Layout Technique for Double-Gate Silicon Nanowire FET with an Efficient Sea-of-Tiles Architecture

Shashikanth Bobba

Prof. Giovanni De Micheli

March 25, 2013

Pierre-Emmanuel, Jian Zhang, Luca, Michele, Davide, Prof. Yusuf Leblebici

INTEGRATED SYSTEMS LABORATORY LS

Functionally Enhanced Device

Double-gate Silicon Nanowire FET

- Dynamic control on the polarity of the device
- Promising feature for future reconfigurable circuits
- Ambipolar logic circuits

Ambipolar Logic Circuits

- Circuits based on double gate ambipolar transistors with controllable polarity (CNFET, SiNW FET, Graphene, ...)
- Optimal for XOR and XNOR dominated circuits

CNT-DR8F

O'Connor, ICECS 07

XOR2

Only 4 transistors

K. Mohanram, DAC 12

ULM (5,3)

Motivation

- Sewer transistors for XOR operation
- Every transistor has two gates to route

Physical Design Challenges

Outline

Introduction

Layout Technique for DG-SiNW FET

- Motivation
- Layout algorithm for XOR embedded Boolean functions

Sea-of-Tiles

Simulation Results

Conclusion

Layout technique for Unate logic functions

- Negative Unate functions: NAND, NOR, AOI, OAI
- Polarity gates are biased to either Vdd or Gnd
- 2-input NAND gate

Complex gates with embedded XOR/XNOR

Outline

Introduction

Layout Technique for DG-SiNW FET

Sea-of-Tiles

- ⊙ Tiles as basic blocks
- ⊙ Optimal Tile
- \odot Power distribution for SoT
- Simulation Results
- Conclusion

Sea-of-Tiles (SoT)

Layout regularity with *Tiles*

Sea-of-Tiles (SoT)

• Gate to Tile mapping

Gates	n1	n2	n3	n4	n5	n6	G1	G2	g1	g2
Xor2	Gnd	Out	Vdd	Gnd	Out	Vdd	А	A'	B′	В
Xnor2	Gnd	Out	Vdd	Gnd	Out	Vdd	А	A'	В	B'
Nand2	Out	Vdd	Out	Out	-	Gnd	А	В	Gnd	Vdd
Nor2	Vdd	-	Out	Out	Gnd	Out	А	В	Gnd	Vdd
Inv2X	Vdd	Out	Vdd	Gnd	Out	Gnd	А	А	Gnd	Vdd
Buf	01	Vdd	02	02	Gnd	01	А	01	Gnd	Vdd

Various logic *Tiles* as basic building blocks

• What is the Optimal Tile?

Design flow for determining the Optimal Tile

Design flow for determining the Optimal Tile

	Tile _{G1}		Tile _{G2}		Tile _{G1h2}		Tile _{G3}	
Gates	#N	#UF	#N	#UF	#N	#UF	#N	#UF
AND2	3	0.6	2	0.6	1	0.75	1	1
AND3	4	0.57	2	0.8	1.38	0.67	2	0.57
AOI21	3	0.6	2	0.6	1	0.75	1	1
A0I221	5	0.56	3	0.625	1.62	0.71	2	0.71
A0I222	6	0.54	3	0.75	2	0.67	2	0.86
AOI22	4	0.57	2	0.8	1.38	0.67	2	0.57
A0I321	6	0.54	3	0.75	2	0.67	2	0.86
BUF	2	0.66	1	1	0.62	1	1	0.67
INV	1	0.66	1	1	0.38	1	1	0.67
NAND2	2	0.66	1	1	0.62	1	1	0.67
NAND3	3	0.6	2	0.6	1	0.75	1	1
NAND4	4	0.57	2	0.8	1.38	0.67	2	0.57
NOR2	2	0.66	1	1	0.62	1	1	0.67
NOR3	3	0.6	2	0.6	1	0.75	1	1
NOR4	4	0.57	2	0.8	1.38	0.67	2	0.57
OAI21	3	0.6	2	0.6	1	0.75	1	1
OAI22	4	0.57	2	0.8	1.38	0.67	2	0.57
OR2	3	0.6	2	0.6	1	0.75	1	1
OR3	4	0.57	2	0.8	1.38	0.67	2	0.57
XNOR2	8	0.57	2	0.8	1.38	0.67	2	0.57
XNOR3	9	0.56	3	0.625	1.62	0.71	2	0.71
XOR2	8	0.57	2	0.8	1.38	0.67	2	0.57
XOR3	9	0.56	3	0.625	1.62	0.71	2	0.71

Result: Impact on Area

 Tile_{G2} and Tile_{G1h2} optimal for mapping logic gates, with respect to reduced routing complexity thereby reducing in the overall active area

Sea-of-Tiles Power Distribution...

Sea-of-Tiles Power Distribution

Outline

Introduction

- Layout Technique for DG-SiNW FET
- Sea-of-Tiles
- Simulation Results
 - Arithmetic Circuits
 - Circuit level Benchmarking

Conclusion

Case study: Arithmetic Circuits

Tarianta	FinFET	DG-SiN	Si-CMOS		
Logic gates	(ns)	CG -> Out	PG -> Out	(ns)	
INV	0.056	0.043	х	0.139	
NAND2	0.066	0.05	x	0.148	
NOR2	0.062	0.072	х	0.172	
XOR2	0.081	0.046	0.108	0.191	
XOR3	0.198	0.079	0.11	0.38	

Cata	Ambipo	lar Logic	CMOS logic		
Gate	Area	Delay	Area	Delay	
XOR2	8	1	12	1	
XOR3	10	1.19	24	2	
Half adder	12	1	16	1	
Full adder	14	1.19	18	2	
4-2 Compressor	26	2	42	4	
5-3 Compressor	38	3	64	4	

Logic Gates (FO4 delay)

Arithmetic Cell Library

Case study: Arithmetic Circuits

Testerator	FinFET	DG-SiN	Si-CMOS		
Logic gates	(ns)	CG -> Out	PG -> Out	(ns)	
INV	0.056	0.043	х	0.139	
NAND2	0.066	0.05	x	0.148	
NOR2	0.062	0.072	х	0.172	
XOR2	0.081	0.046	0.108	0.191	
XOR3	0.198	0.079	0.11	0.38	

Cata	Ambipo	lar Logic	CMOS logic		
Gate	Area	Delay	Area	Delay	
XOR2	8	1	12	1	
XOR3	10	1.19	24	2	
Half adder	12	1	16	1	
Full adder	14	1.19	18	2	
4-2 Compressor	26	2	42	4	
5-3 Compressor	38	3	64	4	

Logic Gates

Arithmetic Cell Library

Circuit Level Benchmarking

Outline

Introduction

- Layout Technique for DG-SiNW FET
- Sea-of-Tiles
- Simulation Results
- Conclusion

Conclusion

- Proposed a novel layout methodology and algorithm for Boolean functions with embedded XOR
- Showed an efficient implementation of Ambipolar circuits with Sea-of-Tiles design methodology
 Area optimal tiles Tile_{G2} and Tile_{G1b2}
- Circuit Level Benchmarking
 - Maximum improvement for Arithmetic circuits (2.8x)
 - Reduction in Leakage power (16x)

