HEURISTIC TWO-LEVEL LOGIC OPTIMIZATION

(C) Giovanni De Micheli

Stanford University

Heuristic minimization

(C) GDM

- Provide irredundant covers with 'reasonably small' cardinality.
- Fast and applicable to many functions.
- Avoid bottlenecks of exact minimization:
- Prime generation and storage.
- Covering.

Heuristic minimization Principles

- Local minimum cover:
- Given initial cover.
- Make it prime.
- Make it irredundant.
- Iterative improvement:
- Improve on cardinality by 'modifying' the implicants.

Heuristic minimization Operators

- Expand:

- Make implicants prime.
- Remove covered implicants.

- Reduce:

- Reduce size of each implicant while preserving cover.

- Reshape:

- Modify implicant pairs: enlarge one and reduce the other.
- Irredundant:
- Make cover irredundant.

Example

- © GDM	
0000	1
0010	1
0100	1
0110	1
1000	1
1010	1
0101	1
0111	1
1001	1
1011	1
1101	1
α $0 * * 0$	1
β *0*0	
γ 01**	1
$\delta \quad 10 * *$	1
$\begin{array}{ll}\epsilon & 1 * 01\end{array}$	1
$\zeta *^{*} 101$	

Example

Expansion

- Expand 0000 to $\alpha=0 * * 0$.
- Drop 0100, 0010, 0110 from the cover.
- Expand 1000 to $\beta=* 0 * 0$.
- Drop 1010 from the cover.
- Expand 0101 to $\gamma=01 * *$.
- Drop 0111 from the cover.
- Expand 1001 to $\delta=10 * *$.
- Drop 1011 from the cover.
- Expand 1101 to $\epsilon=1 * 01$.
- Cover is: $\{\alpha, \beta, \gamma, \delta, \epsilon\}$.

Example

Reduction

- Reduce $0 * * 0$ to nothing.
- Reduce $\beta=* 0 * 0$ to $\widetilde{\beta}=00 * 0$
- Reduce $\epsilon=1 * 01$ to $\tilde{\epsilon}=1101$
- Cover is: $\{\tilde{\beta}, \gamma, \delta, \tilde{\epsilon}\}$.

Example
Reshape

- Reshape $\{\tilde{\beta}, \delta\}$ to: $\{\beta, \tilde{\delta}\}$
- where $\tilde{\delta}=10 * 1$.
- Cover is: $\{\beta, \gamma, \tilde{\delta}, \tilde{\epsilon}\}$.

Example
 Second expansion

- Expand $\tilde{\delta}=10 * 1$ to $\delta=10 * *$.
- Expand $\tilde{\epsilon}=1101$ to $\epsilon=1 * 01$.

Example

(C) GDM -

- Expansion:
- Cover: $\{\alpha, \beta, \gamma, \delta, \epsilon\}$.
- Prime, redundant, minimal w.r. to scc.
- Reduction:
- α eliminated.
$-\beta=* 0 * 0 \quad$ reduced to $\widetilde{\beta}=00 * 0$
$-\epsilon=1 * 01$ reduced to: $\tilde{\epsilon}=1101$
- Cover: $\{\widetilde{\beta}, \gamma, \delta, \tilde{\epsilon}\}$.
- Reshape:
$-\{\widetilde{\beta}, \delta\}$ reshaped to: $\{\beta, \widetilde{\delta}\}$ where $\widetilde{\delta}=10 * 1$.
- Second expansion:
- Cover: $\{\beta, \gamma, \delta, \epsilon\}$.
- Prime, irredundant.

Alternative example

(ESPRESSO)

- Expansion:
- Cover: $\{\alpha, \beta, \gamma, \delta, \epsilon\}$.
- Prime, redundant, minimal w.r. to scc.
- Irredundant:
- Cover: $\{\beta, \gamma, \delta, \epsilon\}$.
- Prime, irredundant.

Example

© GDM -

Validity check

- Espresso, MINI:
- Check intersection of expanded implicant with OFF-set.
- Requires complementation.
- Presto:
- Check inclusion of expanded implicant in the union of the ON-set and DC-set.
- Can be reduced to recursive tautology check.

Heuristics

- Expand first cubes that are unlikely to be covered by other cubes.
- Selection:
- Compute vector of column sums.
- Weight: inner product of cube and vector.
- Sort implicants in ascending order of weight.
- Rationale:
- Low weight correlates to having few 1s in densely populated columns.

Example

- $f=a^{\prime} b^{\prime} c^{\prime}+a b^{\prime} c^{\prime}+a^{\prime} b c^{\prime}+a^{\prime} b^{\prime} c$

DC-set $=a b c^{\prime}$

10	10	10
01	10	10
10	01	10
10	10	01

- Ordering:
- Vector: [313131] ${ }^{T}$
- Weights: $(9,7,7,7)$.
- Select second implicant.

Example (3)
© GDM -

- OFF-set:

$$
\begin{array}{lll}
01 & 11 & 01 \\
11 & 01 & 01
\end{array}
$$

- Expand 0110 10:
- 111010 valid.
- 111110 valid.
- 111111 invalid.
- Update cover to:

$$
\begin{array}{lll}
11 & 11 & 10 \\
10 & 10 & 01
\end{array}
$$

Example (4)

$\left.\begin{array}{llll} \\ 11 & 11 & 10 \\ 10 & 10 & 01\end{array}\right]$ GDM —

- Expand 1010 01:
- 111001 invalid.
- 101101 invalid.
- 101011 valid.
- Expanded cover:

$$
\begin{array}{lll}
11 & 11 & 10 \\
10 & 10 & 11
\end{array}
$$

Expand

- Smarter heuristics for choosing literals to be expanded.
- Four step procedure in Espresso.
- Rationale:
- Raise literals so that expanded implicant:
* Covers a maximal set of cubes.
* Making it as large as possible.

Definitions

- free:
- Set of entries that can be raised to 1 .
- Overexpanded cube
- Cube whose entries in free are raised.
- Feasible cover
- Expand a cube to cover another one while keeping it as an implicant of the function.

Expand in ESPRESSO

- Determine the essential parts.
- Determine which entries can never be raised, and remove them from free.
- Determine which parts can always be raised, raise them, and remove them from free.
- Detection of feasibly covered cubes.
- If there is an implicant β whose supercube with α is feasible, repeat the following steps.
* Raise the appropriate entry of α and remove it from free.
* Remove from free entries that can never be raised or that can always be raised and update α.
- Expansion guided by the overexpanded cube.
- While the overexpanded cube of α covers some other cubes of F, repeat the following steps.
* Raise a single entry of α as to overlap a maximum number of those cubes.
* Remove from free entries that can never be raised or that can always be raised and update α.
- Find the largest prime implicant.
- Formulate a covering problem and solve it by a heuristic method.

Reduce

- Sort implicants:
- Heuristic: sort by descending weight.
- For each implicant:
- Lower as many $*$ as possible to 1 or 0 .
- Theorem:
- Let $\alpha \in F$ and $Q=F \cup D-\{\alpha\}$.

Then, the maximally reduced cube is:
$\tilde{\alpha}=\alpha \cap \operatorname{supercube}\left(Q_{\alpha}^{\prime}\right)$.

Example

- Expanded cover:

$$
\begin{array}{lll}
11 & 11 & 10 \\
10 & 10 & 11
\end{array}
$$

- Select first implicant:
- cannot be reduced.
- Select second implicant:
- Reduced to 101001
- Reduced cover:

$$
\begin{array}{lll}
11 & 11 & 10 \\
10 & 10 & 01
\end{array}
$$

- Relatively essential set E^{r}
- Implicants covering some minterms of the function not covered by other implicants.
- Totally redundant set R^{t}
- Implicants covered by the relatively essentials.
- Partially redundant set R^{p}
- Remaining implicants.

Irredundant cover

- Find a subset of R^{p} that, together with E^{r}, covers the function.
- Modification of the tautology algorithm:
- Each cube in R^{p} is covered by other cubes.
- Find mutual covering relations.
- Reduces to a covering problem:
- Heuristic algorithm.

Example

α	10	10	11
β	11	10	01
γ	01	11	01
δ	01	01	11
ϵ	11	01	10

- $E^{r}=\{\alpha, \epsilon\}$
- $R^{t}=\emptyset$
- $R^{p}=\{\beta, \gamma, \delta\}$

Example (2)

- Covering relations:
$-\beta$ is covered by $\{\alpha, \gamma\}$.
$-\gamma$ is covered by $\{\beta, \delta\}$.
- δ is covered by $\{\gamma, \epsilon\}$.
- Minimum cover: $\gamma \cup E^{r}$

Espresso algorithm

- Compute the complement.
- Extract essentials.
- Iterate:
- Expand, irredundant, reduce.
- Cost functions:
- Cover cardinality ϕ_{1}.
- Weighed sum of cube and literal count ϕ_{2}.

Espresso algorithm

(c) GDM -
espresso $(F, D)\{$
$R=$ complement $(F \cup D)$;
$F=\operatorname{expand}(F, R)$;
$F=$ irredundant (F, D);
$E=\operatorname{essentials}(F, D)$;
$F=F-E$;
$D=D \cup E ;$
repeat \{
$\phi_{2}=\operatorname{cost}(F) ;$
repeat \{
$\phi_{1}=|F|$;
$F=\operatorname{reduce}(F, D)$;
$F=\operatorname{expand}(F, R)$;
$F=\operatorname{irredundant}(F, D)$;
\} until ($\left.|F| \geq \phi_{1}\right)$;
$F=$ last_gasp $(F, D, R) ;$
$\}$ until $\left(\operatorname{cost}(F) \geq \phi_{2}\right)$;
$F=F \cup E$;
$D=D-E ;$
$F=$ make_sparse (F, D, R);
\}

Summary heuristic minimization

- Heuristic minimization is iterative.
- Few operators applied to covers.
- Underlying mechanism:
- Cube operation.
- Unate recursive paradigm.
- Efficient algorithms.

