

Ambipolar Logic Circuit Design and Synthesis

I. O'Connor, K. Jabeur, S. Le Beux, D. Navarro

Lyon Institute of Nanotechnology Ecole Centrale de Lyon, France

ian.oconnor@ec-lyon.fr

Institut des Nanotechnologies de Lyon UMR CNRS 5270

FED'13, EPFL (CH)

Ambipolar nanofabrics

- At nanoscale, only regular fabrics are viable for systematic variability (e.g. OPC) and for self-assembly
- Still random variability need device-level tuning and system-level reconfigurability
- Multi-gate devices can offer this level of flexibility
- Ambipolar double gate devices in regular nanofabrics could offer a means to solve many problems at the same time
- This work: based on CNT fabric
- Techniques also applicable to SiNW, GNR ...

Institut des Nanotechnologies de Lyon UMR CNRS 5270

FED'13, EPFL (CH)

Nanograin architecture

- Layer of aligned semiconducting CNTs
- CMOS-type interconnect layers
- Fine-grain reconfigurable cells
- Fixed intra-matrix interconnect
- Reconfigurable inter-matrix interconnect

Institut des Nanotechnologies de Lyon UMR CNRS 5270

FED'13, EPFL (CH)

Device and model data

Parameters	DG CNFET	PTM 16nm LP
Drain access channel length	50nm	0
Source access channel length	50nm	0
Inner channel	20nm	16nm
Width	50nm	56nm(n-type)/80nm(p-type)
Chirality (n,m)	(11, 0)	-
Nb of nanotubes	12	-
Diameter of 1 nanotube	0.86nm	-
Supply voltage	0.9 V	0.9 V

DG-CNTFET: top view

Agenda

- Compact ambipolar logic
 - TTS structure primitive
 - Double-Gate static logic: principle and evaluation
 - Double-Gate dynamic logic: principle and evaluation
- Reconfigurable logic gates
 - Am-ICDGFET transmission gate primitive
 - x-function logic cell synthesis methodology
 - Performance comparison
- Conclusion

Institut des Nanotechnologies de Lyon UMR CNRS 5270

FED'13, EPFL (CH)

Compact ambipolar logic out Basic idea: use Am-**`0′** In₁′ +V **ICDGFET** device to **`1**′ replace two In. transistors in series **`0'** In₂-+V (TTS) structures critical for path resistance and gate $V_0 = 0V$ $V_{dd} = +V$ capacitance optimization, with **`0**′ **0V** In₁ consequent impact on delay, power and

area

0V

`0′

In₂

FED'13, EPFL (CH)

out

 $V_0 = 0V$

 $V_{dd} = +V$

S

D

out

`0′

In₁

http://inl.cnrs.fr

\1/

In₂

`0′

In₂

D

Static Logic structures

Example: XOR

- Applicable to any complementary static logic gate containing TTS structures
- efficient with complex gates (XOR/XNOR,

FED'13, EPFL (CH)

Example: 2:1 and 4:1 MUX

Institut

Dynamic Logic structures: 3 approaches

Examples

Performance Comparison

Reconfigurable logic gates

- Basic idea: configure switching properties of logic networks with back gate voltages
- Requires transmission gates to propagate logic levels with no degradation and for a wide range of data and control voltage combinations
- Also requires gate synthesis methodology for tunable functionality

Institut des Nanotechnologies de Lyon UMR CNRS 5270

FED'13, EPFL (CH)

Reconfigurable logic cell CNT-DR7T

- boolean data inputs A and B (logic level at V_{ss}=0V and V_{dd}=1V) + circuit output Y
- four-phase non-overlapping clock signals
 - two pre-charge inputs PC_1 , PC_2
 - two evaluation inputs EV_1 , EV_2
- control inputs V_{bgA}, V_{bgB}, V_{bgC} to configure circuit to 1 of 14 functions (back-gate bias -1V / p-type and +1V / n-type)

V _{bgA}	V _{bgB}	V _{bgC}	Y					
+V	+V	+V	A+B					
+V	+V	-V	A+B					
+V	-V	+V	A.B					
+V	-V	-V	A+B					
-V	+V	+V	A.B					
-V	+V	-V	A+B					
-V	-V	+V	A.B					
-V	-V	-V	A.B					
+V	0	+V	A					
+V	0	-V	Α					
0	+V	+V	B					
0	+V	-V	В					
0	0	0	1					
0	0	-V	0					
. O'Coni	O'Connor et al., IFFF TCAS 2007							

Institut des Nanotechnologies de Lyon UMR CNRS 5270

FED'13, EPFL (CH)

Am-BDD design technique

16-function (complete operator set)

TABLE II. 16-FUNCTIONS CONFIGURATION TABLE

a	b	с	d	e	f	g	h	i	j	k	l	F
0	0	0	-v	0	0	+V	0	-V	0	0	+V	$\overline{A+B}$
0	+V	0	0	-v	0	0	0	0	-v	+V	0	A+B
0	-V	0	0	+V	0	0	0	0	-V	+V	0	$\overline{A+B}$
0	0	0	+V	0	0	-V	0	-V	0	0	+V	$A \bullet \overline{B}$
0	+V	0	-V	0	0	0	0	-V	0	0	+V	$A+\overline{B}$
0	0	0	0	-v	0	+v	0	0	-v	+v	0	$B \bullet \overline{A}$
-V	0	0	0	0	0	0	0	0	0	0	0	Т
0	0	0	0	0	0	0	+V	0	0	0	0	\bot
0	0	0	0	+V	0	-v	0	0	-V	+V	0	$A \bullet B$
0	-V	0	+V	0	0	0	0	-V	0	0	+V	$A \bullet B$
0	+V	0	0	0	0	-V	0	0	0	0	0	A
0	-v	0	0	0	0	+V	0	0	0	0	0	\overline{A}
0	0	+V	0	0	0	0	0	-V	0	0	+V	\overline{B}
0	0	0	0	0	+V	0	0	0	-V	+V	0	B
0	0	0	-V	+V	0	0	0	-V	-V	+V	+V	Æ₿
0	0	0	+V	-V	0	0	0	-V	-V	+V	+V	A⊕B

12 configuration signals!

FED'13, EPFL (CH)

12-function

- Tune the functionality
- Remove T, \perp , B, !B

b	d	e	g	i	j	k	1	F
V /2	0V	V /2	$+\mathbf{V}$	0V	V /2	V/2	$+\mathbf{V}$	$\overline{A+B}$
$+\mathbf{V}$	V /2	0V	V /2	V /2	0V	$+\mathbf{V}$	V /2	A+B
0V	V /2	+V	V/2	V /2	0V	$+\mathbf{V}$	V /2	
V/2	+V	V/2	0V	0V	V/2	V/2	$+\mathbf{V}$	$A \bullet \overline{B}$
+V	0V	V/2	V/2	0V	V/2	V/2	$+\mathbf{V}$	$A + \overline{B}$
V/2	V /2	0V	+V	V /2	0V	$+\mathbf{V}$	V /2	B∙Ā
V/2	V /2	+V	0V	V /2	0V	$+\mathbf{V}$	V /2	A•B
0V	$+\mathbf{V}$	V/2	V/2	0V	V /2	V/2	$+\mathbf{V}$	$\overline{A \bullet B}$
$+\mathbf{V}$	V /2	V/2	0V	V /2	V /2	V /2	V/2	A
0V	V /2	V/2	+V	V /2	V /2	V/2	V /2	\overline{A}
V/2	0V	+V	V/2	0V	0V	+V	$+\mathbf{V}$	Æ⊕B
V /2	$+\mathbf{V}$	0V	V/2	0V	0V	$+\mathbf{V}$	$+\mathbf{V}$	A⊕B

FED'13, EPFL (CH)

6-function

• Strip down to NAND, NOR, INV, BUF

b	d	g	i	1	F
V/2	0V	+V	0V	+V	$\overline{A+B}$
V /2	$+\mathbf{V}$	0V	0V	$+\mathbf{V}$	$A \bullet \overline{B}$
+V	0V	V /2	0V	$+\mathbf{V}$	$A+\overline{B}$
0V	$+\mathbf{V}$	V /2	0V	$+\mathbf{V}$	$\overline{A \bullet B}$
+V	V /2	0V	V/2	V /2	A
0V	V /2	$+\mathbf{V}$	V/2	V /2	\overline{A}

FED'13, EPFL (CH)

Performance comparison

Conclusion and perspectives

- Compact logic gates:
 - Merge TTS structures in function path (+footer) using back gate
 - Fewer transistors : 2n-(m+p) or n+2-m
 - Improved time delay : low V_{TH} , low branch resistance
 - Increased power consumption : low V_{TH}
- Reconfigurable logic gates
 - Am-BDD logic synthesis method
 - Full 16F functionality has worse PDP and area
 - Better results achieved for basic 6F cell
- Towards synthesis flows for reduced functionality cells and static interconnect

Institut des Nanotechnologies de Lyon UMR CNRS 5270

FED'13, EPFL (CH)