their various representations, i.e., SOP form,
minterm canonical form, truth table form, ESOP form, and decision diagram form. Finally,
SAT-based ESOP synthesis is presented.

19





3 Quantum Computing

3.1 Dirac notation

To distinguish a vector from a scalar, in mathematics and physics textbooks, an arrow over
the identifying symbol, e.g. °!a is used. Quantum mechanics, use the Dirac notation, which
was invented by Paul Dirac [83]. In Dirac notation, a vector is identified by a symbol inside
a “ket” looking as |ai [84]. The dual vector for a is defined with a “bra”, which is written as
ha|. Afterwards, the inner product of two vectors a and b will be shown by “bra-ket” ha|bi.
In quantum mechanics, finite-dimensional vector spaces over the complex numbers are
considered. Such vector spaces are a class of vector spaces called Hilbert spaces. In the
Hilbert space, a basis is selected. In this basis which called computational basis, vectors can
be represented by finite column vectors. The Dirac notation of 2n basis states of binary strings
of length n are

|00...00i, |00...01i, ..., |11...10i, |11...11i, (3.1)

and their corresponding column vectors consisting of 2n elements in Hilbert space are

0
BBBBBB@

1
0
...
0
0

1
CCCCCCA

,

0
BBBBBB@

0
1
...
0
0

1
CCCCCCA

, . . . ,

0
BBBBBB@

0
0
...
1
0

1
CCCCCCA

,

0
BBBBBB@

0
0
...
0
1

1
CCCCCCA

. (3.2)

In other definition, all elements are zero in the column vector except one that shows the index
of the binary string in the Dirac notation.

Example 3.1.1. Given the vector in Dirac notation as

r
5
4
|00i+ i

p
4
|10i, (3.3)

21



Chapter 3. Quantum Computing

it can be alternatively written as the column vector

0
BBBB@

q
5
4

0
ip
4

0

1
CCCCA

. (3.4)

3.2 Quantum bits & quantum states

Definition 3.2.1. A quantum bit or a qubit is the elementary unit of information in quantum
computation. A qubit describes a two dimensional quantum system.

A qubit can be any superposition of the two basis states |0i=
°1

0

¢
and |1i=

°0
1

¢
, which can be

denoted as
ØØ'

Æ
=Æ0 |0i+Æ1 |1i=

√
Æ0

Æ1

!
, (3.5)

where Æ0,Æ1 2C, often called amplitudes of the basis states, and |Æ0|2 +|Æ1|2 = 1. The squared
norm of amplitudes |Æ0|2 and |Æ1|2 indicate the probability that the quantum state will collapse
to the classical state 0 or 1 after the qubit is measured. Whenever a qubit is measured, it
automatically converts to a bit. Moreover, this definition can be extended to n-qubit quantum
states.

Definition 3.2.2. A quantum state over n qubits is a column vector of 2n complex values defined
as

ØØ'
Æ
=

0
BBBBBB@

Æ0

Æ1
...

Æ2n°2

Æ2n°1

1
CCCCCCA

. (3.6)

A quantum state over n qubits also can be represented by

ØØ'
Æ
=

2n°1X

i=0
Æi |i i, (3.7)

which is any combination of 2n complex values Æi such that
P2n°1

i=0 |Æi |2 = 1. Each squared
norm of amplitude |Æi |2 indicates the probability that after measurement the n qubits are in
the classical state i .

Quantum states can be combined by applying the Kronecker product to produce larger ones,
e.g.,

°1
0

¢
≠ 1p

2

°1
1

¢
= 1p

2
(1,1,0,0)T , which represents a 2-qubit state that is in the perfect super-

position between the classical states 00 and 01 [85]. Moreover, a quantum state, such as
1p
2

(|00i+|11i) can not be represented as superposition state because it can not be written as
two separate qubits. This state is an entangled state which measuring one qubit tells the state
of the other qubits and collapse its superposition.

22



3.3 Bloch sphere representation

x

y

z

θ

Φ

φ

!

1

Figure 3.1: The representation of a quantum state |'i on Bloch sphere.

3.3 Bloch sphere representation

As mentioned, the general state of a qubit is the same as Equation 3.5, where Æ0 and Æ1

are complex numbers. Alternatives to using complex numbers Æ0 and Æ1 include using real
numbers as well as a term that indicates the relative phase between the two numbers as

ØØ'
Æ
=Æ0|0i+ei¡Æ1|1i, (3.8)

where Æ0,Æ1,¡ 2R. As |Æ0|2 + |Æ1|2 = 1, one can use the trigonometric identity
ØØØcos(µ2 )

ØØØ
2
+

ØØØsi n(µ2 )
ØØØ
2
= 1, which corresponds Æ0 and Æ1 to cos(µ2 ) and si n(µ2 ), meaning that Æ0 and Æ1

are described in terms of one variable µ. As a result, two parameters µ and ¡ can be used to
describe the quantum state

ØØ'
Æ
= cos(

µ

2
)|0i+ei¡si n(

µ

2
)|1i, (3.9)

where µ and ¡ are real numbers. The numbers µ and ¡ specify a point on a three-dimensional
sphere, called Bloch sphere. Fig. 3.1 shows the state |'i on the Bloch sphere [86, 87].

3.4 Measurement

Measurement is an essential element in quantum circuits, which are typically performed at
the end of the computation to extract the result of the computation. When a measurement is
performed on a quantum state, the state “collapses” into one of its basis states. The measure-
ment outcomes are classical bits that can be stored, transmitted, and processed in classical
computers. It is important to note that measurements in quantum mechanics are inherently
probabilistic and non-deterministic. Therefore, even if the same quantum state is prepared

23



Chapter 3. Quantum Computing

q

Figure 3.2: The symbolic representation of the measurement operator in quantum circuits.

and measured multiple times under identical conditions, the measurement outcomes may
still vary due to the probabilistic nature of quantum mechanics. Fig. 3.2 shows the quantum
circuit symbol for the measurement operator.

To determine the probability of measuring the state |'i in the state |i i, the squared modulus
of the inner product between the two states is calculated. Mathematically, this is given by

p(|i i) = |hi |'i|2, (3.10)

where hi |'i is the inner product of the two states |i i and |'i.

For example, to compute the probability of being zero for a state, it is needed to compute
|h0|'i|2.

3.5 Quantum gates

A quantum gate is an operation applied to one or more qubits to change their quantum state.
A quantum gate that acts on n qubits can be specified by a 2n £2n unitary matrix [88, 25]. A
matrix U is unitary if

U †U =UU † = I , U † =U°1, (3.11)

where the dagger ‘†’ denotes the conjugate transpose. It is also named the Hermitian adjoint.
Any gate with unitary matrix U that is its own unitary inverses is called Hermitian or self-
adjoint operator which means

U † =U°1 =U . (3.12)

Some quantum gates (which I will introduce in the subsection 3.5.1) such as the Hadamard
(H), Identity (I), and the Pauli gates (X, Y, Z) are Hermitian operators, while others like the
phase shift gates (S, T, P) are not.

The matrix product A ·B , the direct sum A©B , and the direct product (also called Kronecker
product) A≠B of two matrices A and B , respectively, are defined as usual [25].

Depending on the number of qubits that quantum gates acting on, I classify them into 3
groups, single-qubit gates, two-qubit gates, and multi-qubit gates.

3.5.1 Single-qubit gates

A single-qubit quantum gate acts on a single qubit, and transforms its state into another state.
The single-qubit gates are represented by 2£2 unitary matrices [88, 25]. These gates include
rotation gates, Pauli gates, Identity, Hadamard, and Phase shift gates.

24



3.5 Quantum gates

Since single-qubit states correspond to points on the Bloch sphere [25], quantum gates on a
single-qubit correspond to rotations. There are three types of rotation gates Rx , Ry , and Rz

regarding the three axes x̂, ŷ , and ẑ. Each rotation gate is parametrized with a continuous
angle µ 2 [0,2º].

These gates are defined by unitary matrices

Rx (µ) =
µ

cos µ2 °isin µ
2

°isin µ
2 cos µ2

∂
, (3.13)

Ry (µ) =
µ
cos µ2 °sin µ

2
sin µ

2 cos µ2

∂
, (3.14)

and

Rz (µ) =
√

e°i µ2 0

0 e i µ2

!
. (3.15)

Other important family of single-qubit gates are three Pauli gates X ,Y , Z gates with Pauli
matrices æx ,æy ,æz . They correspond to a rotation around the x̂, ŷ , and ẑ axes of the Bloch
sphere by º radians. Note that the Pauli-X gate is the quantum equivalent of the NOT gate
which transfers |0i to |1i and conversely |1i to |0i. The Pauli-Y maps |0i to i |1i and |1i to °i |0i.
While the Pauli-Z leaves the basis state |0i unchanged and maps |1i to °|1i. Note that the
Pauli-Z may call a phase-flip gate. These gates are represented by

X =æx = NOT =
µ
0 1
1 0

∂
, (3.16)

Y =æy =
µ
0 °i
i 0

∂
, (3.17)

and

Z =æz =
µ
1 0
0 °1

∂
. (3.18)

The Identity gate does not affect the qubit’s state, and it is represented by

I =
µ
1 0
0 1

∂
. (3.19)

The Hadamard gate maps the basis state |0i to |+i= |0i+|1ip
2

, and |1i to |°i= |0i°|1ip
2

. This gate

specifies a rotation around x̂+ẑp
2

axis by º radian. It is defined by the following unitary matrix

H = 1
p

2

µ
1 1
1 °1

∂
. (3.20)

25



Chapter 3. Quantum Computing

The phase shift gate leaves the basis state |0i unchanged and maps the basis state |1i to ei¡|0i.
This gate does not change the probability of measuring |0i and |1i basis states, while it changes
the phase of quantum state. In other definition, it is equivalent to rotating in a horizontal
circle on the Bloch sphere by ¡ radians. This gate and its dagger are represented by

P (¡) =
µ
1 0
0 e i¡

∂
, P †(¡) =

µ
1 0
0 e°i¡

∂
. (3.21)

Some particular well-known phase shift gates are T gate and S gate. These gates and their
daggers are defined as

T = P (
º

4
) =

µ
1 0
0 ei º4

∂
, T † =

µ
1 0
0 e°i º4

∂
, (3.22)

and

S = P (
º

2
) =

µ
1 0
0 ei º2

∂
=

µ
1 0
0 i

∂
, S† =

µ
1 0
0 e°i º2

∂
. (3.23)

In general, an arbitrary single-qubit gate with unitary matrix U2£2 can be constructed by a
combination of aforementioned single-qubit gates. For example, consider a single-qubit gate
with the unitary matrix

U = 1
p

2

µ
1 °1
1 1

∂
, (3.24)

I can construct it by a combination of NOT and H gates as

1
p

2

µ
1 °1
1 1

∂
=

µ
0 1
1 0

∂
£ 1
p

2

µ
1 1
1 °1

∂
. (3.25)

Table. 3.1 shows the quantum circuit symbols for the single-qubit gates.

3.5.2 Two-qubit gates

These gates act on two qubits. In this thesis, I divide them into two groups, controlled gates
and SWAP gate. For controlled gates, one qubit corresponds to a control-qubit and another to
a target-qubit. When the control-qubit is |1i, the target-qubit performs the operation, and
when the control-qubit is |0i nothing happens. Two well-known controlled gates are CNOT
and CZ with unitary matrices

CNOT =

0
BBB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1
CCCA , (3.26)

and

26



3.5 Quantum gates

Table 3.1: The symbolic representations of the single-qubit quantum gates.

Gate Symbol

NOT

Y Y

Z Z

Identity (I) I

Hadamard (H) H

T T

S S

Rx (µ) Rx (µ)

Ry (µ) Ry (µ)

Rz (µ) Rz (µ)

Phase (P (¡)) P (¡)

CZ =

0
BBB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 °1

1
CCCA . (3.27)

Moreover, in general, a controlled-U gate (CU) is defined by unitary matrix

CU =

0
BBB@

1 0 0 0
0 1 0 0
0 0 u00 u01

0 0 u10 u11

1
CCCA , U =

µ
u00 u01

u10 u11

∂
. (3.28)

The SWAP gate swaps the state of two qubits. In other words, it maps |01i! |10i, |10i! |01i,
and leaves |00i and |11i unchanged. This gate is represented by unitary matrix

SWAP =

0
BBB@

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

1
CCCA . (3.29)

The quantum circuit symbol representations of these gates are depicted in Table 3.2.

27



Chapter 3. Quantum Computing

Table 3.2: The symbolic representations of the two-qubit quantum gates.

Gate Symbol

CNOT

CZ

CU
U

SWAP

3.5.3 Multi-qubit gates

These gates act on n qubits (more than two), and are represented in terms of 2n £2n unitary
matrices. Note that it is needed to use decomposition methods to convert these gate into
a sequence of elementary quantum gates that are runnable on real quantum computers. I
introduce some of multi-qubit gates that I consider in my work as follows.

Toffoli gates. One of the popular three-qubit gates is Toffoli gate that corresponds to a two-
controlled NOT gate or CCNOT. The Toffoli gate performs a NOT operation on the third qubit
(the target qubit) if and only if the first two qubits (the control qubits) are both in the state
|1i. Otherwise, the third qubit is left unchanged. The Toffoli gate can be represented by a 8£8
unitary matrix as

Toffoli =

0
BBBBBBBBBBBB@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

1
CCCCCCCCCCCCA

. (3.30)

Multi-controlled NOT gates. These gates are a generalization of Toffoli gates that allow for
multiple control qubits. The number of control-qubits is more than two and a NOT gate
applies to the target-qubit. The target-qubit toggles if and only if all control-qubits are in the
state |1i. I make use of the method proposed in [89] to decompose multi-controlled NOT gates
to a sequence of Toffoli gates. A multi-controlled NOT gate on n qubits can be represented by
a 2n £2n unitary matrix.

Multi-controlled U gates. In general, I consider multi-controlled U gates and U can be any
single-qubit gate. When all control-qubits are in the state |1i, the U gate acts, otherwise
nothing happens. A multi-controlled U gate on n qubits can be demonstrated by a unitary
matrix with the size of 2n £2n .

28



3.5 Quantum gates

Table 3.3: The symbolic representations of the multi-qubit gates.

Gate Symbol

Toffoli

MCNOT

...
...

MCU

...

U

...

Ry (2µ)

=

Ry (° µ
2 ) Ry ( µ2 ) Ry (° µ

2 ) Ry ( µ2 )

Figure 3.3: Decomposing a 2-controlled Ry (2µ) gate into elementary quantum gates.

The quantum circuit symbol representations of Toffoli, multi-controlled NOT (MCNOT), and
multi-controlled U (MCU) gates are depicted in Table 3.3.

Example 3.5.1. In this thesis, I make use of 1-controlled Ry gates and 2-controlled Ry gates. A
1-controlled Ry (2µ) is easily seen to be created by 2 Ry (±µ) and 2 CNOTs. It is also easy to see
that a 2-controlled Ry (2µ) is created by 4 Ry (±µ

2 ) and 4 CNOTs that is depicted in Fig. 3.3.

Multi-controlled single-target gates. A single-target gate with control function f (x1, . . . , xn°1)
and target qubit xn is an abstract quantum operation acting on n qubits that maps

U f : |x1 . . . xn°1i|xni 7!|x1 . . . xn°1i|xn© f (x1, . . . , xn°1i. (3.31)

In other words, it inverts the value of the target qubit xn , if and only if the control function
evaluates to true for the values of the control qubits x1, . . . , xn°1. Well-known instances of
single-target gates are the X gate for which n = 1 and f = 1, the CNOT gate for which n = 2
and f = x1, or the Toffoli gate for which n = 3 and f = x1x2. Several pictorial representations
for a multi-controlled single-target gate (single-target gate) are used in the literature. In the
remainder of the thesis, I use one of the following two:

x1...
xn°1

xn

f =

f

x1...
xn°1

xn © f (x1, . . . , xn°1) (3.32)

29



Chapter 3. Quantum Computing

q1

q2

q3 U

=
u0 u1 u2 u3

Figure 3.4: A uniformly-controlled single-qubit gate with two controls.

Single-target gates describe complex operations and cannot generally be implemented natively
on quantum computer. However, they provide a convenient intermediate representations
when mapping complex functionality, such as permutations, into quantum gates.

Uniformly-controlled single-qubit gates. In this thesis, I make use of a family of unitary
matrices called uniformly-controlled single-qubit gates [40, 42]. These unitary matrices are
2n £2n block diagonal matrices of the form

Ui = u0 © · · ·©uk°1 =

0
BBB@

u0 0
.. .

0 uk°1

1
CCCA , (3.33)

with one target qubit qn and n°1 control qubits q1, ..., qn°1. The matrices can be decomposed
into the direct sum of k = 2n°1 unitary 2£2 matrices u0, . . . ,uk°1.

An example of a uniformly-controlled single-qubit gate on n = 3 qubits with two controls is
shown in Fig. 3.4. The figure also shows the visual representation of the uniformly-controlled
single-qubit gate on the left-hand side.

Decomposing an n-qubit uniformly-controlled rotation gate requires an exponential number
of elementary gates (2n °1 rotation gates and 2n °2 CNOTs) [40].

3.6 Universal quantum gates sets

The ability to implement any possible unitary, means achieving universality in the sense of
standard digital computers. A universal quantum gate set is a set of quantum gates that can be
used to approximate any quantum gate to an arbitrary degree of accuracy. There are several
different universal gate sets. For example, single-qubit gates and CNOT gate together are
universal. Toffoli gates together with single-qubit gates can also form a universal gate set.
Another important universal gate set library is Clifford+T gate library which is considered
typically for fault-tolerant quantum computing. This library consists of the CNOT gate, the
Hadamard (H) gate, as well as the T gate, and its inverse T†. Any unitary operation can be
approximated to arbitrary accuracy using these gates which for convenient in this thesis, I
call them elementary quantum gates. Hence, when there is a complex gate, decomposition
methods can be used to convert it to elementary quantum gates that are available physically
in real quantum computers.

30



3.7 Quantum circuits

q1

q2

q3

|'i
|0i
|0i

H

H

X Z

1 2 3 4

Figure 3.5: The quantum circuit parts related to the quantum program in the Exp. 3.7.1.

3.7 Quantum circuits

A quantum circuit is a structural description of a quantum program. It is an ordered sequence
of quantum gates on quantum data, such as qubits, and concurrent real-time classical compu-
tation. Quantum circuits follow a sequence from left to right that correspond to the evolution
of time.

Example 3.7.1. Fig. 3.5 shows a quantum circuit that implements the quantum teleportation
algorithm. As it is shown, this circuit is consisted of 4 parts as follows.

1. Initialization. The quantum circuit starts with a well-defined quantum state. Here q2

and q3 are initialized to |0i state, q1 is initialized by a quantum state |'i which can be
any combination of single-qubit gates. The initialization part is an important part of a
quantum circuit, and any quantum algorithm requires its corresponding initial quantum
state in the beginning. Note that, this part can be provided as a quantum circuit to bring
qubits in the desired initial quantum state.

2. Quantum gates. In this stage of the circuit, a sequence of quantum gates are applied to
manipulate qubits as required by the teleportation algorithm.

3. Measurements. Here, two qubits q1 and q2 are measured which are useful for classical
computer interpreters.

4. Classically conditioned quantum gates. In this stage, the results of the measurement in
the previous stage are used, concurrently in real-time, to control two quantum gates X
and Z that act on q3.

3.8 Quantum algorithms

3.8.1 Quantum oracles

A quantum oracle function is a black box quantum circuit that implements a classical function
f (x) in such a way that it can be queried by a quantum algorithm in superposition. Quantum
oracle functions are an important component of many quantum algorithms, including Shor’s
algorithm for factoring large numbers and Grover’s algorithm for searching unstructured
databases.

The mathematical definition of a quantum oracle can be given as follows:

31



Chapter 3. Quantum Computing

Definition 3.8.1. Let f be a classical function that maps an n-bit binary input and produces
an m-bit binary output, i.e.,

f : {0,1}n ! {0,1}m . (3.34)

Then, the quantum oracle O associated with f is a unitary operator that acts on n +m qubits
and is defined as:

O(|xi≠ |yi) = |xi≠ |y © f (x)i. (3.35)

where |xi is an n-qubit input register,
ØØy

Æ
is an m-qubit output register, © denotes bitwise

addition modulo 2, and f (x) is the value of the classical function f on input x = (x1, . . . , xn).
The input qubit states can be labeled as |xi= |x1i≠ ...≠ |xni.

In other words, the quantum oracle O maps the input state |xi to the output state |xi
ØØy © f (x)

Æ
,

where the output register is modified based on the value of f (x).

Phase oracles. These oracles encode f (x) into an oracle O by applying a phase depending on
the input x. It is defined as

O|xi= (°1) f (x)|xi. (3.36)

If a phase oracle acts on a register initially in a computational basis state |xi , then the phase
is a global phase and is not directly observable. However, if the phase oracle is applied to a
superposition state or used as a controlled operation, it can become a powerful resource in
quantum algorithms such as quantum search and quantum simulation.

3.8.2 Quantum Fourier transform

The Fourier transform is a widely used mathematical tool in classical computing, applied
in areas such as signal processing, data compression, and complexity theory. The quantum
Fourier transform (QFT) is the quantum implementation of the discrete Fourier transform that
applies to the amplitudes of a quantum wave function. It is a fundamental component of many
quantum algorithms, including Shor’s factoring algorithm and quantum phase estimation.

The QFT acts on a quantum state |X i = PN°1
j=0 x j | j i, N = 2n , and maps it to the state |Y i =

PN°1
k=0 yk |ki, where the amplitudes yk are given by:

yk = 1
p

N

N°1X

j=0
x j w j k

N , (3.37)

where w j k
N = e2ºi j k

N . Note that only the amplitudes of the quantum state are affected by this
transformation.

The QFT is a transformation that acts on a quantum state in the computational (Z) basis and
maps it to a state in the Fourier basis. The H gate is the single-qubit QFT, and it transforms

32



3.8 Quantum algorithms

between the Z-basis states |0i and |1i to the X-basis states |+i and |°i. Similarly, all multi-qubit
states in the computational basis have corresponding states in the Fourier basis. The QFT is
simply the function that transforms between these bases.

3.8.3 Deutsch-Joza algorithm

The Deutsch-Jozsa algorithm [90] is the first example of a quantum algorithm that outperforms
the best classical algorithm.

The problem is to determine whether a given Boolean function f (x1, x2, . . . , xn), which takes as
input a binary string of length n and returns either 0 or 1, is constant or balanced. A constant
function returns the same value for all inputs, while a balanced function returns 0 for half of
the inputs and 1 for the other half.

The Deutsch-Jozsa algorithm solves this problem using a quantum circuit that can determine
the nature of the function using just one query to the function. The Deutsch-Jozsa algorithm
is significant because it provides an exponential speedup over the best classical algorithm for
this problem, which requires 2n°1 +1 queries to the function in the worst case.

Assume the function f is implemented as a quantum oracle, which maps the state |xi|yi to
|xi|y © f (x)i. The generic circuit for the Deutsch-Jozsa algorithm is illustrated on Fig. 3.6. This
algorithm acts as follows.

1. Initialize two quantum registers |xi and |yi to |0i≠n , and |1i, respectively:

|'1i= |0i≠n |1i (3.38)

2. Apply a H gate to each qubit:

|'2i=
1

p
2n+1

2nX

x=1
|xi(|0i° |1i) (3.39)

3. Apply the quantum oracle O f , which maps |xi|yi to |xi|y © f (x)i:

|'3i=
1

p
2n+1

2nX

x=1
|xi(| f (x)i° |1© f (x)i)

= 1
p

2n+1

2nX

x=1
(°1) f (x)|xi(|0i° |1i)

(3.40)

4. At this point the second single-qubit register may be ignored. Apply a Hadamard gate to
each qubit in the first register:

|'4i=
1

2n

2nX

x=1
(°1) f (x)

"
2nX

y=1
(°1)x.y |yi

#

= 1
2n

2nX

y=1

"
2nX

x=1
(°1) f (x)(°1)x.y

#
|yi,

(3.41)

33



Chapter 3. Quantum Computing

|xi= |0i≠n

|yi= |1i

n

H

H≠n
O f

H≠n

y© f (x)

Figure 3.6: The quantum circuit of the Deutsch-Jozsa algorithm.

where x.y = x1 y1 © ...©xn yn is the sum of the bitwise product.

5. Measure the first register. Notice that the probability of measuring evaluates to 1 if f (x)
is constant, and 0 if f (x) is balanced.

3.8.4 Grover’s algorithm

Grover’s algorithm is a quantum algorithm that can be used to solve unstructured search
problems, such as searching a large database to find a specific item with a unique property.
The algorithm can speed up the search process quadratically, which is much faster than
classical algorithms. The algorithm uses a technique called amplitude amplification to amplify
the amplitude of the solution(s) in the quantum state.

Given a large list of N items. Among these items, there is one item with a unique property
and I wish to locate, which I call it the winner w . To find the w using classical computation,
one would have to check on average N

2 of items, and in the worst case, all N of them. On a
quantum computer, however, the marked item can be find in roughly

p
N steps with Grover’s

algorithm. Considering the winner w , the corresponding Boolean function f to mark w can
be defined as

f (x) =
(

1, if x 6= w

°1, if x = w
(3.42)

The algorithm works by first encoding the items in the database into quantum states. Each
item is represented as a basis state in a quantum register. The winner item w is marked with
a phase shift of -1, while the other items are marked with a phase shift of 1. The quantum
oracle will be a diagonal matrix, where the entry that correspond to the marked item will have
a negative phase. This is achieved by applying the oracle gate that flips the phase of the winner
item and can be described as

O f |xi= (°1) f (x)|xi, (3.43)

and the oracle’s matrix will be a diagonal matrix of the form

O f =

2
66664

(°1) f (0) 0 . . . 0
0 (°1) f (1) . . . 0
... 0

. . .
...

0 0 . . . (°1) f (2n°1)

3
77775

. (3.44)

One can extend the problem for multiple solutions (winners). Suppose there are N = 2n

eligible items for the search task and they are indexed by assigning each item an integer from
0 to N °1. Further, suppose that there are M different solutions, meaning that there are M

34



3.8 Quantum algorithms

|0i≠n n H≠n O f H≠n 2|0nih0n |° In H≠n

Grover diffusion operators

Repeat Nopt times

Figure 3.7: The quantum circuit of Grover’s algorithm.

inputs for which f (x) = 1. The generic circuit for the Grover’s algorithm is illustrated on Fig. 3.7,
and the steps of the algorithm are as follows:

1. Start with a register of n-qubit initialized in the state |0i.

2. Prepare the register into a uniform superposition by applying H gates to each qubit of
the register, which transform the state as

|'1i=
1

p
N

N°1X

x=0
|xi. (3.45)

3. Oracle. Apply the oracle O f that marks the solutions in the database.

4. Diffusion. The Grover diffusion operator is used to amplify the amplitude of the solution
states and decrease the amplitude of the non-solution states. This part is constructed as
follows.

• Apply H gates to all qubits.

• Apply a conditional phase shift of -1 to every computational basis state except |0i.
This can be represented by the unitary operation

2|0nih0n |° In . (3.46)

• Apply H gates again to all qubits.

5. Repeat two steps 3 and 4 by Nopt times. Nopt is the optimal number of iterations that
maximizes the likelihood of obtaining the correct item by measuring the register which
is computed by

Nopt = bº
4

r
N
M

° 1
2
c. (3.47)

6. Measure qubits to obtain the index of an item that is a solution with very high probability.

3.8.5 Shor’s algorithm

Shor’s algorithm is a quantum algorithm for factoring integers efficiently in polynomial time.
The problem of factoring large integers is important in cryptography, as many encryption

35



Chapter 3. Quantum Computing

schemes rely on the difficulty of factoring large numbers. Since the best-known classical
algorithm requires super-polynomial time to factor the product of two primes, the widely used
cryptosystem, such as RSA, being impossible for large enough integers.

The key insight behind Shor’s algorithm is that factoring an integer N can be reduced to the
problem of finding the period of a certain function, namely f (x) as

f (x) = ax mod N , (3.48)

where a and N are positive integers, a is less than N , and they have no common factors. The
period, or order r , is the smallest (non-zero) integer such that

ar mod N = 1. (3.49)

Shor’s algorithm uses the quantum phase estimation algorithm to find the eigenvalues and
eigenvectors of the unitary operator U, defined as

U |yi ¥ |ay mod Ni. (3.50)

The eigenstates of U are superpositions of the states in the cycle of length r, where ar mod N =
1.

One such eigenstate is the superposition of the states |ak mod Ni for k = 0,1, . . . ,r °1, which
can written as

|u0i=
1
p

r

r°1X

k=0
|ak mod Ni. (3.51)

This eigenstate has an eigenvalue of 1, which is not very useful. A more interesting eigenstate
can be constructed by assigning a phase that is proportional to the index of each computational
basis state. Specifically, consider the case where the phase of the k-th state is proportional to k

|u1i=
1
p

r

r°1X

k=0
e°

2ºi k
r |ak mod Ni. (3.52)

Applying the operator U to |u1i yields an eigenvalue of e
2ºi

r , which is particularly interesting
because it contains r . In fact, r must be included to ensure that the phase differences between
the r computational basis states are equal. However, this is not the only eigenstate with this
property. To generalize further, an integer s can be multiplied to the phase difference, resulting
in the following eigenstate and eigenvalue as

|usi=
1
p

r

r°1X

k=0
e°

2ºi sk
r |ak mod Ni, (3.53)

U |usi= e
2ºi s

r |usi. (3.54)

Thus, there is a unique eigenstate for each integer value of s between 0 and r °1.

Remarkably, if all these eigenstates are summed, the different phases cancel out all computa-

36



3.9 Summary

tional basis states except |1i
1
p

r

r°1X

s=0
|usi= |1i. (3.55)

Since |1i is a superposition of these eigenstates, performing quantum phase estimation on U
using |1i will result in a random phase

'= s
r

, (3.56)

where s is a random integer between 0 and r °1. By applying the continued fractions algorithm
to ', the value of r can be determined, finally.

3.9 Summary

This chapter introduces the basic concepts of quantum computing, including Dirac notation,
qubits, superposition, and entanglement. The Bloch sphere representation is described as a
way to visualize the state of a qubit. Three different classes of quantum gates are presented:
single-qubit gates, two-qubit gates, and multi-qubit gates. A universal quantum library consist-
ing of Clifford+T gates is described, and its importance in fault-tolerant quantum computing
is emphasized. Several important quantum algorithms are also presented in detail, including
Grover’s algorithm for unstructured search, Shor’s algorithm for factoring large numbers,
the quantum Fourier transform, and the Deutsch-Joza algorithm for determining whether a
function is constant or balanced.

Overall, this chapter provides the necessary background knowledge for understanding quan-
tum computation and the algorithms needed in the remainder of this thesis.

37





Part IIQuantum Circuit Synthesis

39





4 Compiling Permutations

In this chapter, I consider the compilation of quantum state permutations into quantum gates
for physical quantum computers. Quantum compilation is the task of translating a high-level
quantum algorithm into a low-level quantum circuit, which is technology-dependent, i.e., it is
described in terms of supported quantum operations and respects all architectural constraints.
It is not uncommon that several phases of quantum compilation take place when translating a
high-level quantum algorithm into a low-level quantum circuit [91].

I propose an automatic technology-dependent compilation technique to translate quantum
operations that permute the amplitudes in quantum states. Many quantum algorithms make
use of such permutations, in particular as a way to implement combinatorial operations [92].
My compilation algorithm targets quantum architectures whose gate set supports rotation
gates with arbitrary angles, such as the 8-qubit and 19-qubit superconducting transmon
computers from Rigetti.

4.1 Proposed compilation algorithm

Fig. 4.1 provides a birds-eye overview of my proposed algorithm. The algorithm takes as
input a permutation over 2n elements, the gate library, and coupling constraints of the target
quantum computer. It returns a quantum circuit composed of gates from the gate library,
which respects the coupling constraints. The algorithm essentially contains the following
three steps:

1. Map the input permutation into a reversible circuit composed of 2n °1 single-target
gates.

2. Map each single-target gate into a circuit over the gate set {CNOT,Rz (µ), H }.

3. Map the resulting quantum circuit into a circuit composed of gate library gates, which
respects the coupling constraints.

For the first step, I employ the decomposition-based reversible synthesis algorithm using

41



Chapter 4. Compiling Permutations

x1

x2

x3

[0
,2

,3
,5

,
7,

1,
4,

6]

=

f1 f2 f3 f4 f5

y1

y2

y3

(a) Step 1: map permutation into a sequence of
single-target gates using Young-subgroup based
synthesis [39].

x1

x2

x3

f1

=

H
x2 © x3

Rz (µ6)

x1 © x2 © x3

Rz (µ7)

x1 © x2

ĝ = x3 ^ f1(x1, x2) °! s = H3 ĝ °! µi =
ºsi
23

Rz (µ3)

x2

Rz (µ2)

x1 © x3

Rz (µ5)
x3

Rz (µ4)

Rz (µ1)

H

x1

x2

x3 © f1(x1, x2)

(b) Step 2: each single-target gate is translated into a regular circuit structure composed of H gates, CNOT gates,
and Rz gates. The angles for the Rz gates can be obtained from the control function of the single-target gate.

Figure 4.1: Birds-eye overview of the proposed compilation algorithm.

Young-subgroups presented in [39]. Fig. 4.1.a illustrates this step for the permutation

Perm = [0,2,3,5,7,1,4,6], (4.1)

which can be realized using a reversible circuit consisting of five single-target gates with
control functions f1, . . . , f5.

The second step encompasses the main contribution of this chapter. Each single-target gate is
decomposed into a circuit structure composed of H gates, CNOT gates, and Rz gates. The step
is illustrated for the first single-target gate with the control function f1 in Fig. 4.1.b. Hadamard
gates are inserted at the beginning and at the end of the circuit on the target qubit of the
single-target gate. CNOT gates are used to create all linear combinations of the inputs. In
Fig. 4.1.b, these linear combinations are written under each CNOT gate. To each of these
linear combinations one Rz gate is applied, whose rotation angle corresponds to the spectral
coefficients of the function x3 ^ f1(x1, x2). Details on computing spectral coefficients are
presented in Section 2.3. For example, the first CNOT gate creates the linear combination
x2 ©x3, which corresponds to the spectral coefficient s6. The rotation angle is µ6 = ºs6

23 . Note
that Rz (0) gates may be omitted which in turn can cause further reduction of CNOT gates. I
make use of the GRAYSYNTH algorithm [93] to find a network with possibly few CNOT gates
for generating required linear combinations.

By performing the second step for each single-target gate, one obtains a quantum circuit
that can be passed as input to a quantum compiler. However, the compiler of the quantum
computer still needs to apply changes to accommodate for the supported gate library and
coupling constraints. For example, in case of the Rigetti 8-qubit computer, the H and CNOT
gates need to be translated into Rx , Rz and CZ gates; also, there are no three qubits that permit

42



4.2 Compiling single-target gates

pairwise interaction and therefore some SWAP gates need to be inserted. I extended the
existing GRAYSYNTH algorithm by heuristics to further minimize the number of CNOTs, thereby
reducing the possibility of violating coupling constraints. For example, special strategies
can be used when the spectrum has no zero coefficients and therefore CNOTs for all linear
combinations need to be generated.

For the third step, I make use of the quantum gate compilers shipped with the software
development kits from Rigetti and IBM.

4.2 Compiling single-target gates

In this section, I describe in detail the second step of the algorithm that was presented in the
previous section. Before delving into the details on how to compile single-target gates, I briefly
review a well-known identity for Toffoli gates, i.e., a single target gate acting on three qubits
with control function f = x1x2. For compiling Toffoli gates into quantum gates, it is often first
mapped into a two-controlled Z gate using Hadamard gates:

x1

x2

x3

=
H H

x1

x2

x3 ©x1x2 (4.2)

The unitary operation of the two-controlled Z gate is diag(1,1,1,1,1,1,1,°1).

The following theorem generalizes this decomposition for single-target gates of arbitrary size.

Theorem 4.2.1. Let U f be the unitary matrix realized by a single-target gate acting on xn with
control function f (x1, . . . , xn°1). Then

U f = (I2n°1 ≠H) ·diag(ĝ0, . . . , ĝ2n°1) · (I2n°1 ≠H), (4.3)

where ĝi s are the truth table entries of the function g = xn ^ f in {°1,1} coding. The following
circuit illustrates the decomposition:

x1
...

xn°1

xn

f
=

H di
ag

(ĝ
0

,.
..

,ĝ
2n

°1
)

H

x1
...

xn°1

xn © f (x1, . . . , xn°1)
(4.4)

Proof. I evaluate the effect of applying the right-hand side of (4.3) to the quantum state |xi|xni,
where |xi= |x1 . . . xn°1i. Applying (I2n°1 ≠H) to |xi|xni yields

|'1i=
1
p

2
|xi(|0i+ (°1)xn |1i).

Now note that diag(g0, . . . , g2n°1) maps a state |xi|xni to (°1)xn^ f (x)|xi|xni. When making

43



Chapter 4. Compiling Permutations

a case distinction on xn , one can see that the operation maps |xi|0i to |xi|0i, and |xi|1i to
(°1) f (x)|xi|1i. Therefore, applying the diagonal matrix to |'1i yields

|'2i=
1
p

2
|xi(|0i+ (°1) f (x)(°1)xn |1i)

= 1
p

2
|xi(|0i+ (°1) f (x)©xn |1i).

Then, finally
(I2n°1 ≠H)|'2i= |xi|xn © f (x)i=U f |xi|xni.

Welch et al. have shown in [94] that the matrix diag(ĝ0, . . . , ĝ2n°1) is equivalent to the unitary
operation that maps |xi to

e iºs(x)/2n |xi, (4.5)

where s(x) =P
y2Bn sy |yihx|.

Schuch and Siewert have shown in [95] that a unitary mapping as in (4.5) can be implemented
by a quantum circuit on n qubits that uses only CNOT and Rz gates. The CNOT gates are
used to generate the linear combinations |yihx| on some qubit to which then the phase gate

Rz

≥
ºsy

2n

¥
is applied. Note that only those linear combinations need to be generated for which

sy 6= 0. In [93], Amy et al. presented an algorithm called GRAYSYNTH that finds a circuit which
minimizes the number of CNOT gates.

4.3 Rewiring optimizations

The algorithm to compile single-target gates as described in the previous section does not take
into account the coupling constraints of the quantum computer. In this section, I describe
three modifications to the algorithm that take the coupling constraints into account.

First, in order to find a good CNOT network to create linear combinations for the non-zero
spectral coefficients, GRAYSYNTH uses a heuristic to minimize the number of CNOT gates.
Often the algorithm has multiple choices and I use the coupling constraints as a tie breaker in
such cases.

Second, in the case of spectra with no zero coefficients, all linear combinations of qubits are
required. In this case, I employ dedicated algorithms to generate CNOT sequences for all
linear combinations instead of using GRAYSYNTH. Since all spectral coefficients are not zero,
the sequence of CNOT gates depends only on the number of variables in the function. As a
consequence, I precompute circuit structures that minimize the number of CNOTs as well as
violations of coupling constraints of the quantum computer.

Third, I allow rewirings after each single-target gate. Formally, instead of implementing U f as
in (3.31), I find a circuit for UºU f , where

Uº : |x1 . . . xni 7! |xº(1) . . . xº(n)i (4.6)

44



4.4 Experimental results

for some permutations º 2 Sn (i.e., over n elements). The unitary transformation Uº can be
realized without any gates, simply by rewiring the qubits. The following example illustrates
this:

x1

x2

x3

f1

x1

x2

x3 © f1(x1, x2)

f2

y1

y2

y3

=
x1

x2

x3

f1 f2

y1

y2

y3

. (4.7)

The highlighted gate on the left-hand side implements U f1 while the highlighted gate on the
right-hand side implements U[3,1,2]U f1 . The implementation of the latter may require fewer
gates.

4.4 Experimental results

I implemented the proposed algorithm and the state-of-the-art algorithm for comparison in
C++.

4.4.1 Benchmarks

I use the benchmark families TOF(n), PRIME(n), and HWB(n) to evaluate the proposed
approach, where n indicates that the benchmark describes a permutation over 2n elements.
The benchmark TOF(n) describes a multi-controlled Toffoli gate with n °1 control qubits
acting on the least-significant qubit; it represents the single transposition (2n°2,2n°1). Such
gates play, e.g., an important role in the Grover search quantum algorithm [96]. The benchmark
PRIME(n) represents the permutation that maps 0 to 0, and then maps the successive numbers
first to all primes and then to all non-primes smaller than 2n in increasing order. For example,
PRIME(3) = [0,2,3,5,7,1,4,6], the permutation used in the example in Fig. 4.1. Finally, the
benchmark HWB(n) maps x to x ør ∫x, i.e., x is left-shift-rotated by the number of 1s in x.
For example, HWB(3)= [0,2,4,5,1,6,3,7].

4.4.2 Quantum gate libraries and quantum architectures

Rigetti quantum computers

The 8-qubit QPU (called Agave) and 19-qubit QPU (called Acorn) from Rigetti natively supports
four X-rotations {Rx ( kº

2 ) | k 2Z} = {I ,V , X ,V †}, arbitrary Z-rotations Rz (µ) for any µ 2R and
CZ gates. Other gates can be represented in terms of this library. The Hadamard gate H can be
expressed in terms of three rotations:

H = V S V = S V S = V † S† V † = S† V † S†
. (4.8)

The CNOT gate can be expressed in terms of a CZ gate and rotations, using 6 gates and a depth
of 5:

45



Chapter 4. Compiling Permutations

x1

x2
=

S† V

Z

V † S

x1

x2 ©x1 . (4.9)

Finally, the SWAP gate can be expressed in terms of three CZ gates and rotations, using 14
gates and a depth of 10:

x1

x2
= =

S† V

S

V † Z

V V †

V
S†

V † S

x2

x1 . (4.10)

The topology of the 8-qubit quantum computer is the undirected 8-cycle

1 0 7

2 6

3 4 5

, (4.11)

while the topology of the 19-qubit computer is according to the following undirected graph:

15 16 17 18 19

10 11 12 13 14

5 6 7 8 9

0 1 2 3 4

. (4.12)

IBM quantum computers

The IBM quantum computers natively support the U gate, U (µ,¡,∏) = Rz (¡)Ry (µ)Rz (∏), which
is parametrized over 3 continuous variables, and the CNOT gate. As the algorithm described
in this chapter, maps permutations to an intermediate representation containing of CNOT,
Hadamard, and arbitrary Z rotations, it is helpful to point out the following identities:

H =U (º2 ,0,º) and Rz (µ) =U (µ,0,0). (4.13)

The coupling constraints in an IBM architecture also imply a direction of a CNOT gate, i.e., for
two adjacent qubits the target of a CNOT gate can only be applied to one of the qubits. The
following circuit identity can be used to turn the direction of a CNOT gate:

x1

x2
= H

H

H

H

x1 ©x2

x2 . (4.14)

46



4.4 Experimental results

pyQuil
compiler

Qiskit
compiler

pyQuil
compiler

Qiskit
compiler

Benchmark

Decomposition-based
synthesis

Rigetti
quantum

circuit

IBM
quantum

circuit

Rigetti
quantum

circuit

IBM
quantum

circuit

State-of-the-art Proposed

permutation

single-target gate circuit

Clifford+T Clifford+Rz

Figure 4.2: Compilation flows for experimental results.

The same identity can be used to implement a SWAP operation:

x1

x2
= H

H

H

H

x2

x1 . (4.15)

In the experiments, I evaluate my algorithm on the three available cloud-based IBM quantum
computers ibmqx2 (also called IBM 5Q Yorktown), ibmqx4 (also called IBM 5Q Tenerife), each
of which have 5 qubits, and ibmqx5 (also called IBM 16Q Rueschlikon), which has 16 qubits.
The coupling constraints for ibmqx2 and ibmqx4 are defined to be the two directed graphs

0 2 3

1

4

and 0 2 3

1

4

, (4.16)

respectively. For ibmqx5, the coupling constraints are as follows:

1 2 3 4 5 6 7 8

0 15 14 13 12 11 10 9
. (4.17)

47



Chapter 4. Compiling Permutations

4.4.3 Methodology

Fig. 4.2 shows the flow for obtaining the results. Input is a benchmark generated from the
benchmark families described in the Section 4.4.1. The permutation is decomposed into a
sequence of single-target gates using the algorithm described in [39]. Then each single-target
gate is mapped into a Clifford+T circuit using a state-of-the-art compilation flow or into a
Clifford+Rz circuit using my proposed flow. In the state-of-the-art synthesis flow, I first use
ESOP-based synthesis to map each single-target gate into a sequence of multi-controlled
mixed-polarity Toffoli gates, which are single-target gates in which the control function is
a product term (conjunction of literals). Multi-controlled Toffoli gates with more than four
controls are decomposed into Toffoli gates with at most four controls using the decomposition
described in [97]; this may introduce one additional helper qubit called ancilla. Finally, each
remaining multi-controlled Toffoli gate is decomposed into a Clifford+T circuit as described
in [98].

The circuits generated by the state-of-the-art and the proposed compilation approach are
then compiled into architecture aware circuits for both Rigetti and IBM quantum computers
using the compilers provided in their software development kits. For Rigetti, I use architecture
configurations for Agave 8Q and Acorn 19Q, and for IBM I use architecture configurations for
both 5-qubit and the 16-qubit quantum computers.

Tables 4.1, 4.2, 4.3, and 4.4 show the experimental results after compilation for the Rigetti
and IBM quantum computers, respectively. The table shows the input permutation and the
number of variables or qubits. For each quantum computer, it shows the number of gates
and the gate depth after compilation using the state-of-the-art and the proposed approach.
Note that gate count and volume for the Rigetti computers (R gates and R depth) and the
IBM computers (I gates and I depth) are not directly comparable due to differences in the
underlying gate sets and device technologies. In the columns for the proposed approach
also the improvement in percentage is listed. The runtime in all cases is a few seconds and
negligible. For the TOF(n) benchmark, the circuit includes only one multi-controlled Toffoli.
As SOTA is optimized in compiling Toffoli gates, the results for SOTA are better. However, for
other benchmarks that include several multi-controlled gates, my method works better. As
can be seen, my proposed approach is particularly powerful when the number of variables
is larger than 3, because only then the proposed algorithm can exploit the smaller rotation
angles in the Rz gates. Moreover, for a small number of variables, SOTA creates a circuit with
fewer number of multi-controlled Toffoli gates that can efficiently compile them. However, as
the number of variables increases, the number of required multi-controlled Toffoli gates also
grows, resulting in less efficient compilation. Also, the proposed algorithm does not need any
ancilla. As a result, benchmarks such as TOF(5), PRIME(5), and HWB(5) can be compiled for a
5-qubit quantum computer using the proposed approach, while the state-of-the-art approach
cannot generate compatible circuits (see cells marked N/A). Further, for the experiments on
the IBM quantum computer, it can be seen that more improvement is possible for the smaller
quantum computers, indicating that my proposed algorithm better addresses the coupling
constraints.

48



4.4 Experimental results

Table 4.1: Experimental results after compilation for Rigetti computer Agave 8Q.

Rigetti Agave 8Q
Permutation #qubits SOTA Proposed

gates depth gates Improve depth Improve

TOF(3) 3 52 29 58 -11.54% 40 -37.93%
TOF(4) 4 232 68 196 15.52% 76 -11.76%
TOF(5) 5 444 135 496 -11.71% 164 -21.48%
TOF(6) 6 1121 232 1002 10.62% 305 -31.47%
PRIME(3) 3 171 110 215 -25.73% 131 -19.09%
PRIME(4) 4 1063 391 745 29.92% 310 20.72%
PRIME(5) 5 5408 1450 2971 45.06% 1082 25.38%
HWB(4) 4 1252 483 1140 8.95% 443 8.28%
HWB(5) 5 7953 1359 3724 53.17% 1254 7.73%

Table 4.2: Experimental results after compilation for Rigetti computer Acorn 19Q.

Rigetti Acorn 19Q
Permutation #qubits SOTA Proposed

gates depth gates Improve depth Improve

TOF(3) 3 52 29 58 -11.54% 40 -37.93%
TOF(4) 4 225 63 196 12.89% 76 -20.63%
TOF(5) 5 429 119 496 -15.62% 164 -37.82%
TOF(6) 6 1142 291 1002 12.26% 305 -4.81%
PRIME(3) 3 181 115 215 -18.78% 131 -13.91%
PRIME(4) 4 1079 404 745 30.95% 310 23.27%
PRIME(5) 5 5590 1715 2971 46.85% 1082 36.91%
HWB(4) 4 1323 485 1140 13.83% 445 8.25%
HWB(5) 5 7482 2284 3724 50.23% 1254 45.10%

Table 4.3: Experimental results after compilation for IBM Yorktown and Tenerife 5Q.

IBM 5Q Yorktown IBM 5Q Tenerife
Permutation #qubits SOTA Proposed SOTA Proposed

gates depth gates Improve depth Improve gates depth gates Improve depth Improve

TOF(3) 3 17 13 16 5.88% 12 7.69% 16 13 15 6.25% 12 7.69%
TOF(4) 4 162 87 68 58.02% 50 42.53% 81 52 82 -1.23% 54 -3.85%
TOF(5) 5 N/A 130 96 N/A 186 119
TOF(6) 6 N/A N/A N/A N/A
PRIME(3) 3 47 37 51 -8.51% 39 -5.41% 45 36 52 -15.56% 39 -8.33%
PRIME(4) 4 616 364 338 45.13% 212 41.76% 496 319 281 43.35% 191 40.13%
PRIME(5) 5 N/A 896 596 N/A 1038 637
PRIME(6) 6 N/A N/A N/A N/A

HWB(4) 4 622 384 413 33.60% 277 27.86% 740 436 434 41.35% 286 34.40%
HWB(5) 5 N/A 1196 770 N/A 1259 824

49



Chapter 4. Compiling Permutations

Table 4.4: Experimental results after compilation for IBM computer Rueschlikon 16Q.

IBM 16Q Rueschlikon
Permutation #qubits SOTA Proposed

gates depth gates Improve depth Improve

TOF(3) 3 21 17 40 -90.48% 28 -64.71%
TOF(4) 4 112 67 92 17.86% 63 5.97%
TOF(5) 5 142 85 202 -42.25% 129 -51.76%
TOF(6) 6 407 251 473 -16.22% 265 -5.58%
PRIME(3) 3 115 81 120 -4.35% 83 -2.47%
PRIME(4) 4 517 338 339 34.43% 231 31.66%
PRIME(5) 5 2174 1339 1341 38.32% 838 37.42%
PRIME(6) 6 8290 4836 4099 50.55% 2434 49.67%
HWB(4) 4 598 357 447 25.25% 293 17.93%
HWB(5) 5 2891 1810 1665 42.41% 1013 44.03%

4.5 Summary

I presented a compilation algorithm to realize permutations in terms of quantum circuits
for Rigetti’s and IBM’s superconducting computers. The proposed approach utilizes Young-
subgroup based reversible logic synthesis [99, 39, 100], which for a given permutation for a
n-qubit state, finds a sequence of 2n°1 so-called single-target gates, which describe quantum
operations to alter the quantum state w.r.t. a Boolean function. I described a general algorithm
to translate a single-target gate into a quantum circuit composed of Clifford+Rz gates. Finally,
I employed an explicit rewiring technique in order to reduce the number of quantum gates.
The experimental evaluation shown that the proposed approach leads to quantum circuits
with lower quantum gates and lower depth compared to state-of-the-art generic compilation
techniques. For Rigetti QPUs, gate count and gate depth are reduced up to 53% and 45%,
respectively, and for IBM QPUs, gate count and gate depth are reduced up to 58% and 49%,
respectively.

50



Part IIIQuantum State Preparation

51





5 Problem Definition

Preparing quantum states is the process of bringing a qubit or a quantum register to a desired
quantum state. The ability to prepare a qubit in a specific quantum state is a crucial compo-
nent of many quantum algorithms and protocols, as well as quantum error correction and
fault-tolerance schemes.

Preparing quantum states is important because many quantum algorithms rely on starting in
a particular state. For example, the quantum Fourier transform (QFT) algorithm requires the
input state to be a superposition of all possible input values. Similarly, the Grover’s algorithm
requires the input to be encoded in the amplitudes of the basis states. In addition, preparing
quantum states is necessary in order to perform certain quantum operations, such as quantum
error correction, where it is necessary to initialize the qubits in a known state to detect and
correct errors. Furthermore, it plays a critical role in the development of quantum simulation
algorithms, where the goal is to simulate the behaviour of complex quantum systems. In order
to do so, it is necessary to prepare the quantum system in a particular state that corresponds
to the physical system being simulated. Overall, preparing quantum states is essential for the
implementation of quantum algorithms and quantum operations, and it is a fundamental
building block for the development of new quantum technologies.

In general, preparing quantum states involves applying a sequence of quantum gates to a set
of qubits that are in a known state, such as the ground state. The sequence of gates must be
carefully chosen to generate the desired quantum state with high fidelity and minimal error.
This process is called Quantum State Preparation (QSP).

A quantum state over n qubits is any superposition of all basis states |0i, |1i, . . . , |2n °1i charac-
terized by

|'i=
2n°1X

i=0
Æi |i i, (5.1)

a column vector of 2n amplitudes Æi 2Cwhere

|Æ0|2 +·· ·+ |Æ2n°1|2 = 1. (5.2)

Each squared norm amplitude |Æi |2 indicates the probability that after measurement the n

53



Chapter 5. Problem Definition

qubits are in the classical state i .

Multiple algorithms [42, 43, 41, 44, 101, 102, 103, 104, 105, 106, 2] have been proposed for
preparing arbitrary quantum states, which require an exponential number of CNOTs and
runtime with respect to the number of qubits [107]. Consequently, preparing the state can
become a bottleneck of an otherwise efficient quantum algorithm. Finding QSP methods that
work efficiently in practice is thus an important research challenge.

Researchers address this problem with two possible approaches: (1) adding ancilla qubits,
(2) approximate state preparation algorithms that focus on preparing a quantum state to
a high precision with a fixed bound on the error, and (3) input state restrictions that allow
researchers to characterize a family of states for which quantum state preparation can be
performed precisely and efficiently.

Adding ancilla qubits to a quantum circuit can help to reduce the number of gates and
circuit depth, but it also adds additional overhead in terms of the number of qubits required.
Approximate state preparation algorithms allow one to prepare states with some inaccuracy,
which is valid because quantum computers themselves experience gate and measurement
errors, such that all computations are only correct as long as a certain error threshold is not
exceeded. However, developing robust methods for fault-tolerant quantum computing with
strong error correction is in general complicated and an obstacle that has yet not been resolved
for quantum computers. Preparing quantum states approximately adds to this burden, leading
even to more overhead. In my research, I follow the second approach, trying to identify families
of quantum states that can be prepared efficiently while being absolutely precise.

As families of quantum states I consider 3 families, uniform quantum states, cyclic quantum
states, and sparse quantum states. Uniform quantum states are quantum states that are evenly
distributed over a set of basis states. In other words, they are quantum states that have equal
probabilities of being in any of the basis states. Many quantum states are uniform such as
Bell state, GHZ state, W state. Cyclic quantum states are a family of quantum states that are
defined as uniform superposition of all the possible states of n qubits with a fixed Hamming
weight (i.e., number of ones) and where the ones are adjacent and arranged cyclically. Cyclic
states are important in quantum error correction because they have the property that applying
a cyclic shift to the state corresponds to a phase shift in the Fourier domain. This property
allows for the detection and correction of errors in a quantum computer or communication
channel. Sparse quantum states are quantum states that have a small number of non-zero
amplitudes. Sparse quantum states are of interest in quantum computing because they can
be efficiently manipulated using quantum algorithms and techniques. This is because the
quantum gates and operations used in quantum algorithms typically act on only a few qubits
at a time, and sparse quantum states allow for efficient representation and manipulation of
these qubits.

54



6 Uniform Quantum State Preparation

6.1 Introduction

I restrict my search to a special family of quantum states, aiming for an efficient and exact
implementation without using ancilla qubits. As an important family of quantum states, I
consider Uniform Quantum States (UQSs) in this chapter. These states are superpositions of
basis states, where all amplitudes are either zero or have the same value.

UQSs form an important class of quantum states and have recently attracted attention from
researchers. For example, they have been used in effective quantum machine learning as
the quantum version of a uniform random sample [108]. Many well-known quantum states
are uniform, such as the uniform superposition of all basis states, the Bell state, the GHZ
state [48], and the W state [47]. They also appear frequently as initial states of important
quantum algorithms, such as the quantum random-search algorithm Grover Walk [46], Quan-
tum Byzantine Agreement [109], and Secret Sharing [110], which have large applications in
quantum cryptography. Hence, having an efficient algorithm for preparing UQSs alongside
arbitrary quantum states is important.

In this chapter, I propose a new algorithm for UQS Preparation (UQSP). The central idea of my
work is a characterization of UQSs with Boolean functions. This characterization simplifies
the problem because one simple Boolean function can describe an exponential number of
amplitudes. Moreover, this enables one to apply well-understood and optimized techniques
from logic synthesis [60]. I develop the theory and propose a functional decomposition
method based on co-factoring for synthesis.

My decomposition method can be applied to any representation of Boolean functions. I
use truth-table-based, and decision-diagram-based representations for smaller, and larger
numbers of qubits, respectively. I show how I use decision diagrams to prepare UQSs. Decision
diagrams enable a scalable quantum state preparation since many Boolean functions of
practical interest have small representations, e.g., in terms of Binary Decision Diagrams
(BDDs) [50].

Moreover, I present another orthogonal improvement that identifies dependencies among
variables of the Boolean functions and determines an order in which the qubits should be

55



Chapter 6. Uniform Quantum State Preparation

prepared. I show that, if a functional dependency can be identified, the decomposition
algorithm can be avoided in favor of more efficient quantum circuit constructions. This idea
allows reducing the overall number of CNOT gates.

I develop the underlying theory of UQSP using Boolean methods and demonstrate empirically
that an implementation of my approach outperforms a state-of-the-art algorithm for preparing
arbitrary quantum states [101] that is implemented in an industrial framework, Qiskit [111].
My algorithm achieves better quality (smaller circuits) in significantly less runtime.

The contributions of this chapter can be summarized as follows:

1. I propose a Boolean algorithm to prepare UQSs which simplifies the problem and
provides the ability to apply well-understood techniques from logic synthesis.

2. I apply my decomposition algorithm to the BDD representation of Boolean functions to
enable a fast execution when the function representation is small (the algorithm runs
in polynomial time with respect to the number of BDD nodes). Experimental results
show that by increasing the number of qubits to at most 30, my method prepares states
in milliseconds whereas Qiskit cannot prepare states for more than 18 qubits.

3. I investigate the problems of identifying functional dependencies among the qubits
and determining the best order for preparing the qubits of a UQS. I present several
heuristics for solving these two problems and show that one can construct quantum
circuits for UQSP with different trade-offs between runtime and the number of CNOTs.
The comparison with Qiskit shows that the proposed method achieves an average
reduction on the number of CNOTs by 75.31% for practical benchmarks and the runtime
is improved by almost a factor of 2. Hence, my algorithm for preparing UQSs can be
integrated into Qiskit to improve the quality-of-results for this important family of
quantum states.

6.2 Related works

The general problem of preparing arbitrary quantum states requires quantum circuits with an
exponential number of CNOTs, and exponential depth and runtime in the worst case. Multiple
algorithms have been proposed for preparing them.

The algorithm presented in [104] prepares quantum states with a divide-and-conquer strategy.
Although it creates quantum circuits with poly-logarithmic depth, it uses additional n ancilla
qubits and increases the number of elementary quantum gates. In [112], the authors present
a way of preparing arbitrary quantum states with l unique amplitudes for the purpose of
reducing T gates. To prepare a state, they start with a uniform superposition. If l is not a binary
power, they prepare the initial superposition using amplitude amplification. Afterwards, by
loading data from Quantum Read-Only Memory (QROM), they decide whether to keep the
state or to alter it. Moreover, they prepare states with the help of ancilla qubits. The authors
in [113] propose an algorithm to prepare only efficiently-integrable probability distributions.
Their algorithm requires overheads by using additional ancilla qubits.

The authors in [102, 103] propose algorithms without using ancilla qubits, but they prepare

56



6.3 UQSP motivation

quantum states approximately. Approximate state preparation algorithms introduce some
inaccuracy, such that all computations are only correct as long as a certain error threshold is
not exceeded.

In this chapter, I am interested in algorithms that prepare the quantum state exactly and with-
out using ancilla qubits, which reduce the implementation overhead. These algorithms [42,
43, 41, 44] to prepare arbitrary quantum states, however, require an exponential number of
CNOTs and runtime with respect to the number of qubits [107]. To reduce runtime and the
number of CNOTs, I propose a Boolean algorithm and compare my results with [101] from
this category that is a method for preparing arbitrary quantum states. The idea in [101] is
based on dividing qubits in two parts and applying an iterative circuit. When n is even, each
part is associated with n

2 qubits. For an odd number of qubits, the qubits are divided into n°1
2

and n+1
2 qubits parts. Then, a state on the first part is prepared, defined by the generalized

Schmidt coefficients in the computational basis. Next, a set of CNOT gates between the qubits
in the first and second parts are applied. Finally, a unitary operation on the first part of the
qubits, followed by another unitary operation on the second part of the qubits are performed.
After decomposing unitaries, finally, the number of CNOTs is bounded by 23

24 2n and 115
96 2n for

n even and odd, respectively.

6.3 UQSP motivation

6.3.1 UQSP problem

I consider n-qubit quantum states that are uniform superpositions over a non-empty subset
of the basis states |0i, |1i, . . . , |2n °1i. In such quantum states all amplitudes of the state vector
are either 0 or have the same value Æ= 1p

s
, where s is the size of the subset of basis states. I

exploit the fact that such states can be characterized by a Boolean function f :Bn !B such
that f (x) = 1, if and only if |xi is in the subset of the considered basis states, and therefore its
corresponding amplitude is non-zero.

Example 6.3.1. The uniform quantum state

ØØ'
Æ
= 1

p
3

(0,0,0,1,0,1,1,0))T , (6.1)

which is the W state over 3 qubits, corresponds to the Boolean function fW that has the truth
table

fW (x1, x2, x3) = (0,0,0,1,0,1,1,0)T . (6.2)

Proposition 1. There is a one-to-one correspondence between uniform quantum states and
Boolean functions. A uniform quantum state |' f i corresponds to the normalized truth table of
f

|' f i=
f

p
| f |

= 1
p
| f |

X

x2Minterms( f )
|xi.

Now, the UQSP problem refers to the problem of finding a quantum circuit that prepares such

57



Chapter 6. Uniform Quantum State Preparation

q1 : |0i
q2 : |0i

...
qn : |0i

UQSP( f )
ØØ' f

Æ

Figure 6.1: The problem of preparing the UQS corresponding to the given Boolean function
f (x1, x2, ..., xn) as input.

a state, given as input a Boolean function f in some representations. In the beginning, all
qubits are assumed to be in their zero states. Then, I am searching for a construction that
transforms a given unitary matrix UQSP( f ) into a circuit, where

UQSP( f )|0i≠n = |' f i. (6.3)

Fig. 6.1 describes my problem formulation.

6.3.2 Motivational examples

Uniform quantum states can be found in various quantum algorithms, e.g., the uniform
superposition of all basis states, for which f = 1 (tautology), the Bell state, for which f = x̄1©x2,
the generalized GHZ state, for which f = x̄1x̄2 . . . x̄n ©x1x2 . . . xn , and the generalized W state,
for which f = [x1 +x2 +·· ·+xn = 1] that means only one of the variables is one and the others
are equal to zero.

UQSs are used in several protocols in quantum communication and cryptography, for example,
in the Quantum Byzantine Agreement [114, 109]. Byzantine agreement protocols are important
algorithms that are robust to failures in distributed computing. A group of n players must agree
on a bit despite the faulty behaviour of some of the players. Quantum Byzantine agreement
represents the quantum version of Byzantine agreement which works in constant time [109].
It is shown that in this protocol, for n players, it is required to prepare two quantum states that
are uniform, namely

ØØ'1
Æ
= 1

p
2

(|0,0, . . . ,0i+|1,1, . . . ,1i) (6.4)

on n qubits, and

ØØ'2
Æ
= 1

p
n3

n3X

a=1
|ai (6.5)

on n qubits.

Although the quantum state in (6.4) represents the well-known GHZ state and one can apply a
template to prepare it, the second state in (6.5) is more general and one require an automated
algorithm to prepare it.

As another example, the initial quantum state used in the Quantum Coupon Collector [108]

58



6.4 Using functional decomposition for UQSP

problem is also uniform. It is given as

ØØ'
Æ
= 1

p
|S|

X

i2S
|i i (6.6)

over the elements of an unknown k-element set S µ
©
1, . . . ,n

™
, where k = |S| < n.

Moreover, UQSs are helpful when one want to extend a problem. In this domain, I already
have the results for some parts of the problem and I only need to solve the problem for a
new part. Instead of preparing all possible input assignments, I only need to prepare the
input assignments for the new part that are UQSs. As an example, consider the Zed city
problem introduced in[58], which is an instance of vertex coloring. As some of the nodes are
colored already, it requires a UQS in the beginning to create the desired input assignments for
uncolored nodes.

Hence, all these applications show that having an automated algorithm to prepare UQSs
efficiently is very important.

6.4 Using functional decomposition for UQSP

To prepare an n-qubit uniform quantum state
ØØ' f

Æ
associated with the Boolean function f , I

define a correspondence between the qubits in the quantum circuit and the variables in f .
Hence, the uniform quantum state

ØØ' f
Æ

and the qubit qi correspond to the Boolean function
f and the variable xi , respectively. In the remainder of this chapter, I will use these symbols
interchangeably.

Representing uniform quantum states as Boolean functions give me the opportunity to apply
Shannon’s decomposition to solve the state preparation problem recursively. To construct
the desired quantum circuit corresponding to the UQSP( f ) block shown in the Fig. 6.1, I
iterate over the variables of the Boolean function in an order, and prepare them one by one
by applying Shannon’s decomposition. For each qubit qi (xi ), I decompose UQSP blocks as
follows.

1. A gate G(P ) is applied, which is a unitary transformation and satisfies

G(P )|0i=
p

P |0i+
p

1°P |1i. (6.7)

The parameter P represents the probability of qi (xi ) being zero in the current decom-
posed function ( f̂ ), which equals to p f̂ (x̄i ).

2. qi is either zero or one. Hence, I construct new blocks for the corresponding cofactors
by applying negative-control and positive-control, respectively.

Fig. 6.2 shows the construction of UQSP( f ) using my functional decomposition for one itera-
tion where i = 1. I formulate the general idea of my state preparation algorithm as

UQSP( f )|0i≠n = (UQSP( fx̄i )©UQSP( fxi ))(G(p f (x̄i ))≠ I2n°1)|0i≠n . (6.8)

59



Chapter 6. Uniform Quantum State Preparation

q1 : |0i
q2 : |0i

...
qn : |0i

UQSP( f ) =

G(p f (x̄1))

UQSP( fx̄1 ) UQSP( fx1 )

ØØ' f
Æ

Figure 6.2: The preparation of the quantum state associated by Boolean function f using
functional decomposition.

q1 : |0i

q2 : |0i

q3 : |0i

(G(p f (x̄1)))

G(p fx̄1
(x̄2))

G(p fx̄1 x̄2
(x̄3)) G(p fx̄1 x2

(x̄3))

G(p fx1
(x̄2))

G(p fx1 x̄2
(x̄3)) G(p fx1 x2

(x̄3))

=
G( 2

3 )

G( 1
2 )

G( 0
1 ) G( 1

1 )

G( 1
1 )

G( 1
1 ) G(°)

Figure 6.3: Multi-controlled single-target gates of UQSP( fW ).

By applying this procedure recursively for all variables, I obtain the desired quantum circuit.

Example 6.4.1. Applying the proposed functional decomposition algorithm for the Boolean
function of Example 6.3.1 ( fW ) in the order x1, x2, x3 results in Fig. 6.3. First, I decompose f
over the variable x1. I apply G(p f (x̄1)) and divide the circuit into two parts corresponding to
cofactors fx̄1 and fx1 by adding negative and positive controls, respectively. Next, I decompose
with x2, leading to four cofactors fx̄1 x̄2 , fx̄1x2 , fx1 x̄2 and fx1x2 . Finally, the four cofactors are
decomposed with x3. The detailed structure is shown on the left-hand side of ‘=’ in the figure. It
is visible that preparing each qubit requires 2k MC -gates with k controls with different polarities
corresponding to different cofactors.

By applying the definition in (2.1), the probability values for G gates are computed as the right-
hand side of ‘=’ in the figure. The target-qubit represented by G(°) specifies a division by zero
corresponding to the zero-probability G( 0

0 ). This case never happens and I do not insert any gate
for that. Moreover, G(1) shows that the qubit is always equal to the zero state and can be safely
ignored, too.

The resulted quantum circuit consists of a sequence of multi-controlled single-target gates
with G(P ) as target. From the definition of Ry (µ) and (6.7) one can readily derive that

G(P ) = Ry

≥
2cos°1(

p
P )

¥
. (6.9)

Consequently, by replacing all gates on the target-qubit by Ry gates, I obtain a circuit consisting
only of multi-controlled Ry (MC-Ry ) gates.

Example 6.4.2. Fig. 6.4 shows the quantum gate realization of G gates for UQSP( fW ) in Fig. 6.3
using (6.9).

60



6.5 UQSP using binary decision diagrams

q1 : |0i

q2 : |0i

q3 : |0i

Ry (0.39º)

Ry (º2 )

Ry (º)

Figure 6.4: A sequence of MC-Ry gates for UQSP( fW ).

6.5 UQSP using binary decision diagrams

In practice, it is infeasible to store Boolean functions using truth tables for a large number
of variables (typically more than 15 variables). As an alternative, the proposed approach
can extract the quantum circuit for UQSP( f ) when f is represented as a Reduced Ordered
BDD (ROBDD, or BDD for short) [76]. This is due to the fact that counting all minterms and
computing cofactors can be efficiently performed using BDDs. The compact representation
not only enables a scalable quantum state preparation, if the BDD representation for f is
small, but also reduces the number of multi-controlled single-target gates and maybe CNOTs.

In particular, in this section I propose an algorithm that works directly on decision diagrams.
This enables a scalable quantum state preparation, since many Boolean functions of practical
interest have small representations, e.g., in terms of binary decision diagrams (BDDs) [50].

I propose an automatic quantum state preparation algorithm, which takes as input a Boolean
function and produces a sequence of multi-controlled gates. Afterwards, to run on a physical
quantum computer, I use decomposition methods to generate a quantum circuit over CNOTs
and single-qubit quantum gates. The detailed contributions are summarized as follows:

• Proposing an algorithm that works on BDDs to enable a fast execution when the function
representation is small (algorithm runs in polynomial time with respect to the number
of BDD nodes).

• Reducing the number of elementary quantum gates by removing redundancies in the
BDDs as well as applying a post-optimization technique for the GHZ state.

Experimental results show that the proposed approach can achieve a significant reduction in
run-time compared to a state-of-the-art approach which relies on an explicit quantum state
representation implemented in IBM’s Qiskit framework. Moreover, the results show that I
reduce the number of elementary quantum gates over the state of the art.

6.5.1 Proposed algorithm

Algorithm 6.1 shows the UQSP using decision diagrams. First in the procedure ComputeZe-
roProbabilities, I traverse the BDD in top-down post-order to compute zero probabilities by
dividing the number of ones in the zero-child by the number of ones in the current node. The
number of ones of the current node is equal to the summation of the number of ones of the
zero-child and the one-child.

61



Chapter 6. Uniform Quantum State Preparation

Algorithm 6.1: UQSP using decision diagrams.
Input: The root r of the BDD of the Boolean function f
Output: Quantum circuit QC

1 Proc UQSPDD(r ):

2 p = {}
3 ones = {}
4 ComputeZeroProbabilities(r, p,ones)
5 QC = {}
6 ComputeMCgates(r, p,QC )
7 return QC [r ]

8

9 Proc ComputeZeroProbabilities(v, p,ones):

10 if IsTerminal(v) or IsVisited(v) then

11 return

12 ComputeZeroProbabilities(l ow(v), p,ones)
13 ComputeZeroProbabilities(hi g h(v), p,ones)
14 low_ones = ComputeOnesFromChild(v, low(v),ones)
15 hi g h_ones = ComputeOnesFromChild(v,hi g h(v),ones)

16 p[v] = low_ones
l ow_ones+hi g h_ones

17 ones[v] = l ow_ones +hi g h_ones
18 return

19

20 Proc ComputeOnesFromChild(v,c,ones):

21 if IsZeroTerminal(c) then

22 return 0

23 R_nodes = NumberOfReducedNodes(v,c)
24 if IsOneTerminal(c) then

25 return 2R_nodes

26 return ones[c]£2R_nodes

27

28 Proc ComputeMCgates(v, p,QC ):

29 if IsTerminal(v) or IsVisited(v) then

30 return

31 ComputeMCgates(low(v), p,QC )
32 ComputeMCgates(hi g h(v), p,QC )
33 InsertGgate(p[v], QC[v])
34 ApplyControlToChildGates(v, low(v),‘Negative’, QC )
35 ApplyControlToChildGates(v,hi g h(v),‘Positive’, QC )
36 InsertHalfPGatesForRNodes(v, low(v),‘Negative’, QC )
37 InsertHalfPGatesForRNodes(v,hi g h(v),‘Positive’, QC )
38 return

39

40 Proc ApplyControlToChildGates(v,chi l d ,contr ol_t y pe,QC ):

41 for i = 0, . . . ,n °1 do

42 foreach MCgate with G on qi 2 QC [chi l d ] do

43 MCgate. AddControl(control_type, Index(v))
44 QC[v].AddMCgate(MCgate)

45 return

46

47 Proc InsertHalfPGatesForRNodes(v,chi l d ,contr ol_t y pe,QC ):

48 for i = Index(v)+1, . . . , Index(child) do

49 MCgate = CreateMCgate( 1
2 , qi )

50 MCgate. AddControl(control_type, Index(v))
51 QC[v].AddMCgate(MCgate)

52 return

62



6.5 UQSP using binary decision diagrams

x
1

!

" #

$%

&

"

#

!

&

x
3

'(

f
)(

$(

$(

$
'

'
)

$
$

* x
3

$($
$

%
$

x
2

x
2

+
$
,-.%

+
'-,-.%

+
) ,-.%

"#

$
'/0---1

/0---1')

/0$1

/0$1/0%1 /0$1

!
/0$1

/0$1

+
'-,-.%

+
) ,-.%

+
'-,-.%

+
) ,-.%

$
'/0---1

/0%1

*

/0$1

!

/0$1+
) ,-.%

* /0%1+
) ,-.%

Figure 6.5: BDD representation of fW and the procedure of the preparing it.

To compute the number of ones of the zero-child and the one-child, I consider the effect of
the reduced nodes between these nodes and the current node using ComputeOnesFromChild.
Secondly, in the procedure ComputeMCgates, I traverse again in top-down post-order to
extract multi-controlled single-target gates (MC-gates). For each node, I insert a G gate with
its zero probability. Next, I connect a negative-control and a positive-control to the gates from
the zero-child and the one-child, respectively, using procedure ApplyControlToChildGates. I
also consider the effect of the reduced nodes in the path between the current node and its
children. Both children of the reduced nodes have ones in the Boolean function, so I insert
gates with 1

2 probabilities in procedure InsertHalfGatesForRNodes. Finally, at the root-node, I
have all MC-gates.

Example 6.5.1. I illustrate the BDD-based synthesis algorithm for the fW function as an
example in Fig. 6.5. The BDD consists of 5 nodes. I traverse the BDD in top-down post-order to
count the number of ones and the zero probabilities by dividing the number of ones from the
zero-child (dashed line) by the number of ones of the current node, for each node. The number
of ones and the probabilities for each node are shown within the figure on the left-hand side in
red and blue colors, respectively.

To construct MC-gates, I again traverse the BDD in top-down post-order. In a recursive manner, I
construct for each node a circuit that consists of one G(P ) gate, a negative-controlled application
of the circuit constructed by the zero-child, as well as a positive-controlled application of the
circuit constructed by the one-child.

These gates are located in the figure using boxes at the right-hand side of the figure for each
node with the same color. As an example, I explain the construction of the gates for node ‘b’
(green color). First, I have to apply G( 1

1 ) to the qubit corresponding to ‘b’, then I connect the
negative-control to the gates of node ‘d’. The one-child is connected to constant zero, meaning
that it is not included in the minterms of the function and I do not need to consider it, so I do
not insert any gate for the one-child.

63



Chapter 6. Uniform Quantum State Preparation

6.5.2 Experimental evaluation

In this section, I discuss the experimental setup and results.

I implemented the proposed approach into angel, a C++ library for quantum state preparation,
which is introduced in detail in Chapter 9. I used the CUDD1 library for BDD representation
and traversal. To compare my results with the state of the art, I made use of IBM’s Qiskit [111]
that implemented the algorithm in [101]. I performed experiments for the two most-known
quantum states GHZ and W. As there is no standard benchmark set for quantum state prepa-
ration and my method utilizes Boolean functions, I further used the ISCAS benchmarks as
practical benchmarks to extract large functions with different numbers of variables which
correspond to the number of qubits (n). Since ISCAS benchmarks have multiple outputs, I
extracted the logic cone for a given primary output. All experiments have been conducted on
an Intel Core i7, 2.7 GHz with 16 GB memory.

Experimental results are shown in Table 6.1. The first column names the benchmark. The
suffixes for the ISCAS benchmarks correspond to the indices of the extracted logic cones. I
evaluate the proposed method for run-time and circuit size. I further discuss a way to optimize
the number of gates.

Run-time: I track the actual run-time, and also report the number of nodes in the BDD,
since the algorithm’s complexity depends on the number of nodes. There are two columns in
Table 6.1 that show run-time for the proposed method and the state of the art. Experimental
results show that my proposed method reduces the run-time significantly for all cases. More-
over, as the proposed method uses decision diagrams in the implementation, the number of
nodes is extracted only for the proposed method. A timeout of 9000 seconds is considered to
extract the results. The results show that generating circuits for quantum state preparation
using the proposed method is fast. When the number of qubits grows too large, approaches
based on explicit state representation require too much time (see the cells marked TO).

Circuit size: Experimental results regarding circuit size are evaluated in terms of the number
of MC-Ry s, the number of elementary quantum gates (CNOT and single-qubit gates), and
ancilla qubits. These results are summarized in Table 6.1 for both the proposed method and
the state-of-the-art approach. Note that I only extracted MC-Ry s for the proposed method.
The number of MC-Ry s is reduced using decision diagrams by removing redundancies. As
shown in the table, I reduce the number of MC-Ry s from 2n °2 into n °1 for GHZ and W.
Moreover, MC-Ry s are reduced for ISCAS benchmarks instead of growing exponentially. As I
generate MC-Ry s, my algorithm has the potential to represent these gates in a compact way
in terms of Boolean functions. It is an advantage of the proposed approach to provide the
high-level representations for MC-Ry gates such that different decomposition methods may
be applied later.

I transform the MC-Ry s into elementary quantum gates using decomposition methods such
as [98]. The method presented in [98] requires ancilla qubits that are shown in the table. The
results show that reducing CNOTs and single-qubit gates (Ry s for the proposed method) is
comparable over the state of the art. As I discussed before, the upper bound on CNOTs and

1CUDD: CU Decision Diagram package, https://github.com/ivmai/cudd.

64

https://github.com/ivmai/cudd


6.5 UQSP using binary decision diagrams

Table 6.1: Experimental results regarding the number of MC-Ry rotation gates, elementary
quantum gates and time.

Proposed approach State-of-the-art approach

QSs Qubits Nodes MC-Ry s CNOTs SQGs ancilla Time CNOTs SQGs Time

GHZ 15 29 14 539 720 6 < 0.01 32752 97857 60.57

GHZ 18 35 17 809 1083 8 < 0.01 262125 786071 929.03

GHZ 20 39 19 1027 1389 9 < 0.01 1048555 3145488 7809.02

GHZ 27 53 26 1951 2628 12 < 0.01 TO TO TO

GHZ 30 59 29 2437 3279 14 < 0.01 TO TO TO

W 15 29 14 539 720 6 < 0.01 32752 98175 104.8

W 18 35 17 809 1083 8 < 0.01 262125 786255 5087.05

W 27 53 26 1951 2628 12 < 0.01 TO TO TO

W 30 59 29 2437 3279 14 < 0.01 TO TO TO

c17-0 4 6 11 14 15 1 < 0.01 11 39 0.03

c17-1 4 6 8 14 15 1 < 0.01 11 37 0.03

c432-0 18 18 2024 103074 126514 8 < 0.01 262125 3399580 1801.26

c432-1 27 3795 1256482 98417906 108854256 12 16.35 TO TO TO

c7552-65 29 7389 2847926 241536510 277309441 13 45.34 TO TO TO

c7552-66 26 3501 681374 45046398 48877056 12 9.21 TO TO TO

c7552-67 23 1653 163474 6994910 7928448 10 1.73 TO TO TO

c7552-68 20 793 41188 1048574 1048575 9 0.37 1048576 3015488 5948.47

TO: time-out of 9000 seconds.

single-qubit gates are 2n °2 and 2n °1, respectively. The results show that I reduce the number
of elementary quantum gates as much as possible while for the state of the art are close to the
upper bounds.

Optimization: To prepare the GHZ state, my method generates one MC-Ry on each qubit with
positive controls. Fig. 6.6 on the left-hand side shows this sequence of gates for GHZ state on
4 qubits. As all qubits in the beginning are assumed to be in state 0, each qubit can alter to
1 only in one case, when the corresponding controls are 1. Hence, the last control is 1 when
all previous controls are 1. Therefore, I can reduce redundant controls and only keep the last
control, which results in a sequence of n °1 single-controlled Ry gates (decomposing these
gates results in n °1 CNOTs and one Ry rotation gate). The optimized circuit for GHZ on 4
qubits is shown on the right-hand side of Fig. 6.6.

65



Chapter 6. Uniform Quantum State Preparation

q1 : |0i

q2 : |0i

q3 : |0i

q4 : |0i

Ry (µ1)

Ry (µ2)

Ry (µ3)

Ry (µ4)

=

Ry (µ1)

Ry (µ2)

Ry (µ3)

Ry (µ4)

Figure 6.6: Reducing the number of controls for GHZ state.

q1 : |0i
q2 : |0i

...

qn : |0i

U1

U2

Un

ØØ' f
Æ

Figure 6.7: The general structure of the sequential preparation of qubits using uniformly-
controlled single-target gates.

6.6 UQSP using dependency analysis methods

For each qubit qi , the recursion generates 2k MC-gates. The variable k denotes the number of
already prepared qubits that can be used as control qubits for preparing the current qubit qi .
The variable k can range from 0 to n °1.

This sequence of multi-controlled single-target gates on the same target-qubit can be fused
into a uniformly-controlled single-target gate Ui per qubit. Applying this procedure for all
variables results in the structure depicted in Fig. 6.7, where each qubit is prepared with a
uniformly-controlled single-target gate in the order from 1 to n.

On one hand, the structure of the quantum circuit presented in Fig. 6.7 shows that preparing
qubits depends on all previously prepared qubits. On the other hand, formulating the UQSP
problem using Boolean functions allows me to identify functional dependencies among
variables. If a dependency function is recognized, meaning that a qubit depends on a subset
of previously prepared qubits, then often a more compact quantum circuit structure can
be synthesized. This helps to further reduce the number of control qubits and CNOTs. An
identified functional dependency for qi can be utilized in three ways: 1) to reduce the number
of control qubits if qi depends only on a subset of the previously prepared qubits, 2) to reduce
the number of elementary quantum gates if the functional dependency can be well-expressed
with a library of hardware-supported quantum gates, and 3) to reduce the number of control
qubits for preparing other next qubits.

6.6.1 Proposed method

Algorithm 6.2 shows the UQSP using Functional Dependencies (UQSPFD) in pseudo-code. As
inputs, it takes a Boolean function f that defines a uniform quantum state and two strate-
gies RA and D A for variable reordering and dependency analysis. Both strategies can be
either implemented as exact or heuristic algorithms, which allow choosing between different
runtime-quality trade-offs. Different methods for dependency analysis and variable reordering
are explained in Sections 6.6.2 and 6.6.4, respectively.

66



6.6 UQSP using dependency analysis methods

Algorithm 6.2: UQSP using functional dependencies.
Input: Boolean function f , dependency analysis algorithm D A , variable reordering algorithm RA
Output: Quantum circuit QC , qubits order

1 Proc UQSPFD( f ,RA ,D A):

2 QC = SynthesizeQCFD( f , D A( f ))
3 cost = CNOTs(QC )
4 fbest = f
5 foreach reordered f 0 2 RA( f ) do

6 QC f 0 = SynthesizeQCFD( f 0, D A( f 0))

7 cost f 0 = CNOTs(QC f 0 )

8 if cost f 0 < cost then

9 QC = QC f 0

10 cost = cost f 0

11 fbest = f 0

12 return QC , Order( fbest)

13

14 Proc Synthesi zeQCFD( f , D):

15 QC = CreateNewQC()
16 n = NumberOfVariables( f )
17 for i = n °1, . . . ,0 do

18 QC .CreateQubit(i )
19 di = D .FindDependency(i )
20 if di 6=? then

21 QC .CreateGatesForDependencyFunction(i , di )
22 else

23 QC .CreateGatesRecursively(i )

24 return QC

From a birds-eye perspective, UQSPFD applies the dependency analysis algorithm D A to
the Boolean function f and all reordered functions f 0 of f suggested by RA . The algorithm
then synthesizes a quantum circuit by considering dependency functions extracted from D A ,
counts the number of CNOTs, and returns the best quantum circuit realized for the function.
The considered cost function focuses on reducing CNOTs which correlates with the reduction
of rotation gates such that the algorithm minimizes CNOTs and rotation gates.

The procedure SynthesizeQCFD shows how a quantum circuit is realized from a Boolean
function f with a fixed order of variables and a fixed set of functional dependencies D. The
procedure iterates one by one over the variable indices, checks if a dependency function for
this index is in D , and then either synthesizes the quantum circuit for the given dependency
function or uses the recursive decomposition of Eq. 6.8. Dependency functions are only
computed if they are guaranteed to reduce the number of CNOTs when compared to the
recursive decomposition.

The detailed explanation of proposed dependency analysis methods (D A), CNOTs cost func-
tions, and variable reordering methods (RA) are described next.

67



Chapter 6. Uniform Quantum State Preparation

6.6.2 Dependency analysis methods

Suppose that f :Bn !B is a Boolean function over Boolean variables x = x1, . . . , xn . I attempt
to compute a series g2, . . . , gn of dependency functions gi (x1, . . . , xi°1) such that

xi · f (x) = gi (x1, . . . , xi°1) · f (x) for i = 2, . . . ,n. (6.10)

In other words, I compute a dependency for each variable (qubit) that represents it as a
function of the previously prepared qubits. Hence, it starts with the second qubit in the
sequence (i.e., at index i = 2):

xi = gi (x1, . . . , xi°1) for i = 2, . . . ,n. (6.11)

I define ∞ as a cost function that assigns integers to Boolean operators. As the cost function, I
consider the number of CNOTs required to prepare the qubits with the dependency function
or the recursive construction of Eq. 6.8 if no dependency function exists. As a result, ∞(gi )
shows the number of CNOTs required for creating dependency function gi . Finally, my goal is
to minimize

∞=
nX

i=2
∞(gi ). (6.12)

I propose two algorithmic strategies to compute dependency functions: (i) pattern search
and (ii) SAT-based ESOP synthesis. For a given Boolean function f : Bn ! B over Boolean
variables x = x1, . . . , xn , both strategies iterate over the xi s for 1 ∑ i ∑ n and attempt to identify
one dependency function gi .

1. Pattern search. I iterate over all k-tuples (v1, . . . , vk ) of the set {x1, . . . , xi°1} over Boolean
variables for increasing values of k, 1 ∑ k ∑ K , where K is a fixed upper bound, and test if

xi · f (x) = g (v1, . . . , vk ) · f (x), (6.13)

for all dependency functions g from some fixed set of patterns. If the test succeeds,
g (v1, . . . , vk ) is a dependency function for xi . I consider three different types of depen-
dency functions: the identity function with a single argument to identify a dependency
on a single variable or its negation, the k-ary XOR function to identify XOR relations
between multiple variables or their negations, and the k-ary AND function to identify
AND relations between multiple variables or their negations.

2. SAT-based ESOP synthesis. I attempt to compute a dependency function in two steps:

Determining functional support: In the first step, I decide on the support of the de-
pendency function using distinguishing bit-pairs [115]. I compute the distinguishing
bit-pairs of t(x) = xi · f (x) and sort the variables x1, . . . , xi°1 by the number of distin-
guished bit-pairs with respect to t (x). I accumulate a set S µ {x1, . . . , xi°1} of variables in

68



6.6 UQSP using dependency analysis methods

this order until t(x) is guaranteed to be “reconstructable” using S, i.e., for each distin-
guishing bit-pair in t(x), there is a variable in S with the same distinguishing bit-pair.
Synthesizing structure: In the second step, I use SAT-based synthesis [66] to derive an
ESOP form g of the dependency function with support S that satisfies Eq. 6.10. Note
that my cost function prioritizes XORs with many fanins and ANDs with few fanins.

6.6.3 CNOT costs

I define a cost function ∞ that counts the number of CNOTs required to realize a dependency
function gi (x) as a quantum circuit based on the general constructions proposed by Schuch
and Siewert [95], Welch et al. [94], and Mottonen et al. [42]. Since in the beginning, all qubits
are zero, the relative phase of the rotation gates is zero, which allows reducing the number of
gates.

I distinguish three cases:

1. XOR clause. Let gi (x) be an m-ary XOR clause t (x) = l1 © · · ·© lm of literals l j , 1 ∑ j ∑ m.
The qubit qi can be prepared by a quantum circuit using ∞1(t ) CNOTs, where

∞1(t ) = |t | (6.14)

is the number of literals.

2. Product term. Let gi (x) be a product term t(x) = l1 · · · lm of literals l j , 1 ∑ j ∑ m. The
qubit qi can be prepared using a quantum circuit which requires ∞2(t ) CNOTs, where

∞2(t ) =
(
|t | if |t | 2 {0,1}

2|t | if |t | > 1.
(6.15)

In the case of no dependency, the number of CNOTs is zero. When the number of
literals is one, it indicates that there is an equality dependency, so the number of CNOTs
is one. For more than one literal the dependency pattern is a multi-controlled NOT
gate. If I consider a multi-controlled NOT gate and some identity gates, I can utilize the
decomposition method presented in [42] for uniformly-controlled single-target gates.
Applying this decomposition method results in 2|t | CNOTs.

3. ESOP form. Let gi (x) = t1(x)© · · ·© tm(x) be an ESOP form of product terms t j (x),
1 ∑ j ∑ m. I express the dependency pattern by a sequence of multi-controlled NOT
gates. Then, I propose two different ways to decompose this sequence, which require
different numbers of CNOTs.

Multi-controlled NOT gate decomposition prepares the qubit qi using ∞3(t1 © · · ·© tm)
CNOTs, where

∞3(t1 © · · ·© tm) = ∞2(t j?)°∞4(t j?)+
mX

i=1
∞4(ti ), (6.16)

with

∞4(ti ) =
(
|ti | if |ti | 2 {0,1}

2|ti |+1 °2 if |ti | > 1
(6.17)

69



Chapter 6. Uniform Quantum State Preparation

and
j? = argmax

i=1,...,m
|∞2(t j )°∞4(t j )|. (6.18)

As the initial state is zero in the beginning, I decompose the first gate using [42] with
fewer CNOTs and its cost is represented in Eq 6.15. For the rest I use the methods
presented in [95, 94] that do not require ancilla qubits. Their corresponding cost is
represented in Eq. 6.17. To reduce the number of CNOTs, I bring the gate with more
controls to the beginning and its index is computed by Eq. 6.18. As the summationPm

i=1∞4(ti ) in Eq. 6.16 accumulates the cost for all gates, the first gate’s cost (∞4(t j?)) is
subtracted from the result.

Uniformly-controlled single-target gate decomposition is applicable if the literals of the
product terms t j are subsets of each other. Then, they can be considered as controls of
a uniformly-controlled single-target gate. In comparison to the recursive construction,
using uniformly-controlled single-target gates leads to fewer controls and reduces the
number of CNOT gates, which are computed as follows:

∞5(t1 © · · ·© tm) = ∞2(t j?), (6.19)

where

j? = argmax
j=1,...,m

|t j |. (6.20)

For a given dependency function gi in the ESOP form, I compute both ∞3(gi ) and ∞5(gi ),
and return the minimum of them as the number of CNOTs.

Table 6.2 shows common cases of dependency functions, their CNOT costs, and realizations
as quantum circuits by example.

Example 6.6.1. Consider fW in Example 6.3.1. It can be represented with its minterms as

fW (x1, x2, x3) = x̄1x̄2x3 + x̄1x2x̄3 +x1x̄2x̄3. (6.21)

I derive the dependency function

x3 = g3(x1, x2) =¬(x1 ©x2) (6.22)

with the CNOT cost

∞(g3) = 2. (6.23)

By considering the quantum circuit corresponding to the XNOR dependency function in Ta-
ble 6.2, I get the circuit in Fig. 6.8 to prepare fW using the UQSPFD algorithm. Comparing two
figures 6.4 and 6.8, shows that I reduce the number of CNOTs by 4. Note that the 2-controlled
Ry (º) gate in Fig. 6.4 decomposes into 6 CNOTs.

70



6.6 UQSP using dependency analysis methods

Table 6.2: A list of common patterns of dependency functions, their CNOT costs, and an
example of their realization as a quantum circuit (for two inputs).

Dependency function
Cost
(#CNOTs)

Quantum circuit
(for one and two inputs)

gi = l1 1

q1 : |0i
q2 : |0i
q3 : |0i

gi =¬l1 1

q1 : |0i
q2 : |0i
q3 : |0i

gi = l1 © . . .© lm m

q1 : |0i
q2 : |0i
q3 : |0i

gi =¬(l1 © . . .© lm ) m

q1 : |0i
q2 : |0i
q3 : |0i

gi = l1 · · · lm 2m

q1 : |0i
q2 : |0i
q3 : |0i

gi =¬(l1 · · · lm ) 2m

q1 : |0i
q2 : |0i
q3 : |0i

q1 : |0i
q2 : |0i
q3 : |0i

Ry (0.39º)

Ry (º2 )

Figure 6.8: The quantum circuit to prepare fW by UQSPFD algorithm.

6.6.4 Variable reordering methods

Variable reordering affects both extracting dependencies and quantum state preparation,
e.g., the AN D operation is not reversible such that variable reordering changes dependency
extraction. Three variable reordering methods are evaluated to reduce the number of CNOTs:

1. Exhaustive Reordering preforms quantum state preparation for all permutations of
the variables of the Boolean function. For each variable order, a quantum circuit is
constructed. The quantum circuit with the smallest number of CNOTs is returned.
Exhaustive reordering does not scale and is only practical for the Boolean functions of a
few Boolean variables.

2. Random Reordering generates prior fixed numbers of different random permutations of
the variables relying on an implemented pseudo-random number generation.

71



Chapter 6. Uniform Quantum State Preparation

3. Greedy Reordering generates the set of all variable orders obtained by locally swapping
two variables of the function. The algorithm evaluates the number of required CNOTs
to synthesize the quantum circuit under the considered orders and repeats its task
using the variable order with the lowest costs as the starting point. The algorithm
proceeds until a local optimum is found and the number of CNOTs cannot be improved
by swapping variables.

6.6.5 Results & discussion

I compare the proposed UQSP using dependency analysis methods with Qiskit [111] which
implements the method presented by Iten et al. [101]. The UQSPFD method is implemented
in an open-source tool called angel, which is introduced in Chapter 9. The maximum level
of optimization is specified in Qiskit to generate the circuit with the minimum number of
CNOTs. All experiments are conducted on an Intel Core i7, 2.7 GHz with 16 GB memory.
I show, by comparing to Qiskit, that UQSPFD, specialized for uniform quantum states, is
more scalable and can substantially reduce the number of CNOTs over methods for arbitrary
state preparation. I examine the effect of using different dependency analysis and variable
reordering methods and construct a trade-off between them. Finally, I select my UQSPFD as
an improved algorithm and compare my results with the results extracted from QisKit for the
practical benchmarks.

Benchmarks

I present experiments for a large set of uniform quantum states including the well-known
quantum states GHZ and W. I also evaluate my algorithm to prepare uniform quantum states
required by the Quantum Byzantine Agreement (QBA) and Quantum Coupon Collector (QCC)
problems. Moreover, as I map uniform quantum states to Boolean functions and I use some
techniques from logic synthesis, I extract several Boolean functions from the EPFL and ISCAS
benchmarks, which are frequently used in logic synthesis.

Using dependency analysis

I evaluate UQSPFD in terms of runtime and the number of synthesized elementary quantum
gates. I primarily focus on the number of CNOTs which are more expensive than single-qubit
gates for NISQ quantum computers, but I also reduce rotation gates. I use the EPFL and
ISCAS benchmarks to evaluate my dependency analysis and variable reordering methods to
construct a good trade-off between them regarding runtime and the number of CNOTs. Next,
I compare my final results with Qiskit for the practical benchmarks such as the GHZ state,
W state, and uniform quantum states required by the QBA, and QCC with different k values
(k-QCC).

Dependency analysis methods

I compare the general functional decomposition method, presented in Section 6.4, against
UQSPFD with two different functional dependency methods. I implemented all methods using

72



6.6 UQSP using dependency analysis methods

Table 6.3: Experimental results regarding different dependency analysis methods.

Baseline [53] Pattern search SAT-based ESOP synthesis

Bench #Qs #funcs #CNOTs Time (s) #CNOTs Improve Time (s) #CNOTs Improve Time (s)

EPFL 4 367 4272 0.01 3990 6.60% 0.02 3972 7.02% 0.03

EPFL 5 1954 47430 0.12 45086 4.94% 0.30 44714 5.73% 0.42

EPFL 6 6424 289036 0.72 276424 4.36% 2.62 272753 5.63% 3.17

EPFL 7 14334 1208777 3.62 1087473 10.04% 18.02 1065106 11.89% 21.96

EPFL 8 23904 4137028 10.50 3525308 14.79% 91.68 3488039 15.69% 91.09

ISCAS 4 225 2358 0.01 2266 3.90% 0.01 2248 4.66% 0.02

ISCAS 5 676 14441 0.04 13527 6.33% 0.09 13266 8.14% 0.18

ISCAS 6 1150 48655 0.12 44874 7.77% 0.44 43495 10.61% 0.88

ISCAS 7 1452 124255 0.32 101603 18.23% 1.72 97912 21.20% 3.36

ISCAS 8 1571 273233 0.50 210139 23.09% 4.91 203904 25.37% 7.42

the same truth table package to represent Boolean functions. Truth tables are an effective
representation for Boolean functions of up to 16 variables. For larger states with more variables,
symbolic representations such as decision diagrams have to be used.

Table 6.3 presents the results of the general functional decomposition method as the baseline,
and UQSPFD with the proposed dependency analysis methods, pattern search, and SAT-
based ESOP synthesis. For each benchmark (bench) the number of variables and number of
functions are shown by #Qs and #funcs, respectively. The state preparation is done for one
fixed variable order 1, . . . ,n. For each benchmark, the number of CNOTs and the runtime in
seconds are shown accumulated over all functions. The CNOT reduction increases with the
number of qubits. The number of CNOTs are reduced by up to 14.79% and 15.69% for the
EPFL benchmarks and by up to 23.09% and 25.37% for the ISCAS benchmarks with pattern
search and SAT-based ESOP synthesis, respectively. The comparison between pattern search
and SAT-based ESOP synthesis shows that the ESOP-based approach reduces the number of
CNOTs further at the cost of requiring more runtime. Selecting the strategy allows users to
trade runtime for quality-of-results depending on the application scenario.

Variable reordering methods

I further examine the impact of the proposed variable reordering methods, Exhaustive Reorder-
ing (ER) which considers all n! orders, Random Reordering (RR) with n2 different randomly-
chosen orders using a fixed random seed, and Greedy Reordering (GR) which dynamically
reorders until no further local improvement is achieved, considering SAT-based ESOP as the
dependency strategy.

The experimental results using ESOP-based dependency analysis with ER, RR, and GR are
summarized in Table 6.4. For each reordering method, I show the number of CNOTs, the

73



Chapter 6. Uniform Quantum State Preparation

Table 6.4: Experimental results regarding different variable reordering methods.

ER with n! orders RR with n2 orders GR

Bench #Qs#funcs #CNOTsImproveTime (s) #CNOTsImproveTime (s) #CNOTsImproveTime (s)

EPFL 4 367 3646 14.65 0.44 3686 13.72% 0.25 3938 7.82% 0.11

EPFL 5 1954 39509 16.70 24.03 39895 15.89% 3.89 44247 6.71% 1.91

EPFL 6 6224 232679 19.50 953.33 237048 17.99% 45.46 270673 6.35% 16.73

EPFL 7 14334 730474 39.57 36258 790067 34.64% 325.38 1035187 14.36% 136.11

ISCAS 4 225 2064 12.47 0.30 2080 11.79% 0.17 2238 5.09% 0.07

ISCAS 5 676 12043 16.61 10.13 12104 16.18% 1.49 13248 8.26% 0.78

ISCAS 6 1150 38828 20.20 233.99 39294 19.24% 10.83 43226 11.16% 4.48

ISCAS 7 1452 72043 42.02 5170.97 76162 38.71% 42.55 94305 24.10% 22.41

relative improvement over the baseline, and the required runtime in seconds. Exhaustive
reordering reaches the best result, but requires too much runtime and can only be applied
to small functions in practice. Comparison of RR and GR shows that the CNOTs are reduced
using RR and runtime is increased because the number of considered orders using RR are
more than GR. But as CNOTs reduction is more important and runtime consumption using
RR is still less, I select RR over GR. As a result, to set the best trade-off between the number of
CNOTs and runtime, for a small number of qubits, I do preparation using ER and for a large
number, using RR.

Comparison to Qiskit for the practical quantum states

The experimental results for the quantum state preparation of the practical quantum states
are presented in Table 6.5. As benchmarks, the Boolean functions for the GHZ and W states as
well as QBA and k-QCC are considered, over n qubits (#Qs). I consider the Boolean functions
for different numbers of qubits in the range 8-18 qubits. My approach improves the number
of CNOTs, rotation gates, and runtime over Qiskit. The proposed method converges to the
optimum circuit for the GHZ state, whereas Qiskit uses a fixed precomputed optimal template
for this state. Note that in Table 6.5, Qiskit’s results come from applying their algorithm, not
using a template. For the W state, my approach reduces CNOTs significantly whereas Qiskit’s
results are close to the upper bound of 2n °2.

The QBA benchmark consists of a sequence of 1-bits in the beginning and a sequence of 0-bits
for the rest in its truth table. This means one can divide qubits into three parts. For the first
part, all bits are 1, and I can prepare them using only rotation gates without any control qubits.
For the second part, there is both 1s and 0s, and I can utilize dependencies to reduce control
qubits. For the third part, there is all 0s, which means the qubits will be in zero state and I do
not need to add any gate. Results in Table 6.5 show that my method can deal better over QisKit
for this benchmark. For example, my method prepares QBA with 16 qubits (QBA(16)) only
with 12 rotation gates whereas QisKit requires 180 CNOTs. From Eq. 6.5, QBA(16) consists of

74



6.7 Summary

Table 6.5: UQSPFD results in comparison to Qiskit results for the practical quantum states.

UQSPFD (ESOP+RR) Qiskit Improve (%)

Bench #Qs #CNOTs #Rgs Time (s) #CNOTs #Rgs Time (s) #CNOTs #Rgs Time (s)

GHZ 10 9 1 0.00 1013 1023 6.36 99.11 99.90 100.00

GHZ 12 11 1 0.00 4083 4094 25.63 99.73 99.98 100.00

GHZ 15 14 1 0.00 32752 32767 246.81 99.96 100.00 100.00

W 10 519 512 0.01 1013 1023 7.09 48.77 49.95 99.86

W 12 2057 2048 0.01 4083 4095 28.73 49.62 49.99 99.96

W 15 16396 16384 0.01 32752 32767 244.91 49.94 50.00 99.99

QBA 12 289 289 7.56 435 515 28.21 33.56 43.88 73.20

QBA 15 1438 1439 22.52 32620 32632 455.31 95.59 95.59 95.05

QBA 16 0 12 44.58 180 302 518.01 100.00 96.03 91.39

QBA 18 2343 2343 345.41 114643 114656 4138.01 97.96 97.96 91.65

QCC64 8 127 128 0.15 247 255 2.25 48.58 49.80 93.33

QCC3996 12 4094 4095 5.45 4063 4069 48.96 -0.76 -0.64 88.87

QCC1024 14 16382 16383 13.14 16367 16380 205.62 -0.09 -0.02 93.61

QCC256 16 32766 32768 40.7 65365 65248 912.32 49.87 49.78 95.54

total 76445 76404 479.54 309616 309826 6868.22 75.31 75.34 93.02

212 1-bits that shows I have all input assignments for the first 12 qubits. This shows that my
method prepares QBA state efficiently.

For the k-QCC benchmark, I select 4 different benchmarks with different k values, randomly.
As shown in the table, for some cases I reduce the number of CNOTs by exploiting dependen-
cies between qubits. But for some other cases, for example 3996-QCC and 1024-QCC, there is
not any dependencies between qubits and my results are close to the upper bound whereas the
Qiskit’s results are a little bit better. This is due to the fact that Qiskit uses post-optimization
methods whereas I do not apply any post-optimization.

In total, UQSPFD reduces CNOTs, rotation gates, and runtime for quantum states of up to 18
qubits in average by 75.31%, 75.34%, and 93.02%, respectively.

6.7 Summary

To address the general problem of preparing quantum states, a Boolean method specialized
for preparing uniform quantum states is proposed, called UQSP. Uniform quantum states are
an important family of states that are frequently used in quantum algorithms, e.g., quantum
cryptography. My method uses Shannon’s decomposition and cofactoring. I implemented
UQSP using both truth table and BDD representations as I can efficiently apply Shannon’s
decomposition to them. Using BDDs helps reducing runtime and prepare quantum states
with larger number of qubits where state-of-the-art methods are not applicable.

To furthere reduce the number of CNOTs, I introduced the idea of identifying functional
dependencies among qubits and used them to construct optimized quantum circuits. I added

75



Chapter 6. Uniform Quantum State Preparation

functional dependencies as an extension to my UQSP, called UQSPFD. I implemented UQSPFD

using truth tables. My state preparation method requires an exponential number of CNOTs
in the worst case but it reduces CNOTs significantly for practical benchmarks. Moreover, my
method generates an exact representation of quantum states without using ancilla qubits. I
compared my algorithm with Qiskit. The comparison shown that my method is capable to
reduce the average number of CNOTs by 75.31% for the practical benchmarks. The runtime is
almost reduced by a factor of 2.

76



7 Cyclic Quantum State Preparation

Cyclic states, a family of quantum state, can be described as a uniform superposition of
cyclic permutations on a basis state where the ones are located adjacently to each other. In
this chapter, I propose an efficient algorithm for preparing cyclic states. I further present
its circuit construction. The idea is based on creating cyclic permutations step-by-step. I
design my algorithm such that creating each permutation requires only a constant number of
2-qubit and 3-qubit gates regardless of the total number of qubits n. Notably, the number of
qubits required for creating each permutation is independent of n, since 2-qubit and 3-qubit
gates require only constant numbers of elementary quantum gates. As a result, my algorithm
requires only O(n) elementary quantum gates.

7.1 Related works

As cyclic states are a special subset of uniform quantum states, one can use the methods
presented in [53, 4]. The method described in [53] utilizes symbolic representations to reduce
runtime and elementary quantum gates. In [4], dependencies between qubits are identified to
reduce the number of elementary quantum gates. The experiments show that these methods
can reduce the number of gates but they cannot provide a linear complexity for preparing
cyclic states. The details on these methods are available in Chapter 6.

Authors in [2] present an efficient algorithm for preparing Dicke states, which are fully sym-
metric states and uses O(kn) quantum gates. However, their method works only for cyclic
states with k = 1 or k = n °1, not any value of k. In [3], the authors show a method to prepare
quantum states associated with graphs. The method prepares some specific subsets of Dicke
states including cyclic states with k = 2. In contrast, I propose an algorithm for preparing
cyclic states with arbitrary values of k ranging from 1 to n. Note that, in [3], it is claimed that
the method can be extended to cyclic states with other values of k, but the extension is highly
non-trivial as far as I can see. In addition, the complexity of preparing generic cyclic states
using the method in [3] is unclear.

I compare my results with the results of [2, 3, 4]. Comparison over [4] shows that I reduce
elementary quantum gates from exponential to linear complexity. While, my evaluation
against [2, 3] shows that my circuit construction works for any value of k as well as gains a

77



Chapter 7. Cyclic Quantum State Preparation

significant reduction of elementary quantum gates.

7.2 Cyclic states and their properties

Dicke states are an important family of n-partite (for n 2N§ = {1,2,3, ...}) quantum states [116].
For example, their robustness against photon-loss noise makes them a desirable resource in
building noise-resilient quantum sensors [117, 118]. Due to the importance of Dicke states,
their preparation has been demonstrated experimentally in various settings [119, 120, 121],
and quantum algorithms have been proposed to prepare them efficiently [2, 122, 123, 121].

Dicke states are fully symmetric, i.e., they are invariant under any permutation in the symmet-
ric group S(n) of n parties. Many realistic problems, nevertheless, only have partial symmetry
rather than the full symmetry. Consider, for instance, a quantum network consisting of n
nodes associated with a graph. A common type of tasks is to prepare a global (i.e. n-partite)
quantum state such that each node is only entangled to a certain subset of nodes. Such
tasks are growing more crucial as the quantum internet is being established [124, 125]. Dicke
states obviously fail to achieve this goal unless in the special case where the network graph is
complete.

In this chapter, I focus on cyclic states: a new family of partially symmetric multipartite
states that are more versatile than Dicke states in network applications. Cyclic states are
generated by performing the group of cyclic permutations C (n) in coherent superpositions on
a computational basis state |1i≠k |0i≠m (m := n °k):

|C n
k i := 1

p
n

X

º2C (n)
º

≥
|1i≠k |0i≠m

¥
. (7.1)

In other words, they are the uniform superpositions of computation basis states whose Ham-
ming weights are equal and whose ones are adjacent.

Note that |C n
1 i coincides with the W state [47]. One also gets back the original definition of

Dicke states by replacing C (n) with the full symmetry group S(n) in the above definition.

Cyclic states, as promised, have intriguing entanglement and coherence properties, which
promise their applications in quantum internet [124] and quantum metrology [126]. Their
arbitrary bipartite marginal state can be evaluated. Assuming w.o.l.g. k ∏ m, straightforward
calculation shows that the bipartite marginal state Ωi j := tri j |C

n
k ihC

n
k | is given by

Ωi j =

8
>>>>>>><
>>>>>>>:

k°1
n |11ih11|+ m°1

n |00ih00|+ 1
n |01ih01|+ 1

n |10ih10| ,

if |i ° j | 6= m, |i ° j | 6= k

2
n |™

+ih™+|+ m°1
n (|01ih01|+ |10ih10|)+ k°m

n |11ih11| ,

if |i ° j | = m or k

(7.2)

where |™+i := (|01i+|10i)/
p

2. One can immediately see that any two nodes are entangled if
and only if they are separated by m °1 nodes (as the entanglement of formation [127] is non-

78



7.3 Proposed method

zero). This is in contrast to Dicke states, for which there is the same amount of entanglement
between any two subsystems. In more details, by the Hashing inequality [128, 129], one
can lower bound the distillable entanglement ED of the marginal state. For the case when
|i ° j | = m = k, the distillable entanglement [130, 131] satisfies

ED ∏
µ

m +1
2m

∂
log2

µ
m +1

m

∂
°

µ
m °1

2m

∂
log2

≥ m
m °1

¥
> 0. (7.3)

The above implies that if n nodes in a quantum network share multiple copies of a cyclic
state, the relevant nodes (those whose distance is either m or k) can distill Bell states via
local operation and classical communication. This means that each node in the network can
establish secure quantum communication with one certain node in the network, while sharing
only classical correlation with others. Such a property can be used in quantum communication
tasks such as network routing [132, 133].

The above property of cyclic states also has useful applications in quantum metrology [126]
or, more precisely, multipartite phase estimation problems. Imagine that a cyclic state |C n

k i
is, again, shared by n individual nodes in a quantum network. The j -th node passes its qubit
through a phase gate P j := ei¡ j |0ih0|+e°i¡ j |1ih1| with an unknown phase ¡ j , resulting in the

global state |C n
k (~¡)i :=

≥
≠n

j=1P j

¥
|C n

k i. The goal is for arbitrary two nodes to jointly measure
their phase difference ±i j :=¡i °¡ j . Then, two nodes can jointly estimate ±i j if and only if
either |i ° j | equals m or k. Otherwise, they cannot extract any useful information since the
marginal state is independent of ±i j .

Given the above desired features, it is therefore meaningful to consider how to prepare cyclic
states efficiently.

7.3 Proposed method

As mentioned before, a cyclic state is defined as Eq. 7.1.

Example 7.3.1. The cyclic state |C 5
3i is represented by

|C 5
3i=

1
p

5
(|11100i+|01110i+|00111i+|10011i+|11001i). (7.4)

In this section, I propose an algorithm to prepare cyclic states deterministically. Next, I propose
a quantum circuit construction and a pseudo code for my algorithm. Moreover, a proof of
correctness is presented.

7.3.1 Cyclic state preparation algorithm

To prepare cyclic states, I design a unitary operator Cn,k , which takes as input the classical
state |1i≠k |0i≠m and generates the cyclic state |C n

k i

Cn,k (|1i≠k |0i≠m) = |C n
k i. (7.5)

79



Chapter 7. Cyclic Quantum State Preparation

|0i≠m

|1i≠k

Cn,k = SOn,k
SZ n°1,m

|C n
k i

Figure 7.1: General structure of cyclic state preparation algorithm.

From the definition of cyclic states in Eq. 7.1, and by considering the Example 7.3.1, it is
obvious that cyclic states are the superposition of two types of basis states. For the first type,
all the ones are together in the binary string of the basis states. In the second, ones are split
in the beginning and the end of the string. Hence, I divide the preparation into two parts.
First, I apply a block to Shift Ones (SO). This block generates all basis states of the first type
and results |0i≠m |1i≠k in the end that goes to the second block as input. Second, I create
the basis states of the second type. They are generated by circular shifting of |0i≠m |1i≠k that
corresponds to Shift Zeros (SZ ). To keep ones in the beginning and in the end of the string,
and to avoid creating repetitious basis states, I shift zeros one less time. Hence, I apply SZ
block on the last n °1 qubits. The general construction of my algorithm is depicted in Fig. 7.1.

7.3.2 Cyclic state circuit construction

In this section, I propose the detailed structure of SO and SZ blocks in creating all desired
basis states. I further present a pseudo code of my algorithm.

Explicit construction of SOo,k

In the following, I describe a construction of shifting ones unitary SOo,k . In this notation o
shows the total number of qubits entering the subroutine. The Fig. 7.2 shows its structure.
First, I apply a block on the last k +1 qubits to shift k ones one position to the right called
Shi f tOnes(o,k). Next, I apply same procedure iteratively on the first o°1 qubits that is shown
by SOo°1,k .

ShiftOnes(o, k) Building Block. I need to transform |1i≠k |0i to |0i|1i≠k . In this regard, I design
a quantum circuit that maps:

|1i≠k |0i!
r

1
o
|1i≠k |0i+

r
o °1

o
|0i|1i≠k . (7.6)

This transformation is constructed by a 1-controlled Ry (2cos°1
q

1
o ) which maps |0i!

q
1
o |0i+q

o°1
o |1i, and a CNOT, that is shown in Fig. 7.3. On one hand, as there are k successive ones, I

only need to check one of them. On the other hand, I know qo°k+1 is modified in the previous

80



7.3 Proposed method

o SOo,k =

k+
1 Shi f tOnes(o,k)

SOo°1,k

Figure 7.2: The construction of SO block iteratively.

o-k

o-k+1
...

o

Ry (2cos°1
q

1
o )

...

Figure 7.3: The circuit implementation of Shi f tOnes(o,k).

step for creating previous permutation. Hence, I select qo°k+1 as the control-qubit for the
1-controlled Ry gate to create the current permutation. Then, I apply a CNOT to convert last
qubit to |0i state.

Explicit construction of SZz,m

Here, a construction of shifting zeros unitary SZz,m is described. Its structure is shown in the
Fig. 7.4. Here, z shows the number of input to the block. First, Shi f t Z er os block is applied
on the last m +1 qubits to shift m zeros one position to the right. Next, I iteratively apply SZ
block on the first z °1 qubits that is shown by SZz°1,m .

ShiftZeros(z, m) Building Block. This time, I need to transform |0i≠m |1i to |1i|0i≠m . Hence, I
design a quantum circuit to transform

|0i≠m |1i!
r

1
z °m +1

|0i≠m |1i+
r

z °m
z °m +1

|1i|0i≠m . (7.7)

Note that the first part (SO) consists of m Shi f tOnes blocks. I consider its effect in adjusting
amplitudes in Eq. 7.7. This transformation is constructed by two CNOTs and a 2-controlled

Ry (°2cos°1
q

1
z°m+1 ) mapping |1i !

q
1

z°m+1 |1i+
q

z°m
z°m+1 |0i, in between, with negative

controls that is shown in Fig. 7.5. Here, to transform qz°m into |0i, all previous m qubits
should be |0i, but in practice it is not essential to check all the m qubits. In fact, I find that it is
enough to check qz°1 and qz°m+1 to guarantee proper functionality.

Algorithm 7.1 shows the pseudo-code of my deterministic algorithm for preparing the cyclic
states that I have already explained its detail.

81



Chapter 7. Cyclic Quantum State Preparation

z SZz,m =

m
+1 Shi f t Z er os(z,m)

SZ z°1,m

Figure 7.4: Construction of SZ block iteratively.

z-m

z-m+1
...

z-1

z

Ry (°2cos°1
q

1
z°m+1 )

...

Figure 7.5: The circuit implementation of Shi f t Z er os(z,m).

Algorithm 7.1: Deterministic Preparation of Cyclic States.
Input: The number of qubits n, The number of ones k
Output: The quantum circuit qc

1 Proc C(n, k):

2 qc = CreateAndInitializeQC(n, k)
3 ApplySO(qc, 1, n, k)
4 ApplySZ(qc, 2, n, n °k)
5 return qc

6

7 Proc Cr eate And Ini t i al i zeQC(n, k):

8 qc = CreateNewQC()
9 for i = 1, . . . ,n do

10 qc.CreateQubit(i )
11 if i > n °k then

12 qc.ApplyNOT(i )

13 return qc

14

15 Proc Appl ySO(qc, qst ar t , qend , k):

16 o = qend - qst ar t + 1
17 if o ∑ k then

18 return

19 qc.ApplyShiftOnes(o, k)
20 return ApplySO(qc, qst ar t , qend °1, k)

21

22 Proc Appl ySZ (qc, qst ar t , qend , m):

23 z = qend - qst ar t + 1
24 if z ∑ m then

25 return

26 qc.ApplyShiftZeros(z, m)
27 return ApplySZ(qc, qst ar t , qend °1, m)

82



7.3 Proposed method

7.3.3 Proof of correctness

Here I show that the circuit indeed prepares the cyclic state as desired. To this purpose, I first
define two families of intermediate states:

|√l i :=
r

1
n

l°1X

i=0
|0i≠i |1i≠k |0i≠m°i +

s
n ° l

n
|0i≠l |1i≠k |0i≠m°l (7.8)

and

|¡l i :=
r

1
n

m°1X

i=0
|0i≠i |1i≠k |0i≠m°i +

r
1
n

l°1X

j=0
|1i≠ j |0i≠m |1i≠k° j

+

s
n °m ° l

n
|1i≠l |0i≠m |1i≠k°l . (7.9)

By definition, the initial state is |√0i= |1i≠k |0i≠m . First, I analyse the action of SO(n,k) on the
input state. In the process of preparing cyclic states, any input to the shift one operation is in a
superposition of qubit strings of the form |0i≠i |1i≠k |0i≠m°i . Notice that, according to Fig. 7.3,
Shi f tOnes(n ° l ,k) acts non-trivially only if the (m ° l )-th qubit is |1i, and

Shi f tOnes(n ° l ,k)|0i≠i |1i≠k |0i≠m°i = |0i≠i |1i≠k |0i≠m°i i < l , (7.10)

and

Shi f tOnes(n ° l ,k)|0i≠l |1i≠k |0i≠m°l =

s
n ° l °1

n ° l
|0i≠l |1i≠k |0i≠m°l

+
r

1
n ° l

|0i≠l+1|1i≠k |0i≠m°l°1. (7.11)

Substituting into Eq. 7.8, I have

Shi f tOnes(n ° l ,k)|√l i= |√l+1i (7.12)

and thus

SO(n,k)|√0i= |√mi. (7.13)

It remains to be shown that SZ (n,m)|√mi= |C n
k i. By Eqs. 7.8 and 7.9, I reach to |√mi= |¡0i.

Next, notice that

Shi f t Z er os(n ° l ,m)|1i≠l |0i≠m |1i≠k°l =
s

n ° l °m
n ° l °m +1

|1i≠l |0i≠m |1i≠k°l +
r

1
n ° l °m +1

|1i≠l+1|0i≠m |1i≠k°l°1 (7.14)

83



Chapter 7. Cyclic Quantum State Preparation

and
Shi f t Z er os(n ° l ,m)|1i≠ j |0i≠m |1i≠k° j = |1i≠ j |0i≠m |1i≠k° j j < l . (7.15)

In addition, since I assumed m ∑ k, I also get

Shi f t Z er os(n ° l ,m)|0i≠i |1i≠k |0i≠m°i = |0i≠i |1i≠k |0i≠m°i . (7.16)

Therefore, substituting both into Eq. 7.9 I get

Shi f t Z er os(n ° l ,m)|¡l°1i= |¡l iSZ (n °1,m)|¡0i= |¡k°1i. (7.17)

The proof is concluded since by definition in Eq. 7.9 |¡k°1i= |C n
k i.

7.4 Results & evaluation

I compute the number of elementary quantum gates {CNOT, Ry , NOT} of my circuit construc-
tion. I assume k ∏ m, otherwise I only need to add 2n extra NOTs at the beginning and end of
the quantum circuit.

Shifting ones consists of m Shi f tOnes blocks. Considering the quantum circuit depicted in
Fig. 7.3, m 1-controlled Ry and m CNOT gates are required.

Shifting zeros consists of k°1 Shi f t Z er os blocks. As shown in Fig. 7.5, this part requires k°1
2-controlled Ry gates except when m = 1 or m = 2 which it requires k°1 1-controlled Ry gates,
instead. It also requires 2(k °1) CNOT gates. Moreover, this part requires NOT gates to apply
negative controls. Each Shi f t Z er os block consists of 8 NOTs but at least one of them can be
canceled by the next block. Hence, in between blocks require 6 NOTs and the total number of
NOTs is upper bounded by 6(k °1)+2. Note that when m = 1 or m = 2, as Shi f t Z er os blocks
are constructed by 1-controlled Ry gates, 6(k °1) NOTs are required.

To create elementary quantum gates, I decompose 1-controlled Ry and 2-controlled Ry gates
into {2 CNOTs, 2 Ry gates}, and {4 CNOTs, 4 Ry gates}, respectively. As a result, the cost function
regarding the number of CNOT gates (Costc ), Ry gates (Costr ), and NOT gates (Costn) are
formulated as follows:

Costc (n,k) =

8
>>>><
>>>>:

7 if k = 2,n = 3

4n °5 if k = n °1,n > 3

4n °6 if k = n °2

3n +3k °6 otherwise

, (7.18)

Costr (n,k) =

8
>>>><
>>>>:

4 if k = 2,n = 3

2n °2 if k = n °1,n > 3

2n °2 if k = n °2

2n +2k +4 otherwise

, (7.19)

84



7.5 Summary

Table 7.1: Proposed method comparison over methods in [2, 3].

#CNOT #Ry
[3] k = 2 7

2 n +3 4n +2
Proposed Method 4n °6 2n °2
[2] k = 1 > 5n > 4n
Proposed Method 4n °5 2n °2
[2] k = n °1 > 5n > 4n
Proposed Method 4n °5 2n °2

and

Costn(n,k) =

8
>>>><
>>>>:

6 if k = 2,n = 3

6n °12 if k = n °1,n > 3

6n °18 if k = n °2

6k °4 otherwise

. (7.20)

I compare my approach with state-of-the-art methods [2, 3] that can not prepare cyclic states
with arbitrary k. I compare the results in terms of the number of CNOTs that are more
expensive than single-qubit gates in NISQ architectures. I also show the number of Ry gates.
The results are shown in Table 7.1. To compare with [3], k should be only 2. As I assume
k ∏ m, it corresponds to k = n °2 with 2n extra NOTs. Considering Eqs. 7.18, 7.19, and 7.20,
my method generates 4n °6 CNOTs, 2n °2 Ry , and 8n °18 NOT gates. Results show that for
large n, the method in [3] works a little better while it is limited to k to be only 2. To compare
with Dicke state preparation method introduced in [2], I can only consider some specific
Dicke states |Dn

k i that are equal to a cyclic state |C n
k i. From their definitions, they are equal

when either k = 1 or k = n °1. As shown in the table, my method reduces both CNOT and Ry

gates significantly. Hence, my circuit construction is more general (no constraints on k) and
effective as compared to methods in [2, 3].

In addition, to compare for arbitrary k, I compare my method with uniform quantum state
preparation method in [4]. The results regarding the number of CNOTs are presented in
Table 7.2, for different number of n and k. The results show that my method reduces the
number of CNOTs by a factor of 2. When the number of qubits (n) is small, for some cases
(here for n = 10 and k = 5), my results are worse. This is due to the fact that, for these cases,
there exist good dependencies between qubits which are utilized by [4] to reduce CNOTs. In
the case that the number of qubits (n) is large, I reduce CNOTs with linear complexity, for all
values of k . Conversely, [4] increases the number of CNOTs exponentially.

7.5 Summary

Efficient quantum state preparation is a crucial step to design quantum computing systems.
In this chapter, I proposed a construction method as well as quantum circuits that determinis-
tically generate cyclic states. My circuit construction method uses 6n °9 CNOT gates in the
worst case when k = n °1, which is significantly better than the state-of-the-art methods. I
further provided experimental results that confirm this analysis.

85



Chapter 7. Cyclic Quantum State Preparation

Table 7.2: Comparing the number of CNOTs for the proposed method and the preparation
method in [4].

n k [4] Proposed Method Improve (%)

10

1 519 35 93.3

2 107 34 68.2

5 35 39 -11.4

7 72 45 37.5

12

1 2057 43 97.9

4 262 42 84.1

7 86 51 40.7

10 300 42 86.0

15

1 16396 55 99.7

2 1089 54 95.0

5 1034 54 94.8

7 282 60 78.7

17

1 65550 63 99.9

2 2161 62 97.1

5 570 60 89.4

8 542 69 87.3

19

1 262160 71 99.9

2 8304 70 99.1

7 1058 72 93.2

9 1058 78 92.6

86



8 Sparse Quantum State Preparation

In contrast to general quantum states, in most quantum computational tasks, the states
to prepare are from subfamilies of n-qubit states, such as uniform quantum states [53, 4],
Dicke states [2], and cyclic quantum states [54]. In these examples, all state subfamilies have
classical descriptions with symmetric structures, which hints at the possibility of utilizing
structured classical descriptions of quantum states to achieve efficient QSP. Here I exploit this
possibility and propose a novel QSP algorithm for quantum states represented by reduced
ordered decision diagrams. Decision diagrams are directed acyclic graphs over a set of Boolean
variables and a non-empty terminal set with exactly one root node [79]. Decision diagrams
avoid redundancies and lead to a more compact representation of logic functions.

8.1 Introduction

In this chapter, I consider the preparation of n-qubit quantum states |'i = P
s2SÆs |si, i.e.,

finding a unitary circuit U that consists of elementary quantum gates such that U |0i≠n = |'i.
Here the index set S Ω {0,1}n contains every binary string s such that the amplitude Æs of |si
is non-zero, and

P
s2S |Æs |2 = 1. Without loss of generality, I assume that basis states in S are

sorted in descending order. For two arbitrary n-bit strings s and s0, there is a natural order
s ¬ s0 if s is no smaller than s0 when both are regarded as binary numbers. In this way, I can
order the elements of S as s1 ¬ s2 ¬ · · ·¬ sm and express the state to prepare as

|'i=
mX

i=1
Æsi |si i. (8.1)

I use decision diagrams to represent the state in Eq. (8.1), where each basis state |si i and
each amplitude Æsi are represented by a path and a terminal node, respectively. I propose
an efficient algorithm that prepares an arbitrary quantum state given its associated decision
diagrams. The cost of my algorithm is O(kn), where k is the number of paths in the decision di-
agram. Since k is always upper bounded by (and can be much smaller than) m, the number of
non-zero amplitudes of the state in the computational basis, my algorithm efficiently prepares
any sparse state with m ø 2n . Sparse quantum states have many applications for example in
quantum linear system solvers [24], quantum Byzantine agreement algorithm [109] for large

87



Chapter 8. Sparse Quantum State Preparation

n, and quantum machine learning [22]. Besides, many problems in classical computing are
sparse such as sparse (hyper) graph problems [134]. To solve them using a quantum computer,
I need to prepare their associated sparse quantum states. In addition, my algorithm can also
efficiently prepare states with sparse decision diagrams (k ø 2n), even if the states themselves
are not sparse (m =≠(2n)).

Several algorithms have been proposed for sparse quantum state preparation [135, 136, 1] with
O(mn) cost. In all of them, the idea is based on preparing basis states one-by-one by applying
several CNOTs and one multiple-controlled single-target gate. Tiago et al. [135] use one ancilla
qubit to avoid disturbing prepared basis states while working on the others. Compared to
[136], their results show that their algorithm performs well when the number of 1 bits in binary
bit string representation of each basis state is almost 20%, which is a limitation. Emanuel et
al. [136] propose an algorithm to prepare sparse isometries which include sparse states as well.
Niels et al. [1] propose an algorithm that works in the opposite direction, i.e., they try to apply
some gates to obtain |0i≠n state from the desired sparse state. They repeat the same procedure
in m iterations. In every iteration, they select two basis states and merge them into one by
applying several CNOTs and one multiple-controlled single-target gate. Comparing methods
in [136] and [1], they both perform well with small m, and their circuit costs are almost the
same. However, the idea in [1] is simpler and its classical runtime, which is O(nm log2(m)), is
less than that of the algorithm in [136], which is O(

° n
log2(m)

¢
+nm2). Hence, I regard [1] as the

state of the art and compare my results to it.

Numerical experiments show that my algorithm outperforms the state of the art [1]. Depend-
ing on the sparsity m, my algorithm achieves an up to 31.85% reduction of the CNOT cost.
The algorithm works very well for the states with sparse decision diagram representations,
and uses up to 99.97% fewer CNOTs. In addition, my algorithm requires only one ancilla qubit,
in stark contrast to many existing works [104, 112, 137] with ancilla qubit that grow with n.

8.2 Proposed representation of quantum states using ADDs

My algorithm works efficiently by making use of a data structure named decision diagram
(DD). The detailed description on DDs is presented in Section 2.2.6. Here I present that how
DDs can be used to represent quantum states.

Quantum states represented by DDs. Rather straightforwardly, an arbitrary n-qubit quantum
state |'i=P

s2SÆs |si can be represented by a decision diagram: for any s 2 S, represent s by a
path in the tree and set its internal nodes to the qubit registers q1, q2, . . . , qn , its edges to solid
or dashed lines depending on the state of the registers, and its terminal node to Æs . I then
simplify the decision tree by removing all the paths corresponding to s 62 S and terminal nodes
whose values are zero. Next, I further apply the reduction rules to get a ROADD (called ADD for
short). When the state is uniform, i.e., all the amplitudes are equal, the ADD can be simplified
to a BDD, where a terminal node with the binary value 1 indicates that the associated paths
have non-zero amplitudes. Each path p of the reduced DD corresponds to one or more basis
states s 2 Sp , which is a subset of S. Denoting by P the set of the paths of the reduced DD, the

88



8.2 Proposed representation of quantum states using ADDs

DDS

q1

q2 q2

q3 q3 q3

q4 q4 q4 q4

1p
4

p
2p
4

p
0.5p
4

p
0.5p
4

(a)

1
4 +

2
4

1
4

1
4

2
4

2⇥ 0.5
4

1
4

2
4

0.5
4

1
4

2
4

q2 q2

q3 q3

q4q4 q4

DDS

q1

p
0.5p
4

1p
4

p
2p
4

(b)

Figure 8.1: Decision diagram representation of the quantum state in the Example 8.2.1. (a)
Before applying reduction rules. (b) After applying reduction rules.

state to prepare can be recast in the form:

|'i=
X

p2P

X

s2Sp

Æs |si. (8.2)

Notice that all basis states s 2 Sp have the same amplitude.

Example 8.2.1. The 4-qubit state

|'i= 1
p

4
(|1110i+

p
2|1001i+

p
0.5|0010i+

p
0.5|0000i) (8.3)

has index set S = {1110,1001,0010,0000} and non-zero amplitudes { 1p
4

,
p

2p
4

,
p

0.5p
4

,
p

0.5p
4

}. It can
be represented by the decision diagram in Fig. 8.1.a. I represent each s 2 S with a binary string
of qubits q1q2q3q4 where q1, q2, q3, and q4 are internal nodes. Each path shows a basis state
s, and the terminal node connecting to each path shows its corresponding amplitude. For
example, {s1 = 1110,Æ= 1p

4
} expresses that I have a path in which {q1 = 1, q2 = 1, q3 = 1,q4 = 0}

that connects to the terminal node 1p
4

. Further noticing that on the right-side of the diagram
(Fig. 8.1.a), two terminal nodes are equal which results in merging them. Furthermore, both left
and right sub-graphs of q3 are equal, so this node can be eliminated. Therefore, the decision
diagram can be reduced to the ADD in Fig. 8.1.b which contains 3 paths instead of 4. Actually, the
last two basis states s3 = 0010 and s4 = 0000 correspond to the same path {q1 = 0, q2 = 0, q4 = 0}.

89



Chapter 8. Sparse Quantum State Preparation

8.3 Proposed algorithm

In this section, I present my DD-based algorithm for quantum state preparation. I assume that
the quantum state to prepare is represented by either an ADD or a BDD (when it is uniform).
The use of DDs can aid in obtaining a quantum state that is free of redundancies, resulting in
reduced circuit costs.

The algorithm works by preparing the paths in a DD one-by-one. For any n-qubit quantum
state to prepare, my algorithm uses only one additional qubit qA as an ancilla, whose value is
tagged |yesi (regarded as |0i when used as a control qubit) or |noi (regarded as |1i when used
as a control qubit). Intuitively, qA serves as an indicator for whether a path has been created
in the course of the state preparation. Paths that have been created are marked by qA 7! |yesi
and, by using qA as control, I can avoid disturbing the created paths when creating a new path.

Each target-qubit in my quantum state preparation, transform |0i to a superposition of Æ|0i+
Ø|1i, where |Æ|2 (|Ø|2) shows the probability of being zero (one) after measurement. To achieve
this transformation, for some nodes, I need to apply a gate, called G , which is explained later.
Therefore, I traverse the DD twice: 1) to compute the G gate for each node, and 2) to prepare
the quantum state.

Post-order traversal to compute G gates. I traverse DD in post-order traversal (i.e. visiting
one-child, zero-child, and parent nodes). For each node, I compute the probability of being
one or zero from its corresponding one-child and zero-child. To compute zero probability
(called p0), for each node, I compute its portion from one-child (called t1) and zero-child
(called t0) and then it equals to

p0 =
t0

t1 + t0
. (8.4)

As an example, consider the state in Fig. 8.1.b, post-order traversal results in first visiting q4 in
the left-side. The portion from one-child is 0 and from zero-child is | 1p

4
|2 (as it is amplitude I

need to square it). Hence, the probability of being zero equals to
1/4

0+1/4
= 1. Next, I go through

the upper node q3, the portion from one-child comes from the summation of one-child
and zero-child portions of q4 which is 0+ 1

4 . The portion from zero-child is 0 and the zero
probability is 0

1/4+0 = 0. By continuing this procedure I obtain t1 and t0 which are written in
the figure on the edges. Note that I need to consider the effect of eliminated nodes. If e nodes
are eliminated along an edge, the portion is multiplied by 2e . For example, in the right-side of
the Fig. 8.1.b, on the zero-child of q2, one node (q3) is removed which results in t0 = 21 £ 0.5

4 .
Finally, Æ and Ø for G gates are computed by

p
p0 and

p
1°p0, respectively which I show it as

G(p0)|0i=p
p0|0i+

p
1°p0|1i. (8.5)

The above G(p0) can be implemented as a Pauli-y rotation: G(p0) = Ry (2cos°1(
p

p0)).

Pre-order traversal to prepare the quantum state. The algorithm begins with an empty
quantum circuit and all qubits initiated as:

|noiqA ≠ |0iq1 |0iq2 ...|0iqn . (8.6)

90



8.3 Proposed algorithm

Starting from the root, the algorithm traverses the DD with pre-order traversal (i.e. visiting
parent, one-child, and zero-child nodes). To accomplish the traversal, I need to define a
pointer current_node that points to the current node I are working on. To navigate through
the DD, I define functions one_child and zero_child which return child of the current node
regarding solid and dotted edges, respectively. While traversing through the DD, I compile the
state preparation circuit according to the following rules:

1. Preparation. If the current node q is an internal node that is already on a path pi , I do
as follows.

• If q is a branching node, which means it has both a zero-child and a one-child, I
apply to the quantum circuit, a 2-controlled G(p0) gate [cf. Eq. (8.5)] on q with
qA and the last node on the path that has a one-child as control qubits, where the
value of p0 is determined by the post-order traversal. Otherwise, q either has a
one-child or a zero-child. For the former case, I add a 2-controlled NOT gate on q
with qA and the last node on the path that has a one-child as control qubits. For
the later case, I do nothing.

• In addition, I need to consider the effect of reduced nodes between node q and its
children. A node is reduced when both its one-child and zero-child point to the
same thing. Hence, the qubit with half probability is zero and with half probability
is one. If this is the case, I append to the quantum circuit, 2-controlled G( 1

2 ) gates
on reduced nodes with qA and the last node on the path that has a one-child as
control qubits.

• If q is the parent of the i -th terminal node, then I add a 2-controlled phase gate on
q with qA and the last node on the path that has a one-child as control qubits that
adds a phase ei arg(Æi ) to the path state |si i.

2. Computing the ancilla. If the current node is a terminal node, it means that I have
prepared the current path. Hence, I need to compute the ancilla qubit to mark that the
current path is prepared. I append to the quantum circuit a multiple-controlled NOT
gate on qA with all qubits at branching nodes on path pi being control.

This is a recursive traversal where I visit the current node, one-child and zero-child, respec-
tively. In other words, I prepare paths from the largest (p1) to the smallest (pk ). In this way, I
can order the elements of P as p1 ¬ p2 ¬ · · ·¬ pk . As a result, using this traversal I can prepare
basis states in S from the largest (s1) to the smallest (sm). The pseudo-code of the proposed
algorithm is shown in Algorithm 8.1. Note that, in the post-order traversal, I have already
computed p0 values of G gates corresponding to each node and here I pass it as an argument
to the algorithm. Line 5 of Algorithm 8.1 shows the applying rule 2: Computing the ancilla, and
lines 8, 11, 14, 16, 19, and 21 illustrate different conditions of rule1: Preparation. Additionally,
I recursively visit one-child and zero-child in lines 18 and 23.

Fig. 8.2 shows the general structure of the output quantum circuit of my algorithm. Note that
for preparing p1, the ancilla qubit is not needed, because there is no other path prepared
before p1. Moreover, as pk is the last path to prepare, I do not need to compute the ancilla
qubit.

91



Chapter 8. Sparse Quantum State Preparation

Algorithm 8.1: Deterministic Preparation of Quantum States using DD.
Input: DD representation of an n-qubit quantum state |'i=Pm

i=1Æsi |si i, and p0 values corresponding
to each node of DD.

Output: The quantum circuit qc that prepares the desired quantum state.
1 Create a quantum circuit qc with n +1 qubits corresponding to qA q1q2...qn .
2 I nitialize the qc with |1iqA ≠ |0iq1 |0iq2 ...|0iqn .
3 I nitiate the pointer cur r ent_node as the root of DD.
4 PreOrder_traversal (cur r ent_node, qc, p0_values) :
5 if cur r ent_node is a terminal node then

6 Append to qc a multiple-controlled NOT gate with the qubits of br anches being controls and qA
being the target.

7 return

8 if cur r ent_node is a branching node then

9 Append to qc a 2-controlled gate G(p0) [cf. Eq. (8.5), with p0 from p0_values corresponding to
cur r ent_node] gate targeting the qubit corresponding to cur r ent_node controlled on ancilla
qubit and the qubit corresponding to the last |1i in the path.

10 Append the qubit corresponding to cur r ent_node and its value to br anches.

11 else

12 if one_chi ld(cur r ent_node) 6= null ptr then

13 Append to qc a 2-controlled NOT gate targeting the qubit corresponding to cur r ent_node
controlled on ancilla qubit and the qubit corresponding to the last |1i in the path.

14 if Some qubits are reduced between cur r ent_node and one_chi l d(cur r ent_node) then

15 Append to qc 2-controlled G( 1
2 ) gates targeting the reduced qubits with ancilla qubit and the qubit

corresponding to the last |1i in the path as controls.

16 if one_chi ld(cur r ent_node) is a terminal node then

17 Append to qc a 2-controlled phase gate that adds a phase eiÆ (corresponding to this path) targeting
the qubit corresponding to cur r ent_node controlled on ancilla qubit and the qubit corresponding
to the last |1i in the path.

18 PreOrder_traversal (one_chi l d(cur r ent_node), qc, p0_values)
19 if Some qubits are reduced between cur r ent_node and zer o_chi ld(cur r ent_node) then

20 Append to qc 2-controlled G( 1
2 ) gates targeting the reduced qubits with ancilla qubit and the qubit

corresponding to the last |1i in the path as controls.

21 if zer o_chi l d(cur r ent_node) is a terminal node then

22 Append to qc a 2-controlled phase gate that adds a phase eiÆ (corresponding to this path) targeting
the qubit corresponding to cur r ent_node controlled on ancilla qubit and the qubit corresponding
to the last |1i in the path.

23 PreOrder_traversal (zer o_chi l d(cur r ent_node), qc, p0_values)

Example 8.3.1. In this example, I show how to create a quantum circuit to prepare the state
represented in Fig. 8.1.b. By employing pre-order traversal, I can navigate through the three
paths represented by the colors black, red, and blue. To compute p0, values of t0 and t1 are
shown in the figure. Starting from the root, I need to append a G( 1

4 ) gate on q1 that shows the
probability of being zero for this qubit. Going through the black path (p1), on the next node q2

there exists a branch which requires a 1-controlled G( 2
3 ) gate. This is the first basis state and I do

not need to check the ancilla qubit. Next, on q3 there is not any branch but it has a one-child,
so it is required to append a CNOT gate with the last |1i in the path (q2) as control. Next, for
q4 there is not any branch and there is only a zero-child that does not require any action. To
compute the ancilla qubit, I need to add a multiple-controlled NOT gate on the ancilla qubit
with 2 controls on branching nodes which are q1 = 1 and q2 = 1.

92



8.4 Numerical experiments

qA : |1i

q1 : |0i

q2 : |0i
.
.
.

qn : |0i

QSP(DDS)

=

P
r
e
p
a
r
a
t
io
n
(
p
1
)

C
o
m
p
u
t
in
g
(
q
A
)

· · ·

· · ·

· · ·

· · · P
r
e
p
a
r
a
t
io
n
(
p
k
)

C
o
m
p
u
t
in
g
(
q
A
)

|'i

p1 pk

Figure 8.2: The general structure of the quantum circuit for QSP over DDS.

qA : |1i

q1 : |0i

q2 : |0i

q3 : |0i

q4 : |0i

G(
1
4 )

G(
2
3 )

G(
1
2 )

p1{s1} p2{s2} p3{s3, s4}

Figure 8.3: The generated quantum circuit for preparing the state presented as DD in Fig. 8.1.b.

Afterward, the traversal returns to q2 and goes through the red path (p2). It goes to q3, there is
not any branch and there is only a zero-child that does not require any action. Next, q4 has a
one-child and so I need to add a 2-controlled NOT gate on q4 with ancilla and q1 which is the
last |1i in the path as control qubits. Then, to mark that p2 is prepared, I add a 2-controlled
NOT gate on the ancilla qubit with q1 = 1 and q2 = 0.

Finally, the algorithm goes back to the root again and traverses the blue path (p3). q2 has a
zero-child and I do not need to add any gate for it. Next, the q3 is removed which requires adding
a G( 1

2 ) gate that shows with the half probability it is zero. There is not any last |1i in this path so
it only has one control which is the ancilla. Then, q4 has zero-child and again I do not need
to add any gate for it. the reduced node q3 enables the preparation of s3 and s4 together. This
reduces the number of iterations and so circuit cost. Moreover, as this path corresponds to the
last basis states s3, s4, I do not need to compute the ancilla qubit. Fig. 8.3 shows the generated
quantum circuit.

8.4 Numerical experiments

In this section, I evaluate the proposed algorithm over the state of the art [1]. My algorithm is
implemented in angel, which is introduced in Chapter 9. All experiments are conducted on an
Intel Core i7, 2.7 GHz with 16 GB memory.

Random states. I evaluate my algorithm on randomly generated states with different am-
plitudes. The parameter m denotes the number of basis states with non-zero amplitudes. I

93



Chapter 8. Sparse Quantum State Preparation

0 10n n2
2n2

4n2
8n2 n3 n4

0

1

2

3

4

5
·105

m

#
C
N
O
T
s

PM

SOTA

(a)

0 10n n2
2n2

8n2 1
2n

3 n3 n4

0

0.2

0.4

0.6

0.8

1

·106

m

#
C
N
O
T
s

PM

SOTA

(b)

0 10n n2
2n2

8n2 1
2n

3 n3 n4

0

0.5

1

1.5

2

·106

m

#
C
N
O
T
s

PM

SOTA

(c)

0 10n n2
2n2

8n2 1
2n

3 n3 n4

0

1

2

3

·106

m

#
C
N
O
T
s

PM

SOTA

(d)

Figure 8.4: Comparison between the CNOT complexities of my proposed method (PM) and

the state-of-the-art (SOTA) method. My PM is compared to the best-known algorithm (STOA)
in [1] on random sparse states of n qubits. For different n, I plot the number of CNOTs required
in both algorithms as a function of m, the number of non-zero amplitudes. It can be seen that
PM requires fewer CNOTs in the interval between 2n2 and n3 for n = 16,20, and 8n2 and n3

for n = 25,28. Moreover, the more increasing of m results in the more reduction of CNOTs. (a)
n = 16. (b) n = 20. (c) n = 25. (d) n = 28.

change m depending on n with different degrees.

I compare the size of the circuits produced by my proposed method (PM) with the state-of-
the-art method (SOTA) presented in [1]. The final circuits consist of CNOTs and single-qubit
gates as elementary quantum gates. I only consider the number of CNOTs as they are more
expensive than single-qubit gates in the NISQ. But consider that reducing CNOTs means I
are reducing single-qubit gates as well. Fig. 8.4 shows results for n = 16, 20, 24, and 28. For
each combination of parameters shown in the figure, I sampled 10 random states and show
the average values. Each sub-figure shows how the number of CNOTs grows as I increase
m as a function of n. For small m, SOTA is better as it is an efficient idea for sparse states.
But by increasing m my results closes to SOTA and finally for m = n3, PM outperform SOTA
up to 31.85%, 17.4%, 13.1%, and 11.4% for n equal to 16, 20, 25, and 28, respectively. The
reason is that in the decision diagram representation, for large m, there is a better sharing

94



8.4 Numerical experiments

Table 8.1: Experimental results for quantum states (qs) that have a sparse DD.

PM SOTA

qs n m #nodes #RNodes #paths (k) #CNOTs #CNOTs Imp. (%)

set 1 20 n 33 6 2 13 275 95.27

set 2 20 10n 41 25 5 190 9983 98.10

set 3 30 n 60 10 4 62 463 86.61

set 4 30 10n 78 41 9 568 17019 96.66

QBA 20 n3 32 110 18 1165 1361456 99.91

QBA 25 n3 37 123 19 1321 2974248 99.95

QBA 30 n3 44 141 22 1591 5512726 99.97

between basis states which results in a sparse decision diagram. The results for n = 16 are
better than those for larger values of n because the percentage of non-zero amplitudes is
higher for n = 16. Considering the sparsity condition in [1], m 2 o( 2n

n ), these values of m are
still sparse. I conclude that my method is more useful than SOTA for large m.

Special states. To show my improvement for small m, I extract special states whose DD
representations are sparse and the reduction rules work well on them. These states are
mostly uniform states that share paths better. These states benefit from the effect of reduced
nodes which reduce the number of paths and branching nodes in each path. This results in
reducing the number of multiple-controlled gates and their control qubits which is required
for computing the ancilla qubit. Table 8.1 shows the average results for such states (set 1, 2,
3, and 4) in comparison with SOTA. I consider two different numbers of qubits 20, 30, and
small m = n,10n. For each quantum state set, using the proposed method, I extract results
regarding the number of nodes, number of reduced nodes, number of paths, and number of
CNOTs. The number of reduced nodes shows that I can prepare several basis states together
which reduces the number of CNOTs. Moreover, the number of paths, which is important in
my complexity, is much less than the number of basis states, which results in reducing CNOTs.
I also extracted the number of CNOTs by SOTA. Comparison shows that I reduce the number
of CNOTs up to 98%.

Quantum Byzantine agreement (QBA) represents the quantum version of Byzantine agreement
which works in constant time. In this protocol, for n players, I need to prepare the quantum
state

|'i= 1
p

n3

n3X

i=1
|i i (8.7)

on n qubits. For large n, this state is sparse. Table 8.1 shows its results. The proposed method
prepares this state more efficiently. As shown in the Table 8.1, I reduce number of CNOTs by
99.97 % for QBA when n = 30. The reason is that the number of paths is much less than the
number of non-zero basis states.

95



Chapter 8. Sparse Quantum State Preparation

8.5 Algorithm performance

Correctness. First I explain how my algorithm prepares an arbitrary n-qubit state, given by
Eq. (8.2), without any approximation error. It is enough to show that, starting from the initial
state |noiqA ≠ |0i≠n , in each iteration, in which the path pi 2 P is traversed, I create a part
|yesi≠P

s2Spi
Æs |si of the target state, where Spi is the collection of basis states that are merged

into path pi in the creation of DD.

Meanwhile, I keep the prepared parts |yesi ≠P
j<i

P
s2Sp j

Æs |si untouched. (Be reminded
that p1 ¬ p2 ¬ · · · ¬ pk .) In this way, after traversing the last path pk , I end up with |yesi≠Pk

j=1
P

s2Sp j
Æs |si as desired, where the system is in the target state and is uncorrelated with

the ancillary qubit qA .

To see how this is achieved in each iteration, first, notice that a path is uniquely characterised
by its branching nodes and their values. For example, the path 000101 can be specified by
q1 = 0, q4 = 1, q5 = 0, and q6 = 1, as in between q1 and q4 I adopt the convention that both q2

and q3 take the same value as q1. Therefore, it is enough to prepare a branch without altering
other branches, by acting on each node using its preceding branching nodes as the control. In
my algorithm (more precisely, in preparation rule), I further reduce the cost by the following
crucial observation: When working on a qubit q in pi , consider its closest ancestor whose
value is one in pi , denoted by q̃ . Since the sequence p1, p2, . . . , pk is also ordered, only those
completed parts (i.e. the partial state

P
j<i

P
s2Sp j

Æs |si) corresponding to paths p1, . . . , pi°1

can have q̃ = |1i. On the other hand, for those paths where q̃ = |1i, they have already been
completed and thus are tagged |yesi (regarded as |0i when used as a control qubit) on qA .
Therefore, it is sufficient to use two qubits (q̃ and qA) as the control to make sure that other
completed parts are unaltered in the course of preparing the i -th part. As a result, I can
complete the i -th part without affecting the prepared paths by following the preparation rule
of the algorithm. Since the branching nodes uniquely determine a path, I can flip the value of
qA of the i -th part from |noi to |yesi by following the the computing the ancilla rule.

Circuit complexity. In DD, pi and pi°1 may share a common sub-path; therefore, I do not
need to start preparation from the root for every pi . As a result, this approach allows for the
addition of fewer gates, thereby reduces the number of single-qubit gates and CNOTs.

My idea is based on DD which I use reduced ordered BDD or ADD to represent the quantum
state. The use of these techniques results in a more compact representation of the quantum
state and eliminates redundancies, thereby reducing circuit costs during preparation. More-
over, reduced nodes enables preparing some basis states together. Hence, in contrast to the
previous works that the number of basis states (m) is considered in the circuit complexity, the
number of paths (k) is important in my complexity, and always

k ∑ m. (8.8)

According to Subsection 8.3, preparing a path is divided into two parts: preparing the path
and computing the ancilla qubit. As a quantum circuit, it requires a sequence of 2-controlled
gates to prepare the corresponding basis state (or basis states), and a multiple-controlled NOT
gate to compute the ancilla qubit.

96



8.6 Discussion

To compute the circuit complexity, I need to compute the number of 2-controlled gates for
the first part, and the number of controls for the second part. The number of 2-controlled
gates depends on the number of branching nodes in the path, and the number of one-child
in the path of the corresponding basis state. Moreover, in the DD, paths have overlap and
I prepare each basis state from the last common node with the previous basis state instead
of starting from root. Considering this optimization, my algorithm reduces the number of
2-controlled gates. But in the worst-case I require n 2-controlled gates. Decomposition of
each 2-controlled gates require 4 or 6 CNOT, and so I need O(n) CNOTs. For the second part,
the number of controls is equal to the number of branching nodes in the path. Then, I make
use of the method proposed in [89] to decompose multiple-controlled NOT gate using O(n)
CNOT gates and one ancilla. I repeat same procedure for k paths and so, in total, the number
of CNOTs is equal to

#C NOTs = k £O(n). (8.9)

Time complexity. I traverse DD twice to first compute G gates and secondly prepare the
quantum state. As I visit each node once, each traversal is linear in the number of nodes, and
such a number increases mildly (but not always) with problem size (i.e., qubits). The number
of nodes depends on the number of paths and the number of qubits in each path. Hence, the
number of nodes is always less than kn as there exist sharing nodes at least for the root. As a
result, the classical runtime is less than 2kn, which is less than the time required by the state
of the art [1].

8.6 Discussion

In this chapter, I have proposed an algorithm to prepare quantum states deterministically.
My idea is based on preparing basis states one-by-one instead of operating one-by-one on
the qubits. The latter is the key idea in general quantum state preparation algorithms. I have
utilized DDs to represent quantum states in an efficient way. This allows my algorithm to
be dependent on the number of paths where related works [135, 136, 1] are dependent on
the number of basis states. I prepare the paths from the largest to the smallest regarding
their binary bit strings. To do so, I traverse the DD in the pre-order traversal. Through this
traversal, I visit nodes on a path. For each node, depending on the existence of its two children
(i.e. branching node), I decide to append either 2-controlled single-target gates with different
targets or just skip that. Upon preparing the path, an ancilla qubit is computed by adding a
multiple-controlled NOT gate with the number of controls equal to the number of branching
nodes in the path. Considering the decomposition method in [89], preparing each path and
computing the ancilla qubit require O(n) CNOTs. As a result, the final circuit cost depends on
the number of paths and equals O(kn). DDs help in achieving a compact representation of the
state vector by reducing redundancies. The main advantages of my DD-based approach are:

• For preparing each path, I do not need to start from the root node. I go back to the last
common node with the previous path.

• When there are redundant nodes, removing them causes merging basis states to the
same path and I can prepare them together. This helps in two ways. First, it reduces the

97



Chapter 8. Sparse Quantum State Preparation

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Figure 8.5: Coupling map for the IBM Q Tokyo. Here 0, 1, . . . , 19 stand for physical qubits,
and the edges indicate their connectivity.

number of iterations (k). Second, it reduces the number of branching nodes in paths
which decreases the number of control qubits for computing the ancilla qubit.

Experimental results show that my idea works well for sparse DDs in which the number of
paths and branching nodes are reduced. A sparse DD will be achieved when either m is
small or m is not small but basis states share paths and can be prepared together. Hence, my
algorithm besides SOTA, work very well to prepare sparse states and states with sparse DDs.
As future work, I can consider variable reordering in DD to get a more sparse DD.

As a concluding remark, I note that analyses in this work are done assuming full connectivity
between qubits, whereas a realistic Quantum Processing Unit (QPU) is often subject to limited
qubit connectivity. In the following, I compare my algorithm to SOTA over an example that
takes into account the limited qubit connectivity.

Example 8.6.1. Consider preparing a uniform-amplitude quantum state corresponding to

S = {1000, 0100, 0011, 0010, 0001, 0000}. (8.10)

To prepare it on a QPU with full qubit connectivity, my method and SOTA require 10 and 12
CNOTs, respectively. When preparing it on IBM’s 20-qubit Tokyo with a coupling map as shown
in Fig. 8.5, the cost depends on the mapping from logical qubits to physical qubits, which I chose
to be:

{q1 ! 0, q2 ! 1, q3 ! 6, q4 ! 7}, qA ! 2. (8.11)

Under this mapping, compiling the circuit generated by my method and compiling the one
generated by SOTA both result in two extra SWAP gates. As each SWAP is decomposed into three
CNOTs, the final numbers of CNOTs for my method and SOTA are 16 and 18, respectively. Hence,
for this example, my method outperforms SOTA both before and after the compilation.

8.7 Summary

While the complexity of preparing a generic quantum state is exponential in the number of
qubits, in many practical tasks the state to prepare has a certain structure that allows for faster
preparation. In this chapter, I considered quantum states that can be efficiently represented
by (reduced) decision diagrams, a versatile data structure for the representation and analysis

98



8.7 Summary

of Boolean functions. I designed an algorithm that utilises the structure of decision diagrams
to prepare their associated quantum states. My algorithm has a circuit complexity that is
linear in the number of paths in the decision diagram. Numerical experiments shown that my
algorithm reduces the circuit complexity by up to 31.85% compared to the state-of-the-art
algorithm, when preparing generic n-qubit states with n3 non-zero amplitudes. Additionally,
for states with sparse decision diagrams, including the initial state of the quantum Byzantine
agreement protocol, my algorithm reduces the number of CNOTs by 86.61% ª 99.9%.

99





Part IVOpen-source Development

101





9 angel

Figure 9.1: angel’s logo

angel, whose logo is shown in Fig. 9.1, is a modern Quantm State Preparation (QSP) library
implemented in C++-17. The code and documentation is provided at “https://github.com/
fmozafari/angel”. As it is modular and header-only, it can be easily integrated with other tools
and often outperforms implementation developed in high-level programming languages such
as Python.

The angel library implements algorithms for QSP with the purpose of synthesizing an op-
timized quantum circuit to prepare a given quantum state. As an objective function, the
algorithms focus on minimizing the quantum circuit’s depth and the number of elemen-
tary quantum gates. In particular, the algorithms reduce the number of CNOT gates, which
are in many experimental NISQ architectures relatively expensive when compared to other
elementary quantum gates.

Finding the optimum quantum circuit with the minimum number of elementary gates, how-
ever, is in practice for arbitrary quantum states intractable. The angel library provides several
different heuristics, which allow its users to trade-off runtime for quality. A good quantum
circuit realization can be obtained fast and, if a user is willing to invest more runtime, the
proposed algorithms are often capable to achieve substantial gate reductions. In combination
with the tweedledum, a C++-17 header-only library for quantum circuit synthesis, angel can
generate quantum circuits in standard quantum circuit formats, such as Quantum Assembly
(QASM) or Quantum Instruction Language (QUIL).

103

https://github.com/fmozafari/angel
https://github.com/fmozafari/angel


Chapter 9. angel

In the current version, the angel library implements mainly algorithms for preparing uniform
quantum states, a special class of quantum states that can be represented with Boolean
functions, and sparse quantum states.

9.1 Uniform quantum state preparation

These states are superpositions of basis states, where all amplitudes are either zero or have
the same value. As a key point, I map uniform quantum states to Boolean functions. By
using Boolean functions to represent uniform quantum states, I can apply the Shannon
decomposition method to recursively solve the problem of state preparation. The algorithm
iterates over the variables of the Boolean function, which correspond to qubits, and prepares
them one-by-one, by computing the probability of being zero for the variable depending on
previously prepared variables. This computational step requires counting the number of ones
for each recursive co-factor of the Boolean function. The probability is then the number of
ones of the negative co-factor divided by the number of ones of the current function. To
reduce the number of elementary quantum gates, I utilize decision diagrams and functional
dependency analysis methods.

Using Decision Diagrams. The algorithm in [53] is implemented to prepare uniform quantum
states using BDDs, as a representation of Boolean functions. BDDs are particularly suitable
for my purpose because counting and co-factoring can be very efficiently implemented as
BDD operations. More details are available in [53].

Using Functional Dependencies. Utilizing Boolean functions allows identifying functional
dependencies among variables. In several cases, however, the recursive decomposition can
be avoided in favor of more optimized constructions if a functional dependency among the
current and the previously prepared qubits is recognized. Such functional dependencies have
been developed in the context of logic synthesis. The identified functional dependencies
for a qubit qi can be utilized in three ways: (1) to reduce the number of control qubits if
qi depends only on a subset of the previously prepared qubits, (2) to reduce the number
of elementary quantum gates if the functional dependency can be well expressed with the
library of hardware supported quantum gates, and (3) to reduce the number of control qubits
for preparing other next qubits to be prepared. Two approaches are presented to identify
functional dependencies in [4]. These approaches are implemented using truth tables-based
algorithms: the first approach, pattern search, identifies dependencies among variables that
have a fixed and predefined structure; the second approach, ESOP synthesis, uses a SAT-based
synthesis algorithm [66] for Exclusive-or Sum-Of-Product (ESOP) forms with a modified cost
function. Finding dependencies in form of ESOP expressions with an XOR with many fanins
and ANDs with only few fanins are particularly useful because they are the most general
dependency structure that reduce the number of elementary gates. Moreover, I make use of
variable reordering to ensure that no beneficial dependency is overlooked. More details are
available in [4].

104



9.2 Sparse quantum state preparation

9.2 Sparse quantum state preparation

These states are superpositions over a given set S Ω {0,1}n , |S| << 2n . I present these states
using Algebraic Decision Diagram (ADD). Each path in the ADD shows its corresponding basis
state from the set S. I go through each path and prepare each basis state efficiently. Then, I use
an ancilla qubit to show the basis state is prepared. As an alternative, I use BDDs to prepare
sparse and uniform quantum states. Details on this algorithm are available in [55].

9.3 Examples

I show how to use a dependency analysis and variable reordering algorithm to synthesize a
quantum circuit from a Boolean function given as a truth table using angel in combination
with kitty1 and tweedledum2 as below:

1 #include <angel/angel.hpp>

2 #include <tweedledum/IR/Circuit.h>

3 #include <kitty/kitty.hpp>

4

5 /* Prepare a truth table */

6 kitty::dynamic_truth_table tt( 3 );
7 kitty::create_from_binary_string( tt,
8 std::string( "1000" "0001" ) );
9

10 /* Prepare tweedledum�s network type */

11 tweedledum::Circuit network;
12

13 /* Setup ESOP-based dependency analysis */

14 angel::esop_deps_analysis::parameter_type epars;
15 angel::esop_deps_analysis::statistics_type estats;
16 angel::esop_deps_analysis esop( epars, estats );
17

18 /* Setup exhaustive reordering strategy */

19 angel::exhaustive_reordering order;
20

21 /* Prepare parameters and statistics */

22 angel::state_preparation_parameters ps;
23 angel::state_preparation_statistics st;
24

25 /* Perform state preparation */

26 angel::uniform_qsp_deps
27 <decltype(network), decltype( esop ), decltype( order )>
28 ( network, esop, order, tt, ps, st);

1C++17 Library for analysis, compilation/synthesis, and optimization of quantum circuits,
https://github.com/boschmitt/tweedledum.

2C++ truth table library, https://github.com/msoeken/kitty.

105

https://github.com/boschmitt/tweedledum
https://github.com/msoeken/kitty


Chapter 9. angel

In the lines 6 to 8, I prepare the truth table of a 3-variable Boolean function using kitty.
In the lines 14 to 16, I setup the dependency strategy, which takes epars and estats as
arguments. The parameters are inputs and can be used to customize the dependency analysis
algorithms. The statistics are outputs generated by the algorithm containing runtime as well
as the number and types of identified dependencies. In line 19, I setup the reordering strategy,
which considers all possible reordering of the 3-variable Boolean function. Other strategies,
such as random or greedy reordering, exist. In line 26, I call my algorithm with the setup
dependency and reordering strategies to prepare the quantum state given as a truth table. The
final circuit is available as a network from tweedledum.

I show how to synthesize a quantum circuit for a sparse quantum state using angel in combi-
nation with CUDD1 and tweedledum as below:

1 #include <angel/angel.hpp>

2 #include <tweedledum/IR/Circuit.h>

3 #include <cudd/cudd.h>

4 #include <cudd/cuddInt.h>

5

6 /* Create ADD from a map of

7 basis states and their amplitudes */

8 Cudd cudd;
9 auto const f_add = create_add( cudd, map_amplitudes );

10

11 /* Prepare tweedledum�s network type */

12 tweedledum::Circuit network;
13

14 /* Prepare statistics */

15 angel::sparse_qsp_statistics stats;
16

17 /* Perform state preparation */

18 angel::sparse_qsp<network_type>( network, f_add, stats );

In the lines 8 to 9, I read a map consisting of basis states and their corresponding amplitudes
and use CUDD to create its corresponding ADD. In line 12, I specify returning network type
from tweedledum. In line 15, I setup the variable stats that results in the final statistics of my
generated circuit. Finally, in line 18, I call my QSP algorithm.

9.4 Summary

This chapter introduces the modular C++ library angel that I developed and maintain for quan-
tum state preparation. The library provides several algorithms to enable scalable quantum
state preparation and reduce the number of CNOT gates required for the preparation process.

1CUDD: CU Decision Diagram package, https://github.com/ivmai/cudd.

106

https://github.com/ivmai/cudd


10 Conclusions

This thesis focused on proposing efficient and effective algorithms to outperform multiple
challenges faced by quantum compilers. A quantum compiler, is a software tool that takes
a high-level quantum algorithm and translates it into a lower-level quantum circuit that
can be executed on a specific quantum hardware platform, while taking into account the
hardware constraints of that platform. These constraints include limitations on the number
of qubits, the connectivity between qubits, the available hardware-specific gate sets, and the
restricted circuit depth due to noise. I studied several problems including circuit synthesis for
permutations, and quantum state preparation, which are crucial tasks for quantum compilers.

In Part II, I define a problem in quantum circuit synthesis and its importance. On circuit
synthesis, the contribution is as follows:

• In Chapter 4, I propose an automated compilation algorithm that is tailored to specific
quantum hardware, aimed at translating quantum operations for implementing permu-
tations. The algorithm takes as its inputs a permutation over 2n elements, the coupling
constraints of the targeted quantum computer, and a gate library. It then returns a quan-
tum circuit composed of gates from the given library, while ensuring that the circuit
respects the coupling constraints. To achieve this, I employ a Young-subgroup based
reversible logic synthesis technique [39] that finds a sequence of 2n °1 single-target
gates for a given permutation over n qubits. To translate a single-target gate into a
quantum circuit consisting of Clifford+Rz library gates, I present a general algorithm.
Finally, I utilize an explicit rewiring technique to reduce the number of quantum gates
required for implementation.

In Part III, the problem of quantum state preparation is defined. I also presented the ways
that research address this problem. Next, I defined several important families of quantum
states and my proposed algorithm to prepare them. On quantum state preparation, the
contributions are as follows:

• In Chapter 6, I introduce uniform quantum states that are an important family of
quantum states. Many well-known quantum states are uniform, such as Bell state,
GHZ state, and W state. These states are a uniform superposition of basis states, which

107



Chapter 10. Conclusions

all amplitudes are either zero or have same values. I showed that I can map uniform
quantum states into Boolean functions. Hence, I proposed and algorithm based on
functional decomposition to prepare the state qubit-by-qubit, recursively. There are 2
contributions on preparing uniform quantum states as follows:

– First, I utilized BDDs as a symbolic representation of Boolean functions to reduce
circuit cost. BDDs by reducing redundancies can create a more compact repre-
sentation, if some exists. This helps reducing unnecessary and redundant gates in
creating the circuit for a quantum state.

– Second, I found sometimes that there is a relation between qubits, and I can exploit
that to reduce circuit cost instead of applying the general recursive approach. To
extract dependencies, I utilized functional dependency analysis and proposed two
methods, pattern search and ESOP based synthesis. In pattern search, I assume
some fixed dependency functions such as Equality, AND, XOR, and there nega-
tions to find dependency functions. In ESOP based I utilized the method in [66]
to expresses the dependency function as an ESOP term. Exploiting dependen-
cies between qubits helps to reduce CNOTs by creating simpler gates that their
decomposition require less CNOTs.

• In Chapter 7, I introduced another family of quantum states that I called them cyclic
quantum states. I presented their importance and motivation behind preparing them
separately by an efficient algorithm. These states are a uniform superposition of a group
of cyclic permutations where all ones of the basis state are adjacent (exp. |011100i) or
in the front and the end of the basis state (exp. |110001i). I proposed an algorithm to
prepare them efficiently in linear complexity regarding the number of qubits.

• In Chapter 8, I proposed a deterministic algorithm that mainly considers sparse quan-
tum states. The proposed method is based on preparing the basis states one-by-one,
rather than operating on each qubit individually. This approach deviates from the con-
ventional idea behind general quantum state preparation algorithms. I employed ADDs
to represent quantum states efficiently, which allows my algorithm to be dependent on
the number of paths, whereas other related works are dependent on the number of basis
states. After preparing a path, an ancilla qubit is computed using a multi-controlled
NOT gate with the number of controls equal to the number of branching nodes in the
path. My approach offers several key advantages, including: (1) For each path, it is not
needed to start from the root node. Instead, I go back to the last common node with
the previous path, which saves time and computational resources. (2) When redundant
nodes are removed, it causes merging of basis states to the same path, allowing them
to be prepared together. It reduces the number of iterations required for preparing the
quantum state, and it decreases the number of branching nodes in paths, which in turn
reduces the number of control qubits needed for computing the ancilla qubit.

• In Chapter 9, I presented my contribution to developing an open-source tool, called
angel. angel is is designed for quantum state preparation and provides algorithms for
preparing uniform quantum states using BDD and truth tables. In addition, the library
includes a functional dependency analysis feature to find dependencies between qubits
for further improvements. The implementation of sparse quantum state preparation

108



10.1 Future directions

using ADD is also provided. The angel library offers a modular and extensible framework
for quantum state preparation.

10.1 Future directions

While this thesis makes a valuable contribution to the field, it is important to note that it
represents only a small portion of the effort required to achieve practical quantum computing.
The future of quantum computing faces several significant challenges that must be overcome
to realize the full potential of this technology. These challenges include developing scalable
quantum hardware with low error rates, improving quantum algorithms to solve real-world
problems, and finding ways to efficiently integrate quantum computers into existing com-
putational infrastructure. Additionally, new methods for quantum error correction and fault
tolerance will be crucial for achieving practical, error-free quantum computation.

As a final remark, I would like to highlight several potential directions for my work on quantum
state preparation and extending the angel tool.

Other families of quantum states. So far, I have presented three families of quantum states:
uniform quantum states, cyclic quantum states, and sparse quantum states. While it takes
an exponential cost in circuit and runtime to prepare arbitrary states, I have proposed new
methods for efficiently preparing these three families of states. As future works, it is a good
idea to investigate other important families of quantum states and find a way to prepare them
more efficiently.

Arbitrary quantum states. As I mentioned before, the task of preparing arbitrary quantum
states requires exponential quantum gates and circuit depth. I am thinking of finding a way
to propose an idea for efficiently preparing arbitrary quantum states. My idea is based on
utilizing current ideas that I proposed. To do that, I am looking for a way to break down an
arbitrary quantum state into several smaller, separable superposition states which can make
the task of preparing them more efficient. There may be multiple ways of dividing the arbitrary
state into smaller. I will consider different partitioning schemes and determine which one
yields the most efficient preparation strategy. Breaking down a state into smaller parts may
introduce entanglement between the parts. I need to keep track of this entanglement and
ensure that it does not lead to exponential overheads in preparing the final state.

Extending angel. One of my objectives is to expand the capabilities of angel by incorporating
existing techniques for quantum state preparation. My goal is to develop a comprehensive
tool for QSP by integrating a variety of approaches into angel.

Tensor network simulation. As quantum computing applications and complexity continue
to grow, the simulation of quantum circuits is becoming increasingly important for research,
development, and verification purposes. The recent development of tensor network-based
simulation [138, 139] has garnered significant interest due to its potential for simulating large-
scale quantum computers with over 100 qubits, which is currently not feasible using existing
classical computers.

One of the main challenges in tensor network-based quantum circuit simulation is efficiently

109



Chapter 10. Conclusions

constructing a tensor network representation for an initial quantum state. This challenge
becomes increasingly difficult with larger numbers of qubits, as the required storage grows
exponentially. To address this issue, researchers have proposed using the Matrix Product
State (MPS) [140] representation, which requires only linear storage. However, the traditional
approach for creating MPS involves computationally expensive Singular Value Decomposition
(SVD) [141], which quickly becomes intractable for larger numbers of qubits. This limitation
makes tensor network simulation impractical for many cases.

An interesting future direction for research is developing efficient methods for preparing quan-
tum states for tensor network simulations using MPS without relying on SVD computation. By
addressing this challenge, researchers can significantly enhance the efficiency and scalability
of tensor network-based quantum circuit simulation, paving the way for practical applications
in the field of quantum computing.

110



Bibliography

[1] N. Gleinig and T. Hoefler, “An efficient algorithm for sparse quantum state preparation,”
in 2021 58th ACM/IEEE Design Automation Conference (DAC), pp. 433–438, IEEE, 2021.

[2] A. Bärtschi and S. Eidenbenz, “Deterministic preparation of dicke states,” in Interna-
tional Symposium on Fundamentals of Computation Theory, pp. 126–139, Springer,
2019.

[3] A. Burchardt, J. Czartowski, and K. Życzkowski, “Entanglement in highly symmetric
multipartite quantum states,” arXiv preprint arXiv:2105.12721, 2021.

[4] F. Mozafari, H. Riener, M. Soeken, and G. De Micheli, “Efficient boolean methods for
preparing uniform quantum states,” in IEEE Transactions on Quantum Engineering
(TQE), in press, pp. 170–175, IEEE, 2021.

[5] R. P. Feynman, “Simulating physics with computers,” International journal of theoretical
physics, vol. 21, no. 6, pp. 467–488, 1982.

[6] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer,” SIAM review, vol. 41, no. 2, pp. 303–332, 1999.

[7] L. M. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L.
Chuang, “Experimental realization of shor’s quantum factoring algorithm using nuclear
magnetic resonance,” Nature, vol. 414, no. 6866, pp. 883–887, 2001.

[8] J. Jones and M. Mosca, “Implementation of a quantum algorithm on a nuclear magnetic
resonance quantum computer,” Journal of Chemical Physics, vol. 109, no. 5, pp. 1648–
1653, 1998.

[9] M. H. Devoret and R. J. Schoelkopf, “Superconducting circuits for quantum information:
an outlook,” Science, vol. 339, no. 6124, pp. 1169–1174, 2013.

[10] S. Bravyi, O. Dial, J. M. Gambetta, D. Gil, and Z. Nazario, “The future of quantum
computing with superconducting qubits,” Journal of Applied Physics, vol. 132, no. 16,
p. 160902, 2022.

[11] Google, “A preview of Bristlecone, Google’s new quantum processor,” 2018. Article on
Google AI Blog, posted online March 5, 2018.

[12] IBM, “IBM builds its most powerful universal quantum computing processors,” 2017.
Press release by IBM, posted online May 17, 2017.

111



Bibliography

[13] IBM, “Ibm unveils 400 qubit-plus quantum processor and next-generation ibm quan-
tum system two.” https://newsroom.ibm.com/latest-news-quantum-innovation, 2022.

[14] K. R. Brown, J. Kim, and C. Monroe, “Co-designing a scalable quantum computer with
trapped atomic ions,” npj Quantum Information, vol. 2, no. 1, pp. 1–10, 2016.

[15] J. L. O’brien, “Optical quantum computing,” Science, vol. 318, no. 5856, pp. 1567–1570,
2007.

[16] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear
optical quantum computing with photonic qubits,” Reviews of modern physics, vol. 79,
no. 1, p. 135, 2007.

[17] M. Freedman, A. Kitaev, M. Larsen, and Z. Wang, “Topological quantum computation,”
Bulletin of the American Mathematical Society, vol. 40, no. 1, pp. 31–38, 2003.

[18] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum, vol. 2, p. 79,
2018.

[19] C. H. Bennett and G. Brassard, “An update on quantum cryptography.,” in Crypto, vol. 84,
pp. 475–480, Springer, 1984.

[20] and others, “Advances in quantum cryptography,” arXiv preprint arXiv:1906.01645, 2019.

[21] G. H. Low and I. L. Chuang, “Hamiltonian simulation by qubitization,” Quantum, vol. 3,
p. 163, 2019.

[22] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum
machine learning,” Nature, vol. 549, no. 7671, pp. 195–202, 2017.

[23] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. Yuan, “Quantum computa-
tional chemistry,” Reviews of Modern Physics, vol. 92, no. 1, p. 015003, 2020.

[24] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for linear systems of
equations,” Physical review letters, vol. 103, no. 15, p. 150502, 2009.

[25] M. A. Nielsen and I. Chuang, “Quantum computation and quantum information,” 2002.

[26] C. Chen, B. Schmitt, H. Zhang, L. S. Bishop, and A. Javadi-Abhar, “Optimizing quantum
circuit synthesis for permutations using recursion,” in Proceedings of the 59th ACM/IEEE
Design Automation Conference, pp. 7–12, 2022.

[27] A. Zulehner and R. Wille, “Compiling su (4) quantum circuits to ibm qx architectures,”
in Proceedings of the 24th Asia and South Pacific Design Automation Conference, pp. 185–
190, 2019.

[28] W.-H. Lin, B. Tan, M. Y. Niu, J. Kimko, and J. Cong, “Domain-specific quantum archi-
tecture optimization,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 12, no. 3, pp. 624–637, 2022.

[29] B. Nash, V. Gheorghiu, and M. Mosca, “Quantum circuit optimizations for nisq architec-
tures,” Quantum Science and Technology, vol. 5, no. 2, p. 025010, 2020.

112

https://newsroom.ibm.com/latest-news-quantum-innovation


Bibliography

[30] R. Wille, L. Burgholzer, and A. Zulehner, “Mapping quantum circuits to ibm qx architec-
tures using the minimal number of swap and h operations,” in Proceedings of the 56th
Annual Design Automation Conference 2019, pp. 1–6, 2019.

[31] A. Kole, S. Hillmich, K. Datta, R. Wille, and I. Sengupta, “Improved mapping of quan-
tum circuits to ibm qx architectures,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 10, pp. 2375–2383, 2019.

[32] B. Tan and J. Cong, “Layout synthesis for near-term quantum computing: Gap anal-
ysis and optimal solution,” in Design Automation of Quantum Computers, pp. 25–40,
Springer, 2022.

[33] B. Tan and J. Cong, “Optimal layout synthesis for quantum computing,” in Proceedings
of the 39th International Conference on Computer-Aided Design, pp. 1–9, 2020.

[34] B. Tan and J. Cong, “Optimality study of existing quantum computing layout synthesis
tools,” IEEE Transactions on Computers, vol. 70, no. 9, pp. 1363–1373, 2020.

[35] J. S. Otterbach et al., “Unsupervised machine learning on a hybrid quantum computer,”
arXiv preprint arXiv:1712.05771, 2017.

[36] Intel, “The future of quantum computing is counted in qubits,” 2018. Press release by
Intel, posted online May 2, 2018.

[37] C. Figgatt, D. Maslov, K. A. Landsman, N. M. Linke, S. Debnath, and C. Monroe, “Com-
plete 3-qubit Grover search on a programmable quantum computer,” vol. 8, no. 1918,
pp. 1–9, 2017.

[38] Alibaba, “Alibaba Cloud and CAS launch one of the world’s most powerful public quan-
tum computing services,” 2018. Press release by Alibaba Cloud, posted online March 1,
2018.

[39] A. De Vos and Y. Van Rentergem, “Young subgroups for reversible computers,” Advances
in Mathematics of Communications, vol. 2, no. 2, pp. 183–200, 2008.

[40] V. Bergholm, J. J. Vartiainen, M. Möttönen, and M. M. Salomaa, “Quantum circuits with
uniformly controlled one-qubit gates,” Physical Review A, vol. 71, no. 5, p. 052330, 2005.

[41] P. Kaye and M. Mosca, “Quantum networks for generating arbitrary quantum states,” in
International Conference on Quantum Information, p. PB28, Optical Society of America,
2001.

[42] M. Mottonen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, “Transformation of
quantum states using uniformly controlled rotations,” Quantum Information and Com-
putation, vol. 5, no. 6, pp. 467–473, 2005.

[43] V. V. Shende, S. S. Bullock, and I. L. Markov, “Synthesis of quantum-logic circuits,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 6,
pp. 1000–1010, 2006.

113



Bibliography

[44] P. Niemann, R. Datta, and R. Wille, “Logic synthesis for quantum state generation,” in
2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL), pp. 247–252,
2016.

[45] M.-X. Luo, S.-Y. Ma, Y. Deng, and X. Wang, “Deterministic generations of quantum
state with no more than six qubits,” Quantum Information Processing, vol. 14, no. 3,
pp. 901–920, 2015.

[46] N. Shenvi, J. Kempe, and K. B. Whaley, “Quantum random-walk search algorithm,”
Physical Review A, vol. 67, no. 5, p. 052307, 2003.

[47] W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent
ways,” Physical Review A, vol. 62, no. 6, p. 062314, 2000.

[48] D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going beyond bell’s theorem,” in
Bell’s theorem, quantum theory and conceptions of the universe, pp. 69–72, Springer,
1989.

[49] E. D’Hondt and P. Panangaden, “The computational power of the W and GHZ states,”
arXiv preprint quant-ph/0412177, 2004.

[50] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,” Computers,
IEEE Transactions on, vol. 100, no. 8, pp. 677–691, 1986.

[51] M. Soeken, F. Mozafari, B. Schmitt, and G. De Micheli, “Compiling permutations for
superconducting qpus,” in 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1349–1354, IEEE, 2019.

[52] F. Mozafari, M. Soeken, and G. De Micheli, “Automatic preparation of uniform quantum
states utilizing boolean functions,” In International Workshop on Logic Synthesis (IWLS),
2019.

[53] F. Mozafari, M. Soeken, H. Riener, and G. De Micheli, “Automatic uniform quantum state
preparation using decision diagrams,” in 50th International Symposium on Multiple-
Valued Logic (ISMVL), pp. 170–175, IEEE, 2020.

[54] F. Mozafari, Y. Yang, and G. De Micheli, “Efficient preparation of cyclic quantum states,”
in 27th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 460–465,
IEEE, 2022.

[55] F. Mozafari, G. De Micheli, and Y. Yang, “Efficient deterministic preparation of quantum
states using decision diagrams,” Physical Review A, vol. 106, no. 2, p. 022617, 2022.

[56] F. Mozafari, R. Heinz, and G. De Micheli, “Uniform quantum state preparation: A
boolean approach for preparing uniform quantum states efficiently and precisely,” In
International Workshop on Quantum Compilation (IWQC), Cambridge, UK, September
2020.

[57] M. Soeken, G. Meuli, B. Schmitt, F. Mozafari, H. Riener, and G. De Micheli, “Boolean
satisfiability in quantum compilation,” Philosophical Transactions of the Royal Society A,
vol. 378, no. 2164, p. 20190161, 2020.

114



Bibliography

[58] B. Schmitt, F. Mozafari, G. Meuli, H. Riener, and G. De Micheli, “From boolean functions
to quantum circuits: A scalable quantum compilation flow in c++,” in 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2021.

[59] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli, F. Mozafari, and
G. De Micheli, “The EPFL logic synthesis libraries,” Nov. 2019. arXiv:1805.05121v2.

[60] G. De Micheli, Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

[61] T. Sasao, Logic synthesis and optimization, vol. 2. Springer, 1993.

[62] Y. Crama and P. L. Hammer, Boolean functions: Theory, algorithms, and applications.
Cambridge University Press, 2011.

[63] S. B. Akers, Jr, “On a theory of boolean functions,” Journal of the Society for Industrial
and Applied Mathematics, vol. 7, no. 4, pp. 487–498, 1959.

[64] S. Foldes and P. L. Hammer, “Disjunctive and conjunctive normal forms of pseudo-
boolean functions,” Discrete applied mathematics, vol. 107, no. 1-3, pp. 1–26, 2000.

[65] T. Sasao, “An exact minimization of AND-EXOR expressions using reduced covering
functions,” in The Synthesis and Simulation Meeting and International Interchange,
pp. 374–383, 1993.

[66] H. Riener, R. Ehlers, B. d. O. Schmitt, and G. D. Micheli, “Exact synthesis of esop forms,”
in Advanced boolean techniques, pp. 177–194, Springer, 2020.

[67] A. Mishchenko and M. Perkowski, “Fast heuristic minimization of exclusive-sums-of-
products,” in International Workshop on Applications of the Reed-Muller Expansion in
Circuit Design, pp. 242–250, 2001.

[68] T. Sasao, “Representations of logic functions using exor operators,” Representations of
discrete functions, pp. 29–54, 1996.

[69] U. Kalay, D. V. Hall, and M. A. Perkowski, “A minimal universal test set for self-test of exor-
sum-of-products circuits,” IEEE Transactions on Computers, vol. 49, no. 3, pp. 267–276,
2000.

[70] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free xor gates and appli-
cations,” in International Colloquium on Automata, Languages, and Programming,
pp. 486–498, Springer, 2008.

[71] G. Meuli, B. Schmitt, R. Ehlers, H. Riener, and G. De Micheli, “Evaluating esop optimiza-
tion methods in quantum compilation flows,” in International Conference on Reversible
Computation, pp. 191–206, Springer, 2019.

[72] K. Fazel, M. A. Thornton, and J. E. Rice, “Esop-based toffoli gate cascade generation,” in
2007 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing,
pp. 206–209, IEEE, 2007.

115



Bibliography

[73] B. Schmitt, M. Soeken, G. De Micheli, and A. Mishchenko, “Scaling-up esop synthesis for
quantum compilation,” in 2019 IEEE 49th International Symposium on Multiple-Valued
Logic (ISMVL), pp. 13–18, IEEE, 2019.

[74] Y. Sanaee and G. W. Dueck, “Generating toffoli networks from esop expressions,” in 2009
IEEE Pacific Rim Conference on Communications, Computers and Signal Processing,
pp. 715–719, IEEE, 2009.

[75] J. Rice, K. Fazel, M. Thornton, and K. Kent, “Toffoli gate cascade generation using esop
minimization and qmdd-based swapping,” in Proceedings of the Reed-Muller Workshop
(RM2009), pp. 63–72, 2009.

[76] S. B. Akers, “Binary decision diagrams,” IEEE Computer Architecture Letters, vol. 27,
no. 06, pp. 509–516, 1978.

[77] R. Drechsler and D. Sieling, “Binary decision diagrams in theory and practice,” Interna-
tional Journal on Software Tools for Technology Transfer, vol. 3, pp. 112–136, 2001.

[78] R. E. Bryant, “Binary decision diagrams,” Handbook of model checking, pp. 191–217,
2018.

[79] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, and et. al., “Algebric decision
diagrams and their applications,” Formal methods in system design, vol. 10, no. 2-3,
pp. 171–206, 1997.

[80] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model checking,” in Inter-
national School on Formal Methods for the Design of Computer, Communication and
Software Systems, pp. 220–270, Springer, 2007.

[81] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier, “Spudd: stochastic planning using deci-
sion diagrams,” in Proceedings of the Fifteenth conference on Uncertainty in artificial
intelligence, pp. 279–288, 1999.

[82] J. Dudek, V. Phan, and M. Vardi, “Addmc: weighted model counting with algebraic
decision diagrams,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, pp. 1468–1476, 2020.

[83] P. A. M. Dirac, “A new notation for quantum mechanics,” in Mathematical Proceedings of
the Cambridge Philosophical Society, vol. 35, pp. 416–418, Cambridge University Press,
1939.

[84] R. Tumulka, “Dirac notation,” in Compendium of Quantum Physics, pp. 172–174,
Springer, 2009.

[85] B. Schumacher, “Quantum coding,” Physical Review A, vol. 51, no. 4, p. 2738, 1995.

[86] H. Mäkelä and A. Messina, “N-qubit states as points on the bloch sphere,” Physica
Scripta, vol. 2010, no. T140, p. 014054, 2010.

[87] S. Tamate, K. Ogawa, and M. Kitano, “Bloch-sphere representation of three-vertex
geometric phases,” Physical Review A, vol. 84, no. 5, p. 052114, 2011.

116



Bibliography

[88] R. P. Feynman, “Quantum mechanical computers,” Foundations of physics, vol. 16, no. 6,
pp. 507–531, 1986.

[89] C. Gidney, “Constructing large controlled nots.” https://algassert.com/circuits/2015/
06/05/Constructing-Large-Controlled-Nots.html, 2015.

[90] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Pro-
ceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences,
vol. 439, no. 1907, pp. 553–558, 1992.

[91] F. T. Chong, D. Franklin, and M. Martonosi, “Programming languages and compiler
design for realistic quantum hardware,” vol. 549, no. 7671, pp. 180–187, 2017.

[92] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, R. Cleve, and I. L. Chuang, “Ex-
perimental realization of an order-finding algorithm with an NMR quantum computer,”
vol. 85, no. 25, pp. 5452–5455, 2000.

[93] M. Amy, P. Azimzadeh, and M. Mosca, “On the CNOT-complexity of CNOT-phase cir-
cuits,” arXiv preprint arXiv:1712.01859, 2017.

[94] J. Welch, D. Greenbaum, S. Mostame, and A. Aspuru-Guzik, “Efficient quantum circuits
for diagonal unitaries without ancillas,” New Journal of Physics, vol. 16, no. 3, p. 033040,
2014.

[95] N. Schuch and J. Siewert, “Programmable networks for quantum algorithms,” Physical
review letters, vol. 91, no. 2, p. 027902, 2003.

[96] L. K. Grover, “A fast quantum mechanical algorithm for database search,” pp. 212–219,
1996.

[97] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator,
J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Physical
review A, vol. 52, no. 5, p. 3457, 1995.

[98] D. Maslov, “Advantages of using relative-phase Toffoli gates with an application to
multiple control Toffoli optimization,” Physical Review A, vol. 93, no. 2, p. 022311, 2016.

[99] M. Saeedi and I. L. Markov, “Synthesis and optimization of reversible circuits - a survey,”
ACM Computing Surveys, vol. 45, no. 2, pp. 21:1–21:34, 2013.

[100] D. Deutsch, “Quantum computational networks,” vol. A 425, pp. 73–90, 1989.

[101] R. Iten, R. Colbeck, I. Kukuljan, J. Home, and M. Christandl, “Quantum circuits for
isometries,” Physical Review A, vol. 93, no. 3, p. 032318, 2016.

[102] A. Zulehner, S. Hillmich, I. L. Markov, and R. Wille, “Approximation of quantum states
using decision diagrams,” in 2020 25th Asia and South Pacific Design Automation Con-
ference (ASP-DAC), pp. 121–126, IEEE, 2020.

[103] C. Zoufal, A. Lucchi, and S. Woerner, “Quantum generative adversarial networks for
learning and loading random distributions,” npj Quantum Information, vol. 5, no. 1,
pp. 1–9, 2019.

117

https://algassert.com/circuits/2015/06/05/Constructing-Large-Controlled-Nots.html
https://algassert.com/circuits/2015/06/05/Constructing-Large-Controlled-Nots.html


Bibliography

[104] I. F. Araujo, D. K. Park, F. Petruccione, and A. J. da Silva, “A divide-and-conquer algorithm
for quantum state preparation,” Scientific reports, vol. 11, no. 1, pp. 1–12, 2021.

[105] Y. R. Sanders, G. H. Low, A. Scherer, and D. W. Berry, “Black-box quantum state prepara-
tion without arithmetic,” Physical review letters, vol. 122, no. 2, p. 020502, 2019.

[106] K. Resch, J. Lundeen, and A. Steinberg, “Quantum state preparation and conditional
coherence,” Physical review letters, vol. 88, no. 11, p. 113601, 2002.

[107] M. Plesch and Č. Brukner, “Quantum-state preparation with universal gate decomposi-
tions,” Physical Review A, vol. 83, no. 3, p. 032302, 2011.

[108] S. Arunachalam, A. Belovs, A. M. Childs, R. Kothari, A. Rosmanis, and R. de Wolf, “Quan-
tum coupon collector,” in 15th Conference on the Theory of Quantum Computation,
Communication and Cryptography (TQC 2020), Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020.

[109] M. Ben-Or and A. Hassidim, “Fast quantum byzantine agreement,” in Proceedings of the
thirty-seventh annual ACM symposium on Theory of computing, pp. 481–485, 2005.

[110] M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Physical Review A,
vol. 59, no. 3, p. 1829, 1999.

[111] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, and et al., “Qiskit: An open-source
framework for quantum computing,” 2019.

[112] R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, A. Paler, A. Fowler, and
H. Neven, “Encoding electronic spectra in quantum circuits with linear t complexity,”
Physical Review X, vol. 8, no. 4, p. 041015, 2018.

[113] L. Grover and T. Rudolph, “Creating superpositions that correspond to efficiently inte-
grable probability distributions,” arXiv preprint quant-ph/0208112, 2002.

[114] Wikipedia, “Quantum Byzantine agreement — Wikipedia, the free encyclopedia.” https:
//en.wikipedia.org/wiki/Quantum_Byzantine_agreement, 2020. [Online; accessed 18-
November-2020].

[115] J.-H. R. Jiang and R. K. Brayton, “Functional dependency for verification reduction,” in
International Conference on Computer Aided Verification, pp. 268–280, Springer, 2004.

[116] R. H. Dicke, “Coherence in spontaneous radiation processes,” Physical review, vol. 93,
no. 1, p. 99, 1954.

[117] Z. Zhang and L. Duan, “Quantum metrology with dicke squeezed states,” New Journal
of Physics, vol. 16, no. 10, p. 103037, 2014.

[118] G. Tóth and I. Apellaniz, “Quantum metrology from a quantum information science per-
spective,” Journal of Physics A: Mathematical and Theoretical, vol. 47, no. 42, p. 424006,
2014.

118

https://en.wikipedia.org/wiki/Quantum_Byzantine_agreement
https://en.wikipedia.org/wiki/Quantum_Byzantine_agreement


Bibliography

[119] N. Kiesel, C. Schmid, G. Tóth, E. Solano, and H. Weinfurter, “Experimental observation
of four-photon entangled dicke state with high fidelity,” Physical review letters, vol. 98,
no. 6, p. 063604, 2007.

[120] W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and H. Weinfurter, “Exper-
imental entanglement of a six-photon symmetric dicke state,” Physical review letters,
vol. 103, no. 2, p. 020504, 2009.

[121] D. Hume, C.-W. Chou, T. Rosenband, and D. J. Wineland, “Preparation of dicke states in
an ion chain,” Physical Review A, vol. 80, no. 5, p. 052302, 2009.

[122] C. S. Mukherjee, S. Maitra, V. Gaurav, and D. Roy, “Preparing dicke states on a quantum
computer,” IEEE Transactions on Quantum Engineering, vol. 1, pp. 1–17, 2020.

[123] J. K. Stockton, R. Van Handel, and H. Mabuchi, “Deterministic dicke-state preparation
with continuous measurement and control,” Physical Review A, vol. 70, no. 2, p. 022106,
2004.

[124] H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, pp. 1023–1030, 2008.

[125] S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,”
Science, vol. 362, no. 6412, 2018.

[126] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Physical Review Letters,
vol. 96, no. 1, p. 010401, 2006.

[127] W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Physical
Review Letters, vol. 80, no. 10, p. 2245, 1998.

[128] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state en-
tanglement and quantum error correction,” Physical Review A, vol. 54, no. 5, p. 3824,
1996.

[129] I. Devetak and A. Winter, “Distillation of secret key and entanglement from quantum
states,” Proceedings of the Royal Society A: Mathematical, Physical and engineering
sciences, vol. 461, no. 2053, pp. 207–235, 2005.

[130] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial
entanglement by local operations,” Physical Review A, vol. 53, no. 4, p. 2046, 1996.

[131] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Woot-
ters, “Purification of noisy entanglement and faithful teleportation via noisy channels,”
Physical Review Letters, vol. 76, no. 5, p. 722, 1996.

[132] F. Hahn, A. Pappa, and J. Eisert, “Quantum network routing and local complementation,”
npj Quantum Information, vol. 5, no. 1, pp. 1–7, 2019.

[133] M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu, D. Englund, and S. Guha,
“Routing entanglement in the quantum internet,” npj Quantum Information, vol. 5,
no. 1, pp. 1–9, 2019.

119



Bibliography

[134] I. Streinu and L. Theran, “Sparse hypergraphs and pebble game algorithms,” European
Journal of Combinatorics, vol. 30, no. 8, pp. 1944–1964, 2009.

[135] T. M. de Veras, L. D. da Silva, and A. J. da Silva, “Double sparse quantum state prepara-
tion,” Quantum Information Processing, vol. 21, no. 6, p. 204, 2022.

[136] E. Malvetti, R. Iten, and R. Colbeck, “Quantum circuits for sparse isometries,” Quantum,
vol. 5, p. 412, 2021.

[137] X.-M. Zhang, T. Li, and X. Yuan, “Quantum state preparation with optimal circuit depth:
Implementations and applications,” Physical Review Letters, vol. 129, no. 23, p. 230504,
2022.

[138] J. Biamonte and V. Bergholm, “Tensor networks in a nutshell,” arXiv preprint
arXiv:1708.00006, 2017.

[139] J. Biamonte, “Lectures on quantum tensor networks,” arXiv preprint arXiv:1912.10049,
2019.

[140] R. Orús, “A practical introduction to tensor networks: Matrix product states and pro-
jected entangled pair states,” Annals of physics, vol. 349, pp. 117–158, 2014.

[141] K. Batselier, W. Yu, L. Daniel, and N. Wong, “Computing low-rank approximations of
large-scale matrices with the tensor network randomized svd,” SIAM Journal on Matrix
Analysis and Applications, vol. 39, no. 3, pp. 1221–1244, 2018.

120



Fereshte Mozafari

Personal Data
Address: EPFL, Building INF 337, Station 14, Lausanne 1015, Switzerland.
E-mail: fereshte.mozafari@epfl.ch
GitHub: https://github.com/fmozafari
Linkedin: https://www.linkedin.com/in/fereshte-mozafari
Scholar: scholar link

Award
I won Google PhD Fellowship Award in Quantum Computing. (Sep. 2020)

Topic of Interests
Computer Science, Quantum Computing, High Performance Computing, and Electronic De-
sign Automation.

Education
2018-Present Ph.D. in Electrical Engineering

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
Thesis: “Optimizing Quantum Compilers: Efficient and Effective Algorithms”
Supervisor: Prof. Giovanni De Micheli

2013-2015 M.Sc. in Computer Architecture
Sharif University of Technology, Tehran, Iran
Thesis: “Reliability Enhancement of SSD-based Storage Systems Using Erasure Codes”
Supervisor: Prof. Seyed-Ghasem Miremadi

2009-2013 B.Sc. in Computer Engineering
Sharif University of Technology, Tehran, Iran
Thesis: “Proposing one Fault Tolerance Method for Tag Part in Cache”
Supervisor: Prof. Seyed-Ghasem Miremadi

Work Experience
Aug. 2022-Present Research and Development Intern, NVIDIA, Zurich, Switzerland

- I worked on developing NVIDIA cuQuantum circuit performance benchmark suite. link

- I proposed an efficient method to decompose quantum circuits for tensor network
simulations that resulted in submitting a patent.

Feb. 2018-Present Doctoral Assistant, EPFL, Lausanne, Switzerland
Integrated Systems Laboratory (LSI)

Feb. 2018-Present C++ Library Development, EPFL, Lausanne, Switzerland
I developed a Quantum State Preparation (QSP) library based on C++-17, called angel. angel
provides several algorithms to enable a scalable QSP and to reduce the number of CNOTs.
angel is available here: link

Mar. 2021-Jul. 2021 Research Visitor, ETH, Zurich, Switzerland
I worked in Quantum Information Theory Group under the supervision of Yuxiang Yang
in Renato Renner group. I proposed new ideas for preparing cyclic quantum states, and
sparse quantum states. I published papers and developed ideas in angel tool.

mailto:fereshte.mozafari@epfl.ch
https://github.com/fmozafari
https://www.linkedin.com/in/fereshte-mozafari/
https://scholar.google.com/citations?user=O1blKv8AAAAJ&hl=en
https://scholar.google.com/citations?user=1Z0AeMkAAAAJ&hl=en
http://sina.sharif.ir/~miremadi/
http://sina.sharif.ir/~miremadi/
https://github.com/NVIDIA/cuQuantum/tree/main/benchmarks
https://github.com/fmozafari/angel
https://qit.ethz.ch/
https://scholar.google.com.hk/citations?user=jpFFDKcAAAAJ&hl=en
https://scholar.google.com.hk/citations?user=OEBtlWgAAAAJ&hl=en


Sep. 2019-Jan. 2020 Machine Learning Project, EPFL, Lausanne, Switzerland
- I analyzed CERN datasets to recreate the process of discovering the Higgs particle
by applying different machine learning algorithms, feature engineering, and modeling
(Using Python).

- I developed a text sentiment classification for Twitter messages by applying different
machine learning neural network models such as CNN, LSTM, and LSTM-CNN (Using
Python, and TensorFlow library). The source code is available here: link

Sep. 2016-Dec. 2017 Research Scientist, Sharif University of Technology, Tehran, Iran
I proposed an algorithm for DNA sequence alignment that can be implemented in optics,
in collaboration with two groups. I published a paper that is available here: link.

Professional Volunteering Experiences
2019-2022 Committee member of Electrical Engineering at EPFL

2019-2021 Committee member of Quantum Computing Association at EPFL

Skills
Programming Languages: C/C++, Python, Matlab, Android
Machine Learning Libraries: TensorFlow, Keras, NLTK
Quantum Computing Packages: cuQuantum, Cirq, Qiskit, Rigetti
Design & Simulation Tools: Synopsis Design Compiler, Cadence Virtuoso, Modelsim,

Tanner EDA Tools, AVR, Quartus, Hspice, Color Petri Net
Parallel Programming: Cell BE, CUDA GPU
HDL: VHDL, Verilog
Languages: English (fluent), Persian (native)

Publications
Fereshte Mozafari, Yang Gao, and Yao-Lung L. Fang, “Method and apparatus for efficient representation of quantum
oracles for tensor network simulation,” Patent submitted in February 2023.

Fereshte Mozafari, Giovanni De Micheli, and Yuxiang Yang, “Efficient Deterministic Preparation of Quantum States
Using Decision Diagram,” In Physical Review A, 106.2, pp. 022617, APS, 2022.

Fereshte Mozafari, Yuxiang Yang, and Giovanni De Micheli, “Efficient Preparation of Cyclic Quantum States,” In
2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 460-465, IEEE, 2022.

Fereshte Mozafari, Giovanni De Micheli, and Yuxiang Yang, “Efficient Quantum State Preparation Using Decision
Diagrams,” In Quantum Techniques in Machine Learning Conference (QTML), Napoli, Italy, November 8-11, 2022. link

Fereshte Mozafari, Heinz Riener, Mathias Soeken, and Giovanni De Micheli,“Efficient Boolean Methods for Prepar-
ing Uniform Quantum States,” In IEEE Transactions on Quantum Engineering, 2, pp. 1-12, 2021.

Bruno Schmitt, Fereshte Mozafari, Giulia Meuli, Heinz Riener, and Giovanni De Micheli, “From Boolean Functions
to Quantum Circuits: A Scalable Quantum Compilation Flow in C++,” In 2021 Design, Automation and Test in Europe
Conference and Exhibition (DATE), pp. 1044-1049, IEEE, 2021.

Fereshte Mozafari, Heinz Riener, and Giovanni De Micheli, “Uniform Quantum State Preparation: A Boolean Ap-
proach for Preparing Uniform Quantum States Efficiently and Precisely,” In International Workshop on Quantum
Compilation (IWQC), Cambridge, UK, September 2020.

Fereshte Mozafari, Mathias Soeken, Heinz Riener, and Giovanni De Micheli, “Automatic Uniform Quantum State
Preparation Using Decision Diagrams,” In 2020 50th International Symposium on Multiple-Valued Logic (ISMVL), pp.
170-175, IEEE, 2020.

Mathias Soeken, Giulia Meuli, Bruno Schmitt, Fereshte Mozafari, Heinz Riener, and Giovanni De Micheli, “Boolean
Satisfiability in Quantum Compilation,” In Philosophical Transactions of the Royal Society A, 378.2164, pp. 20190161-
20190161, 2020.

Mathias Soeken, Fereshte Mozafari, Bruno Schmitt, and Giovanni De Micheli, “Compiling Permutations for Super-
conducting QPUs,” In 2019 Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 1349-1354.
IEEE, 2019.

Fereshte Mozafari, Mathias Soeken, and Giovanni De Micheli,“Automatic Preparation of Uniform Quantum States
Utilizing Boolean Functions,” In International Workshop on Logic Synthesis (IWLS), Lausanne, Switzerland, 2019.

Mathias Soeken, Heinz Riener, Winston Haaswijk, Eleonora Testa, Bruno Schmitt, Giulia Meuli, Fereshte Mozafari,
and Giovanni De Micheli, “The EPFL Logic Synthesis Libraries,” In arXiv:1805.05121v3, June 2022, link.

https://github.com/fmozafari/twitter_sentiment_classification
https://www.sciencedirect.com/science/article/abs/pii/S003039921731575X
https://quasar.unina.it/qtml2022.html
https://arxiv.org/abs/1805.05121


All my publications are available in my Scholar: link

Selected Projects
Fall 2013 Multi-Core System Project, Implementing Crossword Puzzle Game on GPU.

(Using CUDA)

Spring 2012 Microprocessor Project, Developing a regular expression parser on Cell BE
Processor. (Using Parallel Programming)

Spring 2012 VLSI Project, Developing a standard Cell Library. (Using Tanner EDA Tools &
Synopsis Design Compiler)

Spring 2011 Digital Electronics Project, Developing a high performance, low power Dy-
namics Random Access Memory (DRAM). (Using Hspice)

Fall 2011 Digital System Design Project, Implementing Tetris Game on Altera DE2 FPGA.
(Using Verilog)

Spring 2010 Computer Architecture Project, Design and implementation of schematic
Pipeline MIPS processor. (Using Quartus)

Fall 2010 Advanced Programming Project, Implementing digital circuits generator.
(Using C++)

Teaching Experience
2019-2022 École Polytechnique Fédérale de Lausanne (EPFL)

Instructor, EDA based Design Laboratory, by Dr. Vachoux Alain. (Spring 2019)
Instructor, Test of VLSI Systems Laboratory, by Dr. Alexandre Schmid. (Spring
2021)
Instructor, Computer Language Processing, by Prof. Viktor Kuncak. (Spring
2022)

2011-2015 Sharif University of Technology
Instructor, Computer Architecture Laboratory.
Teaching Assistant, Logic Circuits, Electrical Circuits, Advanced Programming,
Digital Design, Data Structures, Fundamental of Programming.

References
Professor Giovanni De Micheli, EPFL, Switzerland, Homepage.
Assistant Professor Yuxiang Yang, University of Hong Kong, Hong Kong, Homepage.
Dr. Yao-Lung L. Fang, NVIDIA, United States, Homepage.

https://scholar.google.ch/citations?user=O1blKv8AAAAJ&hl=en
https://si2.epfl.ch/~demichel/
https://sites.google.com/view/yuxiang-yang
https://leofang.github.io/about/

	Acknowledgements
	Abstract (English/German/French)
	Contents
	List of Figures
	List of Tables
	Introduction
	Contribution
	Outline

	I Background
	Logic Synthesis
	Boolean functions
	Boolean function representations
	SOP form
	POS form
	Minterm canonical form
	Truth table form
	ESOP form
	Decision diagram form 

	Spectral technique
	SAT-based exact ESOP synthesis
	Summary

	Quantum Computing
	Dirac notation
	Quantum bits & quantum states
	Bloch sphere representation
	Measurement
	Quantum gates
	Single-qubit gates 
	Two-qubit gates
	Multi-qubit gates

	Universal quantum gates sets
	Quantum circuits
	Quantum algorithms
	Quantum oracles
	Quantum Fourier transform
	Deutsch-Joza algorithm
	Grover's algorithm
	Shor's algorithm

	Summary


	II Quantum Circuit Synthesis
	Compiling Permutations 
	Proposed compilation algorithm
	Compiling single-target gates
	Rewiring optimizations
	Experimental results
	Benchmarks 
	Quantum gate libraries and quantum architectures
	Methodology

	Summary


	III Quantum State Preparation
	Problem Definition
	Uniform Quantum State Preparation 
	Introduction
	Related works
	UQSP motivation
	UQSP problem
	Motivational examples

	Using functional decomposition for UQSP 
	UQSP using binary decision diagrams
	Proposed algorithm
	Experimental evaluation

	UQSP using dependency analysis methods
	Proposed method
	Dependency analysis methods 
	CNOT costs
	Variable reordering methods 
	Results & discussion

	Summary

	Cyclic Quantum State Preparation 
	Related works
	Cyclic states and their properties
	Proposed method
	Cyclic state preparation algorithm
	Cyclic state circuit construction
	Proof of correctness

	Results & evaluation
	Summary

	Sparse Quantum State Preparation 
	Introduction
	Proposed representation of quantum states using ADDs
	Proposed algorithm
	Numerical experiments
	Algorithm performance
	Discussion
	Summary


	IV Open-source Development
	angel 
	Uniform quantum state preparation 
	Sparse quantum state preparation
	Examples
	Summary

	Conclusions
	Future directions


	Bibliography
	Curriculum Vitae

