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Outline

c
 GDM

� Heuristic logic minimization.

� Principles.

� Operators on logic covers.

� Espresso.

Heuristic minimization

c
 GDM

� Provide irredundant covers

with 'reasonably small' cardinality.

� Fast and applicable to many functions.

� Avoid bottlenecks of exact minimization:

{ Prime generation and storage.

{ Covering.

Heuristic minimization

Principles

c
 GDM

� Local minimum cover:

{ Given initial cover.

{ Make it prime.

{ Make it irredundant.

� Iterative improvement:

{ Improve on cardinality by 'modifying'

the implicants.



Heuristic minimization

Operators

c
 GDM

� Expand:

{ Make implicants prime.

{ Remove covered implicants.

� Reduce:

{ Reduce size of each implicant

while preserving cover.

� Reshape:

{ Modify implicant pairs:

enlarge one and reduce the other.

� Irredundant:

{ Make cover irredundant.

Example

c
 GDM

0000 1
0010 1
0100 1
0110 1
1000 1
1010 1
0101 1
0111 1
1001 1
1011 1
1101 1

� 0**0 1
� *0*0 1

 01** 1
Æ 10** 1
� 1*01 1
� *101 1

Example
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Example

Expansion

c
 GDM

� Expand 0000 to �= 0 � �0.

{ Drop 0100, 0010, 0110 from the cover.

� Expand 1000 to � = �0 � 0.

{ Drop 1010 from the cover.

� Expand 0101 to 
 = 01 � �.

{ Drop 0111 from the cover.

� Expand 1001 to Æ = 10 � �.

{ Drop 1011 from the cover.

� Expand 1101 to �= 1 � 01.

� Cover is: f�; �; 
; Æ; �g.
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Reduction

c
 GDM

� Reduce 0**0 to nothing.

� Reduce � = �0 � 0 to e� = 00 � 0

� Reduce � = 1 � 01 to e� = 1101

� Cover is: f e�; 
; Æ; e�g.

Example
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Reshape

c
 GDM

� Reshape f e�; Æg to: f�; eÆg

{ where eÆ = 10 � 1 .

� Cover is: f�; 
; eÆ; e�g.
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Second expansion

c
 GDM

� Expand eÆ = 10 � 1 to Æ = 10 � �.

� Expand e� = 1101 to � = 1 � 01.

Example

c
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(MINI summary)

c
 GDM

� Expansion:

{ Cover: f�; �; 
; Æ; �g.

{ Prime, redundant, minimal w.r. to scc.

� Reduction:

{ � eliminated.

{ � = �0 � 0 reduced to e� = 00 � 0 .

{ �= 1 � 01 reduced to: e� = 1101 .

{ Cover: fe�; 
; Æ;e�g.

� Reshape:

{ fe�; Æg reshaped to: f�; eÆg where eÆ = 10 � 1 .

� Second expansion:

{ Cover: f�; 
; Æ; �g.

{ Prime, irredundant.



Alternative example

(ESPRESSO)

c
 GDM

� Expansion:

{ Cover: f�; �; 
; Æ; �g.

{ Prime, redundant, minimal w.r. to scc.

� Irredundant:

{ Cover: f�; 
; Æ; �g.

{ Prime, irredundant.

Example
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Expand

naive implementation

c
 GDM

� For each implicant

{ For each care literal

� Raise it to don't care if possible.

{ Remove all covered implicants.

� Problems:

{ Validity check.

{ Order of expansions.

Validity check

c
 GDM

� Espresso, MINI:

{ Check intersection of expanded

implicant with OFF-set.

{ Requires complementation.

� Presto:

{ Check inclusion of expanded implicant

in the union of the ON-set and DC-set.

{ Can be reduced to recursive tautology

check.



Heuristics

c
 GDM

� Expand �rst cubes that are unlikely

to be covered by other cubes.

� Selection:

{ Compute vector of column sums.

{ Weight: inner product of cube and vector.

{ Sort implicants in ascending order of

weight.

� Rationale:

{ Low weight correlates to having few 1s

in densely populated columns.

Example

c
 GDM

� f = a0b0c0+ ab0c0+ a0bc0+ a0b0c

DC-set = abc0

10 10 10
01 10 10
10 01 10
10 10 01

� Ordering:

{ Vector: [313131]T

{ Weights: (9;7;7;7).

� Select second implicant.

Example (2)

c
 GDM
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Example (3)

c
 GDM

� OFF-set:

01 11 01
11 01 01

� Expand 01 10 10:

{ 11 10 10 valid.

{ 11 11 10 valid.

{ 11 11 11 invalid.

� Update cover to:

11 11 10
10 10 01



Example (4)
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11 11 10
10 10 01

� Expand 10 10 01:

{ 11 10 01 invalid.

{ 10 11 01 invalid.

{ 10 10 11 valid.

� Expanded cover:

11 11 10
10 10 11

Expand

c
 GDM

� Smarter heuristics for choosing literals

to be expanded.

� Four step procedure in Espresso.

� Rationale:

{ Raise literals so that expanded implicant:

� Covers a maximal set of cubes.

� Making it as large as possible.

De�nitions

c
 GDM

� free:

{ Set of entries that can be raised to 1.

� Overexpanded cube

{ Cube whose entries in free are raised.

� Feasible cover

{ Expand a cube to cover another one

while keeping it as an implicant

of the function.

Expand in ESPRESSO

c
 GDM

� Determine the essential parts.
{ Determine which entries can never be raised,

and remove them from free.

{ Determine which parts can always be raised,
raise them, and remove them from free.

� Detection of feasibly covered cubes.
{ If there is an implicant � whose supercube with

� is feasible, repeat the following steps.

� Raise the appropriate entry of � and remove
it from free.

� Remove from free entries that can never be
raised or that can always be raised and
update �.

� Expansion guided by the overexpanded cube.
{ While the overexpanded cube of � covers some

other cubes of F , repeat the following steps.

� Raise a single entry of � as to overlap a
maximum number of those cubes.

� Remove from free entries that can never be
raised or that can always be raised and
update �.

� Find the largest prime implicant.

{ Formulate a covering problem and solve it by

a heuristic method.



Reduce

c
 GDM

� Sort implicants:

{ Heuristic: sort by descending weight.

� For each implicant:

� Lower as many * as possible to 1 or 0.

� Theorem:

{ Let � 2 F and Q = F [D � f�g.

Then, the maximally reduced cube is:

e�= � \ supercube(Q0
�).

Example

c
 GDM

� Expanded cover:

11 11 10
10 10 11

� Select �rst implicant:

{ cannot be reduced.

� Select second implicant:

{ Reduced to 10 10 01

� Reduced cover:

11 11 10
10 10 01

Irredundant cover

c
 GDM
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Irredundant cover

c
 GDM

� Relatively essential set Er

{ Implicants covering some minterms of

the function not covered by other implicants.

� Totally redundant set Rt

{ Implicants covered by the relatively

essentials.

� Partially redundant set Rp

{ Remaining implicants.



Irredundant cover
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� Find a subset of Rp that, together with

Er, covers the function.

� Modi�cation of the tautology algorithm:

{ Each cube in Rp is covered by other

cubes.

{ Find mutual covering relations.

� Reduces to a covering problem:

{ Heuristic algorithm.

Example

c
 GDM

� 10 10 11
� 11 10 01

 01 11 01
Æ 01 01 11
� 11 01 10

� Er = f�; �g

� Rt = ;

� Rp = f�; 
; Æg.

Example (2)

c
 GDM

� Covering relations:

{ � is covered by f�; 
g.

{ 
 is covered by f�; Æg.

{ Æ is covered by f
; �g.

� Minimum cover: 
 [ Er

Espresso algorithm

c
 GDM

� Compute the complement.

� Extract essentials.

� Iterate:

{ Expand, irredundant, reduce.

� Cost functions:

{ Cover cardinality �1.

{ Weighed sum of cube and literal count �2.



Espresso algorithm
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espresso(F;D)f
R = complement(F [D);
F = expand(F;R);
F = irredundant(F;D);
E = essentials(F;D);
F = F �E;
D = D [E;
repeat f

�2 = cost(F);
repeat f

�1 = jF j;
F = reduce(F;D);
F = expand(F;R);
F = irredundant(F;D);

g until ( jF j � �1);
F = last gasp(F;D;R);

g until ( cost(F) � �2);
F = F [E;
D = D � E;
F = make sparse(F;D;R);

g

Summary

heuristic minimization

c
 GDM

� Heuristic minimization is iterative.

� Few operators applied to covers.

� Underlying mechanism:

{ Cube operation.

{ Unate recursive paradigm.

� EÆcient algorithms.


