

TIME 3

Multiplier

ALU

- Partition the graph into a minimum number of cliques.
- Find clique cover number $\kappa(G_+)$.
- Conflict graph.
 - Color the vertices
 by a minimum number of colors.
 - Find chromatic number $\chi(G_{-})$.
- NP-complete problems Heuristic algorithms.

- Input:
 - Set of intervals with left and right edge.
- Rationale:
 - Sort intervals by left edge.
 - Assign non overlapping intervals to first color using the sorted list.
 - When possible intervals are exhausted increase color counter and repeat.

- © GDM -

```
\begin{array}{l} LEFT\_EDGE(I) \left\{ & \\ \text{Sort elements of } I \text{ in a list } L \text{ in ascending order of } l_i; \\ c=0; \\ \text{while (some interval has not been colored ) do } \left\{ & \\ S=\emptyset; \\ r=0; \\ \text{while (} \exists s \in L \text{ such that } l_s > r) \text{ do} \right\} \\ & \\ s=\text{First element in the list } L \text{ with } l_s > r; \\ S=S\cup \{s\}; \\ r=r_s; \\ \text{Delete } s \text{ from } L; \\ \\ \\ \\ c=c+1; \\ \text{Label elements of } S \text{ with color } c; \\ \end{array}
```


ILP formulation of binding

_____ © GDM ____

- Boolean variables b_{ir}
 - Operation i bound to resource r.
- Boolean variables x_{il}
 - Operation i scheduled to start at step l.

$$\sum_{r=1}^{a} b_{ir} = 1 \quad orall i$$
 $\sum_{i=1}^{n_{ops}} b_{ir} \quad \sum_{m=l-d+1}^{l} x_{im} \leq 1 \quad orall l \; orall r$

— © GDM -

- Hierarchical conflict/compatibility graphs.
 - Easy to compute.
 - Prevent sharing across hierarchy.
- Flatten hierarchy.
 - Bigger graphs.
 - Destroy nice properties.

Register binding problem

_____ © GDM ___

- Given a schedule:
 - Lifetime intervals for variables.
 - Lifetime overlaps.
- Conflict graph (*interval graph*).
 - Vertices \leftrightarrow variables.
 - Edges \leftrightarrow overlaps.
 - Interval graph.
- Compatibility graph (comparability graph).
 - Complement of conflict graph.

- © GDM •

- Given:
 - Variable lifetime conflict graph.
- Find:
 - Minimum number of registers storing all the variables.
- Key point:
 - Interval graph:
 - * Left-edge algorithm. (Polynomial-time).

• Heuristic algorithms.

⁻ All variables can be transferred.

Scheduling and binding Resource dominated circuits

_____© GDM ____

- Area and delay of resources dominate.
- Strategy:
 - Scheduling under area constraints:
 - * Minimize latency.
 - Binding.
 - * Share resource within bounds.
- Decoupling between scheduling and binding.

Scheduling and binding General circuits

— © GDM -

- Area and delay influenced by:
 - Sparse logic, wiring, registers and control circuit.
- Binding affects the cycle-time:
 - It may invalidate a schedule.
- Scheduling after binding:
 - Binding under restrictive assumptions.
 - Time-frame of operations not yet known.

Scheduling and binding approaches

— © GDM —

- Concurrent scheduling and binding.
 - ILP model- exact.
 - Some heuristic algorithms.
- Scheduling before binding:
 - Good for DSP application.
- Binding before scheduling:
- Iterative techniques.

Module selection problem

_____ © GDM -

- Library of resources:
 - More than one resource per type.
- Example:
 - Ripple-carry adder.
 - Carry look-ahead adder.
- Resource modeling:
 - Resource *subtypes* with:
 - * (area, delay) parameters.

- Latency bound of 4.
 - Fast multipliers for $\{v_1, v_2, v_3\}$.
 - Slower multipliers can be used elsewhere.
 - * Less sharing.
- Minimum-area design uses fast multipliers only.

