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Abstract

As the complexity of applications grows with each new generation, so does the demand for

computation power. To satisfy the computation demands atmanageable power levels, we see a

shift in the design paradigm from single processor systems to Multiprocessor Systems-on-Chip

(MPSoCs). MPSoCs leverage the parallelism in applications to increase the performance at

the same power levels. To further improve the computation to power consumption ratio,

MPSoCs for embedded applications are heterogeneous and integrate cores that are specialized

to perform the different functionalities of the application. With technology scaling, wire

power consumption is increasing compared to logic, making communication as expensive as

computation. Therefore customizing the interconnect is necessary to achieve energy efficiency.

Designing an optimal application specific Network-on-Chip (NoC), that meets application

demands, requires the exploration of a large design space. Automatic design and optimization

of the NoC is required in order to achieve fast design closure, especially for heterogeneous

MPSoCs.

To continue to meet the computation requirements of future applications new technologies

are emerging. Three dimensional integration promises to increase the number of transistors

by stacking multiple silicon layers. This will lead to an increase in the number of cores of the

MPSoCs resulting in increased communication demands. To compensate for the increase in

the wire delay in new technology nodes as well as to reduce the power consumption further,

multi-synchronous design is becoming popular. With multiple clock signals, different parts of

the MPSoC can be clocked at different frequencies according to the current demands of the

application and can even be shutdown when they are not used at all. This further complicates

the design of the NoC. Many applications require different levels of guarantee from the NoC

in order to perform their functionality correctly. As communication traffic patterns become

more complex, the performance of the NoC can no longer be predicted statically. Therefore

designing the interconnect network requires that such guarantees are provided during the

dynamic operation of the system which includes the interaction with major subsystems (i.e.,

main memory) and not just the interconnect itself.

In this thesis, I present novel methods to design application-specific NoCs that meet perfor-
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mance demands, under the constraints of new technologies. To provide different levels of

Quality of Service, I integrate methods to estimate the NoC performance during the design

phase of the interconnect topology. I present methods and architectures for NoCs to efficiently

access memory systems, in order to achieve predictable operation of the systems from the

point of view of the communication as well as the bottleneck target devices. Therefore the

main contribution of the thesis is twofold: scientific as I propose new algorithms to perform

topology synthesis and engineering by presenting extensive experiments and architectures for

NoC design.

Keywords: MPSoC, NoC, topology, synthesis, real-time, simulation, DRAMmemory
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Résumé

Comme la complexité des applications augmente avec chaque nouvelle génération, il

en va de même pour les besoins en puissance de calcul. Pour satisfaire la demande

en calculs tout en restant à des niveaux de puissance consommée acceptables, nous

observons un changement dans le paradigme de conception depuis les systèmes mo-

noprocesseurs aux systèmes sur puces multiprocesseurs (MPSoCs pour Multiprocessor

Systems-on-Chip). Les MPSoCs reposent sur la parallélisation des applications pour

augmenter les performances à un niveau de puissance consommée ciblé. Pour conti-

nuer à améliorer le rapport entre la puissance de calcul et la consommation d’énergie,

les MPSoCs dédiés aux applications embarquées sont hétérogènes et intègrent des

cœurs qui se sont spécifiques à certaines fonctionnalités de l’application. Avec l’évo-

lution technologique et la réduction des dimensions, la consommation énergétique

due aux interconnexions est en augmentation par rapport à la logique, ce qui rend la

communication plus chére que le calcul. Par consèquent, l’utilisation de nouvelles

structures d’interconnexions est nécessaire pour atteindre l’efficacité énergétique.

La conception d’un Réseau sur Puce (NoC pour Network-on-Chip) optimal vis-à-vis

des contraintes applicatives exige l’exploration d’un large espace de conception. La

conception et l’optimisation automatique du NoC est nécessaire afin d’aboutir à un

temps de conception tolérable, en particulier pour les MPSoCs hétérogènes.

Pour continuer à répondre aux exigences de calcul des futures applications, de nou-

velles technologies font leur apparition. L’intégration tri-dimensionelle promet une

augmentation du nombre de transistors grâce à l’empilement demultiples couches de

silicium. Cela conduira à une augmentation du nombre de cœurs dans les MPSoCs et

à des demandes accrues vis-à-vis des communications. Afin de compenser l’augmen-

tation du délai du aux interconnexions dans les nouveaux nœuds technologiquesmais

aussi de continuer à réduire la consommation énergétique, la conception de systèmes

multi-synchrones est devenu populaire. Avec plusieurs signaux d’horloge, les diffé-

rentes parties du MPSoC peuvent être cadencées à des fréquences différentes selon le

besoin immédiat de l’application et peuvent même être arrêtées lorsqu’elles ne sont
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pas utilisées. Ceci complique encore la conception du NoC. Les applications exigent

différents objectifs de performances du NoC afin d’assurer un fonctionnement correct.

Or le trafic dans le réseau devenant de plus en plus complexes, la performance duNoC

ne peut plus être prédite de façon statique. En conséquence, la conception du réseau

d’interconnexion exige que ces objectifs soient tenus pendant le fonctionnement

dynamique du système qui inclut l’interaction avec les principaux sous-systèmes (i.e,

la mémoire principale) et non simplement l’interconnexion en elle-même.

Dans cette thèse, je présente de nouvelles méthodes pour concevoir des NoCs spéci-

fiques à une application, qui répondent à des exigences de performance et respectent

les contraintes des nouvelles technologies. Pour fournir différents niveaux de qualité

de service (QoS pour Quality-of-Service), j’intègre des méthodes pour estimer la per-

formance du NoC durant la phase de conception de la topologie d’interconnexion.

Je présente des méthodes et des architectures pour les NoCs permettant d’accéder

efficacement à la mémoire, dans le but d’obtenir un fonctionnement prévisible des

systèmes du point de vue de la communication tout en considérant l’impact des

périphériques les plus contraignants. Par conséquent, la thèse apporte une contri-

bution originale sur deux fronts : scientifique en proposant de nouveaux algorithmes

pour réaliser une synthèse topologique et l’ingénierie en présentant des expériences

approfondies et des architectures pour la conception de NoCs.

Mots-clés : MPSoC, NoC, topologies, synthèse, temps réel, simulation, mémoire

DRAM
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Riassunto

Con l’aumentare della complessità delle applicazioni ad ogni generazione, si assiste

ad un aumento corrispondente dei requisiti di potenza di calcolo. Per soddisfare i

bisogni computazionali mantenendo un livello di consumo di potenza ragionevole,

assistiamo ad una transizione dai sistemi a singolo processore verso sistemi mul-

tiprocessore (Multiprocessor Systems-on-Chip o MPSoCs). Gli MPSoC sfruttano il

parallelismo disponibile nelle applicazioni per aumentare le prestazioni a consumo

di potenza costante. Per migliorare ulteriormente il rapporto tra potenza computa-

zionale e requisiti energetici, gli MPSoC per applicazioni embedded sono eterogenei

ed integrano processori specializzati per le varie funzioni delle applicazioni. Con

lo scalare della tecnologia, il consumo di potenza per l’attraversamento dei fili è in

aumento rispetto a quello della logica, rendendo la comunicazione costosa quanto la

computazione. Di conseguenza, l’ottimizzazione dell’interconnessione è necessaria

per raggiungere la massima efficienza energetica. Tuttavia, progettare una Network-

on-Chip (NoC) specifica per un’applicazione, che soddisfi tutti i requisiti applicativi,

richiede l’esplorazione di un vasto spazio di progetto. L’automazione della progetta-

zione e ottimizzazione delle NoC è necessaria per ottenere una rapida convergenza,

soprattutto per MPSoC eterogenei.

Nuove tecnologie stanno emergendo per continuare a soddisfare i requisiti di potenza

di calcolo delle applicazioni future. L’integrazione tridimensionale promette un au-

mento del numero di transistori con la sovrapposizione di più strati di silicio. Questo

porterà ad un aumento del numero di processori negli MPSoC, risultando anche in

un aumento dei requisiti di comunicazione. Per compensare il deterioramento dei

ritardi di propagazione sui fili nei nuovi nodi tecnologici e per ridurre ulteriormente

i consumi di potenza, la progettazione multi-sincrona sta diventando sempre più

comune. Usando più segnali di clock, ogni parte di unMPSoC può essere fatta lavorare

a frequenze diverse secondo gli attuali requisiti applicativi, oppure addirittura spenta

completamente quando non in uso. Questo però rende più complessa la progetta-

zione della NoC. Inoltre, molte applicazioni si attendono livelli diversi di prestazioni
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garantiti dalla NoC per svolgere correttamente i propri compiti. Tuttavia, al compli-

carsi degli schemi di traffico, queste prestazioni non possono più essere garantite

staticamente. Quindi, progettare l’interconnessione richiede che queste garanzie

siano fornite a runtime a sistema funzionante, quando vanno tenute in conto anche

le interazioni con sottosistemi chiave (per esempio, la memoria esterna) e non più

solo l’interconnessione in sè.

In questa tesi, presenterò dei metodi innovativi per progettare NoC ottimizzate per

specifiche applicazioni, che rispettino i bisogni prestazionali e i nuovi vincoli tec-

nologici. Per poter fornire diversi livelli di servizio (Quality of Service), mostrerò

l’integrazione di metodi per stimare le prestazioni della NoC già in fase di progetta-

zione della topologia dell’interconnessione. Presenterò poi metodi ed architetture

volte ad un efficiente accesso della NoC ai sottosistemi di memoria, per poter predire

il funzionamento del sistema considerando sia l’interconnessione che i colli di botti-

glia imposti dai dispositivi destinatari del traffico. In sintesi, il contributo principale

della tesi comprende due assi principali: scientifico, riguardo agli algoritmi proposti

per la sintesi delle topologie, e ingegneristico, con riferimento ad una vasta sezione

sperimentale ed alle proposte architetturali per la progettazione di NoC.

Parole chiave: MPSoC, NoC, topologia, sintesi, tempo-reale, simulazione, memoria

DRAM
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1 Introduction

The field of embedded and even general purpose computing has evolved considerably

as it is driven by increasingly more demanding application requirements. A look at

todays applications for consumer electronics shows a great demand for computation

power and high flexibility, but with great constraints on the power consumption and

device size. With the introduction of High Definition (HD) television, video decoding

alone, requires 70 to 80 Giga Instructions Per Second (GIPS) [33]. However TV platforms

today provide muchmore functionality than just simple video decoding which can

range from browsing the Internet or running voice over IP applications, to fetching

the video stream fromWiFi enabled storage server. Similarly mobile communication

devices have evolved from simple phones to full-fledged computation platforms with

multimedia capabilities, high-bandwidth data communication connections and even

navigation capabilities. Future applications like 3D-enabled displays and high band-

width wireless communication like 4G will increase the requirements for computation

even further.

Traditionally computation power was increased by raising the operating frequency

as transistors in new technology nodes were faster. The power consumption was

managed by scaling the supply voltage. As supply voltage scaling is leveling off in new

technology nodes, computation power can only be increased at manageable power

densities by exploiting the application-level parallelism. Therefore we see a design

paradigm shift from single processor systems to Multi Processor Systems-on-Chip

(MPSoCs). MPSoCs are communication centric as the processors communicate over

a global interconnect in order to cooperatively complete the parallel application. As

such the MPSoC performance is directly influenced by the efficiency of the commu-

nication infrastructure. Recent MPSoCs prototype chips [162], [166], [67] and even

products [164] have adopted Networks-on-Chip (NoCs) as the global on-chip intercon-

nect. NoCs originate from general networks, but have been adapted to take advantage

of the locality and silicon technology. NoCs have been proposed as a solution to

1
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Figure 1.1: Example of a 3DMPSoC with three stacked layers

the interconnect design challenge due to predictability of design and the intrinsic

scalability of the networks.

In power-constrained systems, like mobile platforms where increasing the autonomy

is an important design challenge we see that programmability is traded for efficiency.

Therefore the SoCs are customized for the required applications andmany of the cores

specialized to provide a specific functionality. The global interconnect can also be

tailored according to the demands of the application. Customizing the interconnect

is a must, as it can be responsible for as 30% of the SoC power consumption [162].

Already in the new-generation mobile platform chips [74] we can find NoCs as the

global interconnect, not only for their scalability, but also because their modularity

provides great opportunities for customization.

CMOS scaling is projected to continue at least until the end of this decade [14]. How-

ever the cost of designing andmanufacturing integrated circuits in the new technology

nodes is becoming prohibitive even for high-end systems. Three Dimensional Inte-

gration is emerging as a promising alternative for increasing the number of on-chip

transistors, by stacking multiple dies in the same package. Unlike existing Systems-

on-Package, Three Dimensional Integrated Circuits (3D-ICs) provide less restrictive

vertical connectivity in the form of Through Silicon Vias (TSVs). An example of a 3D

SoC is shown in Figure 1.1. As it will be possible to integrate more cores in 3D-ICs

to provide increased functionality, Three Dimensional Integration provides further

challenges and opportunities to design an optimized on-chip interconnect. However

to be able to explore all the degrees of freedomwhen customizing the interconnect

and to improve the design productivity, tools are needed to perform architectural level

exploration as well as synthesis.

2
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1.1 Network-on-Chip a structured interconnect for Systems-on-Chip

Early MPSoC chips with few cores used a single bus for on-chip communication.

However as the bus is a shared medium of communication, it cannot scale as the

number of integrated cores is increased. As a consequence more complex design

started using hierarchies of shared busses to exploit the parallelism in communication

and to reduce collisions among cores that desire to communicate at the same time. As

wire delay increases in new technology nodes due to the increased coupling capacity

caused by the tall aspect ratio of the wires [5], [64], busses are becoming unpredictable

from the timing point of view. The timing of the bus can only be estimated correctly

after the place and route and this increases the time for achieving design closure. The

introduction of crossbars in designs solves the problem of parallel access to different

cores and also eliminates the long wires form the buses. Crossbar based designs do

not scale though, as the crossbar is a centralized device. To solve both the problem of

predictability as well as the scalability of the interconnect infrastructure, a network-

based interconnect inspired from general networks designed for the super computes

has been proposed as early as the year 2000 [60]. Many of the current high-end SoCs

employ NoC as the global interconnect [74], [67] and even products [164].

The use of packet-switched networks to interconnect components in a computing

systems has been proposed by Seitz and co-workers [152]. Networks have then been

studied and used in multi processor super computes and an overview of the inter-

connect networks is presented in [41]. As MPSoCs becamemore complex integrating

more cores on the same chip the use of Networks-on-Chip (NoCs) was first advocated

by Greiner in [60] and within the Scalable Programmable Integrated Network (SPIN)

project [2] and elaborated in its various facets by Benini et al. [23], [42], and Dally et al.

[40] in the early part of the previous decade.

One of themost important characteristic on NoC is that they aremodular. An example

showing the NoC components is presented in Figure 1.2. The three basic modules to

build an NoC are:

• Network Interfaces (NIs)

• Switches

• Links

Most components of the SoCs are Intellectual Property (IP) cores which use standard

bus-like communication protocols. The role of the Network Interface is to convert

the bus protocol used by the IP cores to the network protocol used by the switches.

One NI is needed to connect each IP core to the NoC. NIs convert the transaction

3
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Figure 1.2: Example of a topology showing: IP cores, NIs, Switches and Links

into packets that are then sent though the network and then reassembled back into

transactions by the destination NI. Packets usually containmore information bits than

the number of wires that connect the NoC components. So the packets are serialized

into a sequence of FLow control unITS (flits) before transmission, to decrease the

physical wire parallelism requirements. Even though there are no standards NoC

protocols for intra-network communication and are implementation dependent,

most NI support standard protocols (e.g., OCP, AHB, AXI, Wishbone, OPB, PLB) toward

the IP cores. Existing IPs to be connected easily to the network without requiring any

modifications. The NI translation layer provides greater flexibility in connecting IPs

using different protocols to the same system interconnect.

Switches provide the main infrastructure for the NoC in order to route packets from

source to destination. Switches can have any number of inputs and outputs and a

crossbar that allows for arbitrary connectivity between several inputs and several

outputs. Of course the number of inputs and outputs is restricted by the desired

operation frequency and the available area. Switches can be connected in differ-

ent topologies in order to provide connectivity for many IP cores. Apart from the

crossbar switches also provide buffering resources to lower congestion and improve

performance. The buffers could be placed at the input ports (input-queued router),

output ports (output-queued router) or at both places. In many NoCs with regular

topologies where one or few cores are connected to a switch, the functionality of the

NI is integrated in the switch itself. In such topologies it is common to call as a router

the combination of the NI with the switch.

Links are used to connect NI to switches as well as provide the switch to switch

connectivity. As links are point to point connections between NoC components their
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timing characteristics are more predictable than those of busses. Links can represent

more than just groups of parallel physical wires as they can provide pipelining in

order to achieve the required timing and provide full throughput. Other components

can also be added like frequency converters or size converters to further increase the

flexibility of designing the interconnect in SoCs use multiple clock signals.

To summarize the NoC provide the following main advantages over bus-based design:

• Scalability - to accommodate more bandwidth, more switches can be added to

increase the size of the topology.

• Predictability - as switches segment the wires and the connections are point to

point, the timing characteristics can be estimated. Pipelining of the long links

can be performed in order to preserve timing and throughput.

• Flexibility - the modularity of NoCs enables for the design of arbitrary topolo-

gies that can be customized to application requirements. Frequency and size

converters can be seamlessly integrated to support multiple clock domains and

heterogeneous IP cores.

• Interoperability - the NI protocol translation enables the connectivity of IP cores

that use different communication protocols.

• Increased reliability - protocols for error detection and retransmission at link

connection level within the NoC can be used to increase the reliability in critical

systems or systems that are susceptible to faults.

As such NoC based design of the interconnect can result in faster design closure. In

large systems there are still many parameters that need to be explored, however since

the NoC design is predictable tools can be used for automatic exploration of the design

space in order to achieve design closure.

1.2 Interconnect design challenges

Even though NoCs provide the scalability and predictability to design an efficient

interconnect for large SoCs, there are many parameters that can be tuned. To design

an efficient NoC based interconnect a vast design space needs to be explored. The

main problems that need to be solved are:

• Choosing the IP cores and profiling the application to characterize the traffic.

• Decide on the technology design parameters: number of layers for a 3D-IC, the

number of clock domains, the possibility to shutdown some clock domains.
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• The assignment of IPs to clock domains and layers.

• Synthesis of a topology or mapping of the IPs onto a regular topology.

• Sizing the network parameters for the given application.

• Verifying correctness and performance.

• Generating the Register Transfer Logic (RTL) code.

• Perform RTL synthesis place and route, and post layout simulation and valida-

tion.

One of the most important challenges to design the interconnect customized for a

given application is to determine the traffic characteristics. Once the IP cores and

the algorithms that are to be implemented are known, architectural level simulation

has to be performed in order to profile the application and to determine the traffic

characteristics. The main parameters that describe the traffic patterns include: i) the

average and pick bandwidth between cores, ii) the latency constraints required to offer

a certain Quality of Service (QoS), iii) the burstiness of the traffic, iv) the size of the

transactions and v) a potential address trace. Along with the traffic characteristics the

technology constraints have to be decided before the interconnect can be designed.

The technology used (2D planar, 3D integration), the assignment of IP cores to clock

domains or silicon layers in a 3D-IC, generate certain constraints that the interconnect

has to fulfill for the SoC to function correctly. Therefore when building a customized

interconnect, the analysis of the application is crucial as any mistake at this point can

lead (in the best case) to a suboptimal design of the interconnect.

Designing the topology of NoC is the step that can make the most significant dif-

ference with regard to the power consumption and performance of the NoC. The

parameters that have to be decided during synthesis are: choosing the number of

switches, deciding the assignment of IP cores to switches, deciding the switch to

switch connectivity and routing the flow such that the power is minimized under

performance and technological constraints. As the design space is large there may

be no optimal solution for all the criteria, but rather a set of trade-off points. Com-

puter Aided Design (CAD) tools have been designed in order to explore the potential

trade-off solutions and find the most suited NoC topology for the given application.

For SoCs that are homogeneous and the functionality is implemented using the same

IP core, mapping the tasks to IP cores on different regular topologies can also be used.

However provided that the application does not change significantly and does not

require the flexibility of a regular topology, synthesis of a customized topology will

most likely yield a better result.
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Apart from the topology other parameters can be customized like the buffer sizes,

link widths, arbitration policies, routing method that also influence the performance,

power consumption and area of the NoC. To efficiently tune all these parameters

a combination of CAD tools, simulation tools, designer input and iteration may be

needed. To reduce the time to market the automation of as many of the design steps

as well as the seamless integration with simulation tools is desired, with the designer

interacting only at a high level (e.g. solution evaluation).

To reduce further the design time automatic generation of the RTL code for the NoC

topology is also needed. Integration with standard synthesis and back-end tools and

verification and post layout simulation is also required in order to ensure that there is

no performance loss between the estimation of the synthesis topology synthesis tool

and the final result after place and route. In the past years much research has been

perform in automatizing several is not all the steps of the NoC based interconnect

design.

1.3 Tools for designing NoCs

For general purpose SoC the traffic patterns are not known at design time as they are

dependent on the variety of applications that will run on the system. The topology

has to provide full connectivity in such systems. As suchmany regular topologies have

been proposed and explored. Designing the interconnect for such systems is simply a

matter of choosing the topology that has the properties which best suite the SoC and

sizing it using simulation and general traffic patterns that are expected to be produced.

For application-dedicated SoCs on the other hand, the traffic patterns are known

at design time and this enables the customization of the interconnect according

to the application demands in order to reduce area and power while maximizing

performance. Therefore much research has been done on tools and algorithm for

automating the different steps of NoC design for application specific MPSoCs.

There are three major directions in which tools have been developed:

• architectural exploration andmapping or synthesis;

• simulation and evaluation;

• automatic RTL code generation and synthesis.

One advantage of NoCs is the ease to design regular structures by simply replicating

the IP cores along with the NIs and switches. Such homogeneous SoCs are useful

for applications that require greater programmability as the specifications and re-

quirement can change during the design time. For these reason a lot of research has
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focused on algorithms and tools to map tasks to IP cores interconnected by regular

topologies [68], [69], [122], [123]. Murali et al. also propose in [120] a tool to map tasks

considering QoS constraints as well. In systems where the application is known at

design time or the traffic can be characterized well even without an explicit implemen-

tation of the application, programmability can be traded for improved efficiency. This

requires the use of customized IP cores (e.g. audio accelerators, video decoders, WiFi

modules) as well a customized interconnect tailored to the application requirements.

Several research works propose algorithms andmethods to design application specific

NoC topologies [134], [65], [8], [158], [62], [181], [177], [121].

To validate the output of the synthesis tools under dynamic load or to further adjust

some other parameters of the NoC components (e.g. buffer sizes), simulation tools are

also needed. Alternatively analytical models have been proposed in order to estimate

the NoC performance faster than simulation. Analytical models however tend to

trade-off runtime for accuracy so inmany cases simulation is still required for the final

solution validation. Simulation as well can be done at different levels of abstraction.

Architectural-level simulators like GARNET [4], SICOSYS [136], NOXIM [130] abstract

away some of the details of the RTL implementation like the method for packetization

or ignore the time to generate the packet. This may result in some loss of accuracy, but

overall can give a good performance evaluation and verify most notwork properties

faster. To close the gap between the accuracy of RTL simulation and the speed of

architectural simulation or of the analytical models, there have been several proposals

for emulation of the NoC hardware on Field Programmable Gate Arrays (FPGAs) [16].

In some cases, analytical models can evaluate properties (e.g. worst case latency)

that would require extensive simulation. Several research papers have proposed

models for estimating worst case latencies for real-time system implementation [139],

[92]. In [61], [124], the authors present methods for application-level performance

analysis and data-flow based NoC performance analysis, respectively. A data-flow

based analysis can also be used to speed-up network performance estimation when

the traffic patterns can be modeled accurately to fit the models.

The research and development of ×pipesCompiler [76] and NoC library [160] ad-

dressed both the support for the automatic implementation of heterogeneous NoC

topologies. Both a parametrized library ×pipes and a NoC hardware compiler were

presented to address the problem of synthesis and optimization for heterogeneous

NoCs by means of highly-configurable network building blocks, customizable at in-

stantiation time for a specific application domain.

In order to handle the design complexity and meet the tight time-to-market con-

straints, it is not sufficient to automate most of these NoC design phases. To achieve

design closure, the different phases should also be integrated in a seamless manner.

Several such integrated design flows have been proposed in the research commu-
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Figure 1.3: iNoCs NoC design flow [73]

nity [25], [140]. Some companies like: Arteris [170], iNoCs [73], Silistix [171] are also

providing some commercial design automation tools for NoCs. As an example Fig-

ure 6 depicts the design flow from iNoCs. The tool flow starts from the application

architecture, application constraints (e.g. number of IP cores) and the application

communication constraints (e.g. the average bandwidth of communication between

the different cores, average latency constraints). The design flow uses the provided

tools to go from input specifications all the way to the RTL description of the topology.

Also scripts are provided such that in conjunction with other commercial tools the

RTL code can be synthesized for deployment onto Field Programmable Gate Arrays

(FPGAs) or Application Specific Integrated Circuits (ASICs).

For the synthesis and architectural exploration phase there are still many opportu-

nities that can be explored in order to improve the outcome of synthesis tools. The

exiting tools do not take in to account the constraints that surface in new technologies.

For example as wire delay grows in relation with the area of the die as technology

continues to scale, it is not possible to design a fully synchronous SoC. Most design

use multiple clock domains. To reduce the idle power IP cores in a clock domain can

also be shutdown when not used. The interconnect must function correctly regardless

so a synthesis tool must be aware of these properties and design the NoC accordingly.

If 3D integration technology is used, further challenges need to be addressed like:

limiting the number of vertical connections, assigning the NoC components to layers.

Another problem with existing tools is that synthesis and performance evaluation

are two decoupled steps. As such it may require many iterations before the required
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Quality of Service (QoS) is achieved by the designed interconnect. By integration the

performance evaluation during synthesis the number of design iteration could be

dramatically reduced leading to faster design closure.

1.4 Thesis contribution

I present in this thesis methods for automatic design of NoCs considering the con-

straints of new technologies as well as QoS constraints. On one hand the thesis brings

a strong engineering contribution as all the presented methods are oriented to solve

real problems related to NoC design. The integration of the proposed algorithms into

tools to automate the high level NoC design phase as well as the experimental results

provided have direct applicability for designing NoCs. On the other hand the thesis

has a scientific contribution as well as new algorithms are presented for NoC topology

synthesis and deadlock removal.

There are two main technical contributions that this thesis brings:

1. I present methods to design efficient NoC to be used as global interconnect

in SoC designed in new technologies (3D integration and multi synchronous

domain) and

2. I integrate methods to evaluate the NoC performance within the synthesis al-

gorithms such that different levels of QoS can be provided with an automated

flow.

Finally I also present new architecture andmethods to efficiently access bottleneck

devices with high latency devices like DRAMmemories.

1.4.1 Assumptions and limitations

For the rest of this work I made the following realistic assumptions:

• Three dimensional integration adoption: I assume that 3D integration technol-

ogy will be adopted in the design of future SoC. As technology scaling is becom-

ing more expensive with each technology node, 3D integration is a promising

alternative to increase the number of on-chip transistors. This is a realistic

assumption as we can already find some products (e.g. memories) that have

adopted 3D integration.

• Multi synchronous design: Another assumption is that 3D SoCs will use multiple

clock domains. Already in existing SoC designed in 2D technology it is not
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possible to distribute one synchronous clock throughout the chip. It has been

projected in [5] that in 35nm technologies less than 2% of the chip area can be

reached in a single clock cycle at a frequency of 5GHz. Therefore it is likely that

multiple clock domains will be needed in 3D as well. Also it may not even be

possible to power all the cores at the same time as well [49] and considering that

many IP cores provide specific functionality it is desirable to shut them down

when they are not needed to save power.

• Computation can be decoupled from communication: The thesis focuses on

designing the interconnect according to the application specifications. The

application traffic characteristics can be evaluated through profiling of the ap-

plications that are executed on the IP cores. The interconnect can be designed

using the obtained traffic characteristics without having the need for an explicit

description of the computation IP cores. Therefore the design of the intercon-

nect can be decoupled from the actual computation that is performed by the

SoC cores.

• NoC components are predictable: The synthesis algorithm evaluate the NoC

performance based onmodels of the NoC components. Therefore to decouple

the high-level topology synthesis from the silicon implementation, models of

the NoC components are used. The models are built from post place and route

results for the given technology. The assumption is that the NoC components

are predictable such that even after integration with the whole systems the NoC

components will maintain the properties that they had when the models were

built. This assumption is realistic as synthesis tools enables the hierarchical

design, so the NoC components can be synthesized as if they were stand-alone

modules. Also the links are point-to-point so their properties are easier to

predict.

1.5 Thesis overview

The thesis focuses on two main aspects of NoC design. First, Chapters 3, 4 and 5

present methods for NoC design considering 3D integration technology and the use

of multiple clock domains. Then in Chapters 6, 7 and 8 the thesis focuses on the

integration of performance evaluation during synthesis and on design aspects to

improve the Quality of Service. In the remainder of this section a detailed overview of

this thesis is presented.
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1.5.1 NoC design in new technologies

In Chapter 3, I present two algorithms for designing application-specific NoCs for 3D-

ICs. The first algorithm is designed to produce power optimal topologies for SoCs with

less restrictive constraints on vertical connections. The second algorithm is designed

to produced results with small numbers of vertical connections and to guarantee

direct connection only between adjacent layers in the case of more restrictive 3D

integration technologies. The two algorithms are integrated in a tool together with

methods to assign the NoC components to layers and to insert them in a valid floor-

plan. The two algorithms are fully integrated in a single tool and the tool automatically

switches between the two to produce good results even under tight constraint on the

number of vertical wires that can be used. As 3D integration promises to increase the

heterogeneity of cores by stacking dies created with different technological processes,

3D SoCs could greatly benefit by customizing the interconnect according to the appli-

cation demands. Therefore the chapter also presents an evaluation of the generated

3D topologies with respect to 2D topologies required for a similar sized 2D SoC. The

benefits of application specific topologies with respect to 3D regular topologies are

also explored.

As in advanced technologies it may take several clock cycles for an electrical signal to

traverse the length of a chip on global wires [24], it also very expensive to distribute

a synchronous clock throughout the die. Designing SoCs in new technology nodes

require the use of either multiple clock domains or asynchronous global communi-

cation. In many application-oriented SoCs the IP cores are specialized for a specific

functionality. When that functionality is not required, then those IP cores along with

the clock domain can be shutdown to reduce the idle power consumption. Therefore

the communication infrastructure must be aware of clock domain crossing and be

able to provide the required functionality even when parts of the chip are turned

off. In Chapter 4, I present an algorithm to design NoC topologies in the presence of

multiple clock domains that have the possibility of shutting down. The algorithm is

first described for designing 2D topologies and later extended to support multiple

clock domains in 3D SoCs. An evaluation of the overhead of the NoC topology due to

the partitioning the cores in different clock domains is described. Also a comparison

of topologies for 2D and 3D SoC implementations in the presence of multiple clock

domains is presented.

One important property for a NoC topology is to ensure deadlock freedom. If traffic

flows are not routed with care, they could block by creating circular dependencies

when reservingNoC resources. If deadlocks appear theywould lead to the catastrophic

failure of the communication infrastructure. In regular topologies deadlocks are

prevented by restricting the routing function from using certain combinations of

links. Similarly, by restricting the routing of flows from using certain sequences of
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links during synthesis the resulting topology is deadlock free [121]. Alternatively

deadlocks can be removed after synthesis, by adding parallel channels in the topology

and changing the routes of some flows to use the new channels. In Chapter 5, I

present a general algorithm for removing deadlocks for a given topology by adding a

minimal number of parallel channels. This method can be used in conjunction with

the synthesis algorithm to provide better results in highly-constrained environments.

For example in a 3D-IC where there is a tight constraint on the number of vertical

interconnect wires, synthesis could be performed first without the routing restrictions

to prevent deadlocks. Then the deadlock removal algorithm is applied to the generated

topologies to identify the deadlock conditions and remove them by adding parallel

channels in the parts of the topology that belong to a single layer of the 3D-IC.

Thus the first part of the thesis focuses on providing new NoC topology synthesis

algorithm that account for the constraints imposed by new technologies.

1.5.2 Adding QoS to NoC synthesis

In the second part, the thesis focuses in providing different levels of QoS for the

synthesized topologies. I present several ways of integrating the evaluation of the NoC

performance during synthesis in order to steer the synthesis algorithm toward better

solution.

Some of the applications have services that require hard latency constraints for some

flows (e.g. interrupts sent through the network). Many works have addressed the

problem of ensuring worst case latency bounds, but they all focus on using specialized

hardware for this purpose. For example the Æthereal NoC [57] uses Time Division

Multiple Access arbitration in order to provide for guaranteed services. However as

most SoCs for consumer electronics have only few services that require hard guaran-

tees, using specialized hardware may lead to over design. In Chapter 6, I show how

the analytical models from [139] for computing worst-case latency bound, can be

integrated in the synthesis process. By careful design of the topology, worst case guar-

antees can be provided while using only best effort NoC components. This method is

useful since most commercial NoC libraries [170] currently support only best effort

services.

Bandwidth-intensive applications usually require only average case guarantees. For

example, in video decoding, frames have to be processed at a certain rate. The frame

rate has to be achieved on average and if eventually some frames are dropped, the

quality of video decoding is not severely impacted. The challenge in designing theNoC

topology for average case performance come from actually estimating the average

case performance. Many of the analytical models proposed for estimating average

13



Chapter 1. Introduction

case have high error when compared to full system simulation. However full system

simulation is time consuming and not suited for integration within the topology

synthesis algorithms. I propose a partial simulation model to only simulate the part

of the NoC that is currently designed. This model is described in Chapter 7 and can

significantly speedup simulation making it suited for integration in the synthesis

process. The partial simulation model is also integrated within a the synthesis flow

and I present results to attest the benefits.

Providing QoS for applications does not involve only the NoC, but also the peripheral

devices that are accessed need to be considered. Most of today’s SoC are memory cen-

tric. To provide sufficient storage capacity Dynamic Random Access Memory (DRAM)

is used. However DRAM can have high access latency and it is also unpredictable

especially under heavy load. In Chapter 8, I analyze different NoC architecture and

propose methods for efficiently accessing shared memory in the form of external

DRAM.

Finally in Chapter 9, I conclude the thesis results and look at future avenues that can

be pursued.
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2 Background

In this chapter I will present on overview on some important topics that make a

basis for the thesis. The topics include: NoC operating principles, Three dimensional

integration, multi synchronous design and Quality-of-Service. With each topic I will

also review the previous and current work in that field.

2.1 NoC principles

A complete description of interconnect networks can be found in [41]. In this section

I will present only some of the basic operating principles of NoCs. The main topics

related to NoCs include:

• hardware architecture

• topology

• switching and flow control

• routing and arbitration

To provide realistic results for the evaluation the ×pipes library [160] is used for most

of the experiments. Therefore a description of this library is provided for each of the

four topics.

2.1.1 NoC hardware

ManyNoC architectures have been proposed. A large fraction of these are natively syn-

chronous, such as ×pipes [160], NOSTRUM [89], Spidergon [37]; others are conceived

to support asynchronous operation, such as Mango [27], FAUST [112] and ANOC [21].
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Figure 2.1: ×pipes building blocks: (a) switch, (b) NI, (c) link

Some architectures were presented to achieve predictable QoS behavior, using special

hardware mechanisms, such as Æthereal [57], QNoC [29].

As an example, a brief description of the basic NoC library components, based on

×pipes [160], is presented in Figure 2.1. This library incorporates features that have

been successful in many NoC designs.

There are threemain components: i) Network Interfaces (NIs), ii) switches and iii) links.

In ×pipes, two separate NIs are defined, an initiator and a target one, respectively

associated with systemmasters and system slaves. A master/slave device will require

anNI of each type to be attached to it. The interface among IP cores andNIs is point-to-

point as defined by the Open Core Protocol OCP 2.0 [156] specification, guaranteeing

maximum re-usability. NI Look-Up Tables (LUTs) specify the path that packets will

follow in the network to reach their destination (source routing). The switches are

parameterizable and can be configured at design time to meet requirements. Both

the number of inputs and outputs can be set as well as the amount of buffering and

the FLIT size. Similarly the amount of buffering and the FLIT size can be configured

in the NI. The links are point to point connections and can be pipelined in order to

meet the required cycle time. Because the library is configurable it is suited to build

application specific topologies.
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Other components can be used to increase the flexibility of the library. Among these,

two other components are worth mentioning as they are used in this work: fre-

quency converters and size converters. Frequency converters are needed in multi

synchronous designs. When a link crosses from one clock domain to another a fre-

quency converter is needed for a correct operation. There are several types of con-

verters depending on the relation between the two clock domains. Mesochronous

converters [102] are needed if the two clock domains have the same frequency, but

different phase. This could happen in a 3D SoC as the clocks on different layers may

not be aligned. If the frequency of the two clock domains is different then a dual clock

FIFO is required to bridge the two domains. As the cores in an application specific

SoC are heterogeneous they could have different data sizes (e.g. DRAMmemory con-

troller usually has a wide data interface to provide more bandwidth as it is shared by

many IP cores). In such case FLIT size converters may be needed in order to connect

components with different data size.

2.1.2 NoC topology

The topology defines how the NoC components are connected to form the on-chip

interconnect. For general purpose SoCs many regular topologies have been proposed.

There are two main categories of topologies: i) direct topologies and ii) indirect topolo-

gies. In direct topologies, to each switch at least one IP core is directly connected.

Examples of direct regular topologies range from: mesh, torus, ring, Spidergon [37],

hypercube. In indirect topologies, there are switches that are only connected to other

switches. Examples of indirect topologies are: clos, butterfly, fat-tree. Graphical

representations of some of this regular topologies are presented in Figure 2.2. Every

topology provides different trade-offs in terms of power, area, latency, bandwidth and

depending on the SoC requirements and constraints, one of the topologies may be

better suited. Mesh is probably the most popular topology due to the implementation

simplicity as the same switch architecture can be used for all the routing nodes. Many

existing designs or prototypes use mesh or a set of meshes for the NoC topology [166],

[162], [67], [164].

Customizing the topology is one of the best way to improve the performance/power-

consumption trade-off, for application oriented SoCs. In custom topologies the switch

sizes can have arbitrary values as depicted in Figure 2.2.g. The connectivity among the

switches is also arbitrary and different number of IP cores can be connected directly

to the same switch. When designing application-specific topologies the following

problems have to be solved: i) find the connectivity of IP cores to switches and from

switch to switch such that all communication flows can be established; ii) achieve

the required performance with minimum power. Most approaches for constructing

application specific topologies focus on direct topologies. This is because most of the
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Figure 2.2: Examples of topologies: a) mesh, b) torus, c) ring, d) spidergon, e) hypercube f)

butterfly and g) application specific

time topologies with fewer switches than cores can achieve the required performance

with lower power consumption. In this work I will show how indirect topologies

can also be built, in multi synchronous designs, in order to allow the possibility of

shutdown of clock domains.

2.1.3 Switching and flow control

There are two main types of network switching technologies:

• Circuit switched (connection oriented).

• Packet switched.

Circuit-switched network are similar to the early telephone networks where a con-

nection from source to destination has to be established prior to sending data. The

advantage of such a network is that it does not require buffering and the throughput

and latency are guaranteed once the connection is established. The main disad-

vantage of such flow control is the poor utilization of the network resources. In

packet-switched networks, messages are split into packets and the packets are routed

in the network from source to destination. Packets from different paths compete for

network resources at different points along the paths and this allows for a much better

utilization of the network resources. Even though there were some proposals of circuit-

switched NoCs [48] and some proposals for hybrid circuit- and packet-switched NoC

to provide guaranteed services for QoS [114], [115], most of today’s implementations

use packet-switched protocols. Therefore I will focus on the latter.
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Several flow control protocols have been proposed for the packet switched networks

as well:

• Buffer-less routing (Deflection routing);

• Buffered routing:

– Store and forward;

– Cut-through:

* Wormhole flow control;

* Virtual channel flow control;

Buffer-less routing has been proposed for networks that have low load [117], [63].

Unlike circuit switched networks the messages are divided in packets, but the right

to access a channel is arbitrated at each switching point for each packet. In case the

desired channel is busy than the packet is either deflected or dropped. In the latter

case the packet would need to be retransmitted. However it has been shown in [109]

that buffer-less networks quickly loose performance in the presence of congestion.

For buffered networks twomain switching methods exist: i) store and forward and ii)

cut-through. In store and forward networks, like most Internet networks, a packet has

to be completely stored in the buffer of a switch port before it is forwarded to the next

switch. This flow control requires a lot of buffering capacity and has high latency as

well. Therefore it is not really suited for NoCs which are area and latency sensitive.

Most NoC implement variants of the cut-through protocols. In wormhole flow control

protocol a packet is split in FLow control unITs (FLITs). The FLITs are sent in the

network one after the other like a worm, which inspired the name of the protocol.

Arbitration for resource reservation is done by the header FLIT and the resource

remains reserved until all the FLITs of the packet have passed. This reduces both the

buffering requirements and the latency of the packets. As packets can be blocked

waiting for resources they can span across multiple switches blocking other packets.

To improve the utilization of the links, virtual channel flow control proposes the use

of multiple buffer (virtual channels) in the same port and when packets are blocked in

one buffer the packets from the other buffers can be forwarded. Many NoC libraries

that are dedicated to application specific NoCs like×pipes [160] do not support virtual

channels, as on-chip wiring is less expensive so multiple physical channels can be

used instead to provide similar effects.

In ×pipes, switches use wormhole switching, as it is most common in NoCs, but

support two variations of flow control. If ACK/NACK flow control is used then output

buffers are required, as flits have to be retransmitted until the downstream router

has sufficient capacity to store and accept them. If ON/OFF flow control is used,
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back-pressure from the downstream switch stalls the transmission until the there is

sufficient buffering capacity. In this case, output buffers can be omitted. In any case,

the arbiter is required to resolve conflicts between packets when they require access

to the same physical link.

2.1.4 Routing and arbitration

Routes determine the paths the packets follow to go from the source to the destination.

The route is a set of switches and output ports that are used by a packet in sequence to

reach the destination. Most if not all NoC implementation use deterministic routing.

In deterministic routing one or more routes are defined from each source to destina-

tion and the packets are sent using one of those routes. In case of adaptive routing

algorithm multiple routes are used from each source to destination and the route

is selected such that certain goals are achieved (e.g. load on the NoC is balanced).

Most implementation for application specific NoC use static routing to reduce the

complexity of switches and NIs and because the traffic is known so it can be balanced

when the routes are generated at design time.

Several mechanisms have been proposed for specifying the routes at the hardware

level. The most used mechanisms are: node routing and source routing. In node

routing, at each switch the next port is calculated based on the source and destination

of the packet. The calculation can be done either by a hardware implementation

of a routing algorithm or by a table contain the next port for all source destination

combinations. Node routing is very useful in regular topologies where the next node

can be calculated using a simple algorithm. In case of application specific topologies

source routing is preferred as it ismore flexible. For source routing, theNI holds a table

with all the routes to destinations that can be reached. When a packet is generated

based on the destination the route is included in the packet header. At each node the

next node is selected based on the information in the packet headed. At design time

the routes have to be decided and set in the NI table for the NoC to function correctly.

The ×pipes [160] library uses deterministic static source routing.

When two packets need the same resource the conflict between them has to be re-

solved by an arbiter in the switch. Two of the most used arbitration schemes are

priority arbitration and round-robin arbitration. For priority arbitration each input

channel has a unique static priority and the packet on the channel with the highest

priority wins. This policy is easy to implement, but it is not fair as their highest priority

port can prevent the other from sending when it is congested. Round-robin arbitration

is fair as the port that sent the packet last receives the lowest priority so all the ports

that have packets to sent will get serviced. The ×pipes [160] library supports both

modes. In case of virtual channels more complex allocators have been proposed, to
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find the best matching between virtual channels and output port in order to maximize

the throughput [41].

Other arbitration and routing schemes have been developed in order to offer sup-

port for predictable communication behavior. The Æthereal NoC design framework

presented in [57] aims at providing a complete infrastructure for developing hetero-

geneous NoC with end-to-end quality of service guarantees. The network supports

guaranteed throughput (GT) for real time applications and best effort (BE) traffic for

timing unconstrained applications. The architecture offers so-called GT connections

which provide bandwidth and latency guarantees on that connection. In order to

provide bandwidth and latency guarantees, it uses a Time Division Multiple Access

(TDMA) mechanism to divide time in multiple time slots, and then assigns each GT

connection a number of slots. The result is a slot-table in each NI, stating which GT

connection is allowed to enter the network at which time-slot. For traffic that has no

real-time requirements, Æthereal implements Best-Effort connections.

2.2 Three dimensional integration

As computation platforms continue to miniaturize, the integration of ICs over printed

circuit boards is no longer possible due to tight area constraints. To improve the area

efficiency System-in-Package (SIP) technology was developed, where multiple dies are

integrated in the same package. Connectivity among dies is provided through wire

bonds at the edge of the dies. The drawback of SIP technology is that the connectivity

between dies is limited to not muchmore than that between different packages on the

printed board. Three dimensional integration promises to remove this limitation by

priding better vertical connectivity. An example of SIP technology and 3D integration

is shown in Figure 2.3.

There are twomain concepts for 3D integration:

• 3D-stacking of silicon layers with Through Silicon Vias (TSVs) to provide connec-

tivity.

• 3D-monolithic integration

Stacking of silicon layers has emerged as a promising solution that addresses some of

themajor challenges in today’s 2Ddesigns [18], [26], [58]. In the 3D stacked technology,

the design is partitioned into multiple blocks, with each block implemented on a

separate silicon layer. The silicon layers are stacked on top of each other. Each

silicon layer has multiple metal layers for routing of horizontal wires. Unlike the

3D packaging SIP solutions, the different silicon layers are connected by means of
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Figure 2.3: Example of: a) System-in-Package technology and b) 3D-stacking with TSV connec-

tivity

on-chip interconnects known as Through Silicon Vias. TSVs are built by drilling holes

in the silicon die and filling them up with metal. Even though the size of the TSVs is

quite large relative to the size of the transistors, the density of TSVs is high enough to

provide system level integration.

On the other hand 3Dmonolithic integration proposes the use of molecular bonding

to add thin silicon wafers on top of already processed wafers and to create more

transistors on the top layer. The density of the connection is higher and this technology

is more suited for 3D integration at transistor level [19]. Therefore 3D monolithic

integration can be used to enhance the performance of an IP core, while 3D-stacking

allows for the integration of many IP cores (which can be processed with different

integration technologies). As this work is concerned with the interconnection of IP

cores, I will focus on 3D-stacking in the remainder of this section and of this work.

Please note that potentially the two technologies could be used in conjunction to

speedup the IP cores and to integrate more cores to provide more functionality.

The 3D-stacking technology has several major advantages:

• The footprint on each layer is smaller, thus leading to more compact chips.

• Smaller footprints lead to shorter wires within each layer. Inter layer connections

are obtained using efficient vertical connections, thereby leading to lower delay

and power consumption on the interconnect architecture.

• Heterogeneous integration of diverse technologies is possible. Each layer could

be designed as in a different technology specific to the different IP cores (e.g.

memories, analog amplifiers) resulting in better efficiency and performance

A detailed study of the properties and advantages of 3D interconnects is presented in

[18] and [172].

Vertical stacking of multiple silicon layers, referred to as 3D stacking, is emerging as
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Figure 2.4: An example set of 9 vertical links [72]

an attractive solution to continue the pace of growth of Systems on Chips (SoCs) [18],

[26], [58], [36], [70], [71], [96], [180]. Several technologies andmethods are available

in the literature for performing 3D integration. In the Die-to-Die bonding process,

individual dies are glued together to form the 3D-IC. In the Die-to-Wafer process,

individual dies are stacked on top of dies which are still not cut from the wafer. The

advantages of these processes are that the wafers on which the different layers of

the 3D stack are produced can be of different size. Another advantage is that the

individual dies can be tested before the stacking process and only "known-good-dies"

can be used, thereby increasing the yield of the 3D-IC. In the Wafer-to-Wafer bonding,

full wafers are bonded together. For connection from one layer to another, a TSV is

created in the upper layer and the vertical interconnect passes through the via form

the top layer to the bottom layer. Connections across non-adjacent layers could also

be achieved by using TSVs at each intermediate layer. The integration of the different

layers could be done with either face to face or face to back technologies [101]. The

face of the die is considered to the metal layers and the back is the silicon substrate.

The copper half of the TSV is deposited on each die and the two dies are bonded

using thermal compression. Typically, the dies are thinned to reduce the distance

between the stacked layers. Several researches have addressed 3D technology and

manufacturing issues [26], [58], [72], [82], [72]. In [26] the authors make a detailed

analysis of performance gains for 3D technology. The authors analyze how the area,

power and wire length is affected when moving from a 2D design to 3D. In [58] a
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Figure 2.5: 3D bundle cross-section [72]

method for placing thermal vias is shown. Themethod places the thermal vias in order

to keep the temperature under a desired maximum value and at the same time tries

to minimize the number of thermal vias needed. Models for vertical links containing

several parallel wires are presented in [72]. The authors also present methods for

using the vertical links within available 2D design flows. Several industrial labs, CEA-

LETI [59], IBM [163], IMEC [75] and Tezzaron [15], to name a few, are also actively

developing methods for 3D integration.

In Figure 2.4, a set of vertical wires using TSVs implemented in SOI and bulk silicon

technologies [72] are showed. There is also the schematic representation of a bundle

of TSV vias in Figure 2.5. In [72], a 4 µm x 4 µm via cross section, 8 µm via pitch, 1

µm oxide thickness and 50 µm layer thickness are used. As can be observed from the

dimensions the size of the TSVs allows for good connectivity at systems level.

A major concern in 3D chips is about managing heat dissipation. In 2D chips, the heat

sink is usually placed at the top of the chip. In 3D designs, the intermediate layers may

not have a direct access to the heat sink to effectively dissipate the heat generated.

Several researchers have been working on all these issues and several methods have

been proposed to address them. At system level, the problem of partitioning and

floorplanning of designs for 3D integration has been addressed in [36], [70], [71], [96],

[180] among others. In [36] a new data representation is presented that contains

the necessary data for performing floorplanning using simulated annealing. The

temperature of the chip is used in the objective function that is minimized. An RC

model is also presented to calculate the temperature distribution that is used in

the objective function. A force-directed 3D floorplanner is presented in [180]. The

floorplanner efficiently takes into account physical information like temperature
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gradient and the authors also present methods to transition from an unconstrained

3D assignment to a legal layer assignment without overlap. At the circuit level, use

of thermal vias for specifically conducting heat across the different silicon layers has

been used [58]. In [163], use of liquid cooling across the different layers is presented.

Managing heat dissipation is however an orthogonal problem to interconnect design.

To decouple the two problems the placement and assignment of IP core to layers in

the 3D stack is assumed to be provided as input.

There are also works that address however the problem of interconnects in 3D SoCs.

Multi dimensional regular topologies (like k-ary n-cubes, hypercubes) have been

explored by researchers as viable interconnect solutions for chip-to-chip networks

[39]. However, such standard topologies are not suitable for application specific SoCs,

which are heterogeneous in nature. Synthesis of NoCs for 3D SoCs is a relatively new

topic. New switch architectures for 3D have been presented in [86] and [129]. In [95],

the authors present the use of NoCs as interconnects for 3D multi-processors. The

electrical characteristics of vertical interconnects are analyzed in [72] and the authors

also present a back-end design flow to implement 3DNoCs. Design of standard topolo-

gies for 3D is analyzed in [52] and mapping of cores on to NoC topologies is presented

in [1]. Power-delay analysis of 3D interconnects is presented in [132]. However, none

of these works address the issue of synthesizing custom NoCs topologies for 3D SoCs.

2.3 Multi synchronous design

In recent SoC design we can already see the use of multi synchronous design. The

IP cores are not all assigned to the same clock source, but there are multiple clock

sources. There are many reasons for using multiple clock signals, but the three main

reasons are the following:

• Implementing a single synchronous clock in new technologies is expensive. As

feature scale, the aspect ratio of wires increase the capacitance making them

slower. As it can take several clock cycles a signal to propagate across the length

of a die [24] it is very difficult to spread one synchronous clock signal to all the

cores. The cost in power or in the operating frequency is to high for most designs.

• With the leveling of voltage scaling to maintain the power density at acceptable

level not all the cores can be operated at the maximum frequency [66]. Dynamic

scaling of the frequency is used to operate the IP cores at theminimumnecessary

frequency to perform their tasks. As in an SoC the different IP cores perform

different functions they may need to operate at different frequencies. Since

the power budget remains constant, as more cores will be available in future

technologies (e.g. 3D-IC), it will not be able to even power all of them at the
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Figure 2.6: Floorplan example of an SoC with 6 clock domains

same time [49].

• With technology scaling, the leakage power consumption is increasing rapidly

as a fraction of the total power consumption. In fact, leakage power can be

responsible for 40% or more of the total system power [51]. Reducing the idle

power is especially important in mobile devices, but it should not be neglected

in devices connected to the power grid either. In application oriented SoCsmany

IP cores are dedicated to specific functionality. Therefore they can be shutdown

when that functionality is not needed.

In Figure 2.6 there is an example of an SoC where the cores have been assigned to

6 clock domains based on functionality. The different domains are represented by

different colors. The assignment of IP cores to clock domains based on functionality

allows for the shutdown of those clock domains when that functionality is not used.

In order to reduce the leakage power consumption, cores that are not used by an

application can be shutdown or placed in sleep mode, while the other cores can be

operational. For example, power gating using sleep transistors is a popular way to

shutdown cores [51]. To achieve power gating, the sleep transistors are added between

the actual ground lines and the circuit ground (also called the virtual ground) [51],

which are turned off in the sleep mode to cut-off the leakage path. Due to routing

restrictions, separate VDD and ground lines cannot be used for each core. Instead,

cores are grouped in to Voltage and Frequency Islands (VFIs), with cores in an island

using the same VDD and ground lines [90], [143], [165], [106]. When all the cores

in an island are unused for an application, the entire island can be shutdown. For

example, the IBM fabrication processes CU-08, CU-65HP and CU-45HP all support

the partitioning of chips into multiple VFIs and power gating of the VFIs [155].
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Power gating of designs has beenwidely applied inmany SoCs [90]. In [90], the authors

present the importance of partitioning cores in to voltage islands for power reduction.

Several methods have been presented to achieve shutdown of islands [90], [143], [165],

[106]. Any of these methods can be used in conjunction with the topology synthesis

process to achieve the actual shutdown of cores.

There are several works that have tackled the problem of designing NoCs for multi

synchronous SoCs. These works however address the hardware implementation so the

use regular topologies and do not address the application specific topology synthesis

problem. In [27] an architecture forGlobally Asynchronous Locally Synchronous (GALS)

NoC is presented. In [112] the authors present a physical implementation of multi-

synchronous NoC. Architectures for designing NoCs using GALS paradigm are also

presented in [22] and architectures for designing NoCs for GALS and DVFS operation

are shown in [20]. The authors tackle the issues at the hardware level, by presenting

designs for the network components, but not the architectural synthesis problem

from customNoC. In [126], the authors present a design methodology for partitioning

a NoC into multiple islands and assigning the voltage levels for the islands. This

work is complementary to this thesis, as I present a methodology for designing a

customNoC topology starting from an existing assignment of cores to VFIs. In [94],

the authors present an approach to design NoCs with voltage islands. However, the

designs produced by the method do not support the shutdown of the islands.

In [45], the authors present approaches to route packets even when parts of the NoC

have failed. A similar approach can be used for handling NoC components that

have been shutdown. However, such methods do not guarantee the availability of

paths when elements are shutdown. Moreover, mechanisms for re-routing and re-

transmission can have a large area-power overhead on the NoC [119] and are difficult

to design and verify.

2.4 Quality-of-Service

Many classes of applications require some amount of determinism in the behavior of

the communication flows. Providing guarantees for communication flows in NoCs

is usually termed as providing Quality of Service (QoS) guarantees. Usually, the QoS

guarantees translate into bandwidth and latency constraints for the traffic flows. The

bandwidth constraints can be met by allocating enough resources, giving a bound

on worst case latencies is a bigger challenge. While the guarantees that are required

by applications in the multimedia domain are concerned with the average case, and

infrequent cases that do not meet the requirements are allowed (also called soft QoS);

there are applications in safety critical domains (such as automation, aerospace,

military) that require hard bounds that must be always met (also called hard QoS).
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2.4.1 QoS at NoC level

The NoC is one of the source of unpredictability as many IP cores with different traffic

patterns access it. To provide QoS for application the NoC has to provide a certain

degree of predictability. This can be done either through specialized hardware or

through appropriate sizing of the communication resources and thorough analysis.

There have been many works that provide QoS guarantees by adding specialized hard-

ware to the NoC architecture. The Æthereal NoC, presented in [57], adds guaranteed

services on top of best effort services to provide QoS support. In [88], the authors de-

scribe the MARS architecture where TDMA (Time Division Multiple Access) is used to

provide QoS guarantees. In [153], a priority based scheme is used to provide QoS and

in [131] the authors present the concept of a predictable Time-Triggered NoC, where

QoS is ensured through communication services. In [107] the authors present a QoS

NoC architecture that uses both best effort and guaranteed traffic, however requires

specialized hardware and virtual channels. Many works present improvements and

variations [29], [28], [30], [54], [80], [93], [108], [111], [116], [118], [137], [141], but all

use specialized hardware to provide QoS. A recent survey of NoCs [47] shows that

most NoC architectures do not have specialized hardware for QoS and therefore a

method to design NoCs that provides guarantees on the delay of communication flows

is necessary.

In [92], the authors present a method to characterize the real time behavior of com-

munication flows in best effort wormhole general networks for parallel computing.

However this method requires traffic regulation, which is not desirable in a majority

of applications. In [139], we presented models to analyze and compute worst case la-

tency bounds, even the input traffic is not regulated. In this work, we use the methods

for calculating the worst-case latencies during the topology synthesis process itself,

and we use the computed values to tune the instantiation of network components to

produce topologies that meet the real time-constraints.

In [120], the authors consider critical streams and map them more efficiently than

normal streams. However, they do not provide any bounds on the latencies. In [62],

the authors present amethod to synthesize NoCs for a TDMA based architecture. They

also consider the design of TDMA slot tables to meet hard QoS constraints. However,

the method only applies to NoCs where the underlying architecture uses additional

hardware to support QoS. Moreover, with a TDMA scheme, the average performance

of the system could be poorer than with a scheme where packet injection times are

not so tightly constrained.

Providing soft QoS requires that average case guarantees are met. This complicates

the problem over worst-case guarantees because it is harder to estimate the average

case. Most often the average case is estimated through extensive simulation with
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multiple variations of the benchmarks which is time consuming. Analytical models

have been proposed as well [61], [124]. However analytical methods improve the

estimation speed by trading-off the estimation precision and the more precise the

model the closer the run time is to simulation.

2.4.2 QoS in the presence of bottleneck devices

Many of the existing multi-core architectures are DRAM centric. For example in

Figure 2.7 is shown the Intel Single Chip Cloud Computer prototype processor [67].

The processor has 48 core which communicate to the main memory through only

four DRAM controllers. Therefor the DRAM controller can become the bottleneck

for system performance. A similar trend is visible in embedded applications. For

example, in Figure 2.8 the latest generation SoC the OMAP 5 platform from Texas In-

struments [74] is presented. The SoC is destined for mobile application and therefore

it has many dedicated IP-core. However most cores that require large storage have to

communicate with the main memory though two DRAM controllers.

Therefore to provide the QoS that is required at application level it is not enough to

give guarantees on the network alone. As some peripherals are shared amongmultiple

IP cores, the access time can be unpredictable. To ensure that the required QoS is

provided, the access time to such shared devices has to be considered as well. One

particular such device is the DRAM controller because it can be shared by many IP

cores and the access time is unpredictable under high load. Many of today’s Systems

on Chips (SoCs) are DRAM centric as the applications running on them have large data

storage requirements. In such systemsmany cores access the external DRAMmemory

through a single on-chip DRAM controller. Since there are many cores that have high

communication demands to a single DRAM controller, the controller can become

the bottleneck for the system performance. It can even affect the performance of

cores that do not communicate with it directly. Several works have presentedmethods

to improve the efficiency for accessing DRAM through transaction scheduling and

reordering [142]. However reordering transactions makes the latency for accessing

DRAM unpredictable and highly dependent on the address traces generated by the

applications accessing the DRAM. The unpredictable nature of DRAM access can lead

to transitory bottlenecks at the DRAM controller ports.

Several works have presented method to improve DRAM access efficiency by schedul-

ing and reordering transactions in the DRAM controller [142], [6], [10], [91], [138],

[168]. In [6], [91] are presented optimizations for multicore systems, and in [10] a pre-

dictable DRAM controller is presented. Memory scheduling is important in increasing

the efficiency of DRAM access, but it is orthogonal to the scope of this paper. We use

the simulatormodel from [168] in order to include thesememory access optimizations
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Figure 2.7: Intel Single Chip Cloud Computer [67]

Figure 2.8: Texas Instruments OMAP 5 application platform [74]
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in our simulation framework.

In [77] the authors present a way to reorder DRAM transactions while in the network

and simplify the DRAM controller. However this does not solve the problem of inter-

ference with the normal traffic in the NoC. To reduce the traffic to DRAM, the authors

propose in [178] to have a custom processor closely integrated with DRAM controller,

in order to process complex requests and return only the results. A credit-based flow-

control method is used in [167] to prevent the DRAM traffic from waiting into the

network and interfering with non-DRAM traffic. In [85] the authors propose to give

higher priority to transactions waiting in the DRAM queue that have to be sent back

to cores in areas of the NoC which are less congested. However in custom topologies

the response path is usually not congested. Memory-centric NoC architectures with

real chip implementations are provided in [83] and [84]. However in these systems

there are several memories which are on-chip and the communication between cores

is done through these memories.

To satisfy the growing demands for memory bandwidth of current and future applica-

tions at manageable power levels, parallel access to the memory systems is required.

In traditional architectures that rely on off-chip external DRAMmemory, the limited

number of I/O-ports prevent SoC designers from using multiple memory channels.

Three dimensional integration is a promising technology for increasing the number

of memory channels that can be accessed in parallel as well. A major advantage of

3D integration is the ability to integrate efficiently heterogeneous manufacturing

technologies in a single chip stack, by putting together dies that have been processed

separately. 3D-stacked memories that leverage the benefits of heterogeneous inte-

gration have been proposed as a solution to overcome the Memory Wall [174]. As

each layer in a 3D stack is processed separately, high density DRAM memory can

be stacked on top of logic to satisfy the large storage needs of applications (at low

cost per MB). Through Silicon Vias (TSVs) are used to provide vertical connectivity

and as 3D integration technology matures the density of TSVs increases. Stacked

memories can benefit from the large number of TSVs to provide wide interfaces and

multiple channels, such that the large bandwidth requirements can be met at low

power levels. Apart from the wider data-paths that allow the memory to operate at

lower frequency, while achieving the same bandwidth, power is saved in 3D stacked

memories by removing the need to go off-chip through power-hungry IO ports. On the

other hand, having access to multiple ports requires the SoC to be able to efficiently

use them to achieve the overall bandwidth requirement.

Many research groups have focused on the technological aspects of manufacturing

3D-integrated memory systems [46], [12], [50], [175]. Others have investigated system

architectures using 3D-integrated on-chip DRAM [103], [99], [100], [161]. In [174],

Weis et al. present a design space exploration of SoCs with 3D-stacked DRAM and
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in [11] the authors show an overview of 3D-integrated DRAMs and the challenges

associated with it. In this thesis, I assume a specific 3D-stacked DRAM architecture,

i.e. the WideIO JEDEC standard[87]. A study showing the advantages of using multi-

channelmemory systems for video encoding SoCs is presented in [7]. The study shows

the impact of multiple channels on the system performance and our work is different

from that as we are concerned with how to efficiently access multiple channels.

Arteris [13] and Sonics [32] offer memory interleaving support that is integrated

with their interconnect solutions. However they do not provide any comparison

to traditional solutions. Moreover in the white paper from Sonics [32], experiments

are shown only for two channels using existing off-chip DDR3 memories and not

3D-stacked WideIO with 4 channels.

2.5 Comparison with previous work and list of publications

Many publications in literature present algorithms and tools to map tasks to IP cores

interconnected by regular topologies [68], [69], [122], [123]. Murali et al. also propose

in [120] a tool tomap tasks considering QoS constraints as well. As SoC designs started

to trade-off programmability for power efficiency and to customize the IP-cores, the

NoC research works started to focus on algorithms andmethods to design application

specific NoC topologies [134], [65], [8], [158], [62], [181], [177], [121]. However these

methods considered only 2D-integration technology and synchronous design. The

work presented in Chapter 3 tries to go one step forward in the domain of application

specific NoC design, and to address the challenges posed by designing the NoC for 3D-

integration which is a promising new technology. As integration technology evolves

new challenges arise like multi-synchronous designs and increased leakage power

consumption. The existing works on application specific NoC design do not address

these new technological issues. Therefore in Chapter 4, I look at methods to design

the NoC facing these challenges. There has been much work on avoiding deadlocks,

especialy for general networks and regular topologies [43], [44], [34], [38], [98], [55],

[105]. Most works on application specific NoC design are relying on the methods from

[56], [179], [159] to avoid deadlocks during the synthesis of the NoC topology. However

these methods may interfere with the additional constraints that are imposed by the

new integration technologies (3D-integration, voltage island design) prohibiting the

synthesis tools to produce solutions when the constraints are tight. Therefore in

Chapter 5, I present a newmethod to remove deadlocks in application specific NoC

after the topology is build.

Providing Quality-of-Service has also been an important concern for researchers.

Much of the research has focused though on predictable Noc architectures [57], [153],

[131], [107], [29], [28], [30], [54], [80], [93], [108], [111], [116], [118], [137], [141]. How-
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ever many application require predictably only for few services and average perfor-

mance for the rest making the use of specialize hardware expensive in many cases.

Models for estimating worst-case latencies have also been investigated [92], [139],

however most of the existing synthesis algorithms are using only simple analytical

models that do not take into account contention. In Chapter 6, I present a new syn-

thesis algorithm that integrates the method from [139] to estimate the worst-case

latencies and to construct the NoC topology as to meet worst-case latency require-

ments only with best-effort NoC hardware.

Providing QoS at system level requires to go beyond the interconnect and to improve

the performance of the bottleneck-peripheral devices. One such bottleneck device is

the shared DRAM controller. Much research is available in literature for improving

the performance DRAM controller [142], [6], [10], [91], [138], [168]. There is also work

on the technological aspects, to bringing the memory closer to the SoC, by means

of 3D-integration [46], [12], [50], [175]. In my work, in Chapter 8, I analyze ways to

improve the architecture of the NoC to provide better services in order to access the

DRAM controller efficiently, considering WideIO 3D-integrated memory.

Most topics addressed by the thesis have also been published at conferences or in

journals. The methods and algorithms for performing NoC topology synthesis for

3D-ICs, from Chapter 3, have been published in [146] and [149]. The method to

perform NoC design in ICs with multiple voltage island and shutdown of voltage

island, from Chapter 4 has been published in [145]. The extension of the synthesis

algorithm for 3D-SoC with voltage island and the experimental comparisons between

2D- and 3D-ICs with voltage island have been published in [147]. The algorithm for

removing deadlocks from Chapter 5 has been published in [148]. The design methods

for constructing NoCs that meet worst-case latency constraints using best effort NoC

hardware has been accepted to be published in [151]. The first part of Chapter 8 that

provides architectures and analyzes ways of prevent regular NoC traffic to be affected

by DRAM traffic, has been published in [150].

2.6 Summary

In this chapter I have presented some of the basic concepts that are going to be used

throughout the rest of the thesis. I have introduced the general concepts describing

NoCs and their functionality, 3D integration technology, multi-synchronous design

and the problems related to QoS. Within each topic I have also reviewed the main

publications that have contributed to some of the aspects that are relevant for this

thesis.
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3 Designing application specific NoCs

for heterogeneous 3D-SoCs

Two-dimensional chip fabrication technology is facing lot of challenges in utilizing

the exponentially-growing number of transistors on a chip. Wire delay and power

consumption are dramatically increasing and achieving interconnect design closure

is increasingly a challenge. Moreover, diverse components that are digital, analog,

MEMS and RF are being integrated on the same chip, resulting in high complexity

for the 2Dmanufacturing process [18]. Three dimensional integration is emerging as

an attractive solution to continue the pace of growth of Systems on Chips (SoCs). An

overview of 3D integration technology is given in Section 2.2.

As the number of IP cores will grow in 3D-SoCs, NoCs will be a necessity for 3D chips.

They provide arbitrary scalability of the interconnects across additional layers, ef-

ficiently parallelize communication in each layer and help controlling the number

of vertical wires (and hence TSVs) needed for inter-layer communication. The com-

bined use of 3D integration technologies and NoCs introduces new opportunities and

challenges for designers. Building power-efficient NoCs for 3D systems that satisfy

the performance requirements of applications, while satisfying the technology con-

straints, is an important problem. To address this issue, new architectures and design

methods are needed.

In this chapter, I address this important problem and present a synthesis approach

for designing power efficient NoCs for 3D-SoCs that meet application performance

and 3D technology constraints. Custom topologies that are tailored to meet the

application performance constraints can result in large NoC power savings. The need

for an application-specific topology has been well studied for 2D-ICs [123], [121]. All

these advantages hold in 3D as well. The major contributions of this chapter are:

• A synthesis approach to determine the most power efficient topology for the ap-

plication and for finding paths for the traffic flows that meet the TSV constraints.
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Figure 3.1: Yield vs. TSV count [113]

• Methods to assign the NoC components to the layers of the 3D-IC.

• Amethod to determine the optimal positions of switches in the floorplan in each

layer.

• A method to insert the NoC components in the floorplan and to remove any

overlap with the cores.

• The exploration of the design space of custom topologies in order to show the

comparative advantages in moving to 3D technology.

Constraining the number of TSVs is important in order to control the yield of the 3D-

IC. In Figure 3.1, I show the dependence of yield on the number of TSVs for different

manufacturing processes [113]. For all processes there is a clear upper bound on the

number of TSVs after which the yield decreases rapidly. For this reason, it is important

for the synthesis process to be aware of this upper bound and should be able to ensure

that the designed NoCmeets this constraint, while at the same time complying with

the application requirements. Also, since for the different manufacturing processes

the constraint is different, it is necessary for the synthesis process to take this as an

input. Another reason to try to reduce the number of TSVs is to save area. In [26], the

pitch of a TSV is reported to be between 3 and 5 µm. Reserving area for too many TSVs

can cause a considerable reduction in the active silicon area remaining for transistors.

The assignment of cores to the different layers and the floorplan of each layer needs to
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consider several performance and technological constraints. For example cores that

have I/O pins that go off chip have to be placed near the border of the die, cores that

operate at the same frequency should be placed close together to share the clock tree

and thermal issues should be considered as well. There are several works that address

these issues [36], [70], [71], [96], [180] and this work is complementary to them. The

experiments show that wires have significant power consumption and delay. Thus, the

floorplan of the design should be considered during the topology synthesis process.

Here, I only address the issue of designing the NoC topology and determining the

placement of the NoC components. I show that using a standard floorplanner to insert

the NoC components in an existing floorplan can lead to poor results. Therefore I

propose a simple floorplanning method that shows a significant reduction in area (av-

erage 20%) and power consumption (average 7.5%) when compared to a constrained

standard floorplanner. More complex optimization methods, like the ones from [97]

could also be used to design an even better custom floorplanning routine. As the

main objective is topology synthesis, developing and comparing different custom

floorplanning methods is beyond the scope of my work. Another point to be noted

is that a single switch or interface of a NoC has low area (few thousand gates) and

power consumption (few mW at 1 GHz) overhead. Thus, the thermal properties of

the system are not affected significantly when inserting the NoC components in the

floorplan.

Another major contribution is a comparison between 2D and 3D SoCs in terms of the

interconnect delay and power consumption. An important advantage in using 3D

technology is that the wires are shorter. However, today it is still unclear the amount of

power and delay gains that is achievable by 3D integration for custom interconnects

for SoCs. I compare the same SoC design for the case when all cores are on the same

die to the case when the cores are distributed on different dies in a 3D stack. Therefore

I analyze the power reduction that is due to having shorter wires. I do not consider

the case when the initial system was build using different dies in multiple packages

and the power reduction is due to removing the IO pads and drivers. In this chapter,

for comparative purposes, I also apply a 2D synthesis flow developed earlier by Murali

et. al [121] for a corresponding 2D implementation of the benchmarks. The results

show that a 3D design can significantly reduce the interconnect power consumption

(38% on average) and latency (13% on average). For completeness, I also show the

power consumption reduction in using a custom topologywhen compared to a regular

topology for several benchmarks. However, detailed study of the different advantages

of a custom solution is not reported here, as the analysis would be analogous to those

done in [123], [121] for 2D ICs.
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Figure 3.2: Example vertical link

3.1 Architecture

I assume a wafer-to-wafer manufacturing process, with TSVs used for the vertical

interconnection wires. I present the synthesis methods for the case where each

component (core and network component) is designed to span within a single layer.

As the network components are small, there will not be a significant performance

benefit if they were designed to span onmultiple layers. In designs where a single core

may span multiple layers, the network interface would still be assigned to a single

layer close to where the communication port of the core is. In this case the synthesis

algorithm is not affected at all and only minor extensions would be needed in the

floorplanning routine to account for this fact. As this does not affect the synthesis

methods, I do not present such extensions in this work. In the considered architecture,

the vertical wires using a TSV between two layers uses the global metal routing of

the bottom layer, therefore requiring silicon area to be reserved only on the top layer

where the TSVs are drilled. Area reservation is done by placing abstractions in the

floorplan called TSV macros. In Figure 3.2, I show an example where two switches on

two different layers are connected using an inter-layer link.

For the inter-layer links that go throughmore than one layer, TSVmacros are placed in

the intermediate layers as well. In Figure 3.3, I show an example where there is a TSV

macro in the middle layer. From the bottom layer, the link is first routed horizontally

on the metal layer and then vertically. In the second layer, an intermediate TSV macro

is needed to connect through the silicon. Then, the link is routed again on the metal

layers in the second layer, and when aligned with the switch on the top layer, the link

is fed vertically. The switch in the top layer has a TSVmacro embedded for the port

that is connected to this link. The area of the TSV macros for a particular link width is
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Core

Core

switch

switch

TSV macro

TSV macro

vertical link

horizontal link

Layer 0

Layer 1

Layer 2

Figure 3.3: Example vertical link

taken as input. For the synthesized topologies, my tool automatically places the TSV

macros in the intermediate layers and on the corresponding switch ports.

If there is a core that is connected to a switch that is in another layer, then space has to

be reserved on the floorplan to place the TSVs. The network interface of the core will

contain the necessary TSVmacro, that reserves the space, when core and the switch

are only one layer apart. The network interface is responsible to translate the core

communication protocol to the network protocol. In the case when the core and the

switch are several layers apart then the TSVmacros, to reserve the area to place the

TSVs, have to be explicitly placed on the floorplan for the intermediate layers. The

explicit TSV macro is the same as in the example of the switch to switch link from

Figure 3.3 in the middle layer. Active silicon area is lost every time a TSV macro is

placed as the area reserved by the macro will be used to construct the TSV. In some

designs redundant TSVs are used to increase reliability [104]. Adding redundant TSVs

can be considered by reserving more area with the TSVmacros and it is transparent

for my tool. The TSVmacros are placed automatically by my tool.

Even though I assumed in this chapter a wafer-to-wafer manufacturing process, also

other processes can be used like die-to-wafer. The type of process weather is face-to-
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face bonding or face-to-back bonding does not affect the NoC synthesis algorithm. To

abstract the details of the manufacturing process, the maximum number of vertical

wires using TSVs is taken as input. Models of power and latency of the TSVs are also

taken as input.

Apart from TSV based 3D-integration other processes like 3D-monolithic integration

can be used. In case of 3D-monolithic integration the synthesis method, that I present,

requires no change. From the point of view of the NoC synthesis the important con-

straint the 3D-integration brings is the limited number of vertical interconnect wires

which is captured by the synthesis approach. In case of 3D-monolithic integration

the number of possible vertical links is higher than in TSV based integration there-

fore when designing the NoC in 3D-monolithic technology the designer only need

to specify a looser constraint on the number of vertical links that can be used by

the algorithm. Currently 3D-monolithic integration is limited to two layers (poten-

tially as the technology matures the number of layers could be increased) so there

could be hybrid approaches where 3D-monolithic integration is used to speed-up

the logic, while 3D TSV-based approach is used to stack upmultiple logic layers. For

such a hybrid technology the synthesis algorithm would require some changes: i)

have different bound on the number of vertical links that can be used between the

layers of the 3D-monolithic integration and between the layers that are connected

with TSVs; ii) connectivity between stacked layers of the 3D-monolithic process may

have to be constrained to go through switches placed on the main silicon layer of the

3D-monolithic stack, which are connected with TSV links.

3.2 Design approach

In this section I define the inputs and outputs of the design flow. In the core specifica-

tion file, the name of the different cores, the sizes and positions are given as inputs.

The assignment of the cores to the different layers in 3D is also specified as input in

the file. In the communication specification file, the communication characteristics

of the application are specified. This includes the bandwidth of communication

across different cores, latency constraints and message type (request/response) of the

different traffic flows.

The technology used for 3D integration can result in two main constraints: first, to

achieve high yield, the number of TSVs that can be established across two layers may

need to be restricted below a threshold. Second, some 3D technologies can allow

TSVs only across adjacent layers. In the rest of the paper, I model the maximum TSV

number constraint by using a constraint on the number of NoC links that can cross

two adjacent layers, denoted max_i l l (for maximum number of inter-layer links). For

a particular link width, the maximum number of links can be directly determined
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3.2. Design approach

Figure 3.4: Algorithm steps

from the TSV constraints.

The objective of the topology synthesis procedure can be set by the designer to mini-

mize NoC power consumption or latency or a combination of both.

For the synthesis procedure, the power, area and timing models of the NoC switches

and links are also taken as inputs. For the experimental validation of this work, without

loss of generality, I use the library of network components from [160] and the models

are obtained from layout level implementations of the library components. Any

other NoC library can also be used with the synthesis process. I also take the power

consumption and latency values of the vertical interconnects as inputs. For this, I use

the models from [72].
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The output of the topology synthesis procedure is a set of trade-off points of topologies

thatmeet the constraints, with different values of power, latency anddesign area. From

the resulting points, the designer can choose the optimal point for the application.

The synthesis procedure also produces a placement of the switches in the 3D layers

and the positions of the switches.

The different steps of the synthesis algorithm are presented in Figure 3.4. As the

topology synthesis and mapping problems are NP-Hard [134], I present efficient

heuristics to synthesize the best topology for the design. The NoC architectural

parameters, such as frequency of operation, are varied and the topology design process

is repeated for each architectural point. In the following step, the number of switches

needed to connect the cores is varied and different topologies are synthesized. There

are some general trends that I observed during the topology design process: when

the number of switches is increased, though the switches become smaller, packets

need to traverse more hops and the total switch power usually increases. With more

switches, the switch that is connected to a core is closer in the floorplan, thereby

leading to lower core-to-switch link power consumption. However, there are also

more switch-to-switch links, thereby leading to an increase in the power consumption

of switch-to-switch links. In order to choose the most power-efficient topology, the

combined effect of all these three trends needs to be considered. Thus, it is needed

to explore designs with different number of switches, starting from one where all the

cores are connected to a single switch to a design point where each core is connected

to a separate switch.

For a particular switch count, in the next steps, I determine the connectivity between

the switches and the cores and the 3D layer assignment of the switches. During this

step, there is a degree of freedom that needs to be explored: a core in a layer of 3D

design can be restricted to be connected to a switch in the same layer or could be

allowed to connect to a switch in any layer. When a core is restricted to be connected

to a switch in the same layer, then the traffic flowing from it to a core in another layer

needs to traverse at least two switches (one in the current layer and another in the

other layer), thereby increasing latency. On the other hand, if a core is allowed to be

directly connected to a switch in any layer, then more inter-layer links may be needed.

It is important to choose this restriction based on application characteristics. Another

degree of freedom that needs to be explored is from a technology standpoint: the

technology could allow vertical link across many layers (for example, a link from layer

1 to layer 3) or could allow connection only across adjacent layers.

To address these two issues, I present a two-phase method to determine the core to

switch connectivity. In the first-phase (presented in Section 3.3.1), cores are allowed

to be connected directly to switches in any layer. If the resulting designs do not meet

the maximum inter-layer link constraints, then in the second phase (presented in
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Figure 3.5: Communication graph with band-

width demands on the edges
Figure 3.6: PG and the min-cut partitions

Figure 3.7: SPG and the min-cut partitions Figure 3.8: LPGs for two layers

Section 3.3.2), cores are restricted to be connected to only switches in the same layer.

Also, in the second phase, vertical links are established only across adjacent layers in

3D. Thus, for systems where the underlying technology supports vertical links only

across adjacent layers, the first phase can be skipped and the second phase can be

used directly. Please note that Phase 2 can also be used when the objective is to reduce

the number of inter-layer vertical links used.

In the next step, the paths for the inter-switch traffic flows is determined, and is

explained in Section 3.4. Then, the optimal positions of the switches are determined

and the switches are placed in each layer, minimally changing the input floorplan. In

the last step, if the current topology meets the constraints, the design point is saved.

43



Chapter 3. Designing application specific NoCs for heterogeneous 3D-SoCs

3.3 Methods to establish core to switch connectivity

In this section, I present methods for establishing connectivity between the cores and

switches.

Definition 3.1 Let n be the number of cores in the design. The x and y coordinate

positions of a core ci are represented by xci and yci respectively, ∀i ∈ 1 · · ·n. The 3D

layer to which the core i is assigned is represented by l ayeri .

From the communication specification file, the communication characteristics of the

application are obtained and represented by a graph [69], [123], [120], defined as

follows:

Definition 3.2 The communication graph is a directed graph, G(V ,E ) with each vertex

vi ∈V representing a core and the directed edge (vi ,v j ) representing the communication

between the cores vi and v j . The bandwidth of traffic flow from vertex vi to v j is

represented by bwi , j and the latency constraint for the flow is represented by l ati , j .

I define a Partitioning Graph (PG) as follows:

Definition 3.3 The partitioning graph is a directed graph, PG(U ,H ,α), that has same

set of vertices and edges as the communication graph. The weight of the edge (ui ,u j ),

defined by hi , j , is set to a combination of the bandwidth and the latency constraints of

the traffic flow from core ui to u j : hi , j = α×bwi , j /max_bw +(1−α)× mi n_l at/l ati , j ,

where max_bw is the maximum bandwidth value over all flows, mi n_l at is the tight-

est latency constraint over all flows and α is a weight parameter.

The parameter α can be set by the designer based on the application characteristics

or swept by the tool over a range of values, in order to meet the latency constraints.

We use a two phased method. The first phase is more general, but requires more TSV

connections. If the no topology can be built using the algorithm of phase 1, the tool

switches to phase 2 where a more restrictive algorithm is used. The two phases are

described next:

3.3.1 Phase 1

As the number of switches is varied in order to explore different design points, most

of the times there will be fewer switches in the design than the number of cores.
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Figure 3.9: Twomin-cut partitions of LPGs

Therefore multiple cores will be assigned to the same switch in most cases. The cores

will be partitioned in as many blocks as there are switches and the cores in the same

block will be assigned to the same switch. When using Phase 1 cores that have high

communication or tight latency will be assigned to the same switch regardless of the

fact that cores may be on different layers. If for a particular core to switch assignment

the algorithm using Phase 1 will not be able to meet the inter-layer link constraint

then the influence of bandwidth and latency of the inter-layer flows will be scaled

down in steps and new partitions will be generated. The exact steps of Phase 1 are

described in the following paragraphs.

In the first step of Algorithm 3.1, the partitioning graph is constructed. Then (in Step

3), the number of switches in the design is varied from 1 to the number of cores in

the design. In the next step (step 5), for the current switch count, that many min-

cut blocks of PG are obtained. All the cores in a block are connected to the same

switch and the partitioning is done such that each block has about equal number of

cores. Thus, those traffic flows with large bandwidth requirements or tight latency

constraints are assigned to the same block and traverse a single hop in the network.

Example 3.1 For the communication graph from Figure 3.5, an example partitioning

graph is shown in Figure 3.6. The cores are assigned to the two layers such that highly

communicating cores are placed one above the other, which is an input to the synthesis

algorithm. Here, I assume α= 1 and the bandwidth of the traffic flowing between cores

with in a layer is lower than the traffic between the cores across the layers as denoted

by the values on the edges of the communication graphs. The weights of the PG are

calculated with the formula from definition of the PG graph. In the figure, I also show

an example of 3 min-cut partitions of the graph. The partitioning leads to cores in

different layers being assigned to the same block.

Then (in step 7), the layer assignment of each switch is computed as an average of
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Algorithm 3.1 Core-to-switch connectivity

1: Build partitioning graph PG(U,H,α)

2: Unmet =φ.

3: {Vary number of direct switches in a range}

4: for i = 1 to |U | do

5: Perform i min-cut partitions of PG. Let the set Par ti t i on j be set of vertices in j th

partition, ∀ j ∈ 1 · · · i .

6: {Compute layer assignment for each switch:}

7: l ayer_sw j =

∑

∀k∈par ti t i on j
l ayer_k

|par ti t i on j |

8: Compute paths for inter-switch flows

9: If path computation failed, add i to setUnmet .

10: end for

11: θ = θmi n

12: while ((Unmet !=φ) & (θ ≤ θmax)) do

13: for Each i ∈Unmet do

14: Build scaled partitioning graph, SPG(W,L,θ)

15: PG = SPG

16: Repeat steps 5 to 8

17: If valid paths found, remove i from setUnmet .

18: end for

19: θ = θ+θscale

20: end while

the layers of the cores to which the switch is connected. Alternatively, the switch

could also be assigned to the layer containing the most number of cores connected

to it. At this point, the intra-partition traffic flows are taken care of and I need to

establish connectivity across the switches for the inter-switch traffic flows. This step is

explained in the next section. Then (in step 9), the resulting designs are evaluated to

see whether they meet the max_ill constraint and the switch counts that do not meet

the constraint are stored in the set unmet.

In order to facilitate meeting the max_ill constraint for the design points in the set

unmet, I use the Scaled Partitioning Graph, defined as follows:

Definition 3.4 A scaled partitioning graph with a scaling parameter θ, SPG(W , L, θ),

is a directed graph that has the same set of vertices as PG. A directed edge li , j exists

between vertices i and j , if ∃(ui ,u j ) ∈ P or l ayeri = l ayer j .

That is, in the SPG, along with the edges in PG, I define new edges between all cores in

the same layer of 3D. I also reduce the edge weights of inter-layer flows, depending

on the scaling parameter θ. If this scaled graph is used for partitioning, then more

cores in the same layer will be in a partition, thereby reducing the inter-layer links,
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at the expense of increasing the power consumption and latency of inter-layer flows.

To obtain designs with lower inter-layer links, the parameter θ is varied from θmi n to

θmax in steps of θscale in the algorithm (steps 12 to 19), until the max_i l l constraint is

met. After several experimental runs, I determined that varying θ from 1 to 15 in steps

of 3 gives good results.

In order to cluster cores in a layer that actually communicate, I also need to ensure

that the newly added edges have a lower edge weight than the original intra-layer

edges. Please note that if the new edges are not added, the partitioner may still cluster

cores across layers, which will not lead to a reduction in the inter-layer links.

I denote the maximum edge weight in PG by max_wt. I formally define the edge

weights in SPG as follows:

li , j =























hi , j , if (ui ,u j ) ∈ PG & l ayeri = l ayer j
hi , j

θ×|l ayeri−l ayer j |
, if (ui ,u j ) ∈ PG & l ayeri 6= l ayer j

θ×max_wt
10×θmax

, if (ui ,u j ) ∉ PG & l ayeri = l ayer j

0 , otherwise

(3.1)

From the definition, I can see that the newly added edges have at most one-tenth the

maximum edge weight of any edge in PG, which was obtained experimentally after

trying several values.

Example 3.2 The SPG for θ = 10 for the PG from Example 3.1 is presented in Figure

3.7. In the SPG, the inter-layer links have lower weights as they were scaled down by θ

and new edges are added between cores with in the same layer. The weights of the extra

edges are calculated using the equation 3.1. The 3 min-cut blocks are now different,

with more cores in the same layer belonging to the same block.

The time complexity of the Algorithm 3.1 isO(|V |3|E |l n(|V |)), where |V |2ln(|V |) cor-

responds to finding paths, E is the maximum number of flows. Also, the number of

switches is varied from 1 to the maximum number of cores |V | and that a topology is

built for each switch count.

3.3.2 Phase 2

In Phase 2, I restrict cores to be connected to switches on the same layer. Also switches

can only connect to switches on the same layer or on adjacent layers. For each layer

a certain number of switches will be assigned. Then on each layer the cores are
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partitioned and assigned to the switches on that layer considering the bandwidth and

latency of the flows between the cores on that layer. Information of the inter-layer

flows is ignored when the cores are assigned to switches when using Phase 2. Because

of these restrictions Phase 2 can be used when a tight inter-layer link restriction is in

place or when the 3D integration technologies forbids links to go across more than

two layers. In this section a detailed description of Phase 2 is given.

I define the Local Partitioning Graph for each layer:

Definition 3.5 A local partitioning graph, LPG(Z , M, l y), is a directed graph, with the

set of vertices represented by Z and edges by M. Each vertex represents a core in the layer

l y. An edge connecting two vertices is similar to the edge connecting the corresponding

cores in the communication graph. The weight of the edge (mi ,m j ), defined by hi , j , is

set to a combination of the bandwidth and the latency constraints of the traffic flow

from core mi to m j : hi , j = α×bwi , j /max_bw + (1−α)× mi n_l at/l ati , j , where

max_bw is the maximum bandwidth value over all flows, mi n_l at is the tightest

latency constraint over all flows and α is a weight parameter. For cores that do not

communicate with any other core in the same layer, edges with low weight (close to 0)

are added between the corresponding vertices to all other vertices in the layer. This will

allow the partitioning process to still consider such isolated vertices.

Example 3.3 The LPGs for the two layers of the communication graph from Figure

3.5 are shown in Figure 3.8. Since the LPGs are built layer by layer, the graphs for the

two layers are independent of one another. The weights of the remaining edges were

calculate with the formula from the definition of the LPG graph for a value of α= 1.

Extra edges with low weights are added (dotted edges in the figure) from the vertices

that have no connections to the other vertices of the LPG.

The pseudo-code for establishing core to switch connectivity is presented in Algo-

rithm 3.2. As the number of input/output ports of a switch increases, the maximum

frequency of operation that can be supported by it reduces, as the combinational path

inside the crossbar and arbiter increases with size. In the first step of the algorithm,

for the required operating frequency of the NoC, the maximum size of the switch

(denoted by max_sw_si ze) that can support that frequency is obtained as an input.

Based on this and the number of cores in each layer, in the next steps (2-4), I determine

the minimum number of switches needed in each layer. Then the local partitioning

graph for each layer is constructed.

Then, the number of switches in each layer is incremented (starting from the initial

count calculated in steps 2-4) every iteration, until it equals the number of cores in

the layer. The term |LPG(Z ,M , j )| represents the number of cores in layer j . For each
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Algorithm 3.2 Core-to-switch connectivity

1: Obtain maximum switch size max_sw_si ze for current frequency

2: for each layer j ∈ 1 · · · l r do

3: ni j = ⌈ number of cores in l ayer j /max_sw_si ze⌉

4: end for

5: Build LPG(Z ,M , j ) for each layer j .

6: for i = 0 to max∀ j∈1···l r {|LPG(Z ,M , j )|−ni j } do

7: for each layer j ∈ 1 · · · l r do

8: if ni j + i ≤ |LPG(Z ,M , j )| then

9: np = ni j + i

10: else

11: np = |LPG(Z ,M , j )|

12: end if

13: Obtain npmin-cut partitions of LPG(Y,M,j)

14: end for

15: Compute paths for inter-switch flows (Section 3.4).

16: If valid paths found, save the current design point

17: end for

switch count, that many min-cut partitions of the LPG of the layer are obtained (step

13). The cores in the same partition are connected to the same switch.

Example 3.4 Two min-cut blocks of the LPGs of Figure 3.8 are shown in Figure 3.9.

The time complexity of the Algorithm 3.2 is similar to the complexity of the previous

algorithmO(|Zmax ||V |2|E |ln(|V |)), where Zmax corresponds to themaximumnumber

of cores in a layer, which decides the number of topologies to be explored.

3.3.3 Pruning the search space

To reduce the number of explored design points, I use several methods to prune

the search space: (i) As the number of input/output ports of a switch increases, the

maximum frequency of operation that can be supported by it reduces, as the combina-

tional path inside the crossbar and arbiter increases with size. For a required operating

frequency of the NoC, I first determine the maximum size of the switch (denoted by

max_sw_si ze) that can support that frequency and determine theminimumnumber

of switches needed. (ii) Considering all the possible combinations of the number

of switches in each layer would increase the search space too much. Therefore at

each iteration of Algorithm 3.2 I increment the number of switches in each layer by

one. I initialize the number of switches layer by layer as explained in the previous

section. Thus, the starting design point can have different number of switches in

each layer and the number of switches in each layer is proportional to the number of
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cores in that layer. (iii) For a particular switch count, after partitioning, I evaluate the

inter-layer links used to connect the cores to the switches, before finding the paths. If

the topology requires more inter-layer links than the threshold, I directly ignore the

design point.

3.4 Path computation

The procedure to establish physical links and paths for traffic flows is based on the

power consumption increase and latency in using the link. This cost computation

in the 3D case is similar to the 2D case, such as those presented in [62], [121], but it

needs to account for the max_i l l and max_swi tch_si ze constraints. Here, I do not

show the entire path computation algorithm, but only present the steps needed to

meet these constraints. In [62], [121], the authors present methods to remove both

routing and message-dependent deadlocks when computing the paths. I also use the

methods to obtain paths that are free of deadlocks.

Definition 3.6 Let nsw be the total number of switches used across all the layers

and let l ayeri be the layer in which switch i is present. Let i l l (i , j ) be the number

of vertical links established between layers i and j . Let the swi tch_si ze_i npi and

swi tch_si ze_outi be the number of input and output ports of switch i . Let costi , j be

the cost of establishing a physical link between switches i and j .

In Algorithm 3.3, I show the use of hard and soft thresholds when evaluating the cost of

establishing a physical link between switches i and j. In steps 3, 4, I assign a cost of INF

for establishing a link across switches in non adjacent layers and for switches in layers

that have reached the maximum vertical link (max_i l l ) threshold. To ensure meeting

the maximum link constraint, I assign a very high cost (denoted by SOF T _I N F ) for

establishing links between switches that are in layers having vertical links close to the

max_i l l value, denoted by so f t_max_i l l (steps 5, 6). From experiments, I found

that a reasonable value for SOF T _I N F to be 10 times the maximum cost of any flow

and so f t_max_i l l to be few (2 to 3) links less than max_i l l value. I use a similar

technique to meet the maximum switch size constraints (steps 10-12). By using these

softer constraints first, I facilitate the path computation procedure to determine valid

paths when compared to only using the hard constraints.

When paths are computed, if it is not feasible to meet the max_swi tch_si ze con-

straints, I introduce new switches in the topology that are used to connect the other

switches together. These indirect switches help in reducing the number of ports

needed in the direct switches.
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Algorithm 3.3 CHECK_CONSTRAINTS(i,j)

1: for i = 1 to nsw do

2: for j = 1 to nsw do

3: if |l ayeri − l ayer j | ≥ 2 or i l l (l ayeri , l ayer j )≥ max_i l l then

4: costi , j = I N F

5: else if |l ayeri − l ayer j | = 1 and i l l (l ayeri , l ayer j )≥ so f t_max_i l l then

6: costi j = SOF T _I N F

7: else if swi tch_si ze_i npi + 1 ≥ max_swi tch_si ze or swi tch_si ze_out j + 1 ≥

max_swi tch_si ze then

8: costi , j = I N F

9: else if swi tch_si ze_i npi +1≥ so f t_max_swi tch_si ze or swi tch_si ze_out j +1≥

so f t_max_swi tch_si ze then

10: costi , j = SOF T _I N F

11: end if

12: end for

13: end for

3.5 Switch Position Computation

Once a topology for a particular switch count is obtained, the next step is to find the

latency and power consumption on the wires. In order to do this, based on the input

positions of the cores, the optimal position of the switches needs to be determined.

For this, I model the problem as a Linear Program (LP) [31].

Let us consider a topology with nsw switches. I denote the co-ordinates of a switch

i by (xsi , y si ), ∀i ∈ 1 · · ·nsw . The goal of the LP is to determine the values of xsi and

y si , for all switches in the particular topology. The sum of the Manhattan distances

between a switch i and a core k is given by:

cor edi sti ,k =

{

|xsi −xck |+ |y si − yck | , if swi tchi connected to cor ek

0 , otherwise
(3.2)

The sum of the Manhattan distances between a switch i and switch j to which it is

connected to is given by:

swdi sti , j =

{

|xsi −xs j |+ |y si − y s j | , if swi tchi connected to swi tch j

0 , otherwise
(3.3)

The above equations can be easily represented as a set of linear equations [31]. Let

bw_sw2cor ei ,k and bw_sw2swi , j be the total bandwidth of traffic flows between

switch i and core k and switches i and j , respectively. To minimize the total power

consumption of the links, I need to minimize the length of the links weighted by their
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bandwidth values, so that higher bandwidth links are shorter than lower bandwidth

ones. Formulating the objective function mathematically, I get:

ob j =
∑

∀i

∑

∀k cor edi sti ,k ∗bw_sw2cor ei ,k +
∑

∀i

∑

∀ j swdi sti , j ∗bw_sw2swi , j

(3.4)

The LP for optimization is written as follows:

minimize
∑

∀i

∑

∀k cor edi sti ,k ∗bw_sw2cor ei ,k+

+
∑

∀i

∑

∀ j swdi sti , j ∗bw_sw2swi , j

subject to

cor edi sti ,k =

{

|xsi −xck |+ |y si − yck | , if swi tchi connected to cor ek

0 , otherwise

swdi sti , j =

{

|xsi −xs j |+ |y si − y s j | , if swi tchi connected to swi tch j

0 , otherwise

xsi , y si ≥ 0, ∀i ∈ 1 · · ·nsw

(3.5)

I use the lp_solve package [135] to obtain the optimum solution for the switch co-

ordinates. Even for big applications (65 cores, tens of switches), the optimal solution

is obtained in few seconds. I also pipeline long links to support full throughput on

the NoC and add Network Interfaces (NIs) to connect the cores to the network. The

resulting design is a valid floorplan of the NoC. The TSV macros do not need to be

included in the linear program as TSVs split the wires in two segments, both carrying

the same bandwidth. Therefore the placement of the TSVmacro is more relaxed.

However, placing the components at the ideal positions may lead to overlap with the

already placed cores. To remove such overlaps, I consider one switch or TSVmacro

at a time. I try to find a free space near its ideal location to place it. In the case of the

switches the area in which I look for free space is the same for all of the switches, as

it is given as a constant to the floorplanning routine. In case of the TSV the area in

which I look depends on the blocks the TSV is connected to as explained before. If no

space is available, I displace the already placed blocks from their positions in the x

or y direction by the size of the component, creating space. Moving a block to create

space for the new component can cause overlap with other already placed blocks. I

iteratively move the necessary blocks in the same direction as the first block until I

remove all overlap. As more components are placed, they can re-use the gap created
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3.5. Switch Position Computation

Figure 3.10: D26_medi a communication graph

Figure 3.11: D36_4 communication graph
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Figure 3.12: D38_t vopd communication graph

54



3.6. Experiments and case studies

by the earlier components. As some switches can cause thermal hotspots, a more

advanced thermal aware floorplanning routine can try to find position of switches

near cooler components, so that the thermal distribution is more uniform. Several

existing works, which are complementary to this one, present methods that address

this issue [36], [70], [71], [96], [180]. However, integrating such works is beyond the

scope of this work. In the experimental section I compare how this custom routine

for floorplanning compares to a standard floorplanner that is constrained to only

insert the network components without changing the relative placement of the initial

cores. The standard floorplanner that I used to compare against is Parquet [3]. The

floorplanner was used on each layer separately. I feed the core and switch positions as

an input solution to the floorplanner. I allow it to move the switches around the cores,

maintaining the relative positions of the cores and minimizing the movement of the

switches from the optimal positions computed by the LP.

3.6 Experiments and case studies

For the experiments, the NoC component library from [160] is used. The power and

latency values of the switches and links of the library are determined from post-layout

simulations, based on 65nm low power libraries. The vertical interconnects using

TSVs are implemented based on the models from [72]. In [72], the reported delay

values for TSV placed in a tightly packed TSV bundle are 16ps and 18.5ps (for SOI and

bulk silicon respectively). The considered TSVs have a diameter of 4µm and a pitch of

8µm. When compared against the maximum unrepeated planar link length of 1.5mm

in Metal 2 or Metal 3 for the same technology the authors show that the vertical links

have much lower resistance and capacitance (an order of magnitude reduction for the

resistance as well as for the capacitance). As a consequence even tightly packed TSVs

are substantially faster and more power efficient than moderate planar links.

3.6.1 Multimedia SoC case study

I consider a benchmark of a realistic multimedia and wireless communication SoC

for case-study (referred to as D_26_medi a). The benchmark contains 26 cores with

irregular sizes, and performs based-band andmulti-media processing. The commu-

nication graph of the benchmark is shown in Figure 3.10. The system includes ARM,

DSP cores, multiple memory banks, DMA engine and several peripheral devices. The

cores are manually mapped on to three layers in 3D. For comparisons, I also consider

a 2D implementation of the benchmark. The initial positions of the cores in each

layer of the 3D and for the 2D design are obtained using existing tools [3]. For fair

comparisons, I use the same objectives of minimizing area and wire-length when

obtaining the floorplan for both the cases. To synthesize the topologies for the 2D
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Figure 3.13: Power consumption in 2D
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Figure 3.14: Power consumption in 3D

0 ! 1 1 ! 2 2 ! 3 3 ! 4 4 ! 5 5 ! 6 6 ! 7 7 ! 8 8 ! 9 9 !10
0

5

10

15

20

25

Wire length

N
u
m

b
er

 o
f 

w
ir

es

2D

3D

Layer!by!layer

Figure 3.15: Wire length distributions

56



3.6. Experiments and case studies

Figure 3.16: Most power-efficient topology (Phase1)

Figure 3.17: Most power-efficient topology layer-by-layer (Phase2)
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Figure 3.18: Resulting 3D floorplan with switches for the topology from Figure 3.16

Figure 3.19: Initial positions for D26_medi a

case, I use the synthesis flow developed earlier [121].

In Figures 3.13 and 3.14, I present the power consumption of the NoC topologies

(power consumption on switches and links) synthesized by my tools for different

switch counts for both cases. In all the experiments, I set the data width of the NoC

links to 32 bits, to match the core data widths. The frequency for which the topologies

are generated has to be given as an input. A range of frequencies can also be swept by

the tool to explore more design points. However, for this benchmark the best power

points are obtained for topologies designed at the lowest possible operating frequency,

which was found by the tool to be 400 MHz. Higher operating frequency can be used

(usually with a higher cost in power consumption). I use a max_ill constraint of 25

links for this and the experiments in the next sub-section. In Sub-section 3.6.5, I

study the impact of varying this constraint. Please note that the frequency found

by the tool is for the NoC to support the bandwidth required by the application. As

the D26_medi a represent a mobile communication platform, the communication

demands can be satisfied with the NoC running at 400 MHz. However the IP-cores

may require higher operating frequencies to perform the desired functionality and

generate the traffic described by the benchmark.

When very few switches are used in the design, they need to have more input/output

ports, as they need to connect to more cores. A large switch can only support a low
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Figure 3.20: Comparison with layer-by-layer

operating frequency, as the critical path inside the switch increases with its size. In

order to meet the 400 MHz requirement, I could only obtain valid topologies with 3

or more switches, thus the plots starts at 3 switches. In the plots, I show the switch,

switch-to-switch link and core-to-switch link power consumption values as well. For

this benchmark I can observe a power savings of 24% for the 3D case with respect to

the 2D case. This is due to the fact that the long horizontal wires in a 2D design are

replaced by shorter vertical wires. In Figure 3.15, I show the wire-length distribution

of the links in 2D and 3D cases. From the figure, as expected, the 2D design has

many long wires. In Figures 3.16 and 3.18, I present the most power efficient topology

synthesized by my tool using phase 1 of the algorithm and the floorplan of the cores

and network components for the 3D case. The original placement of the cores for this

benchmark is shown in Figure 3.19.

In order to show how phase 2 of the algorithm performs, I constrained the tool to

use the layer-by-layer approach and I ran it on the same benchmark. The topology

for the best power point is presented in Figure 3.17. Even though I used the same

max_ill constraint of 25 links as in the previous case, it can be seen from the figure

that the algorithm used a lot less inter-layer links. This is also an intuitive example

of why phase 2 of the algorithm is able to produce valid topologies even for tight

max_ill constraints where phase 1 fails. There is also a price to pay for using fewer

interlayer-links. In the case of the phase 2 topology, cores on different layers will have

a zero load latency of at least 2 cycles as they have to go through two switches. For

phase 1 cores on different layers are connected to the same switch so even if two cores

are on different layer they could still have a zero load latency of just one cycle.
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3.6.2 Comparison between Phase 1 and Phase 2

I applied my synthesis procedure on varied set of benchmarks to validate the gains

under different application scenarios. I consider three distributed benchmarks with

36 cores (18 processors and 18 memories): D_36_4 shown in Figure 3.11, D_36_6

and D_36_8, where each processor has 4, 6 and 8 traffic flows going to the memories.

The total bandwidth is the same in the three benchmarks. I consider a benchmark,

D_35_bot that models bottleneck communication, with 16 processors, 16 private

memories (one processor is connected to one privatememory) and 3 sharedmemories

to which all the processors communicate. I also consider two benchmarks where

all the cores communicate in a pipeline fashion: 65 core (D_65_pi pe) and 38 core

designs (D_38_t vopd) shown in Figure 3.12. In the last two benchmarks, each core

communicates only to one or few other cores.

In Figure 3.20, I show the power consumption of the topologies synthesized using

Phase 2 of the algorithm, with respect to topologies synthesized using Phase 1 for the

different benchmarks. Since in Phase 2 cores in a layer are connected to switches in

the same layer, the inter-layer traffic needs to traverse more switches to reach the

destination. This leads to an increase in power consumption and latency. As seen

from Figure 3.20, Phase 1 can generate topologies that lead to a 40% reduction in NoC

power consumption, when compared to the Phase 2. However Phase 2 can generate

topologies with a much tighter inter-layer link constraint.

3.6.3 2D vs. 3D comparison

The power consumption for the least power design points for 2D and 3D, as well as

the average latency are presented in Table 3.1. Most of the power savings obtained

in 3D are due to shorter wires. For this reason, I can observe large power savings

for the distributed benchmarks, where there are traffic flows to many different cores.

I can also notice reasonable power savings for the bottleneck design, because the

wires going to shared memories are long, though the traffic to the shared memories is

smaller than to the privatememories. For the pipelined benchmarks, lower savings are

Benchmark Power (mW) Latency (cyc)
Link power Switch power Total power
2D 3D 2D 3D 2D 3D 2D 3D

D_36_4 150 41.5 65 70.5 215 112 3.28 3.14
D_36_6 154.5 43.5 76.5 82 230 125.5 3.57 3.5
D_36_8 215 55.5 105 104.5 320 160 4.37 3.65

D_35_bot 68 36.2 48 43.3 116 79.5 6.04 4.2
D_65_pi pe 106 104 63 58 169 162 2.53 2.57

D_38_t vopd 52.5 22.67 37 38.11 89.5 60.78 4 3.6

Table 3.1: 2D vs 3D NoC Comparison
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Figure 3.21: Area plot for different switch counts

D_36_4 D_36_6 D_36_8 D_35_bot D_65_pipeD_38_tvopd
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
el

at
iv

e 
ar

ea
 d

if
fe

re
n
ce

Custom method

Standard floorplanner

Figure 3.22: Area comparison for different benchmarks
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Figure 3.23: Power comparison for different benchmarks
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obtained. For the different benchmarks, on average, a 38% power reduction and 13%

latency reduction are obtained in the 3D case when compared to a 2D implementation.

3.6.4 Floorplanning study

To create a floorplan for a real SoC is quite a complicated process that can require

several interactions between the designed and the floorplanning tool. Since the main

goal of my tool is to design the NoC and not to create floorplans, I take the initial

positions of the cores as input. I then only insert the NoC components as close as

possible to their ideal positions in the floorplan in such a way that I minimally affect

the initial positions of the cores.

Most of the time placing the NoC components at their ideal positions will result in

overlap with the initially placed cores, especially if the floorplan is tightly packed.

Initially I tried to use a standard floorplanner to remove the overlap. I used the

floorplanner from [3] which I have modified in order to constrain it from swapping

blocks, so that the relative positions of the input cores remain the same after the NoC

insertion. This however leads to fairly poor results as the floorplanner has problems

to remove the overlap, keep the cores close to their initial placement and not swap

any of them. The floorplanner needs the ability to swap blocks in order to create

good floorplans, for this reason this full floorplanner is ideal for generating the initial

placement, but not for the NoC insertion. To achieve better results in inserting the

NoC components and removing the overlap I designed a customfloorplanning routine

which I tuned for this specific task alone.

In Figure 3.21, I show a comparison between the standard floorplanner andmy cus-

tom routine for different switch counts using the D_26_medi a benchmark. From the

figure it can be seen that for some points even the standard floorplanner performs

well and that there is a better chance to get a good floorplan when fewer switches are

inserted. However the behavior of the constrained standard floorplanner is unpre-

dictable. A comparison between the best power points for the different benchmarks

using the two floorplanning methods is shown in Figure 3.22. Since the area has a

direct impact on the wire lengths and consequently on the power I also present a

comparison of the power consumption for the considered topologies in Figure 3.23.

3.6.5 Impact of inter-layer link constraint and comparisons with mesh

Imposing a stricter constraint on max_ill results in topologies having more switches.

When there are more switches, more cores in a layer are connected to a switch in

the same layer, reducing the number of inter-layer links. However, the inter-layer

traffic flows would need to traverse more switches, there by leading to higher power
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Figure 3.24: Impact of max_i l l on power
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Figure 3.26: Comparisons with mesh
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consumption and latency. I perform topology synthesis for the D_36_4 design with

different max_ill constraint values, and the power, latency values for the different

points are presented in Figures 3.24 and 3.25. With a tighter TSV constraint, the power

consumption and latency increases significantly, as more switches are needed in the

design. With less then 10 inter-layer links it is impossible to build any topology and

having a max_ill constraint larger than 24 does not improve the results anymore. For

the D_26_medi a benchmark, I observe a similar trend for the power consumption.

However the zero load latency is not affected by tighter max_ill constraints, due to the

nature of the traffic of this benchmark.

For completeness, I compare power consumption of the topologies generated by my

procedure to a standard topology. I generate best mapping (optimizing for power,

meeting the latency constraints) of the cores on to a mesh topology, and remove any

unused switch-to-switch links. Compared to this optimized mesh topology, I obtain

a large power reduction for the custom topologies (an average of 51%), shown in

Figure 3.26. The experiments also showed that I obtain 21% reduction in latency when

compared to the optimized mesh.

Even though the algorithm explores a large space of solutions, due to the use of

efficient heuristics presented, all the experiments could be performed in few hours

(on a system operating at 2 GHz). It takes a few seconds to build a topology with few

switches and the run time can go up 2, 3 minutes for topologies with many switches

(50, 60 switches). The total runtime on a benchmark depends on the frequency range

and switch count range that are swept. Also, it is important to note that the synthesis

algorithm has to be performed only once at design time for a system and the timing

overhead is negligible.

3.7 Summary

Networks on Chips (NoCs) are necessary to achieve a scalable communication in-

frastructure in 3D chips. The use of NoCs in 3D ICs introduces several new and

challenging problems. Building a custom NoC topology that meets the application

communication requirements, as well as the 3D technological constraints, is a critical

problem that needs to be addressed. In this chapter, I presented algorithms andmeth-

ods for NoC topology synthesis for 3D ICs. The problems addressed are: i) topology

synthesis, ii) assignment and placement of network components in the 3D layers

and iii) insertion of the components in an existing floorplan. Experiments on several

realistic benchmarks show that the algorithms produces topologies that result in

large NoC power and latency savings (54% and 21%, respectively) when compared to

standard topologies. I also presented a comparative analysis of NoCs in 2D and 3D,

which shows that 3D integration can produce large interconnect power and latency
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reduction (38% and 13%, respectively).
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4 Designing the NoC for SoCs with VFIs

and shutdown capabilities

Distribution of clock trees is a major design challenge today. With advancing technol-

ogy generations, the clock frequency and design area increases and only a portion of

the chip can be reached in a single clock cycle [24]. For ease of design, many complex

systems are partitioned into multiple Voltage and Frequency Islands (VFIs). Each

island is synchronous, using the same frequency and voltage lines. With technology

scaling, the leakage power consumption is increasing rapidly as a fraction of the total

power consumption. In fact, leakage power can be responsible for 40% or more of

the total system power [51]. To reduce the power consumption, if the cores inside a

VFI are not used for a particular application, the entire VFI can be shutdown and thus

saving the energy lost in leakage. The cores in a VFI can be connected using a local

interconnect (a local NoC). The local interconnects are then connected using a global

NoC. The global NoC can itself be synchronous or asynchronous, and the latter case is

called as the Globally Asynchronous, Locally Synchronous (GALS) paradigm.

In today’s SoCs, the NoC architecture is a bottleneck in enabling the shutdown of the

islands. There are several approaches presented to synthesize application-specific

NoCs [134]-[121]. However, none of them consider the issue of shutdown of VFIs.

These approaches cannot be directly extended to design NoCs for SoCs with voltage

islands. If the NoC is designed using such approaches, either the whole NoC should

be placed in a separate VFI or the islands cannot be shutdown.

Placing the entire NoC in a separate VFI is not a feasible solution. The NoC switches

are usually spread across the chip, connecting the different cores. If the entire NoC

is in the same island, it is difficult to route the VDD and ground lines for the NoC

across the chip. On the other hand, if all the NoC switches are physically clustered and

placed in the center of the chip, then long wires are needed to connect all the cores to

the NoC island. Thus, the routing congestion would be enormous and the solution is

not scalable. Moreover, additional resources for routing the additional voltage and

ground lines may not even be available in the design. If the switches are spread across
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the different VFIs, then the switches in a VFI will share the same voltage lines as the

cores in the island. However, if a VFI needs to be shutdown, then packets between

cores on the other VFIs that use the switches in this VFI cannot be transmitted. This

will prevent the shutdown of the entire island.

The concept of voltage island should be considered during the NoC topology syn-

thesis phase itself. In this chapter, I present a synthesis approach to determine the

best NoC topology points that are tailored to meet the application performance con-

straints, minimizing power consumption and supporting the ability to shutdown

voltage islands. The main contribution of this chapter are:

• I present a synthesis algorithm to synthesize application specific NoC topologies

for SoCs that are partitioned in VFIs.

• I present how the algorithm can be extended for 3D-SoCs that use multiple VFIs.

• I evaluate the overhead of VFI design on the NoC power consumption and

latency.

• I make a comparison between NoC designed for 2D- and 3D-SoCs in the pres-

ence of VFIS.

NoC links that cross from one VFI to another change frequency domains, and there-

fore require a frequency converter. In 3D systems, even if the whole design is syn-

chronous, ensuring a zero-clock skew across different layers is difficult [102]. In this

case, mesochronous synchronizers are needed for the vertical links. For example,

in [102], an efficient design of such synchronizers for vertical links is presented. In

Chapter 3, I presented a synthesis approach for 3D systems where I assumed that the

entire design was fully synchronous. In this chapter I extend the synthesis method to

account for such necessary clock domain crossings as well as for the possibility of VFI

design.

In such VFI based designs, the benefits of 3D integration in reducing NoC power or

delay is unclear. Earlier works either made comparisons using standard topologies

(such as meshes), or did not consider VFI partitioning [132], [53] and [149]. One of

the objectives of this chapter is to make a comparative study of NoCs for 2D and 3D

implementation of SoCs. The aim is to show quantitative benefits of the 3D technology

on NoC power and delay values.

I present a detailed case-study of NoCs designed using the flow for a mobile platform.

The experiments show that the support for VFI in the NoC design process only leads

to a modest 3% increase in the active power consumption of the chip. This support

can lead to a large reduction in the leakage and hence overall power consumption.
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Figure 4.1: Example Input

The results show that when the whole design is synchronous, 3D designs give very low

power savings (11%), as the mesochronous converters incur a lot of power overhead.

As the number of VFIs increase, 3D SoCs have large NoC power reductions (up to 32%)

due to reduction in wire lengths. However, after a sweet-spot, the gains fall again, as

the wires get shorter in 2D due to the use of more switches and the contribution of

converter power to overall power also becomes significant. The results show the need

for an early architectural design space exploration of the whole space and the tools

I present facilitate the same. Experiments also show that the reduction in delay is

only marginal whenmoving from 2D to 3D systems (up to 11%), if both are designed

efficiently. This is because, the number of links in 2D that are long enough to require

pipelining is less and the frequency converter delay is dominant when compared to

wire delay.

4.1 Problem description

In this section, I describe the architectural features of the NoC and the synthesis

problem.

4.1.1 Architecture Description

An example of the architecture for which this custom NoC synthesis algorithm is

designed is presented in Figure 4.1. The cores of the design are assigned to different

VFIs, which is given as an input to my method. The cores in a VFI have the same

operating voltage (same power and ground lines), but could have different operating
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Figure 4.2: Example Architecture

frequencies. In order to have a scalable solution, I build NoC systems, where cores in

a VFI are connected to switches in the same VFI. I follow an approach similar to the

GALS approach, where the NoC components in a VFI are synchronous and operate at

the same frequency. Having a locally synchronous design eases the integration of the

NoC with standard back-end placement&routing tools and industrial flows. Moreover,

if the different switches in a VFI operate at different frequencies, power and latency

hungry synchronizers are needed to connect them.

The cores are connected to the NoC switches by means of Network Interfaces (NIs)

that convert the protocol of the cores to that of the network. The NIs also perform

clock frequency conversion, if the cores are running at different frequencies than

the switches in the VFI. When a switch in one VFI is to be connected to a switch

in another VFI, I use a bi-synchronous FIFO to connect them together. The FIFO

takes care of the voltage and frequency conversion across the islands. The frequency

conversion is needed because the switches in the different VFIs could be operating at

different frequencies. Even if they are operating at the same frequency, the clock tree

is usually built separately for each VFI. Thus, there may be a clock skew between the

two synchronous islands. I use over the cell routing with unpipelined links to connect

switches across different VFIs, as the wires could be routed on top of other VFIs.

The shutdown mechanism of an island could be performed in many ways, which

does not affect the synthesis procedure presented in this work. In this system, I use

the following mechanism: when an application does not require cores in a VFI, the

power manager decides to shutdown the island. The power manager could be either

implemented in hardware, or could be in the operating system. Before shutting down

the island, the manager checks whether all the pending transactions in to and out of
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the island are completed, by polling all the NIs. If there are no pending transactions

and the cores are ready to be shutdown, it grounds the voltage lines to all the cores

and network components in the island.

4.1.2 Synthesis problem

In this synthesis procedure, I generate switches in each VFI to connect the cores in

the VFI. Optionally, the method can explore solutions where a separate NoC VFI can

be created. I take the availability of power and ground lines for the intermediate VFI

as an input, and mymethod will use the intermediate island, only if the resources are

available. My method produces topologies such that a traffic flow across two different

VFIs can be routed in two ways: (i) the flow can go either directly from a switch in the

VFI containing the source core to another switch in the VFI containing the destination

core, or (ii) it can go through a switch which is placed in the intermediate NoC VFI,

if the VFI is available. The switches in the intermediate VFI are never shutdown.

The method will automatically explore both alternatives and choose the best one for

meeting the application constraints.

The objective of the synthesis method is to determine the number of switches needed in

each VFI, the size of the switches, their operating frequency and routing paths across

the switches, such that application constraints are satisfied and VFIs can be shutdown,

if needed. The method determines if an intermediate NoC VFI needs to be used to

connect the switches in the different VFIs and if so, the number of switches in the

intermediate island, their sizes, frequency of operation, connectivity and paths. The

synthesis method can be plugged in the design flow presented in [121] in order to

generate fully implementable NoCs

An example NoC design produced by this synthesis approach is presented in Figure

4.2. As seen, the switches are distributed in the different VFIs. If an intermediate NoC

island can be created, indirect switches could be generated in the intermediate island

to connect the different switches together.

My method produces several design points that meet the application constraints with

different switch counts, with each point having different power and performance

values. The designer can then choose the best design point from the trade-off curves

obtained.

Models: For a technology library, I obtain area, power and latency models for the NoC

components (switches, NIs and bi-synchronous FIFOs). The models are obtained

from synthesis and place&route of the RTL code of the components using commercial

tools. The generated library of the NoC components is used during topology synthesis.
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Inputs: The number of cores and their assignment to VFIs has to be given as an input

to the algorithm. I assume that the partitioning of cores to the VFIs is based on the

technological constraints, design issues and the desired floorplan. There are several

research works that have addressed this issue [106], [126] and are complementary to

the NoC synthesis issue addressed here. Optionally, the size and position of the cores

are obtained. This floorplan information of the cores, if given, will lead to a better

estimation of the wire power consumption and delays during the synthesis process.

Another input is the communication description. In the communication description,

for each traffic flow, the source and destination cores are specified and also bandwidth

and latency constraints are given.

Outputs: Based on the inputs and models, I synthesize different topology design

points. All the topologies generated will comply with the constraints given in the

input description files, and may have different values for power, average latency, wire

length, switch count. A detailed description of the algorithm is given in Section 4.2.

If the size and initial positions of the cores were given as inputs, a floorplan with the

NoC will also be generated. The floorplanning routine finds the best location for the

NoC components and then inserts the NoC blocks as close as possible to the ideal

positions, while minimally affecting the position of the cores given as input.

4.2 Topology synthesis approach

The synthesis algorithm is explained in detail in this section. From the input speci-

fications, I construct the VFI communication graph. The definition of the VFI com-

munication is similar to that from Chapter 3, but it is extended to account for the

assignment of IP cores to VFIs defined as follows:

Definition 4.1 A VFI Communication Graph (VCG(V , E, i sl )) is a directed graph,

each vertex vi ∈ V represents a core in the VFI denoted by i sl and the directed edge

(vi ,v j ) representing the communication between the cores vi and v j . The bandwidth

of traffic flow from cores vi to v j is represented by bwi , j and the latency constraint for

the flow is represented by l ati , j . The weight of the edge (ei ,e j ), defined by ei , j , is set to a

combination of the bandwidth and the latency constraints of the traffic flow from core

vi to v j : hi , j = α×bwi , j /max_bw + (1−α)× mi n_l at/l ati , j , where max_bw is the

maximum bandwidth value over all flows, mi n_l at is the tightest latency constraint

over all flows and α is a weight parameter.

The value of the weight parameter α can be set experimentally or obtained as an input

from the user, depending on the importance of performance and power consumption

objectives.
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Algorithm 4.1 Core-to-switch connectivity

1: Determine the frequency at which the NoC will operate in each VFI and max_sw_si ze j ,

∀ j ∈ [1 · · ·NV F I ]

2: mi n_sw j = |V CG(V ,E , j )|/max_sw_si ze j , ∀ j

3: {Vary number of switches in each VFI}

4: for i = 1 to max∀ j∈1···NV F I
|V j | do

5: for j = 1 to NV F do

6: if i +mi n_sw j < |V j | then

7: k = i +mi n_sw j

8: else

9: k = |V j |

10: end if

11: Perform k min-cut partitions of V CG(V ,E , j ).

12: end for

13: {Vary number of switches in intermediate NoC VFI}

14: for k = 0 to max∀ j∈1···NV F I
do

15: Compute least cost paths for inter-switch flows usingC heck_constr ai nt s procedure.

Choose flows in bandwidth order and find the paths.

16: If paths found for all flows save design point

17: end for

18: end for

Ensure: C heck_constr ai nt s

19: {Check if the link between swi tchi or swi tch j can be used}

20: if i sl and(swi tchi )= i sl and(swi tch j ) then

21: l i nk_al lowed = TRUE;

22: else if i sl and(swi tchi )= sr c_i sl and i sl and(swi tch j )= dest_i sl then

23: l i nk_al lowed = TRUE;

24: else if swi tchi or swi tch j is in NoC VFI then

25: l i nk_al lowed = TRUE;

26: else

27: l i nk_al lowed = FALSE;

28: end if

29: h = i sl and(swi tchi ) and k = i sl and(swi tch j )

30: if si ze(swi tchi ) >= max_sw_si zeh or si ze(swi tch j ) >= max_sw_si zek or

l i nk_al lowed = FALSE then

31: costi j = I N F

32: else if si ze(swi tchi )>= max_sw_si zeh −2 and swi tch j is in NoC VFI then

33: costi j = SOF T _I N F/2

34: else if si ze(swi tch j )>= max_sw_si zek −2 and swi tchi is in NoC VFI then

35: costi j = SOF T _I N F/2

36: else

37: costi j = SOF T _I N F

38: end if
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The algorithm for topology synthesis is presented in Algorithm 4.1. In the first step

of the algorithm, the frequencies of operation of the switches in each of the islands

are determined. In this NoC design, a core is connected to only one switch, through

a NI. The links connecting the NI and the switch determine the frequency at which

the NoC elements have to run in an island. The bandwidth available on a link is a

product of the link data width and the frequency. In the synthesis procedure, without

loss of generality, I set the data width of the NoC links to a user-defined value. Please

note that it could be varied in a range and more design points could be explored,

which does not affect the algorithm steps. For a fixed data width, the frequency of the

switches in an island is determined by the link that has to carry the highest bandwidth

from or to a core in the island.

A larger switch will have a longer critical path in the crossbar and therefore will have

to operate at a smaller frequency. The frequency at which a switch has to operate

determines the maximum size (number of inputs and outputs) of the switch that

can be allowed, denoted as max_sw_si ze j . As the switches in the different VFIs can

operate at different frequencies, the maximum switch size is different for the different

VFIs. Once the maximum switch sizes are determined, based on the number of cores

in each VFI, the minimum number of switches required for each island is determined

in step 2 of the algorithm. Let NV F I denote the total number of VFIs in the design.

Example 4.1 Consider the system depicted in Figure 4.1. I describe how the algorithm

works for one design point. The design has eleven cores divided in to three islands.

The first step is to determine the frequency of the NoC in each VFI and to calculate

the maximum size of the switches in each VFI. In this example, IP 7 is generating the

maximum traffic in the island VFI 1, with a total of 3.6 GB/s bandwidth. Let us assume

that the NoC data width is set to 4 bytes. Thus, the NoC island with IP 7 should run

at 900 MHz (obtained by 3.6 GB/4 B). From the ×pipes NoC [160] library that I used

in 65nm, I found that a switch larger than 3×3 cannot operate at 900 MHz. Thus, I

determine that the maximum switch size for this island is 3×3. As the island has 4

cores, I need at least 2 switches in the island. The minimum number of switches needed

in the other islands can be calculated in a similar manner.

In steps 4 to 10 of the algorithm, the number of switches in each island is varied from

the minimum value (computed in step 2) to the maximum number of cores in the

island.

Example 4.2 Let us assume that the minimum number of switches computed in step 2

for the example in Figure 4.2 are 1, 2, 1 for VFI 0, VFI 1, VFI 2. I will generate design points

with different switch counts, with each point having one more switches in each VFI,
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until the number of switches is equal to the number of cores in the VFI. For this example,

I will explore the following points: 1,2,1, 2,3,2, 3,4,3, 3,4,4. As several combinations of

switch counts in different VFIs are possible, I limit to this simple heuristic.

In step 11, for the current switch count of the VFI, that many min-cut partitions of

the VCG corresponding to the VFI are obtained. Cores in a partition share the same

switch. As min-cut partitioning is used, cores that communicate heavily or that have

tighter latency constraints would be connected to the same switch, thereby reducing

the power consumption and latency.

Example 4.3 For the design point 1,2,1, 2 min-cut partitions of VCG(V,E,1) are ob-

tained. Cores IP 9 and IP 10 communicate more and belong to the same partition. Thus,

they would share the same switch. Also, all flows between cores on the same switch will

be routed directly through that switch.

At this point, the connectivity of the cores with the different NoC switches is obtained.

I still need to connect the switches together and find paths for the inter-switch traffic

flows. If the switches from a VFI are directly connected to the switches on the other

VFIs, then several switch-to-switch links would be needed. This may lead to large

switch sizes, which may lead to violation of the max_sw_si ze j constraint. By using

switches in an intermediate NoC island, the number of switch-to-switch links can be

reduced. These switches act as indirect switches, as they are not directly connected to

the cores, but only connect other switches. If the design constraints permit the usage

of another VFI, then I explore the solution space (step 14) with varying number of

switches on the intermediate NoC VFI.

For each combination of direct and indirect switches, the cost of opening links is

calculated and the minimum cost paths are chosen for all the flows (step 15). The

traffic flows are ordered based on the bandwidth values and the paths for each flow in

the order is computed. The cost of using a link is a linear combination of the power

consumption increase in opening a new link or reusing an existing link and the latency

constraint of the flow. The different scenarios for setting the link costs are shown in the

C heck_constr ai nt s procedure (step 19 to 38). When opening links, I ensure that the

links are either established directly across the switches in the source and destination

VFIs or to the switches in the intermediate NoC island. To enforce this constraint, a

large cost (I N F ) is assigned to the links that are not allowed. Similarly, when the size

of a switch in an island reaches the maximum value, the cost of opening a link from or

to that switch is also set to I N F . This prevents the algorithm in establishing such a

link for any traffic flow. Also, when a switch is close to the maximum size (2 ports less

then the maximum size), a larger value then the usual cost is assigned for opening
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a new link, denoted by SOF T _I N F . This is to steer the algorithm to reuse already

opened links, if possible. In order to facilitate the use of the indirect switches in the

intermediate NoC VFI, the cost of opening a link between a switch that is close to the

maximum size and an indirect switch is set to SOF T _I N F/2. Thus, when the size of a

switch approaches the maximum value, more connections will be established using

the switches in the intermediate NoC VFI.

Example 4.4 Let us consider the switch assignment from the previous example. In this

example, the highest bandwidth flow that has to be routed first is the one from IP 7 to IP

10. This will result in opening a link between Switch 2 and Switch 1. Now, let us assume

that I have to find a path for a flow from IP 9 to IP 3. Because Switch 1 is close to its

maximum size and I have other flows to other VFIs, the algorithm will use the switch in

the intermediate NoC VFI. This results in opening a link from Switch 1 to 4 and another

from Switch 4 to 3. The topology with the inter-switch links opened is shown in Figure

4.2.

If for all the flows, paths that do not violate the latency constraints are found, then the

design point is saved. Finally, for each valid design point, the NoC components are in-

serted on the floorplan and the wire lengths, wire power and delay are calculated. The

time complexity of the algorithm isO(V 2E2l n(V )), however in practice the algorithm

runs quite fast as the input graphs typically are not fully connected.

4.3 3D architecture and design approach

I assume a 3Dmanufacturing process based on the wafer-to-wafer bonding technol-

ogy as in Chapter 3. In this, Through Silicon Vias (TSVs) are used for establishing

vertical interconnections. A vertical link requires a TSV macro on one of the layers

(say the top layer), where the via cuts through the silicon wafer. In the bottom layer,

the wires of the link will use a horizontal metal layer to reach the destination. For links

that go through more than one layer, TSV macros are required in all the intermediate

layers. However, it is important to note that the macros need not be aligned across

the layers, as horizontal metal layer can be used to reach the macro at each layer

as well. Stacked TSVs are not used as the alignment of the TSVs would complicate

floorplanning. The area of the TSV macros for a particular link width is taken as an

input. For the synthesized topologies, the tool automatically places the TSVmacros

in the intermediate layers and on the corresponding switch ports. The synthesis pro-

cess automatically places the TSVmacros at different layers for the different vertical

interconnects.

Extending the algorithm from Section 4.1 to generate NoC topologies for 3D-ICs
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is done by combining the previously presented algorithm with the algorithm for

generating customNoC topologies for 3D-ICs from Chapter 3. In the case of the 3D

algorithm from Chapter 3, the cores are assigned to layers of the 3D silicon stack.

Cores can be connected only to switches in the same layer. The 3D algorithm would

explore designs with different number of switches in each layer. The concept of layer

is similar to the concept of VFI, however in the original 3D algorithm all layers are

assumed to be synchronous.

The extension of the 3D algorithm to support shutdown of VFIs as presented in Section

4.1 can be done under the assumption that a VFI does not span across multiple layers.

This assumption makes sense because it is difficult to create a synchronous clock tree

that can span onmultiple layers. Therefore, even if cores on different layers operate

at the same frequency and voltage level it is very likely that there will be clock skew

between them and they would need to be assigned to different VFIs.

The algorithm to synthesize NoCs for 3D ICs takes as input both the assignment of

cores to the silicon layers of the 3D stack as well as the assignment of the cores to VFIs.

Also the maximum number of links that can cross between two adjacent layers has to

be given as input. This constraint is used to limit the number of Through Silicon Vias

(TSVs) that are needed to connect components on different layers in order to increase

the yield.

4.4 Experimental results

Experiments are performed using the power, area and latency models for the NoC

components based on the architecture from [160]. The models are built for 65nm

technology node. I extended the library with models for the bi-synchronous voltage

and frequency converters. For reference the power consumption (with 100% switching

activity), area and maximum operating frequency for some of the components are

presented in Table 4.1. In [72], the authors show that the power consumption of

tightly packed TSVs is smaller than that of horizontal interconnect by two orders of

magnitude. Therefore, the impact of power consumption and delay of the vertical links

is negligible as they are very short as well (15 to 25µm). Under zero-load conditions,

the switch delay is 1 cycle, an unpipelined link delay is 1 cycle and the worst case

converter delay (which I use in the analysis) is 4 cycles (of the slowest clock) [35].

4.4.1 Case study on mobile platform

When the NoC has to be designed to support power gating of islands, there is an

additional overhead on the dynamic power consumption of the NoC. To study the

impact of the overhead and to see the impact of different core assignment to islands
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Figure 4.3: Impact of number of VFI on power
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Figure 4.5: Impact of number of VFI on latency in c ycles
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and different number of islands, I consider a case-study on a realistic SoC benchmark

(D26_Media). The SoC design is used for mobile communication and multimedia

applications. The communication graph of the benchmark is presented in Figure

3.10. The vertices in the communication graph represent actual physical cores and the

weights on the edged represent the communication demands in MB/s between the

physical cores. The benchmark has an ARM processor and a DSP, both having level 2

caches with controllers, several hardware accelerators, shared embedded memories

and a multitude of peripherals. For the 3D design, I use 3 silicon layers to implement

the benchmark. For the 3D case, the processor, the DSP and the hardware accelerators

were assigned to the first layer, most of thememories to the second and the peripherals

and remaining memories to the third layer. I use a data width of 32 bits for the NoC

links for all the experiments, matching the data width of the cores.

I consider two ways of assigning the cores to different VFIs. One way, designated as

logical partitioning, is based on the functionality of the cores. For example, shared

memories are placed in the same VFI, as they have the same functionality and there-

fore are expected to operate at the same frequency and voltage. The island with the

shared memories is also expected not to be shutdown, since memories are shared

and should be accessible at any time and this is another reason to cluster them in the

same VFI. Similar reasoning was used to partition all the cores for the case of logical

partitioning. Another way I considered for partitioning is based on communication

and is called communication based partitioning. In this case, cores that have high

bandwidth communication with one another will be placed in the same VFI. Please

note that the assignment of cores to the VFIs is an input to the synthesis algorithm.

In Figure 4.3, I show how the dynamic power consumption of the NoC varies when

the cores are partitioned in to different number of VFIs. The power consumption

values comprise the consumption on switches, links and the synchronizers. In the

x-axis, the first point (1 island) is actually a design point with all the cores in the same

island, which is the reference point. The last point on the graph corresponds to 26

VFIs, which is the point when each core is in its own island. It can be seen that in the

case of logical partitioning, I have to pay a some overhead in NoC dynamic power,

as there are more high bandwidth flows that have to go across islands. In the case

of the communication based partitioning, the NoC consumes less power than the

Energy (µW /M H z) Area (µm2) Freq (MHz)

switch 4x4 7.2 10000 803

switch 5x5 8.4 14000 795

1 mm 32bit wire 2.72

Converter 0.34 1944 1000

Table 4.1: NoC component figures
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Figure 4.6: Topology example

Figure 4.7: Floorplan example

80



4.4. Experimental results

reference point with 1 island, as the NoC can run at a slower frequency in some of

the islands. In this case most of the high bandwidth flows are inside an island, so

the power overhead is less. In Figure 4.4, I show the average packet latencies for the

different design points. The latency quoted is the number of cycles needed to transfer

a single chunk of the packet from the output of the source NI until the input of the

destination NI under zero-load conditions. When packets cross the islands, a 4 cycle

delay is incurred on the voltage-frequency converters. Thus, with increasing number

of islands, the latencies increase. In Figure 4.4, I show the average packet latencies in

cycles.

A topology for the 6 VFI logic partitioning case is shown in Figure 4.6 and a floorplan

example is presented in Figure 4.7.

4.4.2 Using intermediate NoC VFI

The frequency at which a switch can operate is given by the critical path inside the

switch. As the bandwidth requirements of the application start to increase, the re-

quired NoC frequencies also increase. Thus, the switches start reaching the maximum

allowed sizes to meet the frequency requirements. One way to maintain the size of

switches below the threshold is the use of indirect switches in the intermediate NoC

VFI. However, there is a penalty in using these switches, as a flow going through them

has to pass through onemore set of voltage-frequency converters. In Figure 4.8, I show

the number of indirect switches used for the best power points when the frequency is

varied. I see that, when the bandwidth requirements are low, the intermediate island

is never used. As the bandwidth requirements start scaling, more andmore indirect

switches in the intermediate VFI are used. The algorithm automatically explores the

entire design space and instantiates the switches in the intermediate island when

needed.

No VFI Multiple VFIs

Power Latency Power Latency VFIs

(mW) (cycles) (mW) (cycles)

D1 273.3 4.10 435.5 6.31 6

D2 295.9 4.17 441.3 7.72 6

D3 448.5 5.76 561.8 7.71 6

D4 112.4 5.96 117.82 6.70 6

D5 332.9 3.25 341.64 3.40 8

D6 77.43 3.31 80.12 2.62 4

Table 4.2: Comparison onmultiple benchmarks
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Figure 4.8: Impact of frequency on the switch count in the NoC VFI

4.4.3 Comparisons on different benchmarks

In Table 4.2, I present a comparison of power and latency between a design with

no VFIs and a design with multiple VFIs for six benchmarks. Again, I report the

dynamic power consumption values of the NoC. I use different number of islands

in each benchmark (average of 6 islands), based on the logical characteristics of the

applications. The D1, D2 and D3 set of benchmarks model systems with multiple

shared memories on a chip. Each core communicates to 4, 6 and 8 other cores

respectively with an average of 2, 3 and 4 communication flows going across the

islands. In these cases, the overhead is more as there is a need for many voltage-

frequency converters in order to channel all the inter-VFI communication. The D4

benchmark has 16 processor cores, 16 private memories and 3 shared memories. The

processor and the private memory are assigned to the same VFI. Thus, there are just

the low bandwidth flows going to the shared memories that have to go across VFIs. In

this case, the power overhead for gating is not significant, only latency increases since

some VFIs operate at a lower frequency. In case of the D5 and the D6, there are 65

cores and 38 cores respectively, communicating in a pipeline manner and therefore

there are fewer links going across VFIs resulting again in a small overhead.

For the different SoC benchmarks, I find that the topologies synthesized to support

multiple VFIs incur an overhead of 28% increase in the NoC dynamic power con-

sumption. For all the benchmarks, the NoC consumes less than 10% of the total SoC

dynamic power. Thus, the dynamic power overhead for supporting multiple VFIs in

the NoC is less than 3% of the system dynamic power. I found that the area overhead

is also negligible, with less than 0.5% increase in the total SoC area. In many SoCs, the

shutdown of cores can lead to large reduction in leakage power, leading to even 25%
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or more reduction in overall system power [51]. Thus, compared to the power savings

achieved, the penalty incurred in the NoC design is negligible. Even though the packet

latencies are higher whenmany VFIs are used, the synthesis approach provides only

those design points that meet the latency constraints of the application. Moreover,

the synthesis flow allows the designer to perform trade-offs between power, latency

and the number of VFIs.

The exploration of the design points for all the benchmarks presented in this section

takes only a few hours on a 2 GHz Linux machine. To be noted that the synthesis

process is only run once at design time and therefor the computational time required

by the algorithm is negligible.

4.4.4 Comparison of 2D and 3D topologies

To compare the power difference between a 2D and 3D design, I use the (D26_Media)

realistic benchmark. I consider the ideal case in this section, when both the 2D

design and the 3D design can be implemented in a fully synchronous manner. This

experiment can be used as a baseline reference to put in perspective the following

experiments where I have different number of VFIs. The frequency requirement on

the NoC part of each VFI is determined by the core that has the largest bandwidth

coming in or going out, as that bandwidth has to be supported by a single link. For

the benchmark, for a single VFI, this minimum required frequency is calculated to

be 270M H z. The total NoC power consumption for the best power point for the

2D case is 38.5mW and for the 3D design is 30.9mW . The power consumption of

the 3D design is 20% lower when compared to the 2D design. Most of the power

savings come from the fact that wires are shorter in the 3D design and therefore less

power is required to drive them. Since all the cores are in the same VFI, there are no

restrictions on the placement of the switches. This enables the placement strategy

to better optimize the placement position of the switches and the there is only a 20%

difference between the 2D case and the 3D case. I will show in the next section that

as more constraints are added on the switch placement, even larger savings can be

obtained when a 3D design is used.

4.4.5 Comparison for different number of VFIs

I assigned the cores to different number of islands (from 1 to 7) based on logic con-

nectivity and application constraints. For example, in the case of the two islands,

the processor, the DSP and the hardware accelerators were assigned to the same VFI

and the memories and peripherals were assigned to the second VFI. An example of a

topology for the 6 island case produced by mymethods is presented in Figure 4.6 and

the corresponding 2D floorplan is presented in Figure 4.7.
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Figure 4.9: Power 2D designs

Figure 4.10: Power 3D designs

Figure 4.11: Power savings of 3D over 2D designs
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As reference I consider the case where both the 2D and the 3D design are fully syn-

chronous. The topology with the lowest power consumption in 2D uses 38.5mW and

in 3D uses 30.9mW . The minimum frequency at which the NoC has to be operated

to support the bandwidth requirements of the benchmark is 270M H z (power values

are given for this frequency). The power consumption of the 3D design is 20% lower

when compared to the 2D design. A complete analysis of 2D and 3D designs for

fully synchronous designs is presented in chapter 3. I will show that with the extra

constraints imposed by the VFIs even larger power savings can be obtained for the 3D

designs.

The power consumption of the best power points for different number of VFIs for

the 2D and 3D cases are shown in Figures 4.9 and 4.10. I show the total power con-

sumption of the NoC as well as for the different components in the NoC (switches,

links, converters). To be noted that the operation frequency in each VFI is calculated

based on the bandwidth requirements in that VFI. For that reason, whenmore VFIs

are added, some of themmight operate at a lower frequency than required in a fully

synchronous design. Even though increasing the number of VFIs implies adding

more resources like switches, links and frequency converters, I can see that the power

consumption does not go up significantly. This is due to the fact that with more VFIs

in the design, a larger part of the NoC can be operated at lower frequency. The relative

power savings of 3D compared to 2D are shown in Figure 4.11. In this experiment, I

assume a clock skew across the different 3D layers even for a fully synchronous design,

thereby leading a minimum of 3 VFIs for 3D, with one for each layer. Thus, the total

power consumption plotted is the same for 1 to 3 VFIs in 3D. I obtain a maximum

power saving for 3 VFIs. This is because, in 3D I have a minimum of 3 VFIs and as I

increase the number of VFIs the converter power consumption increases and also

wires in 2D are more segmented and shorter. The zero-load latency of the designs

with different numbers of VFIs is presented in Figure 4.12. I can see that the latency

goes up with the number of VFIs, because more links use frequency converters (which

incur a 4 clock cycle penalty to traverse) and because more islands are operated at a

lower frequency.

Apart from the total power consumption, I also show a breakdown on the power on the

different NoC components. One important thing to note is that, as the number of VFIs

increase, the operating frequency of certain VFIs can be lowered as the cores inside

in a VFI may require less bandwidth than in another. Increasing the number of VFIs

increases the number of switches in a design, as there has to be at least on switch in

each VFI. However when combined with the previous effect that lowers the operating

frequency, I can observe that the switch power does not have a significant increase

when the number of switches is increased. A similar effect can be observed on the

wire power for the cases of 3 to 7 islands in 2D, as the converters are placed closer to
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the faster switch and the link is operated at the lower frequency. In 3D, however the

switch to switch link power increases marginally with the number of islands, because

of the increase in the number of switch to switch links. Since wire power is less in 3D

due to shorter wires, the increase of the power consumption with the number of wires

is more visible than for 2D topologies.

In Figure 4.11, I show the power savings in 3D compared to 2D. In this experiment, I

assume a clock skew across the different 3D layers even for a fully synchronous design,

thereby leading a minimum of 3 VFIs for 3D, with one for each layer. Thus, the total

power consumption plotted is the same for 1 to 3 VFIs in 3D. As I increase the number

of VFIs beyond 3, the converter power becomes significant, so the difference between

2D and 3D reduces. Also as the number of VFIs is increased, the wires in 2D become

more segmented and shorter as well, further decreasing the power difference between

the 2D and 3D designs. The zero load latency is less influenced by the wire length

difference between 2D and 3D, as can be seen in Figure 4.12. The numbers plotted

are the latency for a head flit of a packet to reach from the source network interface

to the destination network interface. This is because, a wire has to be significantly

long (7mm in this technology library) to require an additional pipeline stage. Most of

the wires, also in 2D, fall below this threshold for the benchmark. Most of the delay

is incurred in crossing the frequency converters, as each converter incurs a 4-cycle

penalty (of the slowest clock). As the number of VFIs is increased more of the wires

become inter VFI wires requiring a frequency converter (increasing the latency to

cross the wire to 4 cycle). Thus, with increasing number of VFIs, the delay shoots up

exponentially for both 2D and 3D systems.

In Figure 4.13, I show the power savings obtained on two other benchmarks, with

different communication patterns than the multi-media system considered above.

The D35_bott benchmark has 16 processors with 16 private memories and 3 shared

memories. Most of the high bandwidth traffic is between the processors and their

private memories. On the other hand the D36_8 is a benchmark with spread traffic

pattern, with each core communicating with 8 others with equal bandwidth values.

As expected, these two benchmarks represent two extremes, the former providing low

power savings, while the latter providing large power savings for 3D. As a reference,

the topologies for D35_bott with 3 VFIs consume 80mW in 3D and 88mW in 2D. The

previously analyzed benchmark (the D26_Media) is a realistic benchmark and the

power savings are in between these two benchmark. Also, the power savings depend

on the number of VFIs.
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Figure 4.12: Average zero load latency of 2D and 3D designs

Figure 4.13: Power savings of 3D vs. 2D for different benchmarks

Figure 4.14: Power savings of 3D vs. 2D for different core areas
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4.4.6 Comparison with different design sizes

The number of VFIs can be decided according to the design in order to achieve low

power consumption by shutdown of unused VFIs. However, it can also be forced by

the technology when the area of the design becomes large enough that a single clock

tree cannot be designed to synchronize all the components. I performed experiments

to explore the effect of increasing the number of VFIs due to an increase in the size

of the design. I scale the size of the design proportional on the number of VFIs. For

example, a design with 5 VFIs has an area increase of 60% over the one with 3 VFIs.

The difference in power consumption between the 3D and 2D designs in percentage

is shown in Figure 4.14. As the wires are longer when the benchmark is larger, I

obtain more power savings in 3D, when compared to the experiments in the previous

subsection.

4.4.7 Analysis of results

When the whole design is synchronous, 3D designs give very low power savings (11%),

as frequency converters or mesochronous synchronizers are needed to tolerate clock

skew across layers. As the number of VFIs increase, 3D SoCs have large NoC power

reductions (up to 32%) due to reduction in wire lengths. However, after a sweet-spot,

the gains fall again, as the wires get shorter in 2D due to the use of more switches

and the contribution of converter power to overall power also becomes significant.

The results show the need for an early architectural exploration of the whole design

space, as the number of VFIs used play a major role in determining the power savings

achieved when migrating to 3D. The experiments also show that the reduction in

delay is not very significant whenmoving from 2D to 3D systems (up to 11%), if both

are designed efficiently. This is because, the number of links in 2D that are long

enough to require pipelining is less and the synchronizer delay is more dominant

when compared to wire delay. The area overhead due to the insertion of TSVs in 3D is

negligible, as the TSVmacros occupy less than 2% area when compared to the area of

the cores.

4.5 Summary

Standby and leakage power consumption of the SoC is becoming a large fraction of

the total power consumption. Clustering of cores in to voltage islands and shutdown

of unused islands is an effective way to reduce the leakage power consumption. The

system interconnect has to be designed to ensure proper operation when shutting

down voltage islands. In this chapter, I presented an approach to synthesize appli-

cation specific Networks on Chip (NoC) interconnects that can effectively support
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shutdown of islands. The topologies synthesized by my methods have negligible

power and area overhead (3% power and 0.5% area, on average), in order to support

shutdown. The presented approach also allows the design space exploration of NoCs

with different power-performance values that meet the application constraints.I also

presented a detailed comparison of NoCs for 2D and 3D, using a realistic mobile

platform. I showed that, as the number of VFIs increase, 3D SoCs have large NoC

power reductions (up to 32%) due to reduction in wire lengths. After a certain number

of VFIs, the gains fall again due to shorter wires in 2D andmore significant converter

power consumption in both cases. The experiments also show that the reduction

in delay is minimal when moving from 2D to 3D systems (up to 11%) because the

converter delay is more dominant than wire delay.
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5 Removing deadlocks in application

specific topologies

To achieve high throughput and low latency, most NoCs use wormhole flow control.

A major problem that arises when using wormhole flow control is the possibility of

deadlocks. In wormhole flow control, as opposed to store and forward, packets are

typically larger than the buffering capacity of the switches. When a packet is in flight

in the network, it might span across multiple switches. The packets are split into

multiple FLow control unITs (FLITs). The first flit of the packet, the header, contains

the routing information. Once the header flit reserves the output port of a switch, that

port remains reserved until the last flit of the packet passes through. If a data packet

has to use an output port of a switch which is already reserved to another packet, it

has to wait until the packet holding the port goes through and releases the port. It is

possible for a set of packets to have a cyclic dependency of resources, where each of

them waits on a port held by another and none of them can advance. Such a scenario

is called as a routing-level deadlock [41].

Deadlocks in a network can block communication between cores and can even lead to

a complete network failure. Therefore it is essential to have methods to handle them.

One way is to prevent the conditions that lead to a deadlock, by routing packets in

such a way that the circular waiting patterns cannot occur. The other way is to detect

and recover from them. Because detecting and recovering from deadlocks require

specialized hardware resources, methods to prevent deadlocks are widely used in

NoCs [42].

Inmany SoCs, the cores are heterogeneous in nature and the communication patterns

are well defined. The NoC topologies and routing functions are custom designed to

match the application specifications, leading to more power/performance efficient

designs. For regular network topologies, deadlocks can be avoided by restricting the

routing function, so that certain turns in the network are prohibited. In [144], [179],

[159], methods to prohibit turns on irregular custom topologies to avoid deadlocks

are presented. However, the methods have to be used during the construction of the
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NoC topology, otherwise connectivity between cores cannot be guaranteed. In many

cases, the topology of the interconnect is decided earlier in the design process, but as

the design matures the application patterns may change. Thus, the deadlock freedom

or connectivity cannot be guaranteed. Moreover, they place a severe restriction on the

routes that can be used in the topology.

Most of the existing manual and automated topology synthesis methods [157] use

additional virtual channels (VC) or physical links to remove deadlocks in the design.

Resource ordering is a popular method to prevent deadlocks in custom topologies [41].

In this method, the communication channels (physical links or VCs) are assigned to

different classes that are ordered. Each time a packet needs to traverse a switch, it

will reserve a channel from a resource class of higher order than the one it currently

occupies. In this way, no cyclic dependency between packets can be formed. However,

a major disadvantage of the resource ordering method is that it incurs a large area-

power overhead to remove the deadlocks, as a large number of physical or virtual

channels are needed. In other works [121], [62], as well as in themethods fromChapter

3, turn-prohibition is used during the synthesis process to prevent deadlocks. While

the solutions from [121] and [62] are proposed for designing 2D SoCs, turn prohibition

is efficient at preventing deadlocks. However when considering 3D integration with

a very tight TSV constraint, the method from Chapter 3 may fail as turn-prohibition

may require too many TSV links.

Achieving deadlock free operation of custom topologies with minimal area-power

overhead is a major challenge. In this chapter, I present a new method to remove

deadlocks in customNoC topologies. Mymethod adds a minimal number of virtual

channels (VCs) or physical channels to remove deadlocks, thereby incurring a very low

area-power overhead. Unlike many existing methods, the proposedmethod can be

applied on any topology and does not impose any restrictions on the routing functions

that can be used. The major contribution of this chapter are:

• I present an algorithm to find and remove deadlock conditions by minimally

adding VCs or physical links. Please note that the algorithm works the same

whether VCs or physical links are added, so for simplicity I will only mention

VCs when describing the algorithm.

• I present an evaluation of the algorithm using VCs as well as physical links.

• I show the benefits of using the algorithm to remove deadlocks after designing

the topology for 3D-ICs with tight TSV constraints.

I perform experiments on several SoC benchmarks and show that the method results

in a large reduction in the number of VCs needed to remove deadlocks (an average
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of 88%) when compared to the resource ordering method. This translates to a large

reduction in NoC area (an average of 66%) and power consumption (an average of

8.6%). In case of adding physical links the power reduction in power consumption is

even larger (on average 10%). The experiments also show that the method is practical,

as the total area and power overheads to remove deadlocks are less than 5% when

compared to a design with no mechanism to remove deadlocks.

5.1 Background on deadlock avoidance techniques in NoCs

In [43], a necessary condition for adaptive routing functions to be deadlock free is

given. In [44], the authors prove that the condition from [43] is also sufficient for the

adaptive routing algorithm to be deadlock free. Deadlock free routing algorithms for

different regular topologies are presented and analyzed in [34], [38], [98], [55], [105].

However, most of these methods are not applicable to custom irregular topologies.

A necessary and sufficient condition for deadlocks to appear in networks with worm-

hole routing is given in [41]. A survey of the deadlock free routing algorithms devel-

oped for networks with wormhole routing is presented in [125]. The method also uses

the necessary and sufficient condition from [41] to detect the deadlocks.

Turn prohibition methods to remove deadlocks have been presented in [56], [179],

[159]. In these methods, a certain number of turns are prohibited to be used by the

routing function. The advantage is that they can be used with irregular topologies.

However they have to be applied during the topology synthesis and cannot guar-

antee that routes can be found for existing non-deadlock free topologies. In [128],

a methodology to design adaptive-deadlock free routing functions for application-

specific traffic patterns is presented. The method is based on the theory from [44], but

customizes the resulting routing function according to the description of the actual

traffic patterns of the application. In [121], [62], the authors use the turn-prohibition

method to remove deadlocks. However, all these methods are integrated with the

topology synthesis process and cannot be applied to arbitrary NoC topologies and

routing functions.

The most popular method to remove deadlocks in arbitrary NoC topologies with any

routing function is the resource ordering method [41]. As I show in the experiments,

my method results in much smaller area-power overhead when compared to this

scheme.

5.2 Problem formulation

In Example 5.1, I show how a waiting pattern that can occur can lead to a deadlock.
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Figure 5.1: Deadlock example

Example 5.1 In Figure 5.1, I show an example of a deadlock. Suppose a packet F1 tries

to go from switch 1 to switch 3 and it holds the port P1 and waits for port P2 which is

reserved by packet F2. F2 cannot advance as the needed port P3 is reserved by packet F3.

F3 is blocked waiting for port P4 of switch 4 which in turn is used by packet F4 which

waits for port P1 reserved by F1. In such a case none of the flows can advance and are

blocked indefinitely. Any configuration in a network where packets wait on one another

in a circular manner leads to permanent blocking and is called a deadlock.

An input topology is represented as a graph, defined as follows:

Definition 5.1 A Topology Graph TG(S,L) is a directed graph where the vertexes si ∈ S,

i = 1. . .N represent the switches and N is the number of switches in the topology and

the edged l (si , s j ) ∈ L represents a physical link between switch si and switch s j .

I also need as input the description of the communication flows. The communication

graph is defined in a similar manner as in Chapter 3, but it is simplified as some

information is not needed here:

Definition 5.2 The communication graph is a directed graph, G(V ,E ) with each vertex

vi ∈V representing a core and the directed edge (vi ,v j ) representing the communication

flow between the cores vi and v j .

For each communication flow, a route has to be defined which describes which of the

links in the topology are used by a particular flow to reach from source to destination.
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Figure 5.2: Topology example
Figure 5.3: CDG example Figure 5.4: Modified CDG

I also take the description of the routes as input. A route is defined as follows:

Definition 5.3 A Route is a set of channels (a physical link and the corresponding VC)

R = {l1,0, . . . ln,k } where the channel li , j uses the physical link li ∈ L and the VC j . The

route defines the channels that a flow will use to reach from source to destination. The

order of the channels in the set is also the order in which the channels will be traversed

by a packet in the network.

From the topology graph TG(S,L), the communication graph G(V ,E) and the set of

all routes Rk corresponding to flows inG(V ,E) the algorithm will build the Channel

Dependency Graph (CDG) which is used to find the possible deadlock conditions, and

then to remove them. It is defined as follows:

Definition 5.4 The Channel Dependency Graph is a directed graph C DG(C ,D), with

each vertex ci ∈C represents a channel in the topology (a physical link and the corre-

sponding VC) and an edge d(ci , c j ) represents a dependency between the two channels.

A dependency is given when there is at least one route which used channel ci and then

immediately channel c j .

Example 5.2 In Figure 5.2 an example of a topology is shown. There are four switches

in the topology {SW1, SW2, SW3, SW4} connected by four channels {L1, L2, L3, L4}

to form a ring. I consider four communication flows F1, F2, F3 and F4 that have the

following routes R1 = {L1, L2, L3}, R2 = {L3, L4} , R3 = {L4, L1} and R4 = {L1, L2}. For the

topology in Figure 5.2 and the four flows, I show the CDG from Figure 5.3. The CDG has

four vertices one for each channel in the topology. Flow F1 generates the edges between

vertex L1 and vertex L2 and between L2 and L3, flow F2 generates the edge between
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Figure 5.5: Modified Topology Figure 5.6: Break in forward di-

rection

Figure 5.7: Break in backward

direction

L3 and L4, flow F3 generates the edge between L3 and L4 and the flow F4 comes as the

second flow to require an edge between L1 and L2.

In [41] the authors have shown that a necessary condition for a deadlock to occur in

a network with wormhole routing is to have a cycle in the CDG. Cycles in the CDG

can be broken by adding new vertices to the CDG and removing one or more of the

edges between the vertices involved in the cycle. The corresponding operations in

the network for adding vertices to the CDG is to add new VCs to create new channels

between switches and to remove edges in the CDG corresponds to modifying the

routes of some of the flows. In Example 5.3, I show one possible way to break a cycle

and the corresponding changes in the topology.

Example 5.3 The network with the topology from Figure 5.2 can have deadlocks be-

cause the corresponding CDG from Figure 5.3 has a cycle. To prevent deadlocks, we

have to break the cycle in the CDG. We can break the cycle in the CDG by adding a new

vertex L1’ in the CDG and modifying the route of the flow F3 to use L1’ instead of L1.

The resulting acyclic CDG is presented in Figure 5.4 and the corresponding modified

topology is shown in Figure 5.5. The new topology has an extra channel L1’ between

switch SW 1 and switch SW 2 and the route for flow F3 is now R3 = {L4, L1’}.

The problem is formulated in following way: given a topology graph T G(S,L), the

communication graph G(V ,E ), the set of all routes Rk and the corresponding C DG(C ,D)

with Φ 6=Ø, how to get TG ′(S,L′) and R ′
k

such that the corresponding C DG ′(C ′,D ′) will

have Φ′ =Ø and |L′|− |L| is minimal.

I present an algorithm that removes all deadlock conditions, by removing all cycles in

the CDG generated for the network. A cycle is removed by adding one or more VCs

in the topology (or vertices in the corresponding CDG) and re-routing some of the
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Algorithm 5.1 Deadlock removal

1: {Initialize CDG using Topology and Routes}

2: BuildC DG(C ,D) from T G(S,L) and Rk ∀k ∈ [1 . . . |G(V,E)|]

3: C =GetSmall estC ycle()

4: while C 6=Ø do

5: ‹ f _cost , f _pos›= F i ndDependenc yToBr eakFor w ar d(C , flows)

6: ‹b_cost ,b_pos›= F i ndDependenc yToBr eakB ackw ar d(C , flows)

7: if f _cost ≤ b_cost then

8: Br eakC ycl eFor w ar d(C , f _cost , f _pos)

9: else

10: Br eakC ycl eB ackw ar d(C , b_cost , b_pos)

11: end if

12: Update TG(S,L) and Rk ∀k ∈ [1 . . . |G(V,E)|] from the currentC DG(C ,D)

13: C =GetSmall estC ycle()

14: end while

flows on the newly created channels. The cycles are removed one by one starting from

the smallest one. The algorithm terminates when all cycles are removed. The goal of

the algorithm is to remove all deadlock conditions by adding the minimum number

of extra VCs. The detailed explanation of all the steps is provided in Section 5.3. The

output of the proposed algorithm is a minimally modified topology graph and route

set, with the resulting design being deadlock free.

5.3 Deadlock removal approach

In Algorithm 5.1 the major steps of my method are presented. Given the topology

graph, the communication graph and the description of the routes as input, in Step

2 of the algorithm the CDG is build for the current configuration of the network.

In Step 3, I run an initial search to find the smallest cycle in the CDG. I use the

heuristic of breaking the smallest cycle first, as it can also lead to breaking a larger

cycle sharing some of the edges with this one. If no cycles are found in the initial

search, the algorithm ends as the initial topology is deadlock free and nomodifications

are needed.

To find the cycles in the CDG, I run breadth first search starting search from every

vertex of the graph. If the starting vertex is encountered during the search then a cycle

is detected in the CDG and the starting vertex is part of a cycle. By running the search

from every node, I find all cycles and the procedureGetSmall estC ycle returns the

one that has the smallest length. The time complexity of the GetSmall estC ycle

procedure for a given graph C DG(C ,D) is O(C2× log (D)). Please note that more

advanced methods for finding the cycles like the one presented in [173] or [78] can

be used. The second referenced method has a time complexity ofO((C +D)× (φ+1))
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where φ is the number of cycles. However since the CDGmost of the time is sparsely

connected, I found that the simple method used runs fast enough.

In the simple case, in order to break a cycle, I need to remove an edge between any

two vertices in the cycle by duplicating the vertex before or after the edge. Suppose,

we duplicate the vertex after the edge, we connect the edge to the new vertex instead

of the original one and the cycle can be broken. The new vertex added in the CDG

corresponds to a VC that has to be added to a link in the topology graph. Connecting

the edge in the CDG to the new vertex corresponds to a change in the route of the

flows using the old VC of the link in the topology to use the newly added VC. Earlier,

in example 5.3, I showed how a cycle can be broken by adding an extra vertex in the

CDG.

However, in a general case, to break a cycle, more than one vertex may need to

be duplicated. For example, in Figure 5.8, I show how adding an extra vertex still

maintains the cyclic dependency. In order to break a cycle at an edge in the CDG,

several vertices before or after the edge need to be duplicated. The number of vertices

that need to be duplicated to remove an edge depends on the configuration of the

flows relative to the vertices in the cycle and different edges can require significantly

different numbers of vertices to be duplicated. It is important to choose the edge to

remove from the cycle that minimizes the number of vertices to be duplicated. This

problem is addressed in detail in Section 5.3.1.

Also, there are two ways in which the vertices can be replicated, relative to the position

of the edge that is removed from the cycle. I say that an edge is removed in forward

direction, if vertices are duplicated from where a flow enters the cycle up to the edge. I

say that an edge is removed in backward direction if the vertices are duplicated from

the edge to where the flow causing the edge exits the cycle. Removing an edge in the

two possible directions is shown in Example 5.4. It can be seen from the example

that the direction can have an impact on the number of vertices that are duplicated.

Therefore, the algorithm checks the cost of breaking the cycle in both directions, using

the procedures F i ndDependenc yToBr eakFor w ar d and

F i ndDependenc yToBr eakB ackw ar d . The procedures returns the edge that has

the minimum cost for each of the directions. The way the cost and the position are

calculated is explained in more detail in Section 5.3.1

Example 5.4 In Figures 5.6 and 5.7, I show the two ways to remove the same edge

between the vertices L2 and L3 of the CDG from Figure 5.3. The edge between the

vertices L2 and L3 is created by flow F1. In Figure 5.6 the edge is removed in forward

direction by duplicating the vertices from where flow F1 enters the cycle up to the edge

that needs to be removed. In this case we need to duplicate L1 and L2 and we add L1’

and L2’ to the CDG. Then we modify the path of F1 to use L1’ and L2’. In Figure 5.7 the
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5.3. Deadlock removal approach

Figure 5.8: CDG with new ver-

tex and cycle

Figure 5.9: Remove edge be-

tween L1 and L2

Figure 5.10: Remove edge be-

tween L3 and L4

D1 D2 D3 D4

F1 1 2 0 0

F2 0 0 1 0

F3 0 0 0 1

F4 1 0 0 0

MAX 1 2 1 1

Table 5.1: Cost table in forward direction

edge is removed in backward direction by duplicating the vertices from where flow F1

exits the cycle down to the edge that needs to be removed. In this case we only need to

duplicate the vertex L3 as the flow F1 exits the cycle at L3. We add the new node L3’

to the CDG and set the path of F1 to use L3’ instead of L3. As it can be seen from this

example the direction in which an edge is removed can influence the number of extra

VCs needed to break the cycles in the CDG.

In Step 7, the cost of breaking in the forward direction is compared with the cost of

breaking in the backward direction and depending on which cost is smaller, one of

the two procedures is called: Br eakC ycl eFor w ar d or Br eakC ycl eB ackw ar d . The

way the two procedures work is detailed in Section 5.3.2. Once the CDG is changed,

in the next step the topology graph and the routes are updated accordingly. After the

current cycle is broken in Step 13, the algorithm searches for the next smallest cycle in

the updated CDG. The algorithm terminates when the CDG becomes acyclic.

5.3.1 Finding the edge to remove

Depending on which edge I want to break the cycle, number of vertices that need to

duplicated in the CDG (and hence the number of new VCs to be added in the topology

graph) can differ. Therefore it is important to find the edge that can be removed with
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Chapter 5. Removing deadlocks in application specific topologies

Algorithm 5.2 F i ndDependenc yToBr eakFor w ar d(C , flows)

1: {Find flows taking part in cycleC }

2: F = Ø

3: for all i ∈ flows do

4: if | path(i) ∩C | > 1 then

5: F = F ∪ {i}

6: end if

7: end for

8: {Calculate costs for each flow in cycleC }

9: for k = 1. . . |F | do

10: cost(i)(k) = 0, ∀i ∈C

11: val = 1;

12: for i = 1. . . |path(Fk )| do

13: current_vertex = path(Fk )(i )

14: if current_vertex ∈C then

15: cost(current_vertex)(k) = val;

16: val = val + 1

17: end if

18: end for

19: end for

20: cost(i) = max(cost(i)(k)) ∀i ∈C and ∀k ∈ 1. . . |F |

21: f_cost = min(cost(i)) ∀i ∈C

22: f_pos = argmin(cost(i)) ∀i ∈C

23: Return ‹ f _cost , f _pos›

the least number of replication of vertices. The steps to find the best edge to break are

described in Algorithm 5.2. The procedure describes how the costs are calculated and

how the edge to break the cycle is found when considering breaking the cycle in the

forward direction.

The algorithm starts by finding all the flows that create dependencies at each edge

that is involved in the cycle. This is necessary because in order to remove one edge,

the flows that are creating that dependency have to be routed on new channels that

will be added. In steps 3 to 7 of the procedure, all flows in the design are checked to

see if they are part of a dependency on one or more edges in the cycle. All flows that

have paths that intersect the cycle are added to a new set which will be taken into

consideration when breaking the cycle. The path of a flow is a set of vertices from the

CDG that correspond to the set of channels from the route of the flow. The order of

the vertices in the path correspond to the order of the channels in the route. In order

to break a dependency created by a flow, all the channels used by the flow in the cycle

prior to the dependency have to be duplicated. For example for the CDG in Figure 5.3,

I show how to remove any of the four edges in the forward direction in the Figures 5.9,

5.6, 5.10 and 5.4.
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In the Steps from 9 to 19, I calculate the cost of breaking the cycle considering the

effects of each of the flows individually. For each of the flows, I calculate the cost in

the following way: I find where the flow enters the cycle, this gives the first vertex

of the cycle that is used by the current flow. To break the dependency between this

first vertex and the next vertex in the cycle, the cost is one as I only have to duplicate

this first vertex. If I want to break the dependency at the next edge on the cycle, two

vertices need to be duplicated and the cost for this is two. I continue in a similar

manner until the flow leaves the cycle. In the end, I build a table that has as many

rows as there are flows involved in the cycle and has as many columns as there are

edges in the cycle. In Example 5.5, I show such a cost table.

Example 5.5 An example of a cost table for breaking the cycle in the forward direction

for the CDG in Figure 5.3 is given in Table 5.1. Flow F1 has a cost of 1 on the D1(L1, L2)

as only L1 has to be duplicated to break the cycle when considering the influence of F1

alone. On the D2(L2, L3) edge it has a cost of 2 as both L1 and L2 have to be duplicated

as shown in Figure 5.6. On the other edges the cost for F1 is 0 as it has no influence on

them. In a similar manner the cost for F2, F3 and F4 are computed. The last row of the

table shows the compound cost of all flows. For the example, edges D1, D3, and D4 can

be removed by adding 1 VC and D2 needs 2 VCs.

The cost table gives the effect of each flow independently, so now I have to take into

account the combined effect of all the flows in the cycle. For that, I calculate the

combined effect at each dependency in Step 20. I take the maximum cost between

all flows because it tells howmany vertices have to be replicated. All flows that have

smaller cost can use a subset of the vertices replicated for the flow with the highest

cost. Once I have the cost that keeps track of the combined effect of all flows, I choose

the dependency to break the cycle so that it has the minimum combined cost. The

minimum cost and the position in the cycle of the dependency to break are returned

by the function in Algorithm 5.2.

In a similar manner the function that calculates the costs in the backward direction

can be obtained. In Steps 12 to 18, I look at the paths of the flows from source to

destination. When calculating the costs for the backward direction, I analyze the paths

in reverse order from destination to source. This is because when I break a cycle in

backward direction, I replicate the vertices starting from where the dependency that

I want to break is to where the flow leaves the cycle. When I consider the combined

effect of all flows the minimum cost in the forward direction can differ from the

minimum cost in the backward direction and for that reason I calculate in both

directions and then break the cycle in the direction that has the least cost.
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Chapter 5. Removing deadlocks in application specific topologies

Algorithm 5.3 Br eakC ycl eFor w ar d(C , f _cost , f _pos)

1: pos = f_pos

2: for i = 1. . . f _cost do

3: pos = pos mod |C |

4: CDG = CDG ∪ Cpos ’

5: for i = 1. . . |F | do

6: if path(Fi )∩Cpos 6=Ø and path(Fi )∩C f _pos 6=Ø then

7: swap(Cpos ,Cpos ’) in path(Fi )

8: end if

9: end for

10: pos = pos - 1

11: end for

5.3.2 Breaking a cycle at the edge

Given a cycle, the position of the dependency in the cycle that has to be removed and

the cost of removing the dependency, the cycle can be broken by duplicating vertices

as described in Algorithm 5.3. The cost already indicates the number of vertices that

need to be duplicated. For breaking the cycle in the forward direction, the vertices are

duplicated from the edge that is to be removed (output from the Algorithm 5.2) till the

vertex where the flow with the largest cost enters the cycle.

For each iteration of the loop at Step 2, the following actions are performed: first the

position of the vertex in the cycle is calculated. Then, a new vertex is created and

added to the CDG. Then in the Steps from 5 to 9, the paths of the flows that create

the dependency that I am removing are modified to use the newly created vertices.

The test in Step 6 looks if the flow uses the vertex that I have currently duplicated and

also the vertex from which the dependency which I am removing starts. If the test

succeeds then the path of the flow has to be modified to use the new vertex. Before

completing the loop, the position of the current vertex is decremented. In a similar

manner the cycle is broken in the reverse direction as well.

5.3.3 Marginal power as cost

By computing the cost for removing an edge in the cycle, as presented in Section 5.3.3,

I minimize the number of extra links added in the topology. This in turnminimizes the

switch area overhead. However when designing application specific NoCs for SoCs,

minimizing power consumption could be an important criteria. The relationship

between the power consumption of a switch and the size of the switch is non linear

and there can be cases where it is more power efficient to remove a deadlock by adding

two links between two smaller switches than one link between two large switches.
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To use power as the optimization criteria when removing deadlocks, a simple mod-

ification has to be made in Algorithm 5.2 at Step 16. In the original algorithm the

temporary cost denoted by the variable val is incremented by 1 each time a new link

is added. Since an unit cost is used for every new link, the algorithm will minimize the

number of extra links added in the topology graph. However if instead of the unit cost,

themarginal power consumption for adding a new link is used as cost, the result is that

the total switch power consumption is minimized. The marginal power consumption

is calculated as the increase in power consumption by adding a new output port at the

source switch and by adding a new input port at the destination switch. The power for

the switches of different size can be obtained by using parametric power models like

those used in [79].

5.4 Experimental results

In the experiments I generated application specific topologies for different switch

counts on several realistic SoC benchmarks using an existing tool [121]. Please note

that the deadlock removal method is general and the input topologies could be either

manually designed or obtained using any existing synthesis tools.

5.4.1 Comparison with resource ordering

For comparisons, I also apply the Resource ordering technique, a popular method to

avoid deadlocks in wormhole routing networks [41]. In this method the communi-

cation channels are given a resource number. After a flow uses a channel, the next

channel that it acquires needs to have a resource number higher than the current

channel.

As a case study, I consider a SoC design for multimedia and wireless applications,

referred to as D26_medi a. It has 26 cores, including an ARM processor, a DSP with L2

cache and cache controllers, several memory blocks and a multitude of peripherals. I

use this benchmark to generate topologies for different switch counts and then apply

my algorithm and resource ordering to remove deadlocks from the topologies. The

results are presented in Figure 5.11. The dotted line in the plot represents the number

of extra VCs that were added to the topology in order to generate the necessary number

of resource classes required to use resource ordering on the routes of all the flows. The

number of classes needed for a flow depends on the length of the route and that leads

to considerable overhead. The solid line represents the overhead of mymethod. As it

can be seen, for most topologies the overhead is zero because the fixed routes on the

initial topology do not lead to deadlocks. Only for four design points there was one

deadlock condition which was removed with one extra VC. This result is significant
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Figure 5.11: Comparison for D26_medi a
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Figure 5.12: Comparison for D36_8

Figure 5.13: Comparison for different benchmarks
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because it also shows that an application specific topology can be deadlock free even

without applying restrictions on the routing function. Applying restrictions on routing

can lead to overhead which in many cases may not be needed.

For a better comparison, I ran a similar test on a benchmark withmore complex traffic

patterns that would lead to more deadlocks in the generated topologies. The D36_8 is

a multi-media benchmark that has 36 processing cores. Each processing core sends

data to eight other cores. There are 288 communication flows in the network. The

results of the experiments are presented in Figure 5.12. In this case, all topology points

have deadlock and for some a considerable number of VCs need to be added to break

the deadlock. Mymethod still has a much lower overhead than resource ordering.

To make the comparisonmore complete, I used four other benchmarks. The D36_4

and D36_6 benchmarks have spread traffic patterns and are similar benchmarks with

D36_8, but there are only four and six communication flows, respectively, starting from

each processing core. The D35_bot t benchmark has bottleneck traffic pattern. In this

benchmark there are 16 processors and each communicates to one of the 16 private

memories and to the three memories which are shared among all the processors. In

case of theD38_t vopd benchmark, the traffic pattern is pipelined as it is the case with

most multimedia applications. I present the results for all benchmarks in Figure 5.13.

The results presented are for topologies with a medium switch count (14 switches)

for all the benchmarks. In the case of the benchmarks with spread traffic, many of

the flows have to traverse several switches which leads to more possible deadlocks,

but this also increases the resource demand for resource ordering. In the bottleneck

benchmark most of the flows are between processor and private memory which are

on the same switch or very close, which leads to few or no deadlock conditions. For

D38_t vopd there are also fewer deadlocks than in the case of the spread traffic. The

experiments on these benchmarks also show the need for deadlock removal methods

to be application-specific, unlike having a general restriction of turns.

5.4.2 Power comparison with VCs

For power and area estimations, I use the models for switches from [79]. The NoC

power consumption for the different benchmarks is presented in Figure 5.15. The

D36_4 and D36_6 benchmarks have spread traffic patterns and are similar bench-

marks with D36_8, but there are only four and six communication flows, respectively,

starting from each processing core. The D35_bot t benchmark has bottleneck traffic

pattern. In case of the D38_t vopd benchmark, the traffic pattern is pipelined as it is

the case with most multimedia applications. The plot shows the relative power con-

sumption overhead for the resource orderingmethod when compared to the deadlock

removal algorithm. The values reported in the plot are for topologies with 14 switches.
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Figure 5.14: Power comparison with VC

Figure 5.15: Power comparison

Figure 5.16: Area comparison
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As can be seen from the figure, my method incurs a significant reduction in power

consumption (an average of 8.6%) and in the experiments I observed a large reduction

in NoC area (an average of 66%) when compared to the resource ordering method.

I also compared the power consumption of the topologies after removing the dead-

locks with the original designs where deadlocks were not removed. From the experi-

ments, I observed only a small overhead on power (of less then 5%) for the deadlock

removal method.

I also ran the turn prohibition algorithm from [159] to remove deadlocks on existing

topologies. The algorithm failed to find valid routes on many topologies (an average

of 61% of the topologies on the different benchmarks failed). This is mostly because,

when flows are re-routed to avoid turns, the bandwidth capacity on the links were

violated.

5.4.3 Area and power comparison with physical channels

As many of the NoC component libraries developed for application specific NoCs do

not support virtual channels [160], [154], I analyze the performance of my method

by adding physical links to break the deadlock conditions as well. To compare the

power and area overhead of mymethod to resource ordering, I used the power and

area models of the switches in the NoC component library from [160]. For this set of

experiments, I used the marginal power consumption as the cost metric, as described

in Section 5.3.3.

The NoC power consumption for the different benchmarks is presented in Figure 5.15.

The NoC area for the different benchmarks is presented in Figure 5.16. The plots show

the relative power consumption and area overhead for the resource ordering method

when compared to the deadlock removal algorithm. The values reported in the plot are

for topologies with 14 switches as well. For theD36_6,D36_8 andD35_bot t , no values

are reported for resource ordering as themethod resulted in addition of a large number

of links, requiring switches that were too large to meet the frequency constraints of

the design. For the D36_4, D38_t vopd and D26_medi a feasible topologies could be

built with resource ordering. However, as can be seen from the figures, mymethod

incurs a large reduction in NoC area and power consumption (10% power) when

compared to the resource ordering method.

5.4.4 Benefits of deadlock removal after topology synthesis for 3D-ICs

The method I have presented in Chapter 3 to synthesize topologies for 3D-IC use

turn-prohibition to prevent deadlocks. However when the constraint on the number
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Figure 5.17: Minimum number of TSVs for topologies to be synthesized with the two methods

of TSVs is tight the method may fail as due to prohibiting some turn new TSV links

need to be opened to ensure connectivity. If the TSV constraint prevents that then the

topology cannot be built. However as turn-prohibition is used during the topology

synthesis process and the topology is still unknown, it has to assume a fully connected

switch graph. This can lead to prohibiting some turns that do not need to be as the

other possible turns are not used. Therefore under tight TSV constraint the synthesis

method may fail unnecessarily.

Another way to make sure that a synthesized topology is deadlock free, is to design

the topology without turn-prohibition and to apply the deadlock remove algorithm

described in this chapter on the resulting topology. As there is not a unique solution

to breaking the cycles in the CDG, it is possible in many cases to remove deadlocks

without adding extra TSV link.

In Figure 5.17, I compare the two approaches for designing topologies. The plot shows

what is the minimum TSV constraint for which the two approaches have produced a

topology for different benchmarks. As can be seen from the plot using the deadlock

removal algorithm after topology synthesis can produce topologies for much tighter

TSV constraints. Only for D36_6 and D38_t vopd the result is the same. In the first

case the traffic patterns of D36_6 are very complex distributed requiring many TSV

links and removing deadlock cannot be done without adding TSV links as well. In
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the latter case the vertical communication is limited and therefore even when using

turn-prohibition during synthesis topologies can be designed with a small number of

TSV links.

In practice my algorithm runs fast. I ran the experiments on a 2GHz Linux machine.

The method runs with in minutes even for the largest benchmark and it is scalable.

As the algorithm is fast and scalable it can be added to the output of any topology

synthesis design flow without incurring a significant delay compared with the original

flow.

5.5 Summary

Wormhole routing is the protocol of choice for many NoCs as it provides high through-

put, low latency and it does not have high buffering requirements. One important

issue that arises when wormhole routing is used in a NoC is that routing deadlocks

can occur during system operation.

Removing deadlocks inNetworks on Chips (NoCs)withminimumarea-power overhead

is a major challenge in application-specific NoCs with custom topologies and routing

patterns. In this work, I presented a method to remove the conditions that can lead

to deadlocks with minimum area-power overhead. The application communication

patterns are used to minimize the number VCs (or physical links) that need to be

added to remove the deadlock conditions. The resulting topology is guaranteed to be

deadlock free. The method can be applied any arbitrary NoC topology and routing

function. The experiments show that the method leads to large reduction in NoC area

and power consumption overhead when compared to existing schemes. I also found

that the method has less than 5% area, power overhead when compared to designs

that do not support any deadlock removal method, thereby making it very practical.
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6 Meeting hard latency constraints in

best-effort NoCs

Networks on Chips (NoCs) use scalable networking principles on a chip scale. They

provide better performance, modularity and faster design closure when compared

to bus based interconnects. Today, building NoCs that meet hard latency constraints

imposed by real-time streams is a major challenge for designers. Several applications

have strict requirements on latency for one or more traffic streams. For example, in

radar and avionics applications, packets should be delivered from source to destina-

tion within a maximum time interval. Many applications require some level of QoS. In

Section 2.4, I present an overview of the QoS flavors and requirements. In this chapter,

I address the problem of meeting worst-case latency constraints.

To meet the hard real-time latency constraints, designers use NoC architectures that

provide in hardware some form of guaranteed QoS support. Several different schemes

are used, such as the use of TDMA (Time Division Multiple Access) slots [57], [88],

packet priorities [153] and time-triggered communication [131]. Some of the schemes,

such as the use of simple packet priorities, achieve soft QoS guarantees, where an

absolute worst-case bound of latency cannot be provided. While some schemes, such

as the TDMA based ones, can provide hard worst-case bounds. However, all these

QoS based NoC architectures incur additional hardware overhead and/or penalize

average performance to provide worst case guarantees. In fact, NoC architectures are

usually classified as either "best effort" or "QoS" architectures.

In this chapter, I present a novel NoC synthesis framework to automatically build

networks that meet hard latency constraints of end-to-end traffic streams. One key

novelty in this approach is that I do not use special hardware mechanisms to meet the

QoS constraints, but I construct the networks using simple, lean network components,

identical to those used for best-effort NoC instantiation. Moreover, the worst-case

guarantee is achieved with minimal impact on the average-case performance of the

NoC. In other words, I show how a network that provides hard QoS guarantees on

end-to-end packet delivery time, using a best-effort hardware infrastructure, can be
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constructed.

While there are many works that have addressed the issue of synthesizing best-effort

NoCs to meet the zero-load latency constraints [134], [65], [8], [158], [62], [181], [177],

[121], none of them synthesize topologies that can meet hard latency constraints. In

fact, I target the design of NoCs that use wormhole flow control, with round-robin

arbitration at the switches, which are commonly used in most best-effort designs.

I leverage mathematical models to compute safe worst case latency bounds on a

wormhole based best effort NoC. I integrate these models with the topology synthesis

process. Along with meeting the worst-case QoS constraints, the synthesized topolo-

gies also meet the average bandwidth and latency constraints, while minimizing

power consumption.

In Chapter 3, as well as in several other works [121], [177], the power and area ad-

vantage of application specific NoC topologies for Systems-on-Chip (SoCs), where

the communication patterns are known, has been shown. Apart from improving

power and area through the customization of the interconnect according to applica-

tion requirements, in this work I show that other performance metrics like hard QoS

requirements can be fulfilled. Therefore contributions of this chapter are twofold:

• Through experiments I show that with careful topology design the required

worse-case delay bounds can be met using even best-effort NoC hardware.

• I provide an algorithm to automatically design the NoC topology to meet the

required worse-case delay bounds.

I perform experiments on several System on Chip (SoC) benchmarks. When com-

pared to a topology synthesis methods with no support for real-time constraints, the

proposedmethod can produce topologies that canmeet significantly tighter worst-

case latency constraints (on average 44%). The results also show that the power

consumption and average zero-load latency values of the topologies designed using

the proposed scheme are only marginally higher as compared to a synthesis method

that does not support real time constraints (on average 8.5%). Indeed, when only

certain traffic streams require hard QoS guarantees, the topologies synthesized by this

proposed method has negligible power consumption or area overhead.

6.1 Real-time synthesis compared to mapping onto regular topolo-

gies

In previous work [120], Murali et al. showed a method to automate tasks (cores) map-

ping onto custom topologies with QoS guarantees. There are three main differences
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Figure 6.1: Algorithm flow: a) Task mapping with QoS, b) Real-time topology synthesis

between the mapping algorithm and the proposed application specific NoC synthesis

algorithm with worst-case delay guarantees. First of all the mapping algorithm takes

as input (apart from the application specification) the topology on which to map and

the routing function that is to be used. As the mapping problem is constrained by the

topology and the routing function, the search space is significantly reduced. When

topologies are synthesized, there are no such constraints. Therefore there is a larger

search space that needs to be explored and it is not trivial to go from the mapping of

cores to application specific NoC topology synthesis. As such the synthesis algorithm

has to solve new problems like connecting cores to switches, determine the switch

to switch connectivity and find routes for flows that meet the worst-case latency

requirements.

In Figure 6.1, I show the main parts of the task mapping algorithm (a) and for the

real-time synthesis algorithm (b). As can be seen from the figure the another main

difference comes from the way that QoS is provided. In case of the task mapping

algorithm, QoS is ensured by checking the constraints for a givenmapping and remap-

ping if the constraints are not met. Also given a mapping of the cores, the routes are

determined by the routing function. In the case of the topology synthesis algorithm,

routing of each communication flow is integrated and with the topology building

process and strongly connected to worst-case delay constraint checking. This in-

tegrated approach not only ensures better performance of the designed NoC when
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compared to the mapping approach, but also give us the ability to build topologies

that meet worst-case latency constraints without the need for specialized hardware.

The synthesis algorithm also explores solutions with different number of switches

to determine the topology that has the lowest power consumption and meets the

worst-case latency constraints.

The final difference is related to the QoSmodel used in the two works. In the mapping

algorithm an average case QoS metric is used, as the models are based on simulation.

The previous work assumes a sort of soft QoS where traffic is regulated and therefore it

is different from the hard QoSmetrics I consider in this chapter. In the present chapter,

the integrated topology design and routing with constraints checking enables the

synthesis algorithm to use the extra degrees of freedom not only to design topologies

that meet worst-case latency constraints, but minimal power and area as well. In the

remainder of the chapter, I will describe in detail the integrated synthesis approach.

6.2 Worst-case latency models

If a fair arbitration scheme like round-robin is used in the switches, then the worst-

case latency of packets is determined by the topology of theNoC and the routes chosen

for the communication flows. A carefully designed NoC topology and well-selected

routes can decrease the worst case latency bound and QoS can be provided without

the use of extra hardware in the switches. To improve the designmethods for designing

application specific NoCs that can provide real time guarantees, it is important to be

able to calculate the worst-case latency of the flows for a given network configuration.

For this work I assume that the switches use round-robin arbitration. For illustrative

purposes, I consider an architecture with input-queued switches with no virtual

channels, characteristic of many existing NoC designs [160]. The methods presented

here can be easily modified for other switch architectures and to support virtual

channels. A credit based (or on-off) flow control is used to provide back-pressure

and to prevent the switches from forwarding the flow control units (flits) when the

downstream buffers are full. The target cores are assumed to be ideal and eject the

flits as soon as they reach the target network interface. If a target core is not ideal an

end to end flow control mechanism can be used to prevent flits from entering the

network when it is backlogged. Buffer size is assumed to be uniform across all the

switches. In this chapter, I do not address the issue of buffer sizing, as it is beyond the

scope of this paper.

In this section, I present a brief description of the mathematical model proposed in

[139] to calculate worst-case latencies for a given topology, routing function and traffic

flows. In the next section, I show how the model can be used to build the topology
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and find paths for the given set of traffic flows between the cores of the applications.

The buffer depth of a switch is calculated as the sum of all buffers between the arbi-

tration points of two consecutive switches. Since no traffic regulation is assumed in

the model, the worst-case latency is achieved when all buffers are full and when the

packet of a flow loses arbitration to all other flows that it can contend with. Under

these assumptions, the upper bound on delay for a flow is given by Equation 6.1 (U Bi

represent the upper bound delay for flow i ) where t s1 and t s2 represent the packet

creation and ejection times which are constant. The sum adds the contribution of

the worst-case interference at every hop (u
j

i
interference of other flows on flow i at

switch j ) from the path of the flow for which the upper bound delay is calculated. The

number of hops on the path of flow i is denoted by hi .

U Bi = t s1+ t s2+
∑

∀ j u
j

i
wi th j = 0. . .hi (6.1)

If a core has flows going to different destinations and it is capable of having multiple

outstanding transactions, then the packets generated by the same core to different

destinations can also contend with one another. Source contention, as it is also

called, is modeled by using a virtual switch that does not physically exists on the path

of the flow. Equation 6.2 describes how to calculate the contribution of the source

contention.

u0
i
= M AX (U0

i
,U0

I (x)
)+

∑

∀x U0
I (x)

wi th x = 0. . .z0(i ,0) (6.2)

The hop delay from output buffer to output buffer is denoted byU
j

i
and I (x) returns

the index of a flow from the pool of flows that contend with flow i at switch j . The

number of flows that contend with flow i at switch j and use the output port c is

denoted by zc(i , j ). Using the same notation, the delays at the rest of the switches on

the path of flow i can be calculated with Equation 6.3.

u
j

i
= M AX (U

j

i
,U

j

I (x)
)+

∑

∀x U
j

I (x)
wi th x = 1. . .zc(i , j ), 1≤ j ≤ hi (6.3)

The delay of a flow at the current switchU
j

i
is calculated in a similar manner, only this
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time it is based on the delays from the next switch.

U
j

i
= M AX (U

j+1

i
,U

j+1

I (x)
)+

∑

∀x U
j+1

I (x)
wi th x = 1. . .zc(i , j +1), 0≤ j ≤ hi −1

(6.4)

To calculate the upper bound delay, the Equations 6.2, 6.3 and 6.4 have to be calculated

in a recursive manner. The recursive formulation is guaranteed to complete because

the delay of any flow at the last switch in the path is fixed. The termination conditions

are given by Equation 6.5:

U
hi

i
= Li , U

hl (x)

l (x)
= Ll (x) (6.5)

The ejection time of a packet at the last switch in cycles for flow i is denoted as Li .

In [139], the correctness of the models and the tightness of the bounds is shown.

The authors also show how the models can be extended to address multiple virtual

channels, buffer sizes and packet lengths.

6.3 Topology design to meet worst-case constraints

In this section, I give an example of how topology design can reduce the worst-case

delay for some flows when compared to a single switch (crossbar) topology, which

is non intuitive. Consequently I will give the intuition of why careful synthesis can

potentially reduce the worst case delay of some flows. Intuitively one would expect the

crossbar to have the lowest worst-case delay. While that is true for the average worst

case delay over all flows, it is not true for individual flows. In many design there are

few flows that have hard real-time constraints (e.g. interrupts) andmany flows that

are best effort (e.g. cache refills). Therefore a multi-switch topology can be optimized

to reduce the worst case delay of only those flows that have real-time constraint in the

detriment of the other that are best effort.

In Figure 6.2, I present a simple example of the worst case delay for three flows for

a single switch (crossbar) and a two switch topology. Let us assume that flow 1 is a

real-time flow while flow 2 and 3 are best effort flows. Also let us assume that the

packet size for all flows is 5 flits and the sink is ideal so the ejection latency is 5 cycles.

In Figure 6.2.a I show the case for the single switch. In this case the three flows that

have the same destination will contend for the output port. In the worst case for flow
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one, we have to assume that it would lose the arbitration to both flows 2 and 3. Since

the ejection latency of the flows is 5 cycles and flow 1 could in the worst case wait

for the other two flows, it would see a delay of 10 cycles to win the arbitration for the

output port. If we add to this the ejection latency of flow 1, we can compute a worst

case delay of 15 cycle for flow 1. Since the topology is symmetric, we can similarly

calculate the same worst case delays for flows 2 and 3 (i.e. 15).

However since only flow 1 is a real-time flow I want to improve the worst case delay of

only this flow. In Figure 6.2.b, I show how that can be done with a two switch topology.

In this case flow 2 and flow 3 first contend for the output port of one switch and only

the winner will contend with flow 1 for the output of the other switch. So in this case

when we calculate the worst case delay for flow 1, we have to assume that in the worst

case flow 1 will lose the arbitration to a packet of either flow two or 3 coming from

the other switch. So the worst case delay is 10 cycles (5 cycle to win the arbitration

and 5 cycles ejection latency). This will however increase the worst case delay of flow

2 and 3. When we calculate the delay of flow 2, we must assume that it will lose the

arbitration with flow 3 on the first switch and with flow 1 on the next switch. Add to

that the ejection delay and the total worst case delay for flow 2 is 20 cycles. Similarly

flow 3 will have 20 cycles worst case delay.

If we look at the average worst case delay over all the flows we see that the single

switch topology is better. However since only flow 1 has real time constraint in my

example, in the two switch topology the worst case delay of flow one was reduced

compared to the single switch case.

6.4 Real-time network synthesis

The goal of the real-time network synthesis algorithm is to find a power-efficient topol-

ogy that meets the application requirements and the real-time constraints. Therefore

the real-time network synthesis algorithm requires the following inputs. The most

important input is the communication description of the SoC. The description is given

in the form of a directed graph. The definition of the communication graph is similar

to the one from Chapter 3, except for the latency which now represents the worst-case

latency bound:

Definition 6.1 The communication graph is a directed graph, G(V ,E ) with each vertex

vi ∈ V representing a core and the directed edge (vi ,v j ) with i ∈ 1,2...n and with

j ∈ 1,2...n representing the communication between the cores vi and v j . The bandwidth

of the traffic flow from cores vi to v j is represented by bwi , j and the latency constraint

for the flow is represented by r ti , j .
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Figure 6.2: Example of topologies with worst case delays: a) single switch (crossbar); b) multi-

switch

The number of switches and the values of the architectural parameters (the required

operating frequency and the flow control unit size) are varied to explore different

design points. For a given combination of the number of switches and architectural

parameters the real-time network synthesis algorithm designs a topology.

I provide power, area and delay models for the NoC components to the algorithm

in order to estimate the power consumption of the topology and to make sure that

the architectural requirements are met. For a given technology library, synthesis and

place&route of RTL code of the NoC components using commercial tools, is done to

obtain the models. Floorplan information can also be provided as input in order to

better estimate the wire length and the wire power consumption.

The output of the synthesis algorithm is a topology that minimizes the power con-

sumption and thatmeets the worst case delay constraints given in the communication

specification.

6.4.1 Real-time synthesis algorithm

Themajor steps of themethod that finds designs the topology for a given combination

of the number of switches and architectural parameters, are presented in Algorithm

6.1. Please note that the step number corresponds to the line number in the Algorithm

6.1 listing. The algorithm takes as parameters the communication graph (G), the

number of switches (num_sw) and the architectural parameters.

The assignment of switches to cores is done by partitioning the cores in blocks (one

partition block per switch) using a min-cut partition method. Minimum cost routes
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for flows are found using Dijkstra’s shortest path algorithm in conjunction with turn

prohibition for routing level deadlock freedom. These steps are general and use well

know algorithms and I will not describe them in detail as they are similar to similar to

previous work [121]. However the customization of Dijkstra’s general algorithm, for

finding shortest path, to perform routing is done through the cost graph that is fed as

input. One important difference from the previous work is the way that the cost are

calculated that allows us to drive the path finding routine to create routes that meet

the real time constraints. As flows are routed one by one, unlike in the previous work,

routing a flow does not influence only its worst-case delay, but it also changes the

worst-case delay of the previous flows. So another major difference from the previous

work is the iterative approach to find a route that meets it own constraint but also

does not cause the previously mapped flows to miss theirs. As part of the iterative

approach, there are also some special cases that are treated differently during routing

in order to find viable route. These new feature needed for finding routes that meet

worst-case delay constraints are described in detail in the following paragraphs.

Since the number of switches is most of the time different than the number of cores,

the core to switch connectivity has to be decided (step 5). The core to switch assign-

ment is done by partitioning the cores in as many blocks as there are switches. To

perform the partitioning, I use a Partitioning Graph (PG) as defined in Chapter 3. For

completeness I present the definition below as well:

Definition 6.2 The partitioning graph is a directed graph, PG(U ,H ,α), that has same

set of vertices and edges as the communication graph. The weight of the edge (ui ,u j ),

defined by hi , j , is set to a combination dependent on α of the bandwidth and the latency

constraints of the traffic flow from core ui to u j .

The PG is built using the parameter α (initialized to 0 in step 1) which is varied to gen-

erate different core to switch assignments when the required worst case delays cannot

be met. Initially only the bandwidth influences the core to switch assignment and as

α is varied, more importance is given to the real-time constraints of the flows. I use

min-cut partition and an existing tool [17] to generate the core to switch assignment.

The cores in one partition block are connected to the same switch. If the parameter α

reaches a certain upper bound, the algorithm exits as it is unable to find a solution.

After the core to switch assignment is decided, the flows between cores that are on

different switches (inter switch flows) have to be routed. The algorithm loops through

the flows (step 6) andfirst chooseswhich is the next flow to be routed. The choice of the

next flow can be done using several criteria. For example the highest bandwidth flows

could be mapped first, or alternatively the flows with the tightest real-time constraint

could be mapped first. I use a linear combination of the bandwidth requirements
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Algorithm 6.1 Real_Time_Topology_Synthesis(G, num_sw , architectural parameters)

1: set α=0

2: if α≥ maxα then

3: Exit

4: end if

5: assign_cores_to_switch(num_sw , α)

6: for i = 1 to |E | do

7: Choose next unmapped inter switch flow

8: set β=α

9: build_cost_graph(β)

10: Find min cost path

11: if path not found or β≥ maxβ then

12: increment α

13: Goto step 2

14: end if

15: Check RT constraints for all mapped flows

16: if previously mapped flow violates RT constraints then

17: if destination(current flow) = destination(violated flow) then

18: destination_contention(violated flow)

19: else

20: path_contention(violated flow)

21: end if

22: increment β

23: Goto step 9

24: end if

25: if current flow violates RT constraints then

26: increment β

27: Goto step 9

28: end if

29: end for

30: Save topology

and the real-time constraint requirement to decide the order of the flows. The linear

combination is calculated in a similar way to how the weights of the edges in the

partitioning graph are calculated.

Since I do not use indirect switches, I have to route the inter switch flows through the

switches to which the cores are connected (the number of switches is given as input).

To find routes for the flows I do the following: i) I calculate the costs to go from each

switch to every other switch; ii) using Dijkstra algorithm I find a minimum cost path,

which becomes a temporary route for the flow (the route lists the hops and the ports

used at each hop); iii) I test the real time characteristics the found route; iv) if the

found route does not fulfill the real time requirements I repeat these steps changing

the cost until a path is found that meets the bound. The details for these steps are
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described in the following parameters.

A parameter β is used to influence the cost calculation in order to shift the optimiza-

tion criteria from minimizing power to minimize the worst case delay. In step 8, I

initialize the parameter β to the current value of α. This parameter is varied locally to

change the optimization criteria only for the current flow that is routed, when a valid

route is not found. In step 9 a cost graph is built. The cost graph is defined as follows:

Definition 6.3 The cost graph is a fully-connected directed graph, C (S,L,β), where the

vertices represent the switches in the topology. The weight of the edge (li , l j ), defined by

costi , j , gives the cost of routing the flow from switch i to switch j .

The way the weights of the edges in the cost graph are calculated is presented in more

detail in Section 6.4.2. Based on the cost graph the minimum cost path is found in

step 10. This path is used as the route for the current flow. I use Dijkstra algorithm

and turn prohibition to find deadlock-free minimum cost routes as presented in [121].

If a path is not found for any flow or the parameter β has reached the maximum value,

then α is incremented and I return to step 2 to retry with a different core to switch

assignment.

After a valid route is found for the current flow the algorithm tests weather the real-

time constraints are met (step 15). This is done using the worst-case delay models

presented in Section 6.2 recursively. Not only the current flow needs to be tested, but

also the previously mapped flows, because the interference of the current flow can

cause the already mapped flows to violate their bounds. If the constraints are met

then the algorithm proceeds to mapping the next flow.

If there is a bound violation, there are two cases that need to be considered: i) a

previously mapped flow has violated its constraint or ii) the current flow has vio-

lated the constraint. If a previously mapped flow is the one that violates its worst

case delay constraint, there are a further two sub-cases that need to be considered.

One sub-case is if the flow that violates the bound and the current flow that I am

trying to route have the same destination. This sub-case is more complex as it is

not possible to fully separate the routes of the two flows and it is handled by the

function desti nati on_contenti on (step 18). In the other sub-case the contention is

along the path of the current flow and the previously mapped flow and the function

path_contenti on is called (step 20). The two functions annotate the states of some

links so that in the next iteration (after incrementing β, steps 22, 23) the weights in

the cost graph are modified such that the conditions that cause the previous flow to

violate the constraint can be avoided. Amore detailed description of the two functions

is presented in Sections 6.4.3 and 6.4.4. If the current flow violated the worst case
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Algorithm 6.2 cost(swi tchi , swi tch j , β)

1: Find l i nk between swi tchi and swi tch j that support the required bandwidth

2: if l i nk found and flow_count_on(l i nk) ≥ BOU N D/β then

3: Goto step 1 and find next link

4: end if

5: if l i nk not found then

6: if can open new link then

7: l i nk = link_count(swi tchi , swi tch j ) + 1

8: cost[swi tchi ][swi tch j ] = marginal_power_new_link(swi tchi , swi tch j , bandwidth)

9: else

10: cost[swi tchi ][swi tch j ] = I N F

11: end if

12: else

13: cost[swi tchi ][swi tch j ] = marginal_power_existing_link(swi tchi , swi tch j , band-

width)

14: cost[swi tchi ][swi tch j ] += (flow_count_on(l i nk) / max_ f low_count ) * β

15: end if

16: if link_status[swi tchi ][swi tch j ][l i nk] = PROH I B I T ED then

17: cost[swi tchi ][swi tch j ] = I N F

18: end if

19: if link_status[swi tchi ][swi tch j ][l i nk] = ADD_E X T R A_COST then

20: cost[swi tchi ][swi tch j ] += max_cost

21: end if

delay constraint then I simply increment the parameter β, and I do a local iteration

(steps 26, 27).

If all the inter switch flows could be routed successfully then the topology is saved

(step 30) and the algorithm finishes. The power and area of the generated topology is

estimated after this point.

The time complexity of the algorithm isO(|V |4|E |3ln(|V |)), where |V ||E |2 is the con-

tribution given by checking the worst-case latency constraints as presented in [139].

In practice the algorithm runs fast as valid path can be foundmuch earlier when the

constraints are not that tight.

6.4.2 Cost calculation

Calculating the weights of the edges of the cost graph is an important step, because

through the cost assigned to the different edges I can drive the algorithm to find paths

that meet the worst case delay constraints and that minimize the power consumption

of the topology. The cost calculation for one edge is presented in Algorithm 6.2.

In the first step the function tries to find a link that exists between the two switches
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and that has sufficient capacity to accommodate the bandwidth requirement of the

new flow. If such a link is found it tests to see if the number of flows already mapped

to that link are smaller than a certain bound determined experimentally (step 2). As

the bound depends on β, it forces the algorithm to reuses fewer existing links as β is

incremented in successive iterations. If the number of flows on the link is larger than

the bound then it goes back to step 1 to look for the next viable link.

If an existing link that can be reused was not found, then the algorithm would need to

open a new link between those switches. If a new link cannot be opened (because the

size of the switches would become too large and they would not support the required

frequency) the cost for that edge in the cost graph is set to a large (I N F in step 10).

This prevents the flow to be routed between the two switches. If the link can be opened

then the cost of that link is given by the marginal power increase due to the addition

of the new link (step 8). The power consumption increases when a new link is open

due to an increase in the size of the switches and the increase in switching activity as

the low adds the extra traffic.

If an existing link is found and it can be reused, then the cost of reusing that link is

given by the marginal increase power that the new flow creates (step 13). In this case

the switch size remains the same, but the switching activity is increase due to the

extra traffic. In case a link is reused there are other flows that use that link. I add extra

cost that is proportional to the number of flows that are already mapped on that link

weighted by the value of the parameter β. In this way I drive the path computation to

reuse links that will be shared by fewer flows and even to use new links as the value of

β is increased.

Finally based on the status of the link that is set from a previous iteration by the

desti nati on_contenti on and path_contenti on functions I can force to prevent

communication between some switches (step 17) or to increase the cost in order to

favor the use of other links (step 20). The way the link status is set and the function

that the link status has, is presented in detail in Sections 6.4.3 and 6.4.4.

6.4.3 Destination contention

The desti nati on_contenti on function is called, if the route that was found for the

current flow, would lead to a previously mapped flow to violate its constraint. Also the

contention between the current flow and flow that violates the constraint happens on

the output port of the last switch, just before the destination NI. Thus, I want to force

the new flow to contend with a previously mapped flow that does not have real-time

constraints, but that goes to the same output as the flow that violates the constraint.

By doing this I increase the worst-case delay of the flow that is not RT and of the new
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Figure 6.3: Destination contention example: a) initial topology; b) link status annotation;

c)final topology

Algorithm 6.3 destination_contention(violated flow)

1: l s = last switch for the violated flow

2: for i = 1 to num_sw do

3: if i 6= l s then

4: for j = 1 to link_count(i , l s) do

5: if link[i ][l s][ j ] is not used by non RT flow that contends with the violated flow at the

destination then

6: link_status[i ][l s][ j ] = PROH I B I T ED

7: end if

8: end for

9: {Prohibit the use of new link}

10: link_status[i ][l s][link_count(i , l s) + 1] = PROH I B I T ED

11: end if

12: end for

flow, but it would not modify the worst case delay of the flow that now violates the

constraint. The steps to achieve this are presented in Algorithm 6.3

In step 1, I find the last switch (l s) of the flow that was mapped and which violates the

constraint. I loop through all the existing switches (step 2) and see if there are existing

links to the switch l s. If such links exist, it checks whether it is used by a non real-time

flow that goes to the same output as the flow that violates the constraint. If no such

flow, exists the link is prohibited from being used in the next iteration by setting the

link status to PROH I B I T ED (step 6). If a new link is opened then there is no flow

mapped on that link. So if the current flow uses a new link it will still contend with the

previously mapped flow at the destination. Therefore the use of new links toward the

switch l s is prohibited (step 10).
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Figure 6.4: Path contention example: a) initial topology; b) link status annotation; c)final

topology

Algorithm 6.4 path_contention(violated flow)

1: for i = 1 to num_sw do

2: for j = 1 to num_sw do

3: for k = 1 to link_count(i , j ) do

4: if violated flow uses link[i ][ j ][k] then

5: link_status[i ][ j ][k] = ADD_E X T R A_COST

6: end if

7: end for

8: end for

9: end for

Example 6.1 In Figure 6.3, I show an example of how the destination contention is

removed. Assume I have the topology from Figure 6.3.a and there are three flows. Flow

1 is a real time flow that is routed through switch 3 and 4. Flow 2 is a non real-time

flow and is routed through switch 2 and 4. Flow 3 is the current flow that has to be

routed and after the first iteration the path using switch 1 and 4 was found. Suppose

that by routing flow 3 through switch 1 and 4 causes flow 1 to violate the worst case

delay bound. Therefore the dest i nati on_contenti on function will set the state of the

links as shown in Figure 6.3.b. The link between switch 3 and 4 is prohibited, and also

opening new links between switch 1 and 4, 2 and 4 and 3 and 4 is also prohibited. The

existing link between switch 2 and 4 can be used as it is currently used by flow 2 which

does not have real-time constraint but already contends with flow 1. A potential route

for flow 3 is shown in Figure 6.3.c, where flow 1 uses the existing link between switch 2

and 4 that is also used by flow 2.

6.4.4 Path contention
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If path_contenti on function is called, it means that the route of the current flow

intersects the route of previously mapped flow before the destination switch and

causes the previously mapped flow to violate its bound. In this case I want to drive the

path finding algorithm to avoid to use the links that the previously mapped flow uses.

If the route of the new flow does not intersect with the previously mapped flow than it

will not increase the worst case delay of the previously mapped flow. To that end the

links used by the flow that violate its worst case delay constraint are annotated so that

in the next iteration the cost for using such a link is increased.

The steps to annotate the links are presented in Algorithm 6.4. The function loops

through the existing links in the topology and if it finds a link that is used by the flow

that violates the bound it set its status to ADD_E X T R A_COST (step 5). The value of

maximum cost of all edges in the cost graph is added in the cost calculation function

to links that have the status set to ADD_E X T R A_COST . These links will have high

cost and will be avoided by the path finding routine. These links can be used (unlike

in the case where the cost is I N F ), if due to other constraints, no other links can be

used.

Example 6.2 An example of how the path contention is avoided is shown in Figure 6.4.

An example topology is presented in Figure 6.4.a and there are two flows. Flow 1 is a

real-time flow that is already routed. Flow two is the current flow for which I have to

find a route. Assume that in the first iteration the route that is found is from switch 1

to 2, 3 and 4. So flow 2 intersects with flow 1 at the output of switch 1. Assume that by

using this route for flow 2 causes flow 1 to violate the required worst case delay bound.

In this case the path_contenti on function is called and will set the status of the link

between switch 1 and 2 and of the link between switch 2 and 3 to ADD_E X T R A_COST

as shown in Figure 6.4.b. Therefore in the next iteration those links will have higher cost

and will be avoided if possible. A possible solution is shown in Figure 6.4.c where a new

link between switch 1 and 3 is opened and the route of flow two uses switches 1, 3 and 4,

and therefore the contention with flow 1 is removed.

6.5 Experimental results

To evaluate the real-time topology synthesis algorithm, I chose two complex bench-

marks extracted from real-life SoC platforms. The first benchmark is a state-of-the-art

multimedia and wireless communication SoC [133, 110, 74]. The communication

patterns for this benchmark are very irregular [149], as the described SoC is composed

of two subsystems. One subsystem handles the multimedia functions. It contains an

ARM processor, hardware video accelerator and a complex memory system that can

access off-chip SDRAM and FLASH. The second subsystem is used for the wireless

communication and is built around a DSP processor and several peripherals. Commu-
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Figure 6.5: Worst case latency on each flow
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Figure 6.6: Minimum guaranteed bandwidth for each flow
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Figure 6.7: Worst case latency when only 5 flows are constrained
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Figure 6.8: Average worst case latency for D26_medi a

Figure 6.9: Average worst case latency for D36_4

nication between the two subsystems is done with the help of a DMA core and several

on-chip memories. There are a total of 26 cores that communicate in the system. The

second benchmark is a SoC for high-end signal processing applications (such as those

used in embedded image and radar processing). This SoC features multiple local

memories, having a spread communication pattern. In this benchmark there are 36

cores and each core communicates to four other cores.

I applied the proposed synthesis algorithms on the two SoC benchmarks. For compar-

isons, I used an existing state-of-the-art synthesis algorithm that does not support

hard QoS constraints [121] to design the topologies for the benchmarks. I use the

methods described in Section 6.2 to calculate the worst case latencies for the flows for

the generated topologies for both cases.
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Figure 6.10: Average zero load latency for D26_medi a

Figure 6.11: Average zero load latency for D36_4

6.5.1 Effect on latency

I designed four topologies using the original synthesis algorithm from [121], where

real-time constraints are not considered. The different design points use different

numbers of switches: 5, 8, 14, and 20 for the D26_medi a benchmark. I show results

for 5 and 8 switches because, as I will show in the experiments, the worst case latency

tends to be worse when there are fewer switches. On the other hand, these design

points are important as they provide better power consumption when compared with

topologies with many switches. I also give results for topologies with more switches

(i.e., 14, 20) to give a clear picture of how the worst-case latency depends on the

number of switches.
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I then ran the RT algorithm and found the smallest latency bound for which it was

possible to find solutions. While in many real applications only a subset of flows

have real time constraints, I wanted to study the maximum overhead incurred by

the proposed procedure. Thus, I put real time constraints on all flows. I found that

for the D26_medi a benchmark, the tightest constraint for the upper bound delay

for which feasible topologies could be build is 180 cycles. To find out how tight the

constraint was, I calculated the worst case latencies of the flows only due to source

and destination contentions. To perform this, I connected all the cores through a

single crossbar switch and calculated the worst case latencies. On the crossbar, the

average worst case latency for this benchmark was 92 cycle and the maximum value

across all flows was 148 cycles. This shows that the constraint I imposed is quite tight,

as it is only 1.25× the maximum value of the flows from the ideal case.

In Figure 6.5, I show the worst case latencies for the 66 flows in the D26_medi a

benchmark. The worst case latencies are reported for the case when the crossbar

is used and for the cases when a 14 switch topology is designed with the original

algorithm and with the RT algorithm. As can be seen, for the topology designed with

the RT algorithm, the worst case latency of the flows is in the same range as the worst

case latency for the flows mapped on the crossbar. On the topology designed with the

original algorithm, most flows have worst-case latency values much higher than those

of the crossbar.

Another less intuitive effect that is visible in the plot is that the RT algorithm provides

lower worst-case latency than the crossbar. This is because, in a crossbar, each flow

will have to contend with all the other flows to the same destination. Whereas, in

a multi-switch case, this may not happen. For example, if there are 3 flows to the

same destination. In the multi-switch case, two of them may share a path until a

point where they contend with the third flow. The third flow only has to wait for one

of them (with the maximum delay) to go through. Whereas, in a full crossbar, the

third flow will have to wait for both the flows, in the worst case. Thus, we can see

that, when only few flows require real time guarantees a multi-switch topology can

give better bounds and it is really difficult to come with the best topology directly

using designer’s intuition. The worst case model from [139] also gives a method to

calculate the minimum guaranteed bandwidth under worst case contention in the

network. In Figure 6.6, I show the calculated minimum guaranteed bandwidth for the

66 communication flows for the 14 switch topology.

So far I showed what happened to the worst-case latency when a constraint is set to all

the flows. In Figure 6.7, I show the behavior of the RT synthesis algorithmwhen only 5

flows have worst-case latency constraints. The flows that had constraints are marked

with bubbles on the figure. The latency constraints were added to flows going to and

from peripherals. This is a realistic case, as many peripherals have small buffers and
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Figure 6.12: Number of links for D26_medi a

Figure 6.13: Number of links for D36_4

data has to be read at a constant rate, so that it would not be overwritten. In this case,

the bounds on those 5 flows could be tightened further (two flows at 160 cycles and

three flows at 60 cycles). Putting these constraints also leads to a reduction in the

worst case latency of other flows as well. Due to the tight constraints, the RT algorithm

maps the RT flows first. Then, the unconstrained flows also have to be mapped with

more care so that they do not interfere with the previously mapped ones.

In Figure 6.8, I show the worst-case latencies, averaged over all flows for both the

original algorithm and the proposed RT algorithm. From the figure, it can be seen that

a synthesis algorithm not considering themaximum latencies can incur a significantly

higher worst case latencies than the required bound especially for low switch counts

and we can observe large variations depending on the number of switches in the
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topology. For the RT case, the variations are much smaller as the algorithm builds the

topology in such a way so that all flows meet the constraints. One other important

remark is that even in the unconstrained case, increasing the number of switches can

help reduce the worst-case latency of flows. This is because, with increasing switch

counts, fewer flows share each link, there by reducing the chances of contention.

This is contrary to the zero load latency (the latency to go from source to destination

without having any interference on theway), which growswith the number of switches

in the topology, as can be observed from Figure 6.10.

For the D36_4 benchmark, I designed topologies with 6, 8, 14 and 20 switches and

I found that the tightest constraint for which topologies could be synthesized was

195 cycles. The average worst case latency for the different topologies designed for

the D36_4 benchmark are shown in Figure 6.9. The effects on the average zero load

latencies are shown in Figure 6.11. Using the original algorithm, for 6 switches, the

zero load latency is very high as most flows have to reuse existing links and cross more

hops. For all other switch counts the zero load latency is smaller, but it constantly

increases with the switch count. With the proposedRT algorithm the zero load latency

dose not suffer large variations, as the algorithm is reusing fewer links in order to meet

the constraints.

6.5.2 Effect on NoC components

To design topologies that meet the required worst case latency constraints, the RT

algorithmmay use more links and therefore additional switch ports when compared

to the original synthesis method. By adding more links, contention between flows

can be reduced, there by reducing worst-case latencies. But adding more links will

increase the switch sizes and the power consumption of the NoCmay also increase.

It is important to analyze what is the overhead of the RT algorithm over the original

method.

In Figure 6.12, I plot the total number of links used in the different topologies for the

D26_medi a benchmark. As the number of switches is increased, the number of links

used increases as well. With more links, the contention on each link is lower, reducing

the worst case latencies. It can be seen that even though the number of links is more

in the topologies synthesized with the RT algorithm, the overhead with respect to

the original case is on average only 9.5%. In Figures 6.13, I show the corresponding

plot on the number of links in the topology for the D36_4 benchmark. Since the

communication pattern of this benchmark involves more flows, there are more links

in the original design as well so the bounds can be met with even smaller overhead

(average 5.5%). To give a more insight on how the topologies change when they

are designed with worst-case latency constraints, I present in Figure 6.14 a topology
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Figure 6.16: Switch power consumption for D26_medi a

Figure 6.17: Switch power consumption for D36_4

designed with the original algorithm and in Figure 6.15 the topology for the same

design point, but constructedwith the real-time algorithm. The topologies correspond

to the design point with 8 switches for the D26_medi a benchmark.

6.5.3 Effect on Power Consumption

In this section, I analyze the overhead of the RT algorithm with respect to the original

algorithm in terms of the power consumption of the NoC topologies. To calculate

the power consumption of the designed NoC, I used the NoC component models

from [160]. The power consumption of the different switches are obtained from

placement&routing of the RTL designs in 65nm technology process. Switches of differ-
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Bench- Num of U-bound (cycles) Z-load latency Num links Power (mW)

mark Switches RT ORIG RT ORIG RT ORIG RT ORIG

5 112.1 167.3 3.7 3.9 75 64 22.7 19.5

D26_ 8 113.8 205 3.5 3.77 85 75 25.1 21

medi a 14 105.9 289.9 3.5 4.71 97 92 35 32.5

20 108.9 195.6 3.7 4.71 105 103 39.3 38.8

6 143.5 331.7 3.27 3.85 104 99 66.2 68

D36_ 8 107.7 158.8 3.27 3.36 125 107 78 70.2

4 14 91.1 138.8 3.25 3.49 172 143 95.5 89.9

20 92.4 169.6 3.24 3.54 184 160 107 99.9

Table 6.1: Results summary

ent sizes are synthesized for different operating frequencies and switching activities.

Based on the power estimates obtained after place and route, the switch powermodels

are built. After the topology is built, based on the requirements from the communi-

cation specifications, the activity at the switches can be determined. Based on the

switching activities and the power models, the actual NoC power consumption for the

application is calculated.

The RT algorithm has the biggest impact on the switch power, because by adding

more links the size of the switches is increased, leading to an increase in the power

consumption. The link power is affected by the link lengths and the switching activity

(the amount of bandwidth that flows on the link). The length of the links depends

on the floorplan and the parallel links introduced by the RT procedure will have

the same length. Since the bandwidth of the flows remains the same as it depends

on the application, when you add more parallel links the bandwidth of the flows is

distributed among all the links. Therefore in the RT design you have more parallel

links at lower switching activity and with the same length and as such the total power

for the links is similar. Also the switching activity of the switches remains constant (as

the bandwidth is application dependent) even though the RT procedure adds more

ports (to add the parallel links). However since the power of the crossbar does not

grow linear with the number of inputs and outputs we see an increase in the total

switch power consumption. Thus, I only plot the switch power for topologies. The

power consumption values for the D26_medi a benchmark are shown in Figure 6.16.

As can be seen, the switch power increase due to the RT process is only marginal (11%

on average). In Figure 6.17, I show the power consumption for the D36_4 benchmark.

The power overhead is slightly lower (6% on average) in this case, as fewer links need

to be added to meet the constraint.

Please note that an average the switch power account for about one third of the total

power of the topology, the rest being used by the links and the network interfaces

(NIs). Both the power of the NIs and of the links is unaffected by the RT procedure and
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therefore the impact of the RT design on the total power of the topology is minimal,

while at the same time providing hard-latency guarantees for the flows.

A summary of all the results for the two benchmarks is presented in Table 6.1. The

table reports average upper bound values for flow in cycles, the average zero load

latency (in cycles), the number of links in each topology and the corresponding power

consumption (in mW).

6.6 Summary

I have shown that guaranteeing worst-case latencies for communication flows in a

best-effort NoC fabric can be done without specific hardware support, by judiciously

synthesizing a QoS-aware topology. The proposedmethod gives worst-case latency

guarantees by carefully designing the application-specific topologies for the NoC and

can be used with switches that do not have any specialized hardware for QoS. The only

assumption is that the switches use a fair arbitration policy, such as round robin. In

the experiments, I show that my proposed algorithm can guarantee meeting real time

latency constraints with little resource and power consumption overhead (average

8.5%).
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7 A fast simulation model for soft QoS

Existing tools have been proposed to design application specific NoC, but themethods

presented so far in this thesis do not take into account an accurate evaluation of NoCs

dynamic performance during synthesis. That is partly because accurate average-case

performance evaluation of the NoC requires extensive simulation. Therefore most

design flows involve multiple iterations between synthesis and simulation to achieve

the required performance. To achieve fast design closure there is a need for a fast and

accurate evaluation model that can be integrated with the automatic design of the

NoC.

To effectively tackle the design complexity, designers use a platform-based approach,

where a single platform instance is used across different product versions with incre-

mental changes across the versions. With such an approach, the platform is verified

and validated once and re-used across different products. Another way to reduce the

design complexity is to orthogonalize the major design issues, especially with respect

to the design of the on-chip computation and communication architecture [81]. The

choice of the communication architecture and performance validation is performed

using abstract models of the computation architecture. For example, the computation

cores are modeled as traffic generators that inject a trace or a pattern based on the

application characteristics, which are used for simulating the communication system.

While the designer can work on evaluating the different computational architectural

choices, he/she can in parallel build the communication system. Such an approach

eases the overall validation effort, as the computation and communication architec-

tures are individually verified and put together. However, during the design phase,

the computational models change according to the different choices made for the

computation architecture, which can lead to incremental changes in the requirements

for the communication architecture.

Simulations play a major role in the NoC design process. The congestion in a net-

work has a significant impact on the NoC performance metrics (packet latencies and
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injected bandwidths). Packet-level simulations are used to obtain accurate NoC per-

formance metrics, as they model the dynamic effects of congestion in the network. As

there is a large degree of freedom for the various NoC parameters, several simulation

runs are needed before setting the different parameters.

In general, packet simulations in a NoC are performed by instantiating the entire

NoC topology. That is, when the simulation model is generated, all the switches, the

Network Interfaces (NIs) and frequency/data-width converters are instantiated. To all

NIs, either the actual core or a traffic generator modeling the traffic behavior of the

core is added and traffic is injected according to the application specification. After

running the simulation, various performance metrics, such as the injected bandwidth

and latency values of all the flows in the topology are available.

However a wide variety of usage scenarios require information only for a single traffic

flow or few flows at a time. Examples include simulations performed during NoC

topology synthesis, simulations after incremental design or application specification

changes and for trade-off analysis. I explain some of these scenarios in detail in the

following subsections. For all these cases, performing a full NoC simulation to obtain

the performance metrics for just a single or few flows leads to a large timing overhead.

Reducing the time-to-market is a major concern for System on Chips (SoCs) and a

major portion of the design time is spent in simulations during the architectural

design phase. Thus, achieving a fast simulation set-up is an important problem that

needs be addressed and it is the subject of this chapter.

7.1 Application scenarios for fast simulation and contributions

There are several scenarios, that appear during the NoC design phases that can benefit

from fast performance evaluatiation. Two frequent ones, addressed in this chapter are

described in the following sub-sections. The contributions of this chapter focus on

providing fast performance evaluation for these scenarios and are also detailed in a

separate subsection.

7.1.1 Simulations as part of topology synthesis

In NoC topology synthesis, the number and size (number of inputs, outputs) of

switches and the connectivity among them and the cores are determined. The process

also determines the paths for the different traffic flows. The objective of the synthesis

process is to obtain a NoC with minimum power consumption and/or area, meeting

the application power-performance constraints. Many NoC synthesis algorithms map

one flow at a time, where the mapping process for a flow determines the topology

connectivity and paths for the flow [121], [62], [149]. The topology could also be pre-
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Figure 7.1: Synthesis methods: a) traditional, b) with partial simulation

defined (such as mesh), in which case the mapping process for a flow determines the

path for the flow [123]. In Figure 7.1.a, I show the traditional two-step approach used

for topology synthesis andmapping of flows. In the first step, the topology synthesis

is performed and during the synthesis process, the injected bandwidth and latency

values for flows are estimated based on analytical models. In the second phase the

NoC topology is simulated, after the full network was synthesized. The major prob-

lem with such an approach is that it fails to capture the dynamic simulation effects,

such as packet contention and arbitration policies that have a significant impact on

the network performance during synthesis. This leads to a discrepancy between the

estimated performance metrics during synthesis and the measured values when the

network is simulated. If the network does not meet the performance constraints

after simulation, the entire topology synthesis process needs to be performed again.

Re-designing the whole NoC topology can lead to over-design in-terms of power con-

sumption and area. Moreover, it is difficult to achieve convergence: that is ensuring

that the designed network can actually meet the constraints during simulation. Since

NoCs are so widespread in industrial usage now, there is a need for optimization

support, to help tune and add value by differentiating.

139



Chapter 7. A fast simulation model for soft QoS

An alternative to this approach is to perform simulations during the topology synthesis

process itself, that is after mapping each flow. This is illustrated in Figure 7.1.b. After

mapping a flow, a partial network is available, with some switches and connections

between them and the cores. The partial network can be simulated, considering the

current and previously mapped flows and accurate performance metrics can be ob-

tained. The synthesis algorithm should also bemodified to support this feature. When

mapping a flow, if the current or previously mapped flows do not meet the constraints,

the route as well as the connectivity described by the route, should be re-established

such that the design moves closer to satisfying the performance constraints for the

mapped flows. As the iteration with simulation phase is performed during the syn-

thesis process itself, the design convergence between synthesis and simulation can

be achieved more easily. However, the main challenge here is that simulating a NoC

topology is a time consuming process. A full simulation of a NoC can take anywhere

between few minutes to several hours, depending on the amount of traffic trace to

be simulated. A typical SoCmay have few tens to few hundreds of different flows in

the application. If the network designed so far has to be simulated after routing each

flow, it can lead to a significant timing overhead for the tool. In order to make an

integrated synthesis-simulation process feasible, we need an efficient method where

by the simulations can be performed in a much faster manner.

7.1.2 Simulations during design changes

The need for fast simulations also occurs in many other instances. The SoC designer

may want to obtain the impact of changing certain parameters on the NoC perfor-

mance. For example, in many cases, the designer would like to evaluate the impact of

changing the frequency of a processing core and hence its injection bandwidth on

the NoC performance. The designers also usually perform extensive simulations for

trade-off analysis, where they vary the input application requirements and architec-

ture points. In such cases, between any two design points, there is only a marginal

change (such as the performance requirements of a flow). With the orthogonalization

of design concerns [81], where in the communication and computation architectures

are designed independently, as the design cycle progresses the requirements for the

communication architecture may vary marginally. Moreover, with a platform based

design approach, there is usually a marginal change in the platform when adopted

to different product domains. The problem with the current NoC simulation models

is that even if there is a marginal change in the application or architecture (such as

only a single flow’s traffic characteristics are changed), the whole network needs to be

re-simulated.
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Figure 7.2: Example of: a) topology where a new flow has been added from Fs3 to Fd3 depicted

by the black arrow and the state of the previous topology is know depicted by the red arrows;

b) partial simulation setup for the new flow with the corresponding partial traffic generators

and destinations that replace the rest of the topology

7.1.3 Contributions

Ideally when a new flow is added to the system or when the traffic characteristics of

a flow is changed, we would like to simulate the packet transmission for only that

particular flow. However, the packets of the flow considered will contend with the

packets from the other flows and it is imperative to consider the contention effect

to accurately measure latency. Moreover, with a back-pressure mechanism, such as

the credit-based flow control, packet transmission of even flows with paths that are

completely disjoint with the considered flow can affect the contention of the packets

with the current flow. Note that ignoring such contention effects would not only lead

to inaccurate latencies for the current flow, but also for the previously mapped and

simulated flows as well. Such a secondary contention effect should also be considered.

141



Chapter 7. A fast simulation model for soft QoS

This is the reason why in current systems the entire network with all the traffic flows

need to be re-simulated, even when a single flow is added or its characteristics are

changed.

In this chapter, I present a new simulation method for NoCs, which I call Partial

Simulation. The proposed method can dramatically speed-up simulations for the

cases when new traffic flows are added or when the traffic characteristics of some

of the flows are changed. The method provides accurate performance estimates of

traffic flows in the network, similar to that of a full network simulation. I also present a

topology synthesis approach, so that the Partial Simulation method can be integrated

within the synthesis process.

The main idea behind the proposed method is to track and build models during

simulations for traffic injected/ejected from each switch input/output port and for the

stall encountered on the links and use them to rapidly perform partial simulations. I

track the bandwidth of the flows as seen at each input of every switch and the stall that

is observed at each output of every switch during simulations. When a new traffic flow

is added to the network or when a existing flow characteristics are changed, I simulate

the packet injection only on the switches in the path of the network that is used by

the flow. I add a traffic injector for the flow (or the actual core itself) at the source

switch and a traffic ejector (or the destination core itself that consumes the data) at

the destination switch. I also add injectors for modeling the traffic other traffic flows

that start from the same input port of the source switch and ejectors for the output

port of the destination switch. For each input port of each switch on the path of the

simulated flow, but is not used by the flow, I add traffic injectors that emulate the

behavior of the traffic at that port. For each output port of the switch, I add ejectors

that model the traffic ejection. This set-up is then simulated. An example of this is

shown in Figure 7.2.

However, due to the back-propagation of congestion, flows that do not use any of the

switches of the considered flow will also be affected. We observe that in NoCs that

use a flow-control mechanism, a fundamental variable that can be tracked during

simulations that affects the latency of transfer is the amount of stall encountered

on the links. When there is more contention among flows, more is the stall on the

contending links. The more stall on the link, the more is the latency for transmission

across the corresponding switch and link. With a flow-control mechanism, stall on a

link at a downstream router is propagated back to the upstream routers as well. The

amount of stall propagated back not only depends on the stall value at the link, but

also on the bandwidth of traffic flows at the link.

I build static models for the propagation of stalls from the links in the simulated path

to the links in other switches that are not part of the path. I also build models to
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update the latencies of the already mapped flows based on the calculated stalls.

The major steps for performing partial simulation are presented in Figure 7.3. There

are two main phases, one is to perform the pre-characterization of the network archi-

tecture and the other is running the actual simulation. The pre-characterization of the

network architecture is performed to model the effects of the flow control, arbitration

and back-pressure on the stall and its propagation back to the upstream links. These

models are necessary to update the stall information for the flows that are affected

by the partial simulation, but are not simulated in that run. I also build models for

estimating changes in latency with the changes in stall. This pre-characterization step

only needs to be done once for each NoC architecture. Details on how the models are

built is detailed in Sections 7.2.2 and Section 7.2.5.

During the simulation phase, the entire network is simulated and the traffic injec-

tion/ejection models and stall values at the switches and links are obtained. When

a new flow is added or a flow’s characteristics change, the partial path is simulated

as explained above and the new stall values are obtained on the links that are part of

the path. The injection/ejection models at the switches of the path are also updated.

Then, based on the static models built in the pre-characterization phase and the

injection/ejection models built at the switches, the stall values are propagated to links

that are not part of the simulated path. To calculate the latency of all flows, I track the

latency of packets at each component (switch, NI). To calculate the latency of a flow it

is necessary to sum up the latency of the components along the path of the flows. By

keeping track of latencies at component level, the latencies of previously simulated

flows that intersect with the current flow being simulated are also updated, for the

switches that are simulated in path. Calculating latency is detailed in Section 7.2.5.

Using the models from the pre-characterization phase, the latencies of the flows that

are not part of the simulated path are updated using the propagated stall values. The

partial simulation steps are detailed in Section 7.2.3.

I present experiments on two benchmarks (a realistic SOC and a bandwidth intensive

synthetic benchmark) and I show that we can achieve large speedups between partial

simulation and full simulation (between 4.5× to 10×) with a small error on the latency

estimation (on average 8.6%). I also present how a traditional topology synthesis can

be modified to account for simulations during the synthesis process itself. Such an

integrated synthesis-simulation process leads to fast design convergence.

7.2 Partial simulation

Before I present the outline of the various phases in the partial simulation, I state the

assumptions for the models in the following sub-section.
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Figure 7.3: Partial simulation steps
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7.2.1 Assumptions

I make the following assumptions for the NoC for this work:

• A flow control mechanism is used and packets are not dropped; this assumption

holds for almost all NoC designs.

• Arbitration is pre-specified at the switches, the method can be used with several

arbitration schemes (round robin, fixed priority);

• Even though the proposed simulation method is applicable to a wide variety of

routing schemes including adaptive routing, in this chapter, I show the applica-

tion only to static routing. In such a scheme, the paths for the traffic flows are

determined at design time and all packets from a single source to a destination

use the same path.

• The NoC switches have a fixed number of buffers at the input and/or output

ports. The static models that track the propagation of stall and latency depends

on the amount of buffering at the ports. In this chapter, I show how the models

are built when the buffer sizes are uniform across all the ports. The models can

be easily extended to account for variable sized buffering at the ports.

While I use a base NoC architecture based on [160] to illustrate how the model are

built, the methods are generic and can be applied to any NoC architecture that satisfy

the above assumptions.

In the next sub-sections, I provide a detailed description of the different phases of the

partial simulation method.

7.2.2 Pre-characterization phase

To simulate only partial sections of the network (i.e. only the path of a communication

flow), we need to keep the state of the network fromprevious simulations. Tomaintain

the state I track the stall at the outputs of the switches in order to accurately simulate

the contention. However increasing the contention in the simulated part of the

network will result in an increase of the contention in the non-simulated part of the

network as well. Sincewe cannotmeasure the increase of the stall in the non simulated

parts, I build an analytical model to estimate the increase of the stall in the rest of the

network.

When a new flow is added, the contention created by this flow will be seen as an

increase of the stall at the outputs of the upstream switches that have flows that inter-

sect. For example in Figure 7.2.a when we add the new flow 3 switch Sw3 will observe
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Figure 7.4: Single switch model

an increase of the stall at the output due to the contention of flow 3. This increase

of the stall can be measured, but has to be propagated to the outputs of switches

Sw4 and Sw5. So in the general case, we have to propagate the stall from the output

of a switch to the inputs that send packets to that output. The increase of the stall

cannot be propagated directly as the buffering in the switches will tend to decrease its

effect. Also it will not propagate the same value to all inputs, which is dependent on

bandwidth. For example a low bandwidth flow will have a higher probability to find

the buffer empty so it observes a lower stall. However if the contending flows have

high bandwidth it increases the chance even for a low bandwidth flow to observe a

higher increase of the stall. To capture all these effects, I build a model that considers

as inputs the bandwidth (bw) coming from the input to which we want to propagate,

the contending bandwidth (cbw) of the other inputs and the increase of the stall (∆s)

observed at the output as shown in Figure 7.4. From simulation I observed that we can

consider the aggregate of the contenting bandwidth as coming from a single input, to

simplify the model.

I have performed extensive simulation and I found that the second-order analytical

model of Equation 7.1 (see below) can best reproduce the behavior observed in simula-

tion. The function ∆psbu f f returns the increase of the stall that has to be propagated.

The parameter bu f f represents the amount of buffering of the switch. If there are

switches with different buffer sizes than for each buffer size a model has to be build

as the parameters a, b, c, d and e model the effect of buffering in the switch. These

parameters are determined by fitting the general model on the experimental data that

I collect from simulation on a single switch when I vary the values of bw , cbw and

∆s. For example for the switch architecture used in the experiments with 2 FLIT deep

input buffers I found the following parameters: a=-468.6, b=45.5, c=-191.2, d=13.44
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Algorithm 7.1 Propagate_Stall(sw , op, ∆s)

1: st al lsw,op = st al lsw,op + ∆s

2: for all input ports i p of switch sw do

3: if bandwidth bw from i p to op is larger than zero then

4: Find previous switch swp and output port opp connected to i p

5: if swp exists then

6: calculate contenting bandwidth cbw

7: Propagate_Stall(swp , opp , ∆ps(bw,cbw,∆s))

8: end if

9: end if

10: end for

and e=-0.017.

∆psbu f f (bw,cbw,∆s) = ((a ·bw2+b ·bw) + (c · cbw2+d · cbw)+e) ·∆s (7.1)

In Algorithm 7.1, I show how Equation 7.1 is used recursively to propagate stall. The

function Pr opag ate_St al l takes as input the switch and the output port to which

the stall needs to be propagated and the third parameter is the increase of the stall

that is propagated. The function will then propagate the stall from that output to

all inputs from where flow are coming to that output. Please note that there is a

one to one correspondence between an input port and the output port of a previous

switch so propagating to on input actually means propagating to the output port of

the previous switch. Initially the function is called for all the inputs of the switches

that are simulated and are not on the path that is currently simulated as it will be

showed later in Algorithm 7.2. The increase of stall that is passed to the function at

the first call is calculated from the measured values from simulation. The function is

then called recursively (step 7) to propagate the stall to the entire sub network that

was not simulated. The function loops on all the inputs of the current switch (step

3) and if there are flows going from that input to the output on which the stall was

propagated (steps 4) will attempt to find the previous switch from where the flows

are coming. Provided that the switch exists (step 5) and the edge of the network was

not reached, it will recursively call the function (step 7) with the new value of the stall

increase calculated with Equation 7.1.

The contention created by the new flow does not only affect the observed values of

the stall at the outputs of the switches, but also the latency of the intersecting flows.

It is well known that the dependency between contention and latency has an expo-

nential nature[127]. The parameters of the exponential model are dependent on the

bandwidth and contention bandwidth. Since the model is exponential any error in es-
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timating the parameters from the measured bandwidth will lead to even larger errors

for the estimated latency. Therefore we cannot build an accurate model to propagate

latency as was the case for the stall. However during the pre-characterization phase,

I build an approximate model that depends only on stall to estimate the worst case

latency increase. This model can then be used to estimate the worse case increase of

error between the flow latencies that I can estimate and the reality. This model can

be used as a trigger to run full simulation to update the latencies of the previously

simulated flows. This synchronization will be discussed in Section 7.3.1. To be less

conservative in estimating the error a family of models can be used for different inter-

vals of the measured bandwidth and contention bandwidth. Since the model is used

only as a trigger, I found that using a single model provides acceptable performance.

The general model is represented by Equation 7.2 where a, b and c are the parameters

that we need to find and s is the stall value for which we want to estimate the latency.

l atenc y = a ·eb·s + c (7.2)

From simulation, I record the value of the latency when I vary the stall for different

values of the bandwidth and of the contending bandwidth. Then I fit the model and

find a, b and c such that the model overestimate the increase of the latency when

compared to all the curves that I got from the experimental data. Considering the

same switch with 2 FLIT deep input buffers, I found the following parameter values:

a=9.98, b=3.76 and c=3.21.

7.2.3 Simulation phase

To explain the way partial simulation is performed to analyze the performance of

a single flow I have to define the topology graph TG and the route graph RG. The

topology graph is defined in a similar manner in Chapter 5, but for completeness I

redefine it as follows:

Definition 7.1 I define the topology graph as a directed graph TG(B ,L) where the

vertices bi ∈ B represent the blocks in the topology (cores and switches) and there is an

edge l (bi ,b j ) ∈ L if there is a link connecting block bi to block b j with i , j = 1. . .N and

N represent the number of cores and switches in the topology.

Based on the definition of the topology graph I define the route graph as a subset of

the topology. The route was also defined in Chapter 5 as a set. However since I want

to capture other properties, I redefine it as a graph in this chapter:
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Definition 7.2 I define the route graph as a directed graph RT (S,C , f l ) as the subgraph

of the topology graph TG(B ,L) used by flow f l . The vertices si ∈ S represent the blocks

from the topology used by the flow f l and the edges c(si , s j ) ∈C represent the links used

by the flow. The function i p(si ) returns the input port and the function op(si ) returns

the output port used at block si . the function i sSwi tch(si ) tells whether the block is a

switch or a core.

Example 7.1 In Figure 7.2.a, I show an example of a topology graph with 11 vertices (5

cores and 6 switches) and three routed flows (flow 3 being the last one routed). In Figure

7.2.b, I show an example of a route graph for flow 3 corresponding to the topology in

Figure 7.2.a. There are two cores the source Fs3, the destination Fd3 and two switches

Sw1 and Sw2.

In order for the path simulation to be accurate apart from simulating the switches

along the path and the NIs at the source and destination, I also need to model the

traffic that intersects with the current path. The off-path traffic is simulated by attach-

ing partial traffic generators (PT g ) connected directly to the switch input ports. The

partial traffic generators (PT g ) model the traffic that was recorded at that switch input

from previous simulations. A detailed description what information is recorded and

how traffic is generated is presented in Section 7.2.4. As partial traffic is injected, we

also have to model the contention observed by that traffic when exiting the simulated

switches. Partial destinations (PDest ) are added on the output ports of the switches

to sink in the traffic going out. The partial destinations also have to model the stall

that was recorded from previous simulations in order to improve the accuracy of the

partial simulation.

Given a topology graph T G(B ,L) and the flow f l to simulate, themain steps for setting

up the partial simulation are presented in Algorithm 7.2.

The first step is to find the cores, switches and links that are on the path of the flow to

simulate and to instantiate them for simulation (step 3,4). Then, the algorithm looks

at all the routed flows in the topology (step 5). If a flow intersects with the current flow

that we want to simulate (step 7), then it is necessary to add a partial traffic generator

(PT g ) on the first switch where the intersection happens and a partial destination

(PDest ) on the last switch (steps 10 and 14). Please note that if the flow has the same

source or the same destination as the current flow we simulate no PT g or PDest

needs to be added as the traffic is handled by the actual core that we simulate. Once

the path is setup and the PT g s and PDest s are added we run the simulation for

M cycles which is given as input (step 18). After the simulation is completed, the

algorithm looks at all the PT g s (step 19) and propagate the recorded increase of the

stall using the recursive method from Section 7.2.2 (steps 20-22).
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Algorithm 7.2 Partial_Simulation( TG(B ,L), f l , M)

1: {Get the subgraph of the TG(B ,L) used by fl}

2: RT (S f l ,C f l , f l ) = {si ∈ S f l and ci ∈C f l |

si ∈ B and ci ∈ L and si ,ci ar e used by f l i = 1. . . |L|}

3: Setup the simulation for RT (S f l ,C f l , f l )

4: P =⊘

5: for all routed flow f 6= f l do

6: RT (S f ,C f , f ) = {si ∈ S f and ci ∈C f | si ∈ B and

ci ∈ L and si ,ci ar e used by f i = 1. . . |L|}

7: if |RT (S f l ,C f l , f l )∩RT (S f ,C f , f )| > 1 then

8: S = S f l ∩S f

9: if i sSwi tch(s0) then

10: Add PT g to i p(s0) with s0 ∈ S

11: P = P ∪PT g

12: end if

13: if i sSwi tch(s|S|) then

14: Add PDest to op(s|S|) with s|S| ∈ S

15: end if

16: end if

17: end for

18: Run simulation for M cycle

19: for all pt g ∈ P do

20: Get switch sw and output port op replaced by pt g

21: Get recorded increase of the stall ∆s from pt g

22: Propagate_Stall(sw , op, ∆s)

23: end for

Example 7.2 In Figure 7.2.b, I also show how the parts of the topology from Figure 7.2.a

are replaced by PT g s and PDest s when we do the partial simulation of flow 3.

7.2.4 Traffic injection/ejection models

Traffic injection for the simulated flow is based on the average injection rate provided

as input to the simulation. Traffic generation in the PT g s is based on traffic rates

measured from previous simulations. For that reason, during a simulation we need

to collect traffic information. I refer to the data structure used to store the traffic

information that I measure as the input table. In order to setup the PDest s, we need

to monitor the stall at the output of the switches. I refer to data structure that holds

the stall information as the output table.

In Figure 7.5, I show for a 2×2 switch where the input tables and the output tables are

attached. An input table is assigned to each switch input-output pair as it will store

information about the packets that are going from that input to that output of the
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Figure 7.5: Traffic characterization

switch. Therefore for the 2×2 switch, we require 4 input tables. The output tables are

assigned to the output ports of the switch. They measure the average stall seen at that

particular port, regardless from which input the packets are coming from. Therefor

we only need 2 output tables.

The information that is recorded in an input table is detailed in Table 7.1. For each

flow that goes from the input to the output of the switch that is monitored by the

input table the source, destination and size of the packet is recorded. This information

is required by the PT g in order to generate valid packets that can be routed on the

correct path. Since the simulation supports the use of multiple frequency island and

frequency converters are required when crossing domains, I also track the average

number of empty flits that the converters generate. It is important to track the empty

flits separately and not include them in the packet size because in the presence of

downstream contention these flits can be squashed. The rate at which the packets

arrive is also recorded, as this may be different from the specification in case of high

Variable name Type

Source list

Destination list

Size list

Empty flits list

Rate list

Previous output pointer

Table 7.1: Input table data structure
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Variable name Type

Stall value

Previous outputs list

Table 7.2: Output table data structure

contention, when the required bandwidth cannot be provided. The input table also

keeps a pointer to the output table that corresponds to the previous output port, where

the packets are coming from. This information is used by the PT g to back-propagate

the stall information that it has recorded during simulation. Details on how stall is

back-propagated are given in Section 7.2.2.

Base on the information from the input table a PT g will generate traffic for each flow

with uniform distribution and with an average equal to the rate of each recorded

flow. The PT g will also add empty flits to each packet (based on the average number

of empty flits recorded) in order to simulate the effect of any upstream frequency

converters.

To record the stall, I assign an output table to the output ports of every switch. The

information that is recorded in an output table is detailed in TABLE 7.2. The output

table is simpler as it record the percentage of time that a flit could not be transferred

to the next input port due to contention. Stall information is kept global and no

distinction is made based on the input ports from which the flits came. The output

table also keeps a list of pointer of all the previous output table that correspond to

output ports from which packets have arrived. The list of previous output tables is

used for the propagation of stall.

The information in the output tables is used by the PDest s to simulate the stall that

would occur in the full network due to contention. From the point of view of the

PDest time is divided in slices of equal length. In each time slice the PDest will

refuse to accept flits for a number of cycles. The number of cycles in which the PDest

does not accept flits to be transferred relative to the size of the slice is equal to the stall

percentage that was recorded in the corresponding output table in the previous run of

the simulation. For example if the stall is 30% and the time slice is 100 cycles then for

30 cycles in each time slice the PDest will not accept flits to be transferred from the

switch. The length of the time slice is taken as input. For the PDest to have similar

behavior to the full network, the start time of the blocking cycles in each time slice is

assigned randomly.
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7.2.5 Latency estimation

Similarly to stall, the latency of existing flows in a topology changes when a new flow

is added or if the parameters of a flow are modified. While the latency of the new flow

is estimated during the partial simulation of its path, estimating the latency of the

other flows is also important. In order to estimate the latency of the existing flows, I

keep track of the latency to cross any component (switch, NI). Therefore to each NI I

attach two latency tables. One table is assigned to the output port of the NI and tracks

the latency of the tail (or header) flit from the time it is created until the time it is sent

to the switch. The other is assigned to the input port and tracks the latency for the tail

flit from the time the flit was received until the corresponding transaction is delivered

to the core. I use the tail flit latency as it incorporates the packetization latency of

the NI. At each switch output, I attach a latency table that records the waiting time of

the flits in the switch input buffers. The latency values of flits coming from different

inputs are tracked separately. The latency of a flow is calculated by summing up the

individual values of the latency tables along the path.

When a partial simulation is performed, intersecting flows (whose latency is affected

by the new flow) are simulated by the PT g s. Therefore the latency tables of these flows

are updated by the partial simulation. So the interference of the new flow is captured

in the latency of the intersecting flows.

However as the latency of the intersecting flows is modified due to the interference

with the new flow, a similar secondary effect appears between these flows and other

flows that they are intersecting with upstream of the intersection with the new flow.

Propagating the latency changes to these flows is more complicated than in the case

of the stall as the dependence between latency, stall, bandwidth and contending

bandwidth follows an exponential model. Therefore any small error in the input of the

model leads to a large error in the propagated value. One solution to this problem is

to run the full simulation from time to time in order to update correctly all the latency

table.

7.3 The use of simulation during synthesis

As a case study to demonstrate the usefulness of the partial simulation model, I have

extended the application specific NoC topology synthesis algorithm from [121] to use

the partial simulation results during synthesis. In this section, I only highlight the

changes made to the algorithm in order to use the partial simulation results to drive

the synthesis.

Themain steps of the synthesis algorithm are presented in the earlier work [121]. For a

given design point the original algorithm performs the following tasks. First it assigns
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Algorithm 7.3 Route_Flow(TG(B ,L), f l , M)

1: {Use α to switch focus from power to latency}

2: for α = 0 to 10 (with step = 1) do

3: {Calculate costs ci j ∈C to route between any switch pair}

4: for all switches swi ∈ B do

5: for all switches sw j ∈ B do

6: Find link l from swi to sw j that supports the bandwidth of f l

7: if l not found or l ∈ cr i t i cal_l i nks and number_of_flows(l ) ≥ (1−α) then

8: ci j = (1−α)∗mar g i nal_power (new_l i nk)+α∗max_cost

9: else

10: ci j = (1−α)∗mar g i nal_power (l )+α∗max_cost

11: end if

12: end for

13: end for

14: Find least cost path using cost matrixC

15: Partial_Simulation(TG(B ,L), f l , M)

16: if Constraints met then

17: Go to step 22

18: else if already routed flow f p failed then

19: Add the links used by f l and f p to cr i t i cal_l i nks list

20: end if

21: end for

22: if synchronization necessary then

23: Run full simulation

24: end if

the cores to switches and then it routes the inter-switch flows one by one. In this

section, I focus on the routing routine of the inter-switch flows, where I integrated

the partial simulation to improve the results. The details of the routing method are

presented in Algorithm 7.3.

The routine tries to find power optimal paths and then checks the latency constraints.

If the constraints are not met more importance is given to latency when the costs

are computed. The routine iterates using the parameter α to make this switch from

power to latency (step 2). Then the costs of routing the flows between each pair of

switches is computed (step 4, 5). If links can be reused, the cost is composed as a linear

combination of the marginal power increase due to the added bandwidth of the new

flow and the maximum cost (step 10). By increasing the contribution of the maximum

cost shorter paths will be found. If no link can be reused, then a new link has to be

open and the marginal power includes the increase of the sizes of the switches (step

8). A link can be reused by a flow if it is not critical or if there are fewer flows on the

link than the value of the iteration counter in this case (step 7). This will drive the

algorithm to open parallel links in the worst case if it cannot meet the constraint.
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The list of critical links is empty in the first iteration. However if the path that was

found causes older mapped flows to miss their constraint, then the intersecting links

between the new flow and the old flow are added to the critical list (step 19). This

is necessary as the algorithm cannot remap an old flow so it has to prevent the new

flow from causing the old flow to violate its latency constraint. Once the costs are

calculated then a minimum cost path is found using Dijkstra’s algorithm and turn

prohibition (to avoid routing level deadlock) [121]. The path is then simulated for M

cycles (step 15) and the constraints are checked (step 16).

Eventually after a certain number of flows are mapped a full simulation needs to be

run in order to update the partial simulation tables (step 22). The condition to run

a full simulation is checked after the flows is routed (step 22) The condition used to

decide when to run the full simulation is described in detail in Section 7.3.1.

7.3.1 Improving the accuracy of the estimated latency

It is well known that the dependence between latency and contention is exponential[127].

I assume anmodel as described in Section 7.2.2. I use this model to assess the worst

case increase of the latency due to the observed increase of the stall. Based on this

estimation, the algorithm decides if it is necessary to run a full simulation and updates

all the tracked information.

As we partially simulate flows, the error accumulates after the simulation at each flow

and after a certain number of flows are simulated we need to run a full simulation and

update the NoC state. Therefore after a new flow is simulated, using the model from

Equation 7.2, the algorithm gets an estimate of the latency (l at0) for the intersecting

flows with the previous stall value from before the simulation run. Based on the new

value of stall, it can estimate the new values of the latency (l at1). The condition to

trigger a full simulation based on the two estimates of latency is given in Equation 7.3,

where α represents the amount of error that can be tolerated. In this work, I set α to

0.1 to tolerate 10% of error.

l at1 ≥ l at0+α · l at0 α ∈ [0 1] (7.3)

To prevent full simulation for being run too often, I also imposed a bound on the

minimum number of flow that are simulated before synchronization (in this case I set

the bound at 5 flows).
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7.4 Evaluation

For the evaluation I use two benchmarks, a realistic multimedia and wireless com-

munication SoC with 26 cores which I call D26_medi a [149] and a 36 core synthetic

benchmark with spread traffic D36_4. The D26_medi a benchmark is a highly het-

erogeneous SoC that has a multitude of different cores like an ARM processor with

high level cache, a DSP processor, video accelerators, a DMA core, SDRAM and FLASH

controllers, several embeddedmemories and amultitude of peripherals. The cores are

assigned to 5 voltage and frequency island (three running at 500MHz and two running

at 333 MHz). The links that cross voltage and frequency domains must pass through a

frequency converter (I assume a dual-clock FIFO). I explore three topologies for this

benchmark: a small one D26_s which has one switch in each frequency domain (5

in total), a medium sized one D26_m with 10 switches in total and a large one D26_l

with 15 switches. The D36_4 benchmark has 36 cores. I use topologies with different

number of switches because small topologies have lower power consumption, while

large topologies have better dynamic properties. Therefore it would be interesting

for a designer to explore topologies with different number of switches. There are 18

processors and 18 memories and each processor communicates to 4 of the memories.

This benchmark is fully synchronous. I also explore three topologies D36_s with 6

switches, D36_m with 16 switches and D36_l with 24 switches.

The simulation code (used for the partial and for the full simulations) is cycle accu-

rate and written in C++. I extended the application specific NoC topology synthesis

algorithm from [121] (as explained in Section 7.3) and integrated it with the partial

simulation code.

7.4.1 Speedup

As the target application for partial simulation is to provide soft QoS support during

synthesis, I evaluate the speedup of partial simulation under the following assump-

tions. After every flow is routed we need to evaluate the latency of that flow. In one

setup, I do the evaluation using partial simulation and in the other setup I evaluate

the flow by full simulation of the existing topology. I calculate the speedup as the sum

of the times for all full simulations divided by the sum of the times of all the partial

simulation. I also evaluate the speedup of partial simulation when the precision is

increased by updating the simulation tables from full simulation. For reference, I use

a setup where the full simulation is triggered at constant rate (after every 30 flows)

and when the full simulation is triggered by the adaptive method presented in Section

7.3.1.

In Figure 7.6, I plot the speedup for three topologies for the D26_medi a benchmark.
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Figure 7.6: D26_medi a speedup

Figure 7.7: D36_4 speedup

As can be seen topologies with more switches benefit more from partial simulation.

Using full simulation to update the partial simulation table incurs some penalty

but the speedup is still significant. In case of the small and medium topologies the

adaptive method has similar speedup to the partial simulation with no update, even

though the full simulation is triggered more than for the constant rate method. That

is because the full simulation is triggered in the beginning (as the highest bandwidth

flows are mapped first), when the topology is still small and the full simulation is also

fast.

In Figure 7.7, I display the speedup for three topologies for the D36_4 benchmark.

For this benchmark as it is more complex (more cores but also more communication

flows) I obtained speedups of up to 24× for partial simulation alone and up to 10× for

partial simulation with full simulation update every 30 flows. Since there are more

flows contending with one another the especially for the small topology with few
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Figure 7.8: D26_medi a flow-by-flow average error

Figure 7.9: D26_medi a average error at the end

switches where many paths share the same links the adaptive method triggers the full

simulation more often to reduce the error. Therefore the speedup using the adaptive

method is only around 5×.

7.4.2 Accuracy

In this section, I evaluate the error between partial simulation and full simulation. I

evaluate two types of errors: i) the error in latency for the simulated flow and ii) the

error of the estimated latency for the previously simulated flows. In this case, I run a

partial simulation and a full simulation after every flow is mapped and I compare the

error flow-by-flow. After all flows are mapped I run a full simulation on the complete

topology and I calculate the average error between the latency of each flow and the

estimated latency calculated using the latency tables. Similarly, I estimate the two error
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Figure 7.10: D36_4 flow-by-flow average error

Figure 7.11: D36_4 average error at the end

values when I run full simulation every 30 flows and update the partial simulation

tables.

In Figures 7.8 and 7.9, I show the average flow-by-flow latency error and the average

estimated latency error at the end for the D26_medi a. If we look at the flow by flow

latency error we can observe that the error is quite small (3-5%) and is slightly higher

for topology with more switches where more flows are routed over multiple switches.

Also synchronizing with full simulation (using the adaptive method) does not improve

the results for the flow-by-flow latency error significantly. In the case of the estimated

latency error we can see that for the topology with few switches the error is quite larger

(12%) as there are many intersecting flows. As new flows are mapped the error in the

latency estimation of the previously mapped flows grows. For topologies with more

switches that have greater path diversity the error is around 10%. Using the update

the error can be reduced to around 10% for the small topologies and to about 4% for
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Figure 7.12: D26_medi a flow-by-flow error

Figure 7.13: D26_medi a error at the end

the large topology. In case of the small topologies the adaptive method triggers after

few flows are mapped only achieving better speedup than synchronizing every 30

flows, however the error at the end is larger. Please note that the goal of the adaptive

method is to keep the error to 10% or less throughout the entire run.

The average flow-by-flow error and the average estimated latency error for the D36_4

benchmark are plotted in Figures 7.10 and 7.11. For this benchmark as there are more

communication flows that overlap the flow-by-flow error is larger and the full simu-

lation synchronization has more effect in reducing the error for D36_m and D36_l .

Also the average estimated latency error is larger for topologies withmore switches. As

there are more flows the path diversity provided by the increased number of switches

is not enough and there are still many overlapping flows leading to more error in

estimating the latency. However updating the latency tables from full simulation still

leads to a significant reduction of the error.

160



7.4. Evaluation

Figure 7.14: D36_4 flow-by-flow error

Figure 7.15: D36_4 error at the end

In Figures 7.12 and 7.13, I show a detailed plot of the flow-by-flow latencies and the

latency estimation for the 5 switch topology of the D26_medi a benchmark. It can be

seen that the error of partial simulation in estimating the latency of the simulated flow

is quite small in this case. However the error of the estimated latency is very large for

some of the early mapped flows. That is because several of the flows mapped after

that interfere with those flows. Running the full simulation and updating the partial

simulation tables after 30 flows fixes these issues with the estimation of the latency of

the early mapped flows. The adaptive method has more error for some of the flows

that were mapped first as the last synchronization is triggered after the 10th flow was

mapped.

I also show a detailed plot for the flow-by-flow latencies and the estimated latency for

the D36_s in Figures 7.14 and 7.15 respectively. For this benchmark as there are more

traffic flows we see that the flow-by-flow latency estimation error grows as more flows
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Figure 7.16: D26_medi a synthesis evaluation

Figure 7.17: D26_medi a power evaluation

aremapped. That is becausewhen the last flows aremapped there is a lot of interfering

flows which are simulated by PT g s and PDest s. In case of the previously mapped

flows latency estimation the error is larger for the flows mapped in the beginning, but

that error is also reduced when the full simulation is run and the partial simulation

tables are updated.

7.4.3 Synthesis

As one potential application of partial simulation is to be used to provide soft QoS

support during topology synthesis, in this section I evaluate the proposed topology

synthesis algorithm. I compare my extended synthesis algorithm, which uses partial

simulation to drive the topology generation (described in Section 7.3) to the original

algorithm from [121] that uses a zero load analytical model to estimate the latency
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and drive the synthesis.

To evaluate the proposed method, I synthesize topologies for the D26_medi a bench-

marks, with two switches per voltage island, with different latency constraints for

all flows. In Figure 7.16, I show how many flows fail to meet the constraint, when I

vary the latency bound from a very tight value where all algorithms fail up to a loose

value where all flows meet the desired constraint. As a reference, I have synthesized a

topology with no latency constraint and I counted the number of flows that would

not meet the bound. As can be seen the method using partial simulation can provide

good solutions for much tighter latency bound than the other. For a looser latency

bound (60 ns), we see that the algorithm has a flow that fails, that is due to error in

the latency estimation and because the algorithm cannot go back and remap a flow

if later it realizes that a flow fails. The zero load drivenmethod reduces the number

of flows that fail for tight latencies when compared to the reference, but it is unable

to provide good solutions. Also for looser bounds the zero load driven algorithm has

worse results than the reference because by reducing hop count alone it increases the

contention which results in more flows violating the constraint.

In Figure 7.17, I present the power overhead of the topologies designed using synthesis

with partial simulation. In order to meet tight latency bounds the flow using partial

simulation is forced to open more new links in order to meet the constraints. The

increase of the number of links and in the switch sizes leads to some power overhead

as can be seen from the plot.

7.5 Summary

System level simulations are an integral and time intensive part of the Network on

Chip (NoC) design process. Reducing simulation times, while maintaining accuracy of

the measured performance metrics can significantly speed-up the entire NoC design

cycle. With increasing use of platform based designs, the NoC architecture only

changes marginally across multiple simulation runs. In this chapter, I presented a

partial simulation, a method to dramatically speed-up simulations when the traffic

characteristics of only some of the flows change between subsequent simulation runs,

while maintaining accurate performance results. I showed the applicability of the

method to different scenarios, such as during NoC topology synthesis and design

space exploration. The proposed method provides large reduction (between 4.5× to

10×) in run time when compared to full simulations. In future, I plan to extend the

method to support DRAM based traffic patterns and parallel execution of multiple

simulation runs.
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8 Efficient memory access

Todays applications that drive the System-on-Chip (SoC) design require increasingly

higher storage capacity and bandwidth to main memory. To provide the required stor-

age capacity, high-density commodity DRAM is the only cost-effective main memory

option, and external DRAMmodules are needed. To deliver the required bandwidth

when accessing external DRAM is a major challenge andmain memory access is the

main bottleneck for scaling computing performance, also known in literature as the

Memory Wall [176]. There are two important aspects that we need to deal with (from

the perspective of the interconnect) in the quest to provide more performance from

the memory system:

• Preventing regular traffic to be blocked by DRAM traffic: The unpredictable nature

of DRAM access can lead to transitory bottlenecks at the DRAM controller ports

and the packets that backlog at the DRAM ports would queue up in the NoC and

interfere with non-DRAM traffic. It is highly undesirable for non DRAM traffic to

be blocked by DRAM traffic as it can take tens to hundreds of cycles to clear out

the DRAM backlog.

• Accessing multiple DRAM channels: In mobile SoCs platforms that have strict

power consumption constraints, providing the required bandwidth to main

memory at manageable power levels is an even more challenging problem.

Mobile SoCs rely on parallelization and specialization of the functionality in

order to obtain the required performance for the application at low power level.

A natural solution for providing increased memory bandwidth with low power

would be to parallelize the access to the memory.

End-to-end flow control can be used to prevent DRAM traffic from blocking non-

DRAM traffic. However end-to-end flow control requires the use of a specialized

mechanism to notify the cores of the state of the DRAM. For example a separate
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network or high priority virtual channel [167] can be used. This not only increases the

design complexity, but also the buffering requirements needed to drain the messages

that are already in the network. Another solution is to separate the traffic going to

DRAM (DRAM traffic) from the traffic going between the other cores (non-DRAM

traffic) using virtual channels or physical channels. However for most SoC the traffic

patterns are known at design time and the interconnect topology can be optimized

for that specific application. In such cases physical channels can be used when the

NoC is designed to split the traffic. Since the bandwidth requirements to the DRAM

controller are large, the ports of the DRAM can have data-paths wider than the rest of

the cores. In this chapter, I show how designing a separate network to DRAM is better,

as it can account for the funnel-shaped pattern communication pattern and reduce

the number of data size converters.

As the complexity of the applications increases, so does their need for storage and

bandwidth demands to and from the storage devices. For examplemost smart-phones

today have capabilities to decode and playback videos. A competitive product to-

day must be able to playback high-quality, high-definition videos. If we look at the

bandwidth demands on the decoded stream alone we can see a high increase in the

bandwidth requirements over the standard-definition format from few yeas back. For

example the bandwidth that needs to be transfered frommemory to the display driver

for a standard definition video 576i is around 40MB/s. If we have a high-definition

720p stream the transfered bandwidth is around 90MB/s and for a 1080p stream is

around 240MB/s. In case of upcoming 3D videos is high-definition 1080p, the re-

quired frame-rate is double (around 60 frames/second) and therefor the bandwidth

requirement is around 480MB/s. And these requirements are for the decodes stream

alone, the actual bandwidth required by the video decoder IP-core could be close to

3GB/s. If we consider thewhole applicationwith the video being downloaded from the

Internet and played back on both the display of the device and on an external display,

the bandwidth demand to and frommemory can go up to 7-8GB/s. This amount of

bandwidth cannot be provided by a single DRAM channel with the power constraints

imposed onmobile platforms. Therefore architectures with multiple parallel DRAM

channels are required.

With the main storage in the form of external DRAMmemory, the limited number of

available off-chip IO ports prevents the design of a parallel memory system. However

with the introduction of 3D integration technology, stacked DRAM and TSV based

connectivity can be used to design a parallel memory system to provide more band-

width at acceptable power levels. Given the promise of three-dimensional DRAM

stacking, industry is actively pushing standardization of TSV-based interfaces. WideIO

3D-stacked DRAM [87] is an emerging JEDEC standard. WideIOmemories use TSVs

to provide interfaces to 4 channels each with a 128bit wide data interface. By running
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at 200MHz with single data rate the WideIOmemory can provide a peak bandwidth of

12.8GB/s at lower power levels than current Low-Power Double Data Rate (LPDDR)

DRAM. According to the JEDEC standard WideIO will provide 50%more bandwidth

with 20% less power than an existing dual-channel LPDDR2 off-chip solution. In this

chapter, I focus onWideIO DRAMmemory integration in the SoC design and I address

the problem of efficiently using the 4 channels to achieve the required application

performance.

There are two existing architectures for the memory sub-system that can be adapted

to access the 4 channels of the WideIO DRAM: i) a simple architecture that uses 4

DRAM controllers to independently access the four channels that rely on software to

balance the traffic between the channels and ii) a complex centralized controller with

multiple ports and interleaved address space to balance the traffic among the four

channels. Since the TSV size is large, when compared to transistor size, the wide data

interfaces that require many TSVs will be far apart on the floorplan. An example of

such a heterogeneous SoC floorplan with WideIO connectivity is presented in Figure

8.1. The position of the TSV interfaces in the example was chosen to accommodate

the WideIO interface from [87]. This makes the centralized controller difficult and

expensive to implement. Therefore neither of these architecture are well suited to be

used with WideIO DRAM.

In this context the contributions of this chapter can be summarized as follows:

• For preventing regular traffic to be blocked by DRAM traffic the contributions are

three fold:

– It is unclear what is the power and performance trade-off for splitting

DRAM and non DRAM traffic using dedicated physical channels in the NoC.

Therefore I first analyze this trade-off and also compare it to a solution using

end-to-end flow control. I present results for a realistic multimedia and

wireless communication SoC benchmark on application specific topologies.

I use a cycle accurate NoC simulator and DRAM controller simulator [168]

to compare the performance of the shared and split NoCs for the generated

topologies.

– Second I show how the network to DRAM can be optimized due to the

funnel-shaped communication pattern when the cores and the DRAM

controller have different data bus sizes.

– Third I present an architecture for data size converter, capable of transfer-

ring data full bandwidth on the wider side.

The experiments show several interesting results: i) As expected, split network

and end-to-end flow control perform significantly better for non-DRAM traffic
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Figure 8.1: Example of SoC floorplan with WideIO TSV interfaces

(2.2× lower write latency and 1.7× lower read latency); ii) Split network and

end-to-end flow control have similar power overhead; iii) All solutions perform

similarly for DRAM traffic; iv) Designing a separate network to DRAM can be

optimized in the presence of heterogeneous cores leading to power saving of

23%.

• For accessing multiple DRAM channels: I propose a new distributed interleaving

method to access the memory controller that leverages the advantages of both

of the previously mentioned designs, while avoiding their most serious short-

comings. On one hand it uses a simple memory interface design, as the first

method, but provides an interleaved address space such that balancing the traf-

fic to the four channels is transparent to the software. The proposed approach

requires the integrated design of both the NoC and the DRAM controller, as the

interleaving support is now distributed within the NoC, which also results in

balancing the traffic in the NoC itself.

I perform experiments on a realistic benchmark for a heterogeneous mobile

communication and multimedia SoC platform. An important contribution

is given by the advanced traffic modeling environment and by modeling the

details of the NoCmicro-architecture (i.e., packetization, bandwidth inflation).
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From experiments, I show that the proposed distributed interleaving memory

access method improves the overall throughput while minimally impacting

the performance of latency sensitive communication flows. For example, this

design improves the frame rate of the video decoding and display subsystem by

2 frames/second when compared to simple separated controller with the best

memory allocation (42 frames/second with the worst memory allocation) and

by 7 frames/second when compared to the complex controller with interleaved

address space.

In the remainder of the chapter in the first part in Section 8.1, I present methods

to prevent regular traffic to be blocked by DRAM traffic as well as architectures to

optimize the NoC toward the DRAM. In the second part of the chapter in Section 8.2, I

address the problem of efficiently accessing multiple DRAM channels in the context

of WideIO 3D-stacked DRAMmemory.

8.1 Preventing regular traffic to be blocked by DRAM traffic

8.1.1 System architecture

I use NoC switches and Network Interfaces (NIs) similar to those from [160]. I use

input buffering, on/off flow control and source routing for the switches with no virtual

channels. I consider a high performance DRAM controller capable of scheduling and

reordering transactions. I synthesized power efficient application specific topologies

using the tool from [121]. All the topologies have 4 switches for the request network

and 4 switches on the response network. I chose these topologies as theywere themost

power efficient generated by the tool. The power models for the NoC components

are based on values provided by commercial tools after place and route of the library

components from [160] in 65nm technology. I analyze three designs. In the first design

I synthesized a topology where the traffic that goes to DRAM and the nonDRAM traffic

can share channels. In the rest of the chapter I call this design as shared NoC. In the

second case, I synthesized a topology where the DRAM traffic is physically separated

from the non DRAM traffic, which I call split NoC. In the third design, I use the same

topology as in the case of the shared NoC, but I apply end-to-end flow control on top,

to prevent DRAMmessages from queuing in the NoC when the DRAM is backlogged. I

use on/off flow control and the occupancy of the DRAM controller buffers determines

when core can inject packets to DRAM. This requires a specialized interconnect to

give the off signal to the cores.
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Figure 8.2: Communication specifications to DRAM

8.1.1.1 Benchmark

I use a realistic benchmark for a multimedia and wireless communication System-

on-Chip. The benchmark has 28 cores, among which a processor with a separate L2

cache controller, a DSP which also has a discrete L2 cache core, a DMA, two image

accelerators, a display controller, 6 clusters of peripherals, five scratch pad memories,

a flash memory controller and a DRAM controller to connect to an external DRAM

memory. The communication graph to and fromDRAM is shown in Figure 8.2. The

vertices represent the cores and the edges the communication flows between the

cores. The weights on the edges represent the required communication bandwidth

for write/read in MB/s. The total desired bandwidth to the DRAM controller is of 2160

MB/s. I only show the communication specifications to the DRAM controller. The

non-DRAM traffic is considered to be similar to that of the D26_Media from Figure

3.10 in Chapter 3.
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8.1.1.2 Simulation infrastructure

To run experiments, I use a cycle accurate NoC simulator capable to simulate custom

topologies. In the NoC simulator I plugged-in DRAMsim2 [168], a cycle accurate

DRAM simulator. I configured DRAMsim2 with open row scheduling policy and bank

round robin. Transactions are interleaved in the banks based on the least significant

bits of the address. I connect the network simulator to the DRAM simulator using

a custom interface to provide support for multiple ports and to assemble the NoC

messages into DRAM transactions of fixed size, as showed in Figure 8.3. I assume the

DRAM to be a DDR2 device running at 333MHz, and a 64 bit data bus from the DRAM

controller to the external memory. I use the timing parameters of the Micron DDR2

of 32MB with 4 banks and 4 bit interface, 4 word burst and -3E speed grade, that is

provided with the DRAMSim2 package. I design the NoC synchronous running at the

DRAM controller frequency of 333 MHz.

The traffic generators have infinite injection queues. This is to capture in the mea-

sured latency the effect of the core being delayed, when they are unable to inject due

to congestion the network. Traffic generators are connected to the initiator Network

Interfaces (NIs) and inject traffic according to the bandwidth specified in the commu-

nication specification. The injected packets have a size of 32 byte of actual data for

the write requests and read responses. The actual bandwidth that is injected in the

network accounts for the packetization overhead that the NoC architecture creates. In

Figure 8.4, I present how the NIs are modeled. In case of the shared NoC the DRAM

and non DRAM packets can mix (Figure 8.4 a). In the split NoC, two NIs are used

to separate the packets (Figure 8.4 b). For end-to-end flow control separate queues

in the same NI are used (Figure 8.4 c). According to the occupancy of the DRAM

buffer, the queue holding the DRAM packets can be prevented from injecting. I use

a separate signal to notify the NIs when they can inject based on the DRAM buffer

occupancy. The target traffic generators respond to the read requests immediately

for the flows that do not go to the DRAM controller. For the DRAM traffic the read

and write requests are buffer in the DRAM controller (however the DRAM controller

buffer is finite), and the response is sent back through the network once the DRAM

controller services the transaction.

8.1.2 Separated NoC vs. shared NoC

8.1.2.1 Power analysis

The power consumption of the NoCs is estimated by the synthesis tool that uses the

power models of the components from the library in [160]. I show the breakdown of

the power consumption in Figure 8.5. The split network has higher power as expected,
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Figure 8.3: Example of DRAM controller connection

Figure 8.4: NI injection queues: a) shared b) split and c) end-to-end flow control
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as more NI are needed for cores that have both DRAM and non-DRAM traffic. Also

switches are larger to connect the extra NIs. Interestingly the overhead of the switch to

switch connectivity is not significant. For this benchmark the power overhead is 18%.

The end-to-end flow control design also has similar power overhead as split. The NIs

of cores that have both DRAM and non DRAM traffic need separated packet queues.

When the occupancy of the DRAM controller buffer reaches a threshold, the off signal

is send to the injector NIs. As it takes several cycles to reach all the injectors, there can

be several in flight packets going to DRAM. Therefore the buffer on the DRAM side

has to be large enough to buffer these in flight DRAM packets. I use simulation data

to determine the required size of the buffer. As buffering requirements in the DRAM

controller are similar to those found in the network to DRAM in the split NoC, the

power overhead is also similar. The area of the split NoC is 30% larger as compared to

the area of the shared topology. Most of the increase in area comes from the extra NIs

that have to be added.

8.1.2.2 Performance analysis for non-DRAM flows

In Figure 8.6, I show the average latency that the non DRAM flows have for the three

designs: shared, split and end-to-end flow control. I present both the write and the

read latency. The benchmark uses posted writes so no acknowledgment is sent back.

The write latency is measured from the time that the write request is generated until

the head flit of the packet reaches the destination. In case of the reads the latency is

measured from the time the read request is generate until the head flit of the response

packet reaches the requester. From the plot, we can see that the shared design has 2.2×

larger write latency and a 1.7× larger read latency compared to the split or end-to-end

flow control case. The increase in latency is due to the contention of the non DRAM

flows with the DRAM flows when the DRAM backlogged. The traffic to the DRAM

is from many initiators to one destination on the request network, and from one

source to many destinations on the response network. Therefore the DRAM controller

which becomes the bottleneck only creates congestion in the request network. This is

the reason why the difference between the write latency is larger than that between

the read latencies of the shared and split designs. The latency for the split NoC and

end-to-end flow control are the same.

In the case of the maximum latency observed for the non DRAM flows, we can see a

very big difference between the shared and split network as shown in Figure 8.7. For

applications where the non DRAM flows have real time constraint ensuring that the

worst case latency is small is very important for the performance of the system. From

the plot, we can see that in the case of the shared NoC the DRAM traffic can greatly

affect the latency of some packets. In between the split topology and the end-to-end
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Figure 8.12: Maximum latency for non DRAM flows in shared NoC

flow control the results are quite similar, split being marginally better.

8.1.2.3 Performance analysis for DRAM flows

For the DRAM flows, surprisingly the three solutions perform similarly as the DRAM

controller is the bottleneck. In Figure 8.8, I show a breakup of the average write

latency of the DRAM flows. I show howmuch time the packets spend in the injection

buffer of the NI, how long it takes to traverse the request network, howmuch time the

transactions spend in the DRAM buffer (to be serviced by the DRAM controller before

they can be sent back) and the total. Similarly in Figure 8.9, I present the breakup of

the average read latency, where in addition the write I show the time it takes to also

traverse the response network. From the experiments, we can notice that the DRAM
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Number Read latency (cycles)

of ports Average Maximum

1 83 579

2 67.6 448

3 67.3 423

4 61 340

Table 8.1: Average andmaximum read latency from DRAM for different number of ports

controller is the bottleneck, so most time is spent to reach the DRAM controller and

for the transaction to be serviced. The latency on the response network is small, as

the response network is from one to many and there is no congestion. The end-to-end

flow control solution performs slightly better that the split and shared, because it

requires a larger DRAM buffer so in turn the DRAM controller itself performs better

when services the transactions. In Figure 8.10, I also show the maximum latency of

the DRAM flows, for both write and read.

8.1.2.4 Observations

From the experiments presented before, we can conclude the following: i) the shared

network preforms poorly for non DRAM flows compared to split and end-to-end flow

control; ii) all designs have comparable performance for the DRAM flows; iii) the split

and end-to-end flow control designs have similar power overhead. The experiments

show that a split network can be an efficient solution as it can be implemented using

existing NoC components, as opposed to end-to-end flow control that would require

specialized hardware.

8.1.2.5 DRAM buffer size impact on non DRAM flows

I ran experiments with different buffer sizes on the DRAM controller. From the

experiments I make the following observations. First having a large buffer does

not make a significant difference on the latency of the DRAM flows. This is because

packets are waiting in the DRAM buffer instead of the injection queue or the request

NoC. Second, for the shared NoC we can notice that with large buffering it can achieve

similar performance as the split network. In Figure 8.11, I show the average latency

of the non-DRAM flows for different sizes of the DRAM buffer and in Figure 8.12,

the maximum latency. However with the extra buffering the shared design would

consume similar or more power than the split NoC.
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Figure 8.13: Original topology

8.1.2.6 Port count

For the previous experiments, I used three ports for the DRAM controller. However

having different number of ports can influence the bandwidth that is transferred to

the DRAM buffer. To see the impact, I ran experiments for different number of ports.

In Table 8.1, I show how the latency is influenced by the number of ports for the split

network. Because the DRAMmemory operates at double data rate and the port data-

size is the same as the bus-size between the controller and the DRAMmemory, two

ports are needed to support the peak bandwidth of the DRAM controller. Therefore

there is a larger difference in the latency between one and two ports. When more

ports are added the reduction in latency is less significant. Multiple ports are costly

as the buffer is implemented as a multi-ported memory. Therefore an alternative is

to increase the data size of the port. In the next section, I show how the network to

DRAM can be optimized when the cores and the DRAM controller have different data

sizes.

8.1.3 Network optimization for heterogeneous cores

In many SoCs, the cores are heterogeneous and they have different data sizes. Also the

port of the DRAM controller could be wider than the port of the cores. If the network

is designed with a single FLIT size, to support full bandwidth, the FLIT size has to

be correlated with the size of the widest core port (usually the DRAM controller). In

Figure 8.13, I show one topology with uniform flit size for this benchmark. The cores
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Figure 8.14: Data size converter architecture

and the switches are annotated with the data size. Some cores are 32 bit, some are 64

bit and the DRAM controller uses 128 bit wide data. In this case, the size conversion is

done in the NI that connects the core to the switch. However, since the conversion is

done from narrow to wide, to inject at full bandwidth the whole packet needs to be

buffered in the NI before it can be sent out. In this case the size converters are at the

endpoints. This requires a large number of converters and leads to wider switches.

To reduce the number of converters they need to be moved after the switches. In the

next section, I show a converter architecture that could be placed after the switches

and be able to work at full bandwidth.

8.1.3.1 Proposed size converter architecture

In order to be able to inject a FLIT every cycle (without inserting empty FLITs) on wide

link from a switch with narrow data width, I propose a new converter design. The

new converter architecture is shown in Figure 8.14 for 64-bit to 128-bit conversion.

Two links from the switch feed the size converter, and the packets from each link are

buffered separately. This enables the converter to buffer a packet from one input link

while sending data to the output link from the other buffer. The arbitration between

the two input channel is done at packet level in order to prevent flits from different

packets to be interleaved, in a round-robin fashion. By buffering packets from two

input links, the converter can push data out on the wider output link at full bandwidth

under high traffic load. Similarly the converter between a 32-bit switch and the DRAM

can be designed. In this case the converter would need to buffer packets from four

input links in order to be able to send data at full bandwidth to the DRAM controller.

The communication flows going to the same port of the DRAM controller could be

statically assigned to use one of the input links of the converter. An alternative would

be to modify the allocator of the switch to send the packet of any of the flows onto one

of the links going to the same converter, but where the buffer is free.
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Figure 8.15: Optimized topology

8.1.3.2 Optimized NoC

To reduce the number of required packet buffers and size converters, I show in Figure

8.15 an example of how the topology could be designed using the new converter

architecture. In the new case cores are clustered and connected to switches based

on their data bus size. Therefore the switches can have a flit size closer to that of the

cores. This removes the need for size conversion between the core and the switch.

Also switches can have different sizes. Existing solutions do not consider the flow data

conversion efficiency.

In the case of the new topology only 8 packet buffers are needed, two in each 64 bit

to 128 bit converters and four in the 32 bit to 128 bit converter. The size converter

between the 64 bit switch and the 32 bit switch is a wide to narrow converter, that

in out benchmark is only used by one flow, so it does not need to buffer the packet.

In this new design, I reduce the number of packet buffers by 42% which leads to an

overall NoC power reduction of 23%.

8.2 Accessing multiple DRAM channels

8.2.1 NoC and controller architectures for multi-channel DRAM

WideIO DRAMmemories [87] promise to fulfill the bandwidth requirements of future

SoCs at power levels comparable to todays low power off-chip DRAMs. WideIO DRAM
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leverages 3D integration technology to stack the DRAM die on top of the logic die.

Through Silicon Vias (TSVs) are used to provide multiple channels (up to 4 in current

specs) with wide data-paths. WideIO DRAM provides high-peak bandwidth at low

power levels by using multiple channels with independent wide data-interfaces oper-

ated at low frequency. Efficiently exploiting the 4 channels of theWideIOmemories, in

order to satisfy the bandwidth demands of the application, is up to the SoC designer.

Having multiple channels provides new opportunities for designing the memory con-

troller to efficiently access the memory subsystem. In this section, I introduce three

architectures: two traditional ones and I also propose a new architecture that moves

part of the DRAM controller complexity into the NoC fabric to provide distributed

parallel access to the four channels of a WideIOmemory.

In this section, I describe three architectures and discuss their advantages and disad-

vantages:

• Distributed controller with separate independent channels. This is a simple

solution where an independent DRAM controller is assigned to each channel.

• Centralized controller with interleaved address space. This is a single multi-

ported controller that can access all the four channels of the WideIOmemory

interface. The requests from the four ports are interleaved based on the address

to the four channels to balance the traffic.

• Distributed controller with interleaving in the NI. This is the proposed method

that uses 4 simple DRAM controllers for the 4 channels, but the transactions are

split and interleaved based on address within the interconnect at the Network

Interfaces (NIs) of the NoC.

8.2.1.1 Distributed controller

The simplest solution to access the four channels is to have four independent DRAM

controllers and to split the address space in four large contiguous blocks. A block

diagram of such an architecture is presented in Figure 8.16. By ensuring at software

level that a core does not accessmore than one channel at the same time, this architec-

ture does not require any changes to existing DRAM controller or NoC architectures.

To each channel a DRAM controller is assigned that only needs a bus interface and

address generator, with FIFO buffers to drain the requests from the NoC and an out-

of-order back-end. Designing the memory subsystem of the SoC in such a distributed

fashion, with separate independent DRAM channels, is easy. The main drawback of

this simple architecture is that the performance of thememory subsystem is highly de-

pendent on thememorymapping. In the worst case, if thememory regions of all cores

are mapped to the same channel (which could happen for certain periods of time in
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Figure 8.16: Distributed DRAM controller with 4 separate channels

systems where the memory is dynamically managed), then the peak-bandwidth of the

WideIO DRAMmemory is effectively reduced four times. To tackle this problem, such

a system would have to expose hardware details to the software and make sure that at

software level, the memory is allocated as to balance the accesses to the 4 channels.

However as such an allocation, reliant on the software, would be coarse-grained, it

may not be possible to efficiently balance the accesses to the channels.

To tackle this drawback of separated independent channels, a popular technique is

to interleave the address space between the channels [169]. By splitting the address

space in fine-grained blocks and assigning them to the channels interleaved as shown

in Figure 8.18, we can make sure in hardware that the data is distributed uniformly

among the channels. Accessing the memory is now balanced between the channels

and it is transparent to the software. The decision to which channel a transaction (or a

piece of a transaction) belongs depends on the address of that transaction. Depending

on where that decision is taken, I look at two solutions: i) centralized in the DRAM

controller and ii) distributed at the initiator Network Interfaces (NIs) of the NoC.

8.2.1.2 Centralized controller with interleaving

One way to design an interleaved memory subsystem is to have a centralized DRAM

controller with multiple ports toward the NoC andmultiple channels to connect to

the WideIO DRAM as shown in Figure 8.17. This is similar to [9], but with different

182



8.2. Accessing multiple DRAM channels

����

���

���	
��
	

�	�
�	
�����	


�����

��
��

	��

����

�
��
����


�����
�����

�
���
�������

�������	���

Figure 8.17: Centralized DRAM controller with interleaving at the controller side
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Figure 8.18: Example of a) partitioned- and b) interleaved address space

arbitration scheme though, as I do not require the same level of predictability. The

advantage of this solution is that the memory controller and the NoC can be designed

separately and regardless of which port you use you have access to the entire memory

space. Such a centralized solution would require a crossbar to allow for parallel

access between ports and the back-end controllers connected to the channels. In this

architecture the bus interfaces, corresponding to each port, take the bus request and

generate transactions for the DRAM back-end with the same size as the interleaving

blocks. These transactions are stored in the input FIFO of the port. The arbiter

takes these transactions from the ports and using the crossbar sends them to the

appropriate channel according to the address. A popular schemes for arbitration

(which I also assume) is priority with aging to prevent starvation. Ports can have

different priorities (in this case I use two) and the transactions in the low priority ports

keep an age counter. After a certain age given as parameter their priority becomes

the highest and get serviced next. Please note that reordering of the transaction to be

memory friendly is done in the back-end and that is beyond the scope of this work.

However since transactions from the same port are sent to different back-ends they

can be serviced and returned out of order, so the response buffers in the ports have to

be able to reorder the transactions.

183



Chapter 8. Efficient memory access

While this solution fixes the problem of application memory mapping, there are

two important drawbacks of this solution. The first drawback relates to the physical

implementation of the centralized controller. The WideIO uses TSVs for connectivity,

which are considerably larger than other features, and has wide interfaces so requiring

many such TSVs. According to the JEDEC standard the size of the 4 channels interfaces

is around 0.54mm by 5.27mm. So the interfaces are far apart on the floorplan of the

resulting chip as shown in Figure 8.1. Therefore designing the crossbar to connect

the ports to the DRAM back-ends may be costly and slow. The second drawback is

that the as there are more IP-cores that used the DRAM than ports, it is up to the

designer to decide the assignment of the IP-cores to ports. As different IP-cores may

be active for different application there could be cases where even a good assignment

could still result in over-congesting a port and parts of the NoC. This would result in a

degradation of performance.

8.2.1.3 Distributed controller with interleaving

A compromise between the two solutions discussed before is to distribute the inter-

leaving function from the DRAM controller in the NoC. This solution would require

the simpler controllers of the first solution, which could be easily implemented next

to the interfaces to the WideIOmemory. In this case the source NIs are responsible to

implement the interleaving function (performed by the crossbar in the centralized

controller). A schematic representation of this architecture is in Figure 8.19 and is

called distributed controller with interleaving in the NIs. The NI needs to have a route

to each port of the independent memory controllers. Based on the address the NI

chooses the path to the corresponding port. In case of transactions that are larger than

the size of the interleaving block, the NI is responsible to split these transactions into

multiple packets and to send those packets to the corresponding controllers. In this

case the responses or partial responses (as the transaction can receive the responses

in multiple packets) have to be reordered and reassembled in the NI. The details

describing the NI are presented in Section 8.2.2.1. To provide two level of priority as in

the centralized controller case, I use two FIFO buffers per port as shown in Figure 8.20.

The assignment of the transactions to the priority queue is done based on the ID of

the source.

The disadvantage of this method is that it generates more bandwidth in the NoC, due

to the packetization overhead in the case when transactions are split. Please note

though that even in the previous case long transactionsmay need to be split to prevent

blocking the interfering traffic for too long from accessing the memory controller as

well. In this architecture the NoC and the memory controller need to be designed

together. The main advantage of this architecture is that it balances the traffic in both

the NoC and at the DRAM controller channels, regardless of the application memory
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Figure 8.19: Example of distributed interleaving where the NI sends out a 4 beat burst transac-

tion in 2 packets on different routes
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Figure 8.20: DRAM controller port with priority

mapping.

8.2.1.4 Simple reorder-buffer implementation

If the NI has support for interleaving and splitting of packets, then it needs to be able

to reorder the transactions. However in cases where there are only few routes handled

by the NI, the reorder buffer can be implemented in a simpler way. By leveraging the

property that packets on the same route will arrive in order, then the reorder buffer

can be implemented only with FIFOs and few comparators, instead of expensive CAM

memories. In Figure 8.21, I show an example of such a reorder buffer for an NI that

uses two routes to interleave the packets.

To track the order, the transactions are assigned an ID (consecutive values of a counter)
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Figure 8.21: Simple reorder buffer schematic

when they are sent out to the target. The responses from the target will contain the

same ID that was assigned to the request. We need as many FIFO buffers as there are

routes. As the transaction responses coming from the same path arrive in-order, we

can use simple FIFOs to buffer them. Based on the ID of the source (the ID of the

target that responds) the transaction are stored to the corresponding FIFO. A counter

at the receiver NI also indicates the ID of the transaction that has to be delivered next

and it is incremented whenever a transaction is delivered from the FIFO to the bus

interface. One comparator per FIFO buffer compares the ID of the transaction that is

in the front of the buffer to the ID counter. If the ID of the transaction matches the ID

of the counter it indicates that as the next transaction to be transfered.

8.2.2 Exploration environment

The experimental setup is based on a cycle-accurate NoC simulator. The simulator

models accurately the ×pipes NoC library [160] which includes: accurate NI models

that account for packetization effects, FLIT size converter models and switch models.

Moreover, I extended the initiator NI models to add support for multiple outstanding

transactions and for reordering responses and for transaction splitting and interleav-

ing. I implemented three types of traffic generators: i) the initiator traffic generator,

ii) the target traffic generator and iii) the DRAM target traffic generator. The initiator

traffic generator supports multiple outstanding transactions and out-of-order execu-

tion and it is described in detail in the next sub-section. The target traffic generator

receives the requests from the initiator traffic generators and generates the response

traffic. The target traffic generator can also be configured as synchronization block.

The DRAM target traffic generator uses DRAMSim 2 [168] to accurately emulate the

functionality of the back-end of the DRAM controller. The DRAM traffic generator

interface the NI to the DRAMSim instances and can be configured with multiple ports

as well as channels in order to simulate all the architectures proposed in Section 8.2.1.

The benchmarking is oriented to real-life traffic in a state-of-the-art mobile SoC. I

model different types of traffic and addressing modes to emulate different IP-cores
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Figure 8.22: Initiator traffic generator
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Figure 8.23: Initiator network interface

like: video and graphic accelerators, display drivers, DMAs, peripherals and not just

CPUs. Hence my environment is a significant step forward with respect to homo-

geneous architecture modeling environments with traffic generated only by cache

misses.

8.2.2.1 Traffic generators and NIs

The initiator traffic generator (ITGen) along with the initiator NI are some of the most

important components of the simulator. The ITGen has to be able to emulate the

traffic patterns generated by processors, accelerators, custom controllers, commu-

nication IP-cores. I described the ITGen in the simulator to have the structure as

presented in Figure 8.22, to be able to emulate all these behaviors. The basic blocks

of the ITGen are the transaction generators, the read and write queues, the arbiter

between the read and the write queues, the bus interface and the reorder buffer.

The transaction generators are responsible to generate the high-level read/write trans-

actions (e.g. cache line refill or write-backs in a cache controller). The transaction

generator can be programmed to generate different patterns of transactions, with dif-

ferent sizes and different time intervals between them. The types of transactions I use

are: i) reads, ii) non-posted writes and iii) barriers which are used for synchronization.
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I only considered non-posted writes in this chapter as I assume that acknowledgments

are needed to implement memory consistency protocols since data is shared among

some cores. However posted writes can also have be used without impacting the

results, especially since no acknowledgment traffic is necessary in that case. As the

transaction generator blocks if it tries to inject a transaction in a full queue, the se-

quencing dependencies between transaction in the pattern are respected regardless of

the type (read/write). Consequently the following transaction are delayed by the same

amount of time that the transaction generator is blocked. A ITGen can have multiple

transaction generators which are independent from one another. For example if a

transaction generator blocks on a full read queue another transaction generator could

still generate write transactions if the write queue is not full. The use of multiple trans-

action generator can emulate multiple threads in a multi-threaded CPU or multiple

independent units in an accelerator. The arbiter selects between the read and the

write queue the transaction that has the highest priority, and which will be sent next

to the bus interface. The bus interface has to convert the current selected transaction

to bus requests (i.e. similar to AXI bus requests), which could comprise of a burst of

requests in case of writes. Once a transaction has been processed by the bus interface,

it is placed in the reorder buffer to await the response from the target traffic generator.

The ITGen can be configured to expect responses in-order or out-of-order. In the first

case when a response it received the ITGen checks that the response corresponds to

the first transaction in the reorder buffer. In the latter case the response is matched to

the corresponding request transaction in the reorder buffer. The serviced transactions

in the reorder buffer are committed in-order, and the latency is tracked at commit

time.

One important feature of the transaction generators is that they support multiple ad-

dressing modes, which can be configured when they are instantiated. The supported

addressing modes are: i) incremental, ii) incremental with synchronization, iii) block

addressing, iv) random block addressing and v) trace. Incremental addressing as the

name suggests generates addresses incrementally with the possibility of wrapping

around after a certain number of transactions. This mode can be used to emulate

IP-cores that work with arrays or that move large amounts of data (e.g. DMA). In case

of the incremental with synchronization addressing mode at the end of the accessed

address range when it wraps around or moves to another address range it requires

to synchronize with other IP-cores. New transactions are not generated until the

synchronization completes. This mode can be used for IP-cores like the LCD or HDMI

which read a frame with incremental transaction, but require synchronization before

moving to another frame. Block addressing is designed to emulate the addressing

mode of the video decoder. The frame is viewed as anM by Nmatrix which is further

divided in blocks of size m by n (m <M and n < N). The blocks are chosen in row order

and for each block the addresses are generated in row order as well. This mode also
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requires synchronization at the end of the frame. In case of random block addressing,

the next block to be accessed is chosen in a randommanner, to emulate the fact that

video decoding is data dependent. For trace addressing, I read a trace of addresses

from file. These traces can be generated beforehand with a functional simulator and

can be used to have a realistic behavior of IP-core for which the behavior is harder to

emulate.

The initiator NI is described in Figure 8.23. The initiator NI contains the following

blocks: the bus interface, the request queues (as header information and payload

data queues), the FLIT generator block, the FLIT assembler block, the FLIT FIFOs

and an optional reorder buffer. The bus interface is required to connect the NI to

the traffic generators. The FLIT generator and FLIT assembler blocks convert the

bus transactions into NoC packets and vice versa. FLIT buffers are used toward

the switch as well to improve performance. In the case when the ITGen supports

multiple outstanding transaction, but it requires the responses in order, a reorder

buffer is necessary. To prevent deadlocks, the FLIT generator block will reserve space

in the reorder buffer when generating a packet. If there is not enough space in the

reorder buffer, the FLIT generator will block until space becomes available. In case

the transaction requires more space than the size of the buffer the FLIT generator

will wait until the buffer is completely free before starting to generate the packet. If

transaction splitting and interleaving is supported by the NI then the reorder buffer is

also necessary as the different parts of a single transaction, sent as different packets,

have to be reassembled in-order into the response transaction, which will be returned

to the ITGen.

The target traffic generator is simpler. It only has the bus interface and a queue in

which to store the incoming requests. The bus interface takes the stored requests and

generates the appropriate response. The target traffic generator can be configured as

a synchronization block as well. In that case it will only generate the responses when

it received requests from all the ITGens that need to be synchronized. The DRAM

controller simulation is done as described in Section 8.2.1. The target NI is similar

to the initiator version, but it is simpler as it does not need support for reordering or

splitting and interleaving.

8.2.2.2 Benchmark and use-cases

To perform experiments I use a realistic benchmark that describes a mobile multime-

dia platform capable of running applications on a CPU cluster with 3D acceleration,

perform video decoding, support multiple high definition displays and wireless com-

munication. The communication requirements are represented by the graph from

Figure 8.24. The vertices in the graph represent the task/IP-cores. In some case sev-
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Figure 8.24: Benchmark communication graph

CPU GPU Video LCD HDMI DMA Audio Sensors WiFi Modem

UC1 x x

UC2 x x x x

UC3 x x x x x

UC4 x x x x x x x x x x

Table 8.2: Description of the use-cases

eral tasks are performed by the same IP-core (e.g. Display LCD and CPU cluster).

The edges in the graph represent a communication flow between two IP-cores. The

weights on the edges represent the read/write bandwidth demands in MB/s. As can

be seen from the plot this benchmark is DRAM centric with most communication

going to the WideIO SDRAM.

The communication graph describes all the possible communication flows in the SoC,

however different operating modes may require only a subset of the IP-cores to be

active. To emulate this behavior and to see from experiments the trends on bandwidth

and latency as more flow become active, I define four use-cases. Three of the use-case

activate only a subset of the flows, while the last one will use all. A description of the

use-case is provided in Table 8.2.

Use-case 1 (UC1) uses only the Video decoder IP-core and the HDMI display IP-core to

provide basic video playback. Use-case 2 assumes that along with the video playback,
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Figure 8.25: Topology

applications are also running on the CPU that require 3D graphic acceleration. In use-

case 3, two displays are used. In case of the LCD display the resolution is considered to

be less than 1080p so downscaling and rotation operations are needed. All the IP-cores

that are active in UC3 are high bandwidth. In use-case 4, I consider the influence of

the remaining IP-cores most of which are low bandwidth, but may require low latency

as is the case of the Modem IP-core.

8.2.2.3 Topology

For the experiments I use a 6 switchNoC topology. To preventmessage level deadlocks,

I use two separate networks so 3 of the switches are used for the request network and

3 for the response network. The request network topology is presented in Figure 8.25

and the response network is symmetric, the only difference being that the data flows

in the opposite direction. In the figure the round nodes represent the IP-core (in the

simulator these require an instance of the traffic generator as well as an instance of an

NI) and the number below the name represents the size of the data interface for that

IP-core. The low bandwidth IP-cores have a 32 bit interface, while the high bandwidth

IP-cores use 64 bits. Since the WideIO SDRAM has 4 channels with a data size of 128

bits, to be able to transfer full bandwidth I assume the DRAM controller interface

toward the NoC is also 128 bit wide. Similarly some if the IP-core that generate large
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regular transactions like the display drivers also use 128 bit data interfaces.

As can be seen from the figure the IP-cores that have the same data width are clustered

on the same switch. To reduce the power consumption the switches have a FLIT

size similar to the data size of the cores connected to it. The only exception is the

Video IP-core which is connected directly to the 128 bit switch. When transactions

are converted into packets, the bandwidth requirements increase due to the extra

information that is added in each packet. Since the Video IP-core has high bandwidth

demands, a link in the NoC with a 64bit FLIT width could not support the bandwidth

resulting after packetization and therefore I connected it directly to the wider switch.

Even though the Video IP-core generates significant traffic, it does so in small transac-

tion and therefore I assumed that it has a 64bit data-interface. Also this setup allows

us to capture the packetization effects from different data-sizes.

Since the switches have different FLIT sizes, converters need to be used on each link

to change the width of the FLITS in each packet. It is important to accurately simulate

the size converters as they can also increase the bandwidth when going from narrow

to wide. With wormhole switching, once the head of a packet has reserved a channel,

that channel remains reserved until the tail of the packet passes through it. Because

of the wormhole channel reservation policy, a packet after the converter has the same

number of FLITs as on the link before. Even though some of the FLITs in the wide part

of the NoC are empty (there appears to be a FLIT because the channel is reserved), the

resulting effect manifests itself as having higher bandwidth for the flow. However in

case of downstream contention these empty FLITs can be dropped. To have accurate

results, I model all these effects.

Apart from the IP-cores described in the communication graph of the benchmark, I at-

tached another target IP-core on the narrow 32 bit switch. This core called Semaphore

is used to synchronize the operation of the Video, LCD and HDMI IP-cores when they

change from one frame to another.

8.2.3 Experimental results

In the experiments, using the benchmark described in Section 8.2.2.2, I analyze how

the bandwidth and latency are affected by the presence of interfering flows at the

WideIO DRAMmemory. I analyze 5 setups based on the three architectures described

in Section 8.2.1. The simulations setups with their corresponding names are the

following:

• Separate 1CH: uses a distributed DRAM controller architecture with separate in-

dependent channels. This simulates the worst-case when all the active memory

regions addressed by the ITGens are mapped to the same channel;
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8.2. Accessing multiple DRAM channels

• Separate 4CH: uses the same distributed architecture, but in this case the active

memory regions were carefully mapped to different channels. For example for

the Video IP-core which generate high bandwidth traffic, the address memory

regions have been distributed in all channels.

• Controller I 3 Port: uses a centralized DRAM architecture with interleaving at

the controller. As there are more ITGens than ports in this setup several ITGens

have been assigned to use the same port (only three of the 4 ports are used).

• Controller I 4 Port: uses the same centralized architecture, but the ITGens have

been assigned to all four ports so that there is less contention at the DRAM

controller ports.

• NI I: uses a distributed DRAM controller architecture, however the address space

it is interleaved between the four channels of the WideIOmemory. In this case

the initiator NIs are responsible to split transactions into packets and to send

the packets to the appropriate memory channel according to the address.

The simulation parameters used for the initiator traffic generators are presented in

Table 8.3. For the initiator NIs, I used 2-deep bus transaction buffers and 5-deep

FLIT FIFOs. For the setups using the distributed DRAM controller with independent

channels and for the centralized DRAM controller, reorder buffers are not needed

as there is a single route to reach the memory controller for the ITGens that require

responses to be return in-order. In case of the distributed controller with splitting and

interleaving at the NI, reorder buffers are not needed for the CPU, GPU and Video

IP-cores. That is because the largest transaction is the same size as the interleaving

size so no splitting is required. Also these traffic generators accept responses out-

of-order. In case of the LCD and HDMI display controllers as well as the DMA, the

transactions have to be split and therefore a reorder buffer is needed. I used 24-deep

reorder buffer (each entry in the reorder buffer is a bus transaction). In case of the

Audio, WiFi, Sensor andModem IP-cores, no splitting is necessary, but the responses

have to be delivered in order so, there is a reorder buffer. Since these cores are low

bandwidth, I use 16 deep reorder buffers.

8.2.3.1 Throughput oriented communication

In the benchmark, I use IP-cores that are throughput sensitive (Video, HDMI, LCD)

and some that are latency sensitive (CPU, Modem). In this section, I will have a

closer look at two representative throughput sensitive IP-cores, namely he Video

accelerator and the HDMI display controller. Both IP-cores require a significant

amount of bandwidth and have to synchronize after finishing a frame. The Video

controller generates small transactions, while the HDMI display controller transfers

193



C
h

a
p

te
r

8
.

E
ffi

c
ie

n
t

m
e

m
o

ry
a

c
c

e
ss

Out-of-order Maximum outstanding Number of Address Transaction

Reads Writes transaction generators mode sizes

CPU yes 4 8 6 trace+incremental 64b, 512b

GPU yes 8 8 1 incremental 512b

Video yes 30 30 5 block + random block addressing 128b, 256b

LCD yes 10 10 1 incremental with synchronization 1kB

HDMI yes 10 10 1 incremental with synchronization 1kB

DMA yes 10 10 3 incremental 128b, 1kB

WiFi no 4 4 1 incremental 128b

Sensors no 2 2 1 incremental 32b

Audio no 2 2 1 incremental 128b

Modem no 2 2 1 incremental 256b

T
a
b
le
8
.3
:
S
im

u
la
tio

n
p
a
ra
m
e
te
rs
fo
r
th
e
IT
G
e
n
s

1
9
4



8.2. Accessing multiple DRAM channels

�

���

����

����

����

����

����

����

����

��	
�
��


���

��	
�
��


���

����������


�
�
����

����������


�
�
����

��
�

��
��
�
��
�	
�

�

���

���

���

���

Figure 8.26: Average latency for the Video IP
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Figure 8.27: Average latency for the HDMI IP
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Figure 8.28: Average frame-rate
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data in long 1kB burst transactions. In Figure 8.26, I show the trend of the average

latency for the Video transactions as more interfering bandwidth is introduced with

the more complex use-cases (in UC1 only the Video and the HDMI cores are active,

while in UC4 all the IP-cores in the benchmark are active). As can be seen from the

plot the distributed interleaving scheme that balances the traffic in the network as

well has the lowest latency. Moreover compared to the other schemes, the distributed

interleaving is also the least sensitive to the interfering bandwidth, as it has the lowest

growth. The figure also shows that the mapping of data in memory has a significant

impact on the performance of the distributed controller with independent channels.

However with the best memory mapping as well as with the distributed controller

with NI interleaving the latency is lower than in the case of the centralized controller.

This is because both schemes exploit the parallelism in the NoC as well.

Similarly, in Figure 8.27, I show the average latency of the HDMI transactions. Please

note that I measure latency of a transaction from the time it is generated by the ITGen

and placed in the read/write buffer of the ITGen until the time it received the response

and it is committed by the ITGen (in case of out-of-order ITGens the transactions are

committed in-order so any completed transactions cannot be committed until all

previous transactions have been completed and committed). In case of theHDMI core,

data is transfered in 1kB transactions. Therefore in case of the distributed controller

with interleaving in the NI, the transactions have to be split over multiple packets, in

order to be sent to the appropriate channel. The different response packets have to

be reordered and assembled such that the response from the NI to the ITGen is sent

as a single burst of in-order bus transfers. The number of packets of the transactions

that can be sent out is limited by the size of the reorder buffer. This results in a higher

latency per transaction for the HDMI core as can be seen from the figure. However

since a single transactions transfers 1kB of data these transfers are very efficient and

the increased latency does not impact the overall performance of the system. If we

look at the latency per byte for these 1kB transfers we can see that they are 11 times

more efficient than the smaller transfers generated by the Video core (1.1 ns/byte for

HDMI and 12.2 ns/byte for the Video in UC4), which explains why the larger latency

of the HDMI core does not impact the system performance.

To analyze the overall system performance, in Figure 8.28, I show the frame rates

obtained for the different use-cases in each simulation setup. The distributed DRAM

controller with interleaving at the NI obtains the best frame rate and also has the

lowest degradation of the frame rate as more interfering communication flows are

activated. The frame rate of this setup is better even than that of the distributed

controller with separate independent channels even for the best memory allocation

scheme, as it balances the traffic from all the cores in the network as well. Surprisingly

the centralized controller where only three ports are used has better frame rate than
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when 4 ports are used. That is because in the case of the three port setup some of

the interfering flows that are mapped on the same port interferer among themselves

impacting their performances and in this particular case favoring the Video core. This

also shows the sensitivity of the centralized controller scheme to the mapping of the

communication flows to ports.

8.2.3.2 Bandwidth analysis

The benchmark is DRAM centric with all communication being between the IP-cores

and the DRAM controller to be is representative of real applications. Therefore one

important metric to assess the performance of the SoC is also the total read/write

bandwidth to the DRAM memory. In Figure 8.29, I show the bandwidth obtained

with each simulation setup for all use-cases normalized to the bandwidth required

by that use-case. Please note that the reported bandwidth refers to the effective data

bandwidth measured by the ITGens, the actual bandwidth transfered in the NoC

is higher due to packetization and the bandwidth inflation generated by the size

converters.

As expected, due to the balancing of traffic through the NoC as well, the distributed

DRAM controller with NI interleaving setup achieves the best performance in terms

of total average bandwidth as well (6184MB/s out of 6980MB/s demanded by use-case

4). The distributed controller with separate independent channels achieves similar

performance for the most demanding use-case when the allocated memory is well

distributed in the channels. However, to achieve that performance with independent

channels the hardware would need to be exposed to the software and the managing

operating systems should be smart enough to allocate memory such as to balance

the channel usage. In case of the hardware interleaving scheme the memory access is

transparent to the software, favoring the NI interleaved scheme which balances traffic

in the interconnect as well.

8.2.3.3 Latency sensitive communication

So far I have analyzed the bandwidth oriented communication flows. In this section

I analyze two of the latency sensitive IP-cores. One of them is the CPU where read

are on the critical execution path and therefore the CPU performance is dependent

on the latency of reads. On the other hand the CPU generates a significant amount

of bandwidth as well. Another latency sensitive core is the Modemwhich has strict

latency requirement imposed by the communication protocol, however the Modem

core only requires little bandwidth.

In Figure 8.30, I present the average latency of the CPU for the three use-cases where
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Figure 8.29: Average total bandwidth
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Figure 8.30: Average latency for the CPU IP
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Figure 8.31: Average latency for the Modem IP
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the CPU is active. As can be seen from the figure the latency of the CPU is only slightly

larger for the distributed controller with interleaving at the NI when compared to the

centralized controller (around 17% for UC4). That is because in the NI interleaving

scheme the transaction from the CPU are distributed to all ports and they interfere

with the traffic of the high-bandwidth cores at all the ports. In the other case the CPU

is mapped by itself to one port. Please note however that in the case of the distributed

controller with separate independent channels the mapping of memory to channels

is application dependent and it may not be possible to achieve a good mapping in all

cases. As can be seen from the figure for a badmapping of thememory to channels, the

controller with separated channels has very poor performance. Similarly the latency

of my solution is slightly larger than that of the centralized controller. Nevertheless,

it may be very expensive to physically implement the centralized controller (due to

the distance between the channel interfaces), and as such the distributed interleaving

method provides a good trade off. Moreover the distributed controller can provide

other opportunities for the adaptation of the NoC topology (i.e., connect the different

channel controller to different switches).

In Figure 8.31, I show the average latency for the Modem core. This core is latency

sensitive, but has low bandwidth requirements. From the setups that perform inter-

leaving the NI interleaved case has the lowest latency. The latency for the controller

with separated independent channels, for the best mapping has the lowest latency.

That is because in this case the communication of the Modem is to a separated chan-

nel where there are no high-bandwidth cores mapped. Interestingly, as the core has

low bandwidth its latency is more affected by the port assignment in the case of the

centralized controller.

8.3 Summary

In this chapter, I presented the power and performance trade-offs for the NoC design

in the presence of a bottleneck core like the DRAM controller. I analyzed three designs

and showed that physically separating the DRAM traffic from the non DRAM traffic

leads to much lower latency for the non DRAM flows. I also showed that the power

overhead of physically splitting the DRAM and non DRAM traffic is similar to other

solutions like end-to-end flow control, which makes for the use of a split network to

the DRAM controller an efficient solution. In the presence of heterogeneous cores that

have different data sizes I show how the DRAM network can be optimized to reduce

the number of data size converter. I also proposed a new architecture for the data size

converter so that it can transfer data at full bandwidth. The optimized network leads

to power savings of 23%.

3D-stacked WideIO DRAMmemory promises to deliver the required bandwidth to
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satisfy the demands of current and future application running onmobile SoCs at ac-

ceptable power-levels, by providing multiple channels and wide data interfaces. The

challenge for SoC designers is to efficiently access the multiple channels provided by

the WideIO interface, to achieve the required bandwidth and latency for communica-

tion flows. In this chapter, I also analyzed three architecture for designing thememory

controller that access the WideIO DRAMmemory. I proposed a new distributed in-

terleaving method for one of the architectures. The newmethod capitalizes on the

advantages of the two analyzed methods, to provide a simple DRAM controller design

and to balance the traffic in both the NoC and at the memory channels transparent to

the software. From experiments, I show that the proposed distributed interleaving

memory access method improves the overall throughput while minimally impacting

the performance of latency sensitive communication flows.
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9 Conclusions and future directions

In this chapter, I summarize the major contribution of the thesis. I will also present a

summary of the possible future avenues that can be pursued.

9.1 Summary of the thesis

In the thesis I have focused on twomain aspects: i) in the first part I have presented

methods to design NoCs considering the constraints and challenges of new technolo-

gies and ii) in the second part I have dealt with achieving different levels of Quality

of Service (QoS). While the first part focuses exclusively on design aspects, the sec-

ond part combines both design methods with performance estimation techniques to

achieve predictable operation of the NoC topologies.

In Chapter 3, I have presented algorithms andmethods to perform application specific

NoC topology synthesis for SoCs designed and manufactured using 3D integration

technologies. Themethods not only take into account the new constraints imposed by

3D integration, but also address some newproblems that do not exist in 2D integration

(i.e., the assignment of switches to layers). These methods have then been extended

to design NoCs for multi-synchronous SoCs in Chapter 4. They also address the

possibility of shutdown of clock domains to reduce the standby power. In Chapter 5, I

have presented an algorithm to detect and remove deadlocks in application-specific

topologies. The algorithmminimally adds communication channels to reroute flows

as to remove deadlock conditions. I have also shown how this algorithm can be

integrated with the topology synthesis for 3D-NoCs, as to improve the quality of

solutions in SoCs that have tight constraints on vertical connectivity.

To provideworst-case latency guarantees with best effort NoC components, in Chapter

6, I have integrated a worst case performance analytical model with the synthesis al-

gorithm. The resulting synthesis method can realize NoC topologies that optimize the
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power consumption and also satisfy hard real-time constraints. As many applications

require average case performance, in Chapter 7, I have presented a fast evaluation

model for the NoC performance, base on partial simulation. This model speeds up

the evaluation time and still maintains the advantages of full simulation. In order

to provide predictable performance, it is not sufficient to only analyze the NoC, but

the bottleneck peripherals have to be evaluated as well. Therefore in Chapter 8, I

have investigated different aspects related to accessing DRAMmemory. I have also

proposed several architectures to address the related problems with memory access.

9.2 Summary of the main contributions

With this thesis I bring two kinds of contributions: scientific and engineering. Based

on the nature of the contributions, they are summarized as follows:

• Scientific: I presented new algorithms to performNoC topology synthesis in new

technologies (e.g. three dimensional integration andmulti-synchronous design).

I have also presented an algorithm to detect and remove deadlocks in application

specific NoC topologies as well as to perform synthesis of predictable NoC

topologies. These methods can be integrated in tools to be used by designers

when developing NoCs and can also be used as a starting point to solve similar

problems related to NoC design.

• Engineering: The engineering contribution comes from the integration of the

proposed methods in CAD tools that have been used to preform extensive exper-

iments which are presented in the thesis. The experiments can steer designers

to restrict the broad design space that they need to explore when designing the

interconnect. I have also performed experiments and presented architecture

and results for efficiently accessing current and future multi-channel memory

systems.

9.3 Future directions

There are still many different research topics that are not covered by this thesis. In this

section I will mention some of the directions that can be pursued based on the work

in this thesis:

• Design of NoCs with distributed switch architectures: The synthesis design meth-

ods that I have presented in thesis assume a NoC architecture based on central-

ized switches as in the ×pipes library [160]. These switches are configurable in

the number of inputs and outputs. However a M by N switch can be distributed
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in N switches of size M by 1. Some NoC libraries, like the one from Arteris [170],

use this distributed switch architecture. A distributed switch offers different

opportunities to establish the connectivity and it may require different synthesis

methods to optimize the designed NoC.

• Automatic synthesis of the DRAM network for heterogeneous IP-core data-bus

sizes: In Chapter 8, I show how a separate network to DRAM can be optimized

in the presence of IP-cores with heterogeneous data-bus sizes. However, the

optimization was done manually. A synthesis algorithm can be designed based

on the presented observations to design automatically such NoCs toward the

DRAMmemory controller.

• Detection and avoidance of message-level deadlocks: To avoid message level

deadlocks, currently message classes (e.g. requests, responses) are separated

either by using different virtual channels or by using different physical channels

(i.e., separate networks per message class). However in power constrained SoCs

it may be useful to share channels between the message classes provided that by

sharing message-level deadlocks cannot appear. The methods that I presented

in Chapter 5 could be extended to take into account the dependencies between

message classes and to force the usage of a separate channel only where required.

• Extension of the worst-case latency estimation model for multi-synchronous de-

signs: The worst-case latency models used in this thesis to design real-time

NoCs with best-effort hardware supports only synchronous operation. There-

fore the synthesis algorithm can only be used to design synchronous NoCs.

By extending the model to support multiple frequencies, it would enable the

synthesis algorithm to design NoC with hard worst-case latency guarantees in

multi-synchronous SoCs, with minimal change.

• Fault tolerant NoC topology synthesis: As technology scaling continues to shrink

transitory sizes, devices become unreliable and can break down during opera-

tion. To prevent the complete failure of an SoC a certain amount of redundancy

can be added in the interconnect to prevent it. One important tasks is to find

the optimal way of adding the redundancy during the NoC design process.

• Provide Quality-of-Service for critical flows in multi-channel DRAM systems with

distributed interleaving: In Chapter 8, I have showed the advantages of using

an interleaved memory systems when there are multiple memory channels

available. Future work can focus on understanding the relationship between

network topology and the distributed interleaving scheme, and to analyze how

to implement low overhead Quality-of-Service support to aggressively reduce

latency for critical flows.
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Even tough NoCs are scalable and can provide the required performance for the on-

chip communication, accessing storage still remains an important bottleneck for

system performance. Therefore in my opinion the most important direction for fu-

ture work is to provide better integration between the communication infrastructure

and the DRAM controllers. By removing the boundaries between the NoC and the

DRAM controllers and co-designing the NoC with the memory hierarchy could poten-

tially open different avenues for optimization and for improving the scalability of the

memory-system. As 3D-integration makes it possible to have large memories on-chip

and provides different opportunities to interconnect the logic to the memory, offering

services, required for efficient memory access, distributed in the NoC could poten-

tially be the key to scalability of the memory-system (both in terms of storage capacity

and transfer bandwidth). On the other hand continuing the work on improving the

tools for constructing predictable application specific NoCs, in order to keep up with

the developments in the integration technologies, is also important. The NoC should

be a transparent communication service which complies with the communication

requirements, so that the SoC designers can focus on the other bottlenecks to system

performance, like memory bandwidth.
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