HEURISTIC TWO-LEVEL Codutine © GDM © Giovanni De Micheli Stanford University Stanford University Outline • Heuristic logic minimization. • Principles. • Operators on logic covers. • Espresso.

Heuristic minimization

— © GDM —

- Provide irredundant covers with 'reasonably small' cardinality.
- Fast and applicable to many functions.
- Avoid bottlenecks of exact minimization:
 - Prime generation and storage.
 - Covering.

Heuristic minimization Principles

— © GDM -

- Local minimum cover:
 - Given initial cover.
 - Make it prime.
 - Make it irredundant.
- Iterative improvement:
 - Improve on cardinality by 'modifying' the implicants.

Heuristic minimization

Operators

© GDM —	Example
0	© GDM
• Expand:	0000 1
	0010 1
 Make implicants prime. 	0100 1
	0110 1
– Remove covered implicants.	1000 1
	1010 1
	0101 1
Reduce:	0111 1
– Reduce size of each implicant	1001 1
	1011 1
while preserving cover.	1101 1
• Reshape:	
	$\alpha \mid 0^{**}0 1$
– Modify implicant pairs:	$\beta \mid *0*0 1$
enlarge one and reduce the other.	$\gamma \mid$ 01** 1
	$\delta \mid 10^{**} \mid 1$
Irredundant	$\epsilon \mid 1*01 \mid 1$
• Irredundant:	ζ *101 1
– Make cover irredundant.	

- © GDM -

- Expand $\tilde{\delta} = 10 * 1$ to $\delta = 10 * *$.
- Expand $\tilde{\epsilon} = 1101$ to $\epsilon = 1 * 01$.

Example

Example (MINI summary)

— © GDM -

- Expansion:
 - Cover: $\{\alpha, \beta, \gamma, \delta, \epsilon\}$.
 - Prime, redundant, minimal w.r. to scc.
- Reduction:
 - α eliminated.
 - $\beta = *0*0$ reduced to $\widetilde{\beta} = 00*0$.
 - $\epsilon = 1*01~$ reduced to: $\widetilde{\epsilon} = 1101~$.
 - Cover: $\{\widetilde{\beta}, \gamma, \delta, \widetilde{\epsilon}\}.$
- Reshape:
 - $\{\widetilde{\beta},\delta\}$ reshaped to: $\{\beta,\widetilde{\delta}\}$ where $\widetilde{\delta}=10*1$.
- Second expansion:
 - Cover: $\{\beta, \gamma, \delta, \epsilon\}$.
 - Prime, irredundant.

Alternative example (ESPRESSO)

_____ © GDM ___

- Expansion:
 - Cover: $\{\alpha, \beta, \gamma, \delta, \epsilon\}$.
 - Prime, redundant, minimal w.r. to scc.
- Irredundant:
 - Cover: $\{\beta, \gamma, \delta, \epsilon\}$.
 - Prime, irredundant.

Example

Expand naive implementation © GDM -

- For each implicant
 - For each *care* literal
 - * Raise it to *don't care* if possible.
 - Remove all covered implicants.
- Problems:
 - Validity check.
 - Order of expansions.

— © GDM —

- Espresso, MINI:
 - Check *intersection* of expanded implicant with OFF-set.
 - Requires complementation.
- Presto:
 - Check *inclusion* of expanded implicant in the union of the ON-set and DC-set.
 - Can be reduced to recursive tautology check.

	Example (3)	Example (3)	
-		U UDM —	
	• OFF-set:		
)	01 11 01 11 01 01		
	• Expand 01 10 10:		
	- 11 10 10 valid.		
)	— 11 11 10 valid.		
	— 11 11 11 invalid.		
	 Update cover to: 		
	11 11 10 10 10 01		

Example (4) © GDM	Expand
11 11 10 10 10 01	© GDM
• Expand 10 10 01:	 Smarter heuristics for choosing literals to be expanded.
— 11 10 01 invalid.	• Four step procedure in Espresso.
— 10 11 01 invalid.	Rationale:
— 10 10 11 valid.	 Raise literals so that expanded implica
• Expanded cover:	* Covers a maximal set of cubes.
11 11 10 10 10 11	* Making it as large as possible.
	Expand in ESPRESSO
	Expand in ESPRESSO
Definitions	
© GDM	 © GDM Determine the essential parts. Determine which entries can never be raised, and remove them from free.
© GDM	 © GDM Determine the essential parts. Determine which entries can never be raised, and remove them from <i>free</i>. Determine which parts can always be raised, raise them, and remove them from <i>free</i>. Detection of feasibly covered cubes.
• <i>free</i> :	 © GDM Determine the essential parts. Determine which entries can never be raised, and remove them from <i>free</i>. Determine which parts can always be raised, raise them, and remove them from <i>free</i>. Detection of feasibly covered cubes. If there is an implicant β whose supercube with α is feasible, repeat the following steps.
© GDM • free: - Set of entries that can be raised to 1. • Overexpanded cube	 © GDM Determine the essential parts. Determine which entries can never be raised, and remove them from <i>free</i>. Determine which parts can always be raised, raise them, and remove them from <i>free</i>. Detection of feasibly covered cubes. If there is an implicant β whose supercube with α is feasible, repeat the following steps. Raise the appropriate entry of α and remove
© GDM • free: — Set of entries that can be raised to 1.	 © GDM Determine the essential parts. Determine which entries can never be raised, and remove them from <i>free</i>. Determine which parts can always be raised, raise them, and remove them from <i>free</i>. Detection of feasibly covered cubes. If there is an implicant β whose supercube with α is feasible, repeat the following steps. Raise the appropriate entry of α and remove it from <i>free</i>. Remove from <i>free</i> entries that can never be raised or that can always be raised and update α.
© GDM • free: - Set of entries that can be raised to 1. • Overexpanded cube	 © GDM Determine the essential parts. Determine which entries can never be raised, and remove them from <i>free</i>. Determine which parts can always be raised, raise them, and remove them from <i>free</i>. Detection of feasibly covered cubes. If there is an implicant β whose supercube with α is feasible, repeat the following steps. Raise the appropriate entry of α and remove it from <i>free</i>. Remove from <i>free</i> entries that can never be raised or that can always be raised and update α. Expansion guided by the overexpanded cube. While the overexpanded cube of α covers some other cubes of F, repeat the following steps.
© GDM • free: - Set of entries that can be raised to 1. • Overexpanded cube - Cube whose entries in free are raised.	 © GDM Determine the essential parts. Determine which entries can never be raised, and remove them from <i>free</i>. Determine which parts can always be raised, raise them, and remove them from <i>free</i>. Detection of feasibly covered cubes. If there is an implicant β whose supercube with α is feasible, repeat the following steps. Raise the appropriate entry of α and remove it from <i>free</i>. Remove from <i>free</i> entries that can never be raised or that can always be raised and update α. Expansion guided by the overexpanded cube. While the overexpanded cube of α covers some other cubes of F, repeat the following steps. Raise a single entry of α as to overlap a

— © GDM —

- Relatively essential set E^r
 - Implicants covering some minterms of the function not covered by other implicants.
- Totally redundant set R^t
 - Implicants covered by the relatively essentials.
- Partially redundant set R^p
 - Remaining implicants.

Irredundant cover	Example
• Find a subset of \mathbb{R}^p that, together with \mathbb{E}^r , covers the function.	$egin{array}{c ccccccccccccccccccccccccccccccccccc$
 Modification of the tautology algorithm: 	$egin{array}{c c} \delta & O1 & O1 & 11 \ \epsilon & 11 & O1 & 10 \end{array}$
– Each cube in \mathbb{R}^p is covered by other cubes.	• $E^r = \{\alpha, \epsilon\}$
 Find mutual covering relations. 	• $R^t = \emptyset$
• Reduces to a covering problem:	• $R^p = \{\beta, \gamma, \delta\}.$
	Espresso algorithm
Example (2)	
	© GDM
© GDM	© GDM • Compute the complement. • Extract essentials.
• Covering relations:	© GDM • Compute the complement. • Extract essentials. • Iterate:
• Covering relations: - β is covered by $\{\alpha, \gamma\}$.	© GDM • Compute the complement. • Extract essentials. • Iterate: <i>– Expand, irredundant, reduce.</i>
• Covering relations: - β is covered by $\{\alpha, \gamma\}$. - γ is covered by $\{\beta, \delta\}$.	© GDM • Compute the complement. • Extract essentials. • Iterate:

Espresso algorithm

— © GDM espresso(F, D){ $R = complement(F \cup D);$ F = expand(F, R);F = irredundant(F, D);E = essentials(F, D); F = F - E; $D = D \cup E;$ repeat { $\phi_2 = cost(F);$ repeat $\{$ $\phi_1 = |F|;$ F = reduce(F, D);F = expand(F, R); F = irredundant(F, D);} until ($|F| \ge \phi_1$); $F = last_gasp(F, D, R)$; } until ($cost(F) \ge \phi_2$); $F = F \cup E;$ D = D - E; $F = make_sparse(F, D, R);$ }

