
HEURISTIC TWO-LEVEL

LOGIC OPTIMIZATION

c
Giovanni De Micheli

Stanford University

Outline

c
 GDM

� Heuristic logic minimization.

� Principles.

� Operators on logic covers.

� Espresso.

Heuristic minimization

c
 GDM

� Provide irredundant covers

with 'reasonably small' cardinality.

� Fast and applicable to many functions.

� Avoid bottlenecks of exact minimization:

{ Prime generation and storage.

{ Covering.

Heuristic minimization

Principles

c
 GDM

� Local minimum cover:

{ Given initial cover.

{ Make it prime.

{ Make it irredundant.

� Iterative improvement:

{ Improve on cardinality by 'modifying'

the implicants.

Heuristic minimization

Operators

c
 GDM

� Expand:

{ Make implicants prime.

{ Remove covered implicants.

� Reduce:

{ Reduce size of each implicant

while preserving cover.

� Reshape:

{ Modify implicant pairs:

enlarge one and reduce the other.

� Irredundant:

{ Make cover irredundant.

Example

c
 GDM

0000 1
0010 1
0100 1
0110 1
1000 1
1010 1
0101 1
0111 1
1001 1
1011 1
1101 1

� 0**0 1
� *0*0 1

 01** 1
Æ 10** 1
� 1*01 1
� *101 1

Example

c
 GDM

a

b
c

d

(a)

(b)

α

β

γ

δ

ε

ζ

0000

0010

0111

1101

1001

0110

1010

1011

0100

1000

0101

0000

0101

1001

1101

1000

1010
0010

0110

1011

0111

0100

0000

0101

1001

1101

1000

1010
0010

0110

1011

0111

0100

(c)

Example

Expansion

c
 GDM

� Expand 0000 to �= 0 � �0.

{ Drop 0100, 0010, 0110 from the cover.

� Expand 1000 to � = �0 � 0.

{ Drop 1010 from the cover.

� Expand 0101 to
 = 01 � �.

{ Drop 0111 from the cover.

� Expand 1001 to Æ = 10 � �.

{ Drop 1011 from the cover.

� Expand 1101 to �= 1 � 01.

� Cover is: f�; �;
; Æ; �g.

Example

c
 GDM

0000

0010

0111

1101

1001

0110

1010

1011

0100

1000

0101

0000

0010

0111

1101

1001

0110

1010

1011

0100

1000

0101

0000

0010

0111

1101

1001

0110

1010

1011

0100

1000

0101

0000

0010

0111

1101

1001

0110

1010

1011

0100

1000

0101

0000

0010

0111

1101

1001

0110

1010

1011

0100

1000

0101

0000

0010

0111

1101

1001

0110

1010

1011

0100

1000

0101

Example

Reduction

c
 GDM

� Reduce 0**0 to nothing.

� Reduce � = �0 � 0 to e� = 00 � 0

� Reduce � = 1 � 01 to e� = 1101

� Cover is: f e�;
; Æ; e�g.

Example

c
 GDM

0000

0010

0111

1101

1001

0110

1010

1011

0100

1000

0101

0000

0010

0111

1101

1001

0110

1010

1011

0100

1000

0101

0000

0010

0111

1101

1001

0110

1010

1011

0100

1000

0101

0000

0010

0111

1101

1001

0110

1010

1011

0100

1000

0101

Example

Reshape

c
 GDM

� Reshape f e�; Æg to: f�; eÆg

{ where eÆ = 10 � 1 .

� Cover is: f�;
; eÆ; e�g.

Example

c
 GDM

0000

0010

0111

1101

1001

0110

1010

1011

0100

1000

0101

0000

0010

0111

1101

1001

0110

1010

1011

0100

1000

0101

Example

Second expansion

c
 GDM

� Expand eÆ = 10 � 1 to Æ = 10 � �.

� Expand e� = 1101 to � = 1 � 01.

Example

c
 GDM

0000

0010

0111

1101

1001

0110

1010

1011

0100

1000

0101

0000

0010

0111

1101

1001

0110

1010

1011

0100

1000

0101

Example

(MINI summary)

c
 GDM

� Expansion:

{ Cover: f�; �;
; Æ; �g.

{ Prime, redundant, minimal w.r. to scc.

� Reduction:

{ � eliminated.

{ � = �0 � 0 reduced to e� = 00 � 0 .

{ �= 1 � 01 reduced to: e� = 1101 .

{ Cover: fe�;
; Æ;e�g.

� Reshape:

{ fe�; Æg reshaped to: f�; eÆg where eÆ = 10 � 1 .

� Second expansion:

{ Cover: f�;
; Æ; �g.

{ Prime, irredundant.

Alternative example

(ESPRESSO)

c
 GDM

� Expansion:

{ Cover: f�; �;
; Æ; �g.

{ Prime, redundant, minimal w.r. to scc.

� Irredundant:

{ Cover: f�;
; Æ; �g.

{ Prime, irredundant.

Example

c
 GDM

0000

0010

0111

1101

1001

0110

1010

1011

0100

1000

0101

0000

0010

0111

1101

1001

0110

1010

1011

0100

1000

0101

0000

0010

0111

1101

1001

0110

1010

1011

0100

1000

0101

Expand

naive implementation

c
 GDM

� For each implicant

{ For each care literal

� Raise it to don't care if possible.

{ Remove all covered implicants.

� Problems:

{ Validity check.

{ Order of expansions.

Validity check

c
 GDM

� Espresso, MINI:

{ Check intersection of expanded

implicant with OFF-set.

{ Requires complementation.

� Presto:

{ Check inclusion of expanded implicant

in the union of the ON-set and DC-set.

{ Can be reduced to recursive tautology

check.

Heuristics

c
 GDM

� Expand �rst cubes that are unlikely

to be covered by other cubes.

� Selection:

{ Compute vector of column sums.

{ Weight: inner product of cube and vector.

{ Sort implicants in ascending order of

weight.

� Rationale:

{ Low weight correlates to having few 1s

in densely populated columns.

Example

c
 GDM

� f = a0b0c0+ ab0c0+ a0bc0+ a0b0c

DC-set = abc0

10 10 10
01 10 10
10 01 10
10 10 01

� Ordering:

{ Vector: [313131]T

{ Weights: (9;7;7;7).

� Select second implicant.

Example (2)

c
 GDM

α β

γ

δ

a

b
c

(a) (b)

α β

γ

δ

α β

γ

δ

(c) (d)

α 10 10 10
β 01 10 10
γ 10 01 10
δ 10 10 01

δ

γ

βα

Example (3)

c
 GDM

� OFF-set:

01 11 01
11 01 01

� Expand 01 10 10:

{ 11 10 10 valid.

{ 11 11 10 valid.

{ 11 11 11 invalid.

� Update cover to:

11 11 10
10 10 01

Example (4)

c
 GDM

11 11 10
10 10 01

� Expand 10 10 01:

{ 11 10 01 invalid.

{ 10 11 01 invalid.

{ 10 10 11 valid.

� Expanded cover:

11 11 10
10 10 11

Expand

c
 GDM

� Smarter heuristics for choosing literals

to be expanded.

� Four step procedure in Espresso.

� Rationale:

{ Raise literals so that expanded implicant:

� Covers a maximal set of cubes.

� Making it as large as possible.

De�nitions

c
 GDM

� free:

{ Set of entries that can be raised to 1.

� Overexpanded cube

{ Cube whose entries in free are raised.

� Feasible cover

{ Expand a cube to cover another one

while keeping it as an implicant

of the function.

Expand in ESPRESSO

c
 GDM

� Determine the essential parts.
{ Determine which entries can never be raised,

and remove them from free.

{ Determine which parts can always be raised,
raise them, and remove them from free.

� Detection of feasibly covered cubes.
{ If there is an implicant � whose supercube with

� is feasible, repeat the following steps.

� Raise the appropriate entry of � and remove
it from free.

� Remove from free entries that can never be
raised or that can always be raised and
update �.

� Expansion guided by the overexpanded cube.
{ While the overexpanded cube of � covers some

other cubes of F , repeat the following steps.

� Raise a single entry of � as to overlap a
maximum number of those cubes.

� Remove from free entries that can never be
raised or that can always be raised and
update �.

� Find the largest prime implicant.

{ Formulate a covering problem and solve it by

a heuristic method.

Reduce

c
 GDM

� Sort implicants:

{ Heuristic: sort by descending weight.

� For each implicant:

� Lower as many * as possible to 1 or 0.

� Theorem:

{ Let � 2 F and Q = F [D � f�g.

Then, the maximally reduced cube is:

e�= � \ supercube(Q0
�).

Example

c
 GDM

� Expanded cover:

11 11 10
10 10 11

� Select �rst implicant:

{ cannot be reduced.

� Select second implicant:

{ Reduced to 10 10 01

� Reduced cover:

11 11 10
10 10 01

Irredundant cover

c
 GDM

a

bc

α

β
γ

δ

000

001

101

111

110
010

ε
α

β
δ

000

001

101

111

110
010

ε
α

γ

000

001

101

111

110
010

ε

α 10 10 11
β 11 10 01
γ 01 11 01
δ 01 01 11
ε 11 01 10

Irredundant cover

c
 GDM

� Relatively essential set Er

{ Implicants covering some minterms of

the function not covered by other implicants.

� Totally redundant set Rt

{ Implicants covered by the relatively

essentials.

� Partially redundant set Rp

{ Remaining implicants.

Irredundant cover

c
 GDM

� Find a subset of Rp that, together with

Er, covers the function.

� Modi�cation of the tautology algorithm:

{ Each cube in Rp is covered by other

cubes.

{ Find mutual covering relations.

� Reduces to a covering problem:

{ Heuristic algorithm.

Example

c
 GDM

� 10 10 11
� 11 10 01

 01 11 01
Æ 01 01 11
� 11 01 10

� Er = f�; �g

� Rt = ;

� Rp = f�;
; Æg.

Example (2)

c
 GDM

� Covering relations:

{ � is covered by f�;
g.

{
 is covered by f�; Æg.

{ Æ is covered by f
; �g.

� Minimum cover:
 [Er

Espresso algorithm

c
 GDM

� Compute the complement.

� Extract essentials.

� Iterate:

{ Expand, irredundant, reduce.

� Cost functions:

{ Cover cardinality �1.

{ Weighed sum of cube and literal count �2.

Espresso algorithm

c
 GDM

espresso(F;D)f
R = complement(F [D);
F = expand(F;R);
F = irredundant(F;D);
E = essentials(F;D);
F = F �E;
D = D [E;
repeat f

�2 = cost(F);
repeat f

�1 = jF j;
F = reduce(F;D);
F = expand(F;R);
F = irredundant(F;D);

g until (jF j � �1);
F = last gasp(F;D;R);

g until (cost(F) � �2);
F = F [E;
D = D � E;
F = make sparse(F;D;R);

g

Summary

heuristic minimization

c
 GDM

� Heuristic minimization is iterative.

� Few operators applied to covers.

� Underlying mechanism:

{ Cube operation.

{ Unate recursive paradigm.

� EÆcient algorithms.

