Reconfigurable Nanowire Electronics – Device Principles and Prospects

W. M. Weber, A. Heinzig, D. Martin, J. Trommer, F. Kreupl and T. Mikolajick

Namlab gGmbH Dresden Germany

March 25. 2013

FED '13 – Workshop, Lausanne

Basics and limitations of present CMOS technology

- ~ 88 % of IC market (\$320 bn: 2013) covered by CMOS
- n- / p- FETs alternated to constrain energy consumption to the switching event
- **n-** and **p-** FETs differ in technology (doping, dev. dimensions, strain, gate)
- Limited to static and single switch function

S. Selberherr TU Wien

The quest for the "universal" transistor

Wish list for a universal nano-device for logic operations:

- Provide both n- and p- FET characteristics upon request.
 - -> Electrically configurable characteristics
 - -> No pre-program routine
- Cost-effective and reliable fabrication
 - -> Compatible with silicon technology
 - -> Suppression of doping variability
- Sufficiently high performance
 - -> Enhanced electrostatics: multi-gated nanowire geometry
 - -> Circuit maturity: drive next stage's charge

Infineon FinFET Intel FinFET

Infineon Trigate multibit flash

3

S Feste (2009)

Approach & challenges with Schottky FETs ***

- Intrinsic Si with near midgap metal electrodes.
- Filter out segments of ambipolar IV charact.

Issues with SBFETs to be solved :

- High variability (varying junction areas)
- Low drive currents (tunnel barrier in on-state)
- Degraded off state > ambipolarity removed
- Exponential turn-on in output characteristics (presence of energy barriers)

Intrinsic Si-nanowires as vehicles

VLS / VSS growth

Controllable diameters, starting from Ø \sim 3nm

Diameter dependent lattice direction

thinner NWs <- <110>; <112>; <111> -> thicker NWs

Ni - Si nanowire solid state reaction kinetics

- Phase formation dependent on crystal orientation:
- <110> -> Direct cubic NiSi₂ lattice matched nucleation -0.4 % lattice mismatch to Si <111>
- <112> -> Sequence: Ni₂Si / NiSi / NiSi₂

Sharp and flat interfaces-> known junction area -> low variability

ATOMIC PERCENT SILICON

liauid

60

80

100

20

1500

1300

Working principle Schottky FETs

Transport alteration in metal / Si / metal nanowires

> In contrast to a MOSFET a point potential selectively controls electron / hole transport

D. Martin, W. Weber et al. Phys. Rev. Lett. 107, 216807 (2011)

RFET: Reconfigurable Si nanowire FET

- Longitudinal nanowire heterostructure: NiSi₂ / intrinsic Si / NiSi₂
- Thermal silicon dioxide shell -> No need for extra spacer
- Individual gating of each Schottky junction -> valves for electrons / holes

A. Heinzig, W. Weber et. al Nano Lett 12, 119 (2012) Weber, W.M. et al. *IEEE Proc. Nanotech Conf. 2008*, p. 580 (2008)

Reconfigurable Si nanowire FETs

Ion / Ioff > 5 x 10⁷ ; Jon = 6 x 10⁵ A/cm² @ Vd=1V ; $g_m = 130 \mu$ S/ μ m

A. Heinzig, W. Weber et. al Nano Lett 12, 119 (2012)

Reconfigurable Si nanowire FETs: transport

Transport path: sand glass form

- Gated region at the nanowire surface / interface to dielectric
- Ungated region in the nanowire's core
- Less scattering expected in active region

> Ultra low gate capacitances $C = 3*10^{-17}F / Cg \sim 10^{-4} fF/\mu m$

Prospects for enhanced symmetry & performance

Trivial adjustment of barrier height φ_n vs. φ_p
Alter tunneling transmission

φn∜

S

 $T_{n,p}(WKB) \propto e^{rac{-4w\sqrt{2m_{n,p}^*}\phi_{n,p}}{3q\hbar V}}$

- Alter barrier width w (electrost. geom, dsi, dox, K)
- > Replace channel material m^* , $\varphi_{p,n}$, E_g
- Ge with NiGe contacts, boost Ion without degrading Ioff

 \triangleright

Eg

W

Summary

Formation of metal / silicon nanowire heterostructures

Formation of single crystal NiSi₂ Sharp silicide to Si interface

Transport properties

carrier type injected controlled by point potential **Reconfigurable electronics**

p- and *n*- type behavior on the same devices No doping required

Issues with SBFETs adressed:

- ✓ High variability (varying junction areas)
- ✓ Low drive currents (tunnel barrier in on-state)
- ✓ Degraded off state > ambipolarity removed
- ✓ Exponential turn-on in output characteristics

DFG Deutsche Forschungsgemeinschaft Project ReproNano & Cluster of Excellence : cfAED

SAB: basic funding