Biconditional BDD: A Novel Canonical BDD Enabling Efficient Direct Mapping of DG Controllable Polarity FETs

Luca Amarú, Pierre-Emmanuel Gaillardon, Giovanni De Micheli

Integrated Systems Laboratory (LSI), EPFL, Switzerland

Monday, March 25th, 2013

Outline

- Introduction and motivation
- Novel representation form: Biconditional BDDs
- Direct mapping of BBDDs onto DG controllable polarity FETs
- Experimental results
- Conclusions

Current Section

- Introduction and motivation
- Novel representation form: Biconditional BDDs
- Direct mapping of BBDDs onto DG controllable polarity FETs
- Experimental results
- Conclusions

Functionality-Enhanced Devices \Rightarrow Opportunities

- Case study: Double-Gate controllable polarity FETs (e.g., SiNWFETs, CNTFETs etc.).

- XOR/XNOR-based logic is remarkably compact.
- Thanks to the biconditional (XNOR) connective embedded in the device operation: on state $(P G=0 \cdot C G=0)+(P G=1 \cdot C G=1)$.

Exploit Controllable Polarity @ Logic Synthesis

- Controllable Polarity \Rightarrow biconditional (XNOR) connective.
- Highlight all the advantageous XOR/XNOR operations

- We need XOR-oriented representation form.
- We propose Biconditional Binary Decision Diagrams natively supporting the biconditional connective.

Current Section

- Introduction and motivation
- Novel representation form: Biconditional BDDs
- Direct mapping of BBDDs onto DG controllable polarity FETs
- Experimental results
- Conclusions

Biconditional Binary Decision Diagrams (BBDDs)

- Biconditional BDDs: BDDs driven by a novel logic expansion.
- Traditional BDDs, Shannon's expansion:

$$
\begin{aligned}
& f(v, w, . ., z)= \\
& v \cdot f(1, w, . ., z)+v^{\prime} \cdot f(0, w, . ., z)
\end{aligned}
$$

- Novel BBDDs, biconditional expansion:

$$
\begin{aligned}
& f(v, w, . ., z)= \\
& (v \oplus w) \cdot f\left(w^{\prime}, w, . ., z\right)+ \\
& (v \odot w) \cdot f(w, w, . ., z)
\end{aligned}
$$

BBDD Ordering and Reduction

- Ordering: assign PV and SV by layers. Order $\pi=\{a, b, c\} \Rightarrow P V, S V$ assignment $\left\{P V_{0}, S V_{0}, P V_{1}, S V_{1}, P V_{2}, S V_{2}\right\}=\{a, b, b, c, c, 1\}$.
- Reduction:

■ Traditional BDD reduction rules \Rightarrow weak-reduction of BBDDs.

- Additional reduction rules \Rightarrow strong-reduction of BBDDs.

$\mathbf{f}=(\mathbf{a} \odot b)(\mathbf{c} \odot d)$

BBDD Ordering and Reduction

- Ordering: assign PV and SV by layers. Order $\pi=\{a, b, c\} \Rightarrow P V, S V$ assignment $\left\{P V_{0}, S V_{0}, P V_{1}, S V_{1}, P V_{2}, S V_{2}\right\}=\{a, b, b, c, c, 1\}$.
- Reduction:

■ Traditional BDD reduction rules \Rightarrow weak-reduction of BBDDs.

- Additional reduction rules \Rightarrow strong-reduction of BBDDs.

BBDD for Majority Function

- Number of nodes for

$$
M A J(n)=\frac{1}{8} n^{2}+\frac{1}{2} n+\frac{11}{8}
$$

- $M A J(3)=4$
- $M A J(5)=7$
- $M A J(7)=11$
- Traditional BDDs:
$M A J(n)=$
$\lceil 0.5 n\rceil(n-\lceil 0.5 n\rceil+1)+1$

BBDD for Adder Function

BBDD Representation Compactness Results

- BBDDs are canonical \Rightarrow enable efficient manipulation algorithms
- Construct BBDDs for general MCNC benchmarks
- Extended APPLY operator (typical bottom-up construction)
- Average resuls:

■ BBDDs are $\mathbf{3 7 \%}$ smaller than traditional BDDs

- Note: XOR-rich benchmarks take large advantage of BBDDs

Current Section

- Introduction and motivation
- Novel representation form: Biconditional BDDs
- Direct mapping of BBDDs onto DG controllable polarity FETs
- Experimental results
- Conclusions

Direct Mapping BBDDs onto (General) Logic

- BBDDs are remarkably compact
- We want to preserve such compactness in the circuit implementation
- Assign logic blocks to BBDDs constituents

BBDDs \rightleftharpoons DG Controllable Polarity FETs

- BBDDs, DG Controllable Polarity FETs \Rightarrow driven by XNOR
- Share the same functionality at the logic level
- BBDD nodes efficient implementation

BBDDs \rightleftharpoons DG Controllable Polarity FETs

- BBDDs, DG Controllable Polarity FETs \Rightarrow driven by XNOR
- Share the same functionality at the logic level
- BBDD nodes efficient implementation

$13 / 19$

Current Section

- Introduction and motivation
- Novel representation form: Biconditional BDDs
- Direct mapping of BBDDs onto DG controllable polarity FETs
- Experimental results
- Conclusions

BBDD-based Direct Mapping Experiments

- Reference synthesis flow: commercial Synopsys Design Compiler.
- Logic circuit benchmarks: MCNC suite (medium/small circuits).
- Average results:

■ Device count: -49.7% w.r.t. Design Compiler.
■ Logic depth: $\sim 7 x$ reduction w.r.t. Design Compiler.

- Runtime: $\sim 2 x$ reduction w.r.t. Design Compiler.

Opportunities for Place\&Route

- $\mathrm{P} \& \mathrm{R}$ is key at advanced technology nodes.
- BBDD-based direct mapping \Rightarrow simplifies $P \& R$
- Why?
- Edges (signal wires) connect only adjacent nodes (cells)
- Branching variables (control wires) are local
- Consecutive SV/PV are assigned to the same signal
- Together with Sea of Tiles (SoT) approach, it is possible to alleviate the interconnection issue in circuits based on DG devices.

Current Section

- Introduction and motivation
- Novel representation form: Biconditional BDDs
- Direct mapping of BBDDs onto DG controllable polarity FETs
- Experimental results
- Conclusions

Conclusions

- DG controllable polarity FETs \Rightarrow new logic synthesis opportunities
- We want an efficient logic representation form to harness controllable polarity functionality (XNOR)
- Biconditional (XNOR) Binary Decision Diagrams
- Direct mapping of BBDDs onto DG controllable polarity FETs natively preserves (and exploit) controllable polarity functionality

Questions?

Thank you for your attention.

Come at my poster for more details!

