LOGIC SYNTHESIS AND
TWO-LEVEL LOGIC
OPTIMIZATION

© Giovanni De Micheli

Stanford University

Outline

© GDM ==

Overview of logic synthesis.

Combinational-logic design:
— Background.

— Two-level forms.

Exact minimization.

Covering algorithms.

Boolean relations.

Logic synthesis and optimization

© GDM ==

e Determine microscopic structure of the circuit.

e Explore (area-delay)trade-off:

— Combinational circuits:

x [/O delay.

— Sequential circuits:

* cycle-time.

e Explore (power-delay)trade-off:

e Enhance circuit testability.

Circuit implementation issues

© GDM ==

e Implementation styles:
— Two-level (e.g. PLA macro cells).

— Multi-level (e.g. cell-based, array-based).

e Operation:
— Combinational.

— Sequential:

* Synchronous

* Asynchronous.

Design flow in logic synthesis

e Circuit capture:

— Tabular specifications of functions or
finite-state machines (FSMs).

— Schematic capture.

— Hardware Description Languages (HDLS).

e Synthesis and optimization:

— Map circuit representation to abstract
model.

— Transformations on abstract model.

— Library binding.

© GDM ==

Abstract models

© GDM ==
e Models based on graphs.

e Useful for:
— Machine-level processing.

— Reasoning about properties.

e Derived from language models by
compilation.

Structural views

© GDM ==

e Netlists:

— Modules, nets, incidence.
— Ports.

— Hierarchy.

e Incidence (sparse) matrix of a graph.

Example

© GDM =—

nl p2 r:32 @V

ol @®

_P p7 M3 @ A @
(@ (b) (©

Logic funcions

© GDM ==

Black-box model of a combinational module.

Defined on Boolean Algebra.

Support variables correspond to module
inputs.

Logic functions may have multiple outputs
and be incompletely specified.

Logic networks

© GDM ==

e Mixed structural/behavioral views.

e Useful for multiple-level logic
(combinational and sequential).
e Interconnection of modules:
— Logic gates.

— Logic functions.

Example
© GDM —
a |
H p=ab X
b— L
¢ g=p+c [y

State diagrams

© GDM ==

a’b’+r/0

e Model behavior of sequential circuits.

e Graph:
— Vertices = states.

— Edges = transitions.

Major logic synthesis problems

© GDM ==

¢ Optimization of logic function representation.
— Minimization of two-level forms.

— Optimization of Binary Decision Diagrams (BDDs).

e Synthesis of combinational multiple-level
logic networks.

— Optimization or area, delay, power, testability.

¢ Optmization of FSM models.

— State minimization, encoding.

e Synthesis of sequential multiple-level logic
networks.

— Optimization or area, delay, power, testability.

e Library binding.

— Optimal selection of library cells.

Combinational logic design
background

© GDM ==

e Boolean algebra:
— Quintuple (B,+,-,0,1)

— Binary Boolean algebra B ={0,1}

e Boolean function:
— Single output: f: B" — B.
— Multiple output: f: B™ — B™,

— Incompletely specified:

* don’'t care symbol *,

x f 1 B™— {0,1,%}™.

The don't care conditions

© GDM ==

e \We don't care about the value of the function.

e Related to the environment:
— Input patterns that never occur.
— Input patterns such that some output

is never observed.

e Very important for synthesis and optimization.

Definitions

© GDM ==

e Scalar function:

— ON — set: subset of the domain
such that f is true.

— OFF — set: subset of the domain
such that f is false.

— DC — set: subset of the domain
such that f is a don’t care .
e Multiple-output function:

— Defined for each component.

Cubical representation

© GDM ==

011 111 a’bc abc

Definitions

001 101 ab'c ab'c

010 110 abe' abc’

© GDM ==

Boolean variables.

Boolean literal. variable and complement.

Product or cube: product of literals.

Implicant: product implying a value of a
function (usually TRUE).

— Hypercube in the Boolean space.
Minterm: product of all input variables

implying a value of a function (usually TRUE).

— Vertex in the Boolean space.

Tabular representations
© GDM =—

e Truth table:

— List of all minterms of a function.

e Implicant table or cover:
— List of implicants of a function
sufficient to define function.
e Remark:

— Implicant tables are smaller in size.

Example of truth table
r=ab+adc, y=ab+bc+ ac

© GDM ==
abc | xy
000 | 00
001 | 10
010 | 00
011 | 11
100 | 00
101 | 01
110 | 11
111 |11

Example of implicant table
xr=ab+dc, y=ab+bc+ ac

abc | xy
001 | 10
*11 | 11
101 | 01
11% |11

© GDM ==

Cubical representation of minterms and

implicants

001

001

© GDM =—

o f1 =a'tV'd + a'b'c+ ab'c+ abc + abc’

o fo=2dbc+abc

Two-level logic optimization

motivation

© GDM ==

e Reduce size of the representation.

e Direct implementation:

— PLAs — reduce size and delay.

e Other implementation styles

(e.g. multi-level):

— Reduce amount of information.

— Simplify local functions and connections.

Programmable logic arrays
© GDM =—

Macro-cells with rectangular structure.

Implement any multi-output function.

Layout easily generated by module generators.

Fairly popular in the seventies/eighties (NMOS).

Still used for control-unit implementation.

Programmable logic array

© GDM =
00 10 f
xX01 11 i 11— ®
11% 10
@ a b c f1 f 2
])
n TG e ©
i | e
a a b b ¢ c fl f2

o fi=adbt +bc+ab fo=Vbec

Two-level optimization

© GDM ==

e Assumptions:

— Primary goal is to reduce the number
of implicants.

— All implicants have the same cost.
— Secondary goal is to reduce the number
of literals.
e Rationale:
— Implicants correspond to PLA rows.

— Literals correspond to transistors.

Definitions

© GDM ==

e Minimum cover:

— Cover of the function with minimum
number of implicants.

— Global optimum.

e Minimal cover or irredundant cover:

— Cover of the function that is not a proper
superset of another cover.

— No implicant can be dropped.

— Local optimum.

e Minimal cover w.r.t. 1-implicant containment.

— No implicant is contained by another one.

— Weak local optimum.

Example

© GDM =—

o f1 =a't'd + a'b'c+ ab'c+ abc + abc

o fo=2dbc+abc

Definitions

© GDM =—

e Prime implicant:

— Implicant not contained by any other
implicant.

e Prime cover:

— Cover of prime implicants.

e Essential prime implicant:

— There exist some minterm covered only
by that prime implicant.

Logic minimization

© GDM ==

e Exact methods:
— Compute minimum cover.
— Often impossible for large functions.

— Based on Quine McCluskey method.

e Heuristic methods:

— Compute minimal covers
(possibly minimum).

— Large variety of methods and programs:

* MINI, PRESTO, ESPRESSO.

Exact logic minimization
© GDM =

e Quine’s theorem:

— Thereisa minimum cover that is prime.

e Consequence:
— Search for minimum cover can be
restricted to prime implicants.
e Quine McCluskey method:
— Compute prime implicants.

— Determine minimum cover.

Prime implicant table

© GDM ==

e Rows: minterms.

e Columns: prime implicants.

e Exponential size:
— 2™ minterms.

— Up to 3"/n prime implicants.

e Remark:
— Some functions have much fewer primes.

— Minterms can be grouped together.

Example

© GDM ==

e Function: f = da/b'd/+a't/c+ab'c+abc+abcd

e Primes:
a | 00* 1
8| *01 1
vl 1*1 1
6 | 11*% 1
e Implicant table:
a B v ¢
o001 0O O O
o011 1 0 O
1010 1 1 O
1110 O 1 1
1100 O 0 1

Example

Minimum cover
early methods

© GDM ==

e Reduce table:

— Iteratively identify essentials,
save them in the cover,
remove covered minterms.

e Petrick's method.

— Write covering clauses in pos form.
— Multiply out pos form into sop form.
— Select cube of minimum size.

— Remark:

* Multiplying out clauses is exponential.

Example
Petrick’s method

© GDM ==

e poOSs clauses:

—(@)(a+BB+N(r+46)@)=1

e sop form:

—afdt+avydi=1

e Solutions:
— {a, 8,6}

- {Ot, Vs 6}

Matrix representation

© GDM = =—— Example
© GDM ==
e View table as Boolean matrix: A.
1 00O 1 1
1100 1 2
e Selection Boolean vector for primes: X. 0110 1
0
0011 1 1
0 0O01 1
e Determine x such that:
—Ax >1.
— Select enough columns to cover all rows.
e Minimize cardinality of x:
— Example: x = [1101]7
Covering problem
©cbm — Example

e Set covering problem:
— A set S. (Minterm set).
— A collection C of subsets. (Implicant set).

— Select fewest elements of C to cover S.

e Intractable.

e Exact method:

— Branch and bound algorithm.

e Heuristic methods.

edge-cover of a hypergraph

© GDM ==

Branch and bound algorithm

e Tree search of the solution space:

— Potentially exponential search.

e Use bounding function:

— If the lower bound on the solution cost
that can be derived from a set of future
choices exceeds the cost of the best
solution seen so far:

— Kill the search.

e Good pruning may reduce run-time.

© GDM ==

Branch and bound algorithm
© GDM =

BRANCH_AND_BOUND {
Current_best = anything;
Current_cost = oo,
S = so;
while (S # 0) do {
Select an element in s € S;
Remove s from S ;
Make a branching decision based on s
yielding sequences {s;,i = 1,2,...,m};
for (i=1tom){
Compute the lower bound b; of s;;
if (b; > Current_cost)
Kill s;;
else {
if (s; is a complete solution) {
Current_best = s;;
Current_cost = cost of s; ;

}

else
Add s; to set S;

Example

© GDM ==

a b a b Bound = 6

ray
sy
=
ya—

Killed subtree

x
<
=
N
x
<

—X
7 T
7 X
7 v
/ %
7 ¥

(@) (b)

Branch and bound algorithm for covering
Reduction strategies

© GDM =—

e Partitioning:

— If A is block diagonal:

* Solve covering problem for corresponding
blocks.

e Essentials (EPI):

— Column incident to
one (or more) row with single 1:

* Select column.

x Remove covered row(s) from table.

Branch and bound algorithm for covering
Reduction strategies

© GDM =—

e Column (implicant) dominance:

— If Afe; > Qg VEk:

* remove column j.

e Row (minterm) dominance:

— If ;L > ajk VEk -

* Remove row .

Example

1 0100
11001
A = 01101
00010
01110

Example
reduction

Fourth column is essential.

Fifth column is dominated.

Fifth row is dominant.

.
>
I
oRr KR
= = O
= O~

Branch and bound covering algorithm

© GDM ==

EXACT_COVER(A,X,b) {

Reduce matrix A and update corresponding X;
if (Current_estimate > |b|) return(b);
if (A has no rows) return (x);
Select a branching column ¢;
e = 1;
A = A after deleting ¢ and rows incident to it;
X = EXACT_COVER(A,X,b);
if (%] <|bl)
b=x:
e = 0 ;
A = A after deleting c ;
X = EXACT_COV ER(A,Xx,b);
if (%] <|b|)
b=xX:
return (b);

Bounding function

© GDM ==

e Estimate lower bound on the covers

derived from the current X.

e The sum of the ones in X, plus

bound on cover for local A:

— Independent set of rows:

* No 1 in same column.
— Build graph denoting pairwise independence.
— Find cligue number.

— Approximation (lower) is acceptable.

Example

© GDM ==

1 0100
11001
A = 01101
00010
01110

e Row 4 independent from 1,2,3.

e Clique number is 2.

e Bound is 2. @ @

Example

© GDM ==

>

I
O r
= = O
— O R

There are no independent rows.

Clique number is 1 (one vertex).

Bound is 1 + 1 (already selected essential).

Example

© GDM ==

.
>
Il
oRr K
= = O
= O~

e Choose first column:
— Recur with A = [11].
* Delete one dominated column.

x Take other column (essential).

— New cost is 3.

e Exclude first column:

— Find another solution with cost 3
(discarded).

ESPRESSO-EXACT

© GDM ==

e Exact minimizer [Rudell].

Exact branch and bound covering.

e Compact implicant table:

— Group together minterms
covered by the same implicants.

Very efficient. Solves most problems.

Example

© GDM ==

o1

o o < ® a

NEDEDO

0**0
*0*0
Q1%*
10%*
1*01
*¥101

DN ®R
el s e

Example
Prime implicant table
(after removing essentials)
© GDM —

0000,0010
1101

O R
O ™
= olnm
= o

Recent developments
© GDM =

e Many minimization problems can be solved
exactly today.

e Usually bottleneck is table size.

e Implicit representation of prime implicants:

— Methods based on BDDs [COUDERT]:

* To represent sets.
* To do dominance simplification.

— Methods based on signature cubes [MCGEER

* Represent set of primes.

Summary
Exact two-level minimization of logic
functions

© GDM ==

e Based on derivatives of Quine-McCluskey
method.

e Many minimization problems can be now
solved exactly.

e Usual problems are memory size and time.

Boolean relations

© GDM ==

Generalization of Boolean functions.

More than one output pattern may
correspond to an input pattern.

Some degrees of freedom in finding an
implementation:

— More general than don’t care conditions.

Problem:

— Given a Boolean relation,
find minimum cover of a compatible
function.

Example

© GDM ==

T D T 1
COMPARATOR
N

e Compare:
—a+b>47

—a+b<37?

Example

© GDM ==

X

{ 000, 001, 010 }
{ 000, 001, 010 }
{ 000, 001, 010 }
{ 000, 001, 010 }
{ 000, 001, 010 }
{ 000, 001, 010 }

{ 011, 100 }

{ 011, 100 }

{011, 100}

{011, 100}

{ 011, 100 }

{ 011, 100 }

{ 011, 100 }
{ 101, 110, 111 }
{ 101, 110, 111 }
{ 101, 110, 111 }

s
=
o

o
—

PR RPORRFRPPFPLOOOHFHOOOO
HRPROFRRHOOHOROKOOO|S
HHEHRF,OFRORFROFHFHFOOOROO
HOHPrHHOOFHORHFOOOROS

Example (2)
Minimum implementation
© GDM —
a1 ag by b X
o * 1 * |010
1 * 0 * |010
1 * 1 * 1100
* * % 1 001
x 1 * * 001

e Remark:

— Circuit is no longer an adder.

Minimization of Boolean relations

© GDM ==

e Since there are many possible output values
there are many logic functions
implementing the relation.

— Compatible functions.

e Find a function with minimum cardinality.

e Do not enumerate all possible functions:

— May be too many.

e Represent the primes of all possible functions:

— Compatible primes (¢ — primes).

Minimization of Boolean relation
© GDM =—

e Exact:
— Find a set of compatible primes.

— Solve a binate covering problem.

* Consistency relations.

e Heuristic:

— Iterative improvement [GYOCRO].

Example

© GDM ==

e Boolean relation:

0O 0O { 00}
0O 01 { 00}
0O 1 0 {00}
0O 1 1 {10}
1 0O { 00}
1 0 1 {01}
1 1 0|{00,11}
1 1 1]{o00,11}
e Compatible primes:
a0 1 17|10
811 0 1|01
v/1 1 0]11
611 1 111
e |* 1 1|10
¢|1 * 1|01
n|1l 1 *|11

Example

© GDM =—

e Input 011 — output 10.

— Covering clause (a +€).

e Input 111 — output 00 or 11.

— No implicant — 00 — correct.
— Either n or eU(— output 11 — correct.

— Only € or (¢ is selected — output 10 or
01 — WRONG.

— Covering clause n + e¢ + €/¢’ — binate.

e Overall covering clause:

(at+e)- B+ e+ +mn)-(+C+n)

Binate covering

© GDM ==

Covering problem with binate clause.

Implications:

— The selection of a prime
may exclude other primes.

No guarantee of finding a feasible solution:

— Inconsistent clauses.

Minimum-cost satisfiability problem.

— Much harder to solve than unate cover.
— Branch and bound algorithm.

— BDD-based methods.

Summary
Boolean relations

© GDM ==

Generalization of Boolean functions.

— Many possible output patterns.

Useful for modeling:
— Cascaded blocks.

— Portions of multiple-level networks.

More degree of freedom in implementation.

Harder problem to solve.

