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Functionality-Enhanced Devices ⇒ Opportunities

• Case study: Double-Gate controllable polarity FETs (e.g.,
SiNWFETs, CNTFETs etc.).
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• XOR/XNOR-based logic is remarkably compact.

• Thanks to the biconditional (XNOR) connective embedded in the
device operation: on state (PG=0 · CG=0) + (PG=1 · CG=1).
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Exploit Controllable Polarity @ Logic Synthesis

• Controllable Polarity ⇒ biconditional (XNOR) connective.

• Highlight all the advantageous XOR/XNOR operations

• We need XOR-oriented representation form.

• We propose Biconditional Binary Decision Diagrams natively
supporting the biconditional connective.
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Biconditional Binary Decision Diagrams (BBDDs)

• Biconditional BDDs: BDDs driven by a novel logic expansion.

• Traditional BDDs, Shannon’s
expansion:
f(v, w, .., z) =
v· f(1, w, .., z)+ v′· f(0, w, .., z)
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• Novel BBDDs, biconditional
expansion:
f(v, w, .., z) =
(v ⊕ w)· f(w′, w, .., z)+
(v � w)· f(w,w, .., z)
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BBDD Ordering and Reduction

• Ordering: assign PV and SV by layers. Order π={a, b, c} ⇒ PV ,SV
assignment {PV0, SV0, PV1, SV1, PV2, SV2}={a, b, b, c, c, 1}.

• Reduction:
Traditional BDD reduction rules ⇒ weak-reduction of BBDDs.
Additional reduction rules ⇒ strong-reduction of BBDDs.
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BBDD for Majority Function
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• Number of nodes for
MAJ(n) = 1

8n
2 + 1

2n+ 11
8

• MAJ(3) = 4

• MAJ(5) = 7

• MAJ(7) = 11

• ...

• Traditional BDDs:
MAJ(n) =
d0.5ne(n− d0.5ne+ 1) + 1
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BBDD for Adder Function
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• Two binary numbers a, b

• ADD = a+ b,
length(a)=length(b)=n

• Number of nodes for
ADD(n) = 3n+ 1

• Traditional BDDs:
ADD(n) = 5n+ 2
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BBDD Representation Compactness Results

• BBDDs are canonical ⇒ enable efficient manipulation algorithms

• Construct BBDDs for general MCNC benchmarks

• Extended APPLY operator (typical bottom-up construction)

• Average resuls:

BBDDs are 37% smaller than traditional BDDs

• Note: XOR-rich benchmarks take large advantage of BBDDs
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Direct Mapping BBDDs onto (General) Logic

• BBDDs are remarkably compact
• We want to preserve such compactness in the circuit implementation
• Assign logic blocks to BBDDs constituents
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BBDDs 
 DG Controllable Polarity FETs
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BBDD-based Direct Mapping Experiments

• Reference synthesis flow: commercial Synopsys Design Compiler.

• Logic circuit benchmarks: MCNC suite (medium/small circuits).

• Average results:

Device count: -49.7% w.r.t. Design Compiler.
Logic depth: ∼7x reduction w.r.t. Design Compiler.
Runtime: ∼2x reduction w.r.t. Design Compiler.
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Opportunities for Place&Route

• P&R is key at advanced technology nodes.

• BBDD-based direct mapping ⇒ simplifies P&R

• Why?

Edges (signal wires) connect only adjacent nodes (cells)
Branching variables (control wires) are local
Consecutive SV/PV are assigned to the same signal

• Together with Sea of Tiles (SoT) approach, it is possible to alleviate
the interconnection issue in circuits based on DG devices.
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Conclusions

• DG controllable polarity FETs ⇒ new logic synthesis opportunities

• We want an efficient logic representation form to harness
controllable polarity functionality (XNOR)

• Biconditional (XNOR) Binary Decision Diagrams

• Direct mapping of BBDDs onto DG controllable polarity FETs
natively preserves (and exploit) controllable polarity functionality
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Questions?

Thank you for your attention.

Come at my poster for more details!
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