Polarity control at Runtime in Double Gate, Gate-All-Around Vertically Stacked Nanowire FETs

M. De Marchi¹, D. Sacchetto¹, S. Frache^{1, 2}, J. Zhang¹, P.-E. Gaillardon¹, Y. Leblebici¹ and G. De Micheli¹

¹ LSI, EPFL, Switzerland ² Politecnico di Torino, Italy

FED 25.03.2013

Our idea

Programmable polarity device
Stacked nanowire channel
Gate-all-around structure
VLSI compatible

FinFET to Nanowire FET

FinFET

FinFET to Nanowire FET

Our Nanowire FET

Circuit design methodology

Programmable polarity SiNWFET

A. Heinzig et al., Nano Letters 2012

Ambipolar Carbon Nanotube FET

Y.-M. Lin *et al.*, IEEE Trans. on Nanotechnology, 2005.

Polarity control: circuit symbol

Polarity control: circuit symbol **PG=1** n-type CG PG

Inverter / buffer circuit

H. Ben Jamaa et al., DATE 2009 M. De Marchi et al., NANOARCH 2010

Inverter / buffer circuit

H. Ben Jamaa et al., DATE 2009 M. De Marchi et al., NANOARCH 2010

Inverter / buffer circuit

H. Ben Jamaa et al., DATE 2009 M. De Marchi et al., NANOARCH 2010

Full swing XOR circuit

H. Ben Jamaa et al., DATE 2009 M. De Marchi et al., NANOARCH 2010

The device

Features we need

Polarity control
Symmetric operation
p-type for PG=0V
VLSI capability

Complete device structure

Complete device structure

 Si NW stack
Low p-doped NWs
Polysilicon gates
Midgap NiSi S/D contacts

▲ 350nm long channel

▲ 350nm long channel▲ 100nm gate segments

▲ 350nm long channel
▲ 100nm gate segments
▲ 20-40nm wire diameter

▲ 350nm long channel
▲ 100nm gate segments
▲ 20-40nm wire diameter
▲ Self-aligned CG

Device cross sections

Device working principle

 $PG = 1 \rightarrow n-type$ CG = 0

 $PG = 1 \rightarrow n-type$ CG = 1

 $PG = 0 \rightarrow p\text{-type}$ CG = 1

 $PG = 0 \rightarrow p$ -type CG = 0

Device $I_d - V_{cg}$

Device $I_d - V_{cg}$

TCAD model validation

Fabricated circuits

2 FET inverter configuration

2 transistor XOR circuit

XQQsTcendesitesisticalation

Full swing XOR circuit

Predicted performance

Device optimization

Predicted $I_d - V_{cg}$

4 transistor XOR simulation

Conclusion

▲ Fabricated device

▽Top-down stacked nanowires
▽Gate-All-Around
♡p-type for PG=0V
▽Symmetric behavior
▲ Demonstrated circuits

Configurable inverter2 Transistor XOR

