Outline

- © GDM -

SCHEDULING

© Giovanni De Micheli

Stanford University

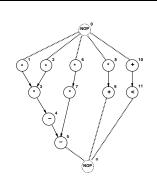
- The scheduling problem.
- Scheduling without constraints.
- Scheduling under timing constraints.
 - Relative scheduling.
- Scheduling under resource constraints.
 - The ILP model.
 - Heuristic methods.

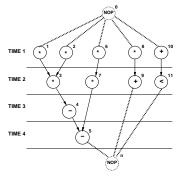
Scheduling

- © GDM -

- Circuit model:
 - Sequencing graph.
 - Cycle-time is given.
 - Operation delays expressed in cycles.
- Scheduling:
 - Determine the start times for the operations.
 - Satisfying all the sequencing (timing and resource) constraint.
- Goal:
 - Determine area/latency trade-off.

Example





Taxonomy

- © GDM -

- Unconstrained scheduling.
- Scheduling with timing constraints:
 - Latency.
 - Detailed timing constraints.
- Scheduling with resource constraints.
- Related problems:
 - Chaining.
 - Synchronization.
 - Pipeline scheduling.

Minimum-latency unconstrained scheduling problem

— © GDM —

- Given a set of ops V with integer delays D and a partial order on the operations E:
- Find an integer labeling of the operations $\varphi:V\to Z^+$, such that:

$$-t_i=\varphi(v_i),$$

$$-t_i \ge t_j + d_j \quad \forall i, j \ s.t. \ (v_j, v_i) \in E$$

— and t_n is minimum.

Simplest model

– © GDM **–**

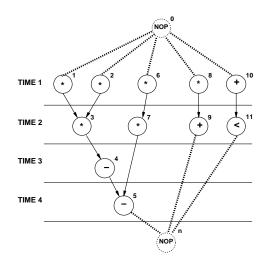
- All operations have bounded delays.
- All delays are in cycles.
 - Cycle-time is given.
- No constraints no bounds on area.
- Goal:
 - Minimize latency.

ASAP scheduling algorithm

_____ © GDM -

```
\begin{array}{l} \textit{ASAP} \ (\ G_s(V,E)) \ \{ \\ & \text{Schedule} \ v_0 \ \text{ by setting } t_0^S = 1; \\ & \textbf{repeat} \ \{ \\ & \text{Select a vertex} \ v_i \ \text{whose pred. are all scheduled}; \\ & \text{Schedule} \ v_i \ \text{by setting} \ t_i^S = \max_{j: (v_j, v_i) \in E} \ t_j^S + d_j; \\ \\ & \text{until} \ (v_n \ \text{is scheduled}) \ ; \\ & \text{return} \ (\textbf{t}^S); \\ \\ \} \end{array}
```

- © GDM -



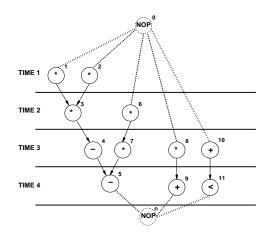
ALAP scheduling algorithm

- © GDM -

```
\begin{array}{l} \textit{ALAP}(\ G_s(V,E),\overline{\lambda})\ \{\\ & \textit{Schedule}\ v_n\ \text{by setting}\ t_n^L=\overline{\lambda}+1;\\ & \textit{repeat}\ \{\\ & \textit{Select vertex}\ v_i\ \text{whose succ. are all scheduled};\\ & \textit{Schedule}\ v_i\ \text{by setting}\ t_i^L=\min\limits_{j:(v_i,v_j)\in E}\ t_j^L-d_i\ ;\\ & \end{aligned}\}\\ & \textit{until}\ (v_0\ \text{is scheduled})\ ;\\ & \textit{return}\ (\mathbf{t}^L);\\ \end{cases}
```

Example

- © GDM -



Remarks

- ALAP solves a latency-constrained problem.
- Latency bound can be set to latency computed by ASAP algorithm.
- Mobility:
 - Defined for each operation.
 - Diff. between ALAP and ASAP schedule.
- Slack on the start time.

— © GDM -

- Operations with zero mobility:
 - $-\{v_1, v_2, v_3, v_4, v_5\}.$
 - Critical path.
- Operations with mobility one:
 - $-\{v_6,v_7\}.$
- Operations with mobility two:
 - $-\{v_8, v_9, v_{10}, v_{11}\}.$

Constraint graph model

_____ © GDM -

- Start from sequencing graph.
- Model delays as weights on edges.
- Add forward edges for *minimum* constraints.
 - Edge (v_i, v_j) with weight $l_{ij} \Rightarrow t_j \geq t_i + l_{ij}$.
- Add backward edges for maximum constraints.
 - Edge (v_i, v_i) with weight:

$$* -u_{ij} \Rightarrow t_j \leq t_i + u_{ij}$$

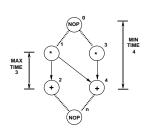
- because
$$t_j \leq t_i + u_{ij} \Rightarrow t_i \geq t_j - u_{ij}$$
.

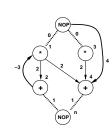
Scheduling under detailed timing constraints

- © GDM -

- Motivation:
 - Interface design.
 - Control over operation start time.
- Constraints:
 - Upper/lower bounds on start-time difference of any operation pair.
- Feasibility of a solution.

Example





Verte	x Start time
v_{O}	1
v_1	1
v_2	3
v_3	1
v_4	5
v_n	6

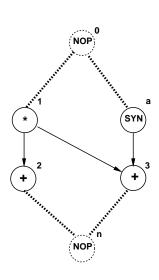
Methods for scheduling under detailed timing constraints

© GDM

- Assumption:
 - All delays are fixed and known.
- Set of linear inequalities.
- Longest path problem.
- Algorithms:
 - Bellman-Ford, Liao-Wong.

Example

- © GDM **-**



• $t_3 = \max\{t_1 + d_1; t_a + d_a\}$

Method for scheduling with unbounded-delay operations

_____ © GDM _

- Unbounded delays:
 - Synchronization.
 - Unbounded-delay operations (e.g. loops).
- Anchors
 - Unbounded-delay operations.
- Relative scheduling:
 - Schedule ops w.r. to the anchors.
 - Combine schedules.

Relative scheduling method

– © GDM *–*

- For each vertex:
 - Determine relevant anchor set $R(\cdot)$.
 - Anchors affecting start time.
 - Determine time offset from anchors.
- Start-time:
 - Expressed by: $t_i = \max_{a \in R(v_i)} \{t_a + d_a + t_i^a\}$
 - Computed only at run-time because delays of anchors are unknown.

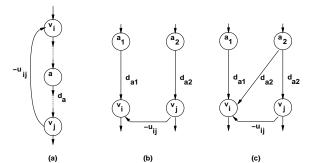
Relative scheduling under timing constraints

— © GDM —

■ © GDM

- Problem definition:
 - Detailed timing constraints.
 - Unbounded delay operations.
- Solution:
 - May or may not exist.
 - Problem may be ill-specified.

Example



Relative scheduling under timing constraints

- © GDM -

- Feasible problem:
 - A solution exists
 when unknown delays are zero.
- Well-posed problem:
 - A solution exists for any value of the unknown delays.
- Theorem:
 - A constraint graph can be made well-posed iff there are no cycles with unbounded weights.

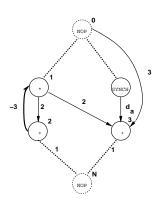
Relative scheduling approach

— ⊚ GDM **-**

- Analyze graph:
 - Detect anchors.
 - Well-posedness test.
 - Determine dependencies from anchors.
- Schedule ops with respect to relevant anchors:
 - Bellman-Ford, Liao-Wong, Ku algorithms.
- Combine schedules to determine start times:

$$-t_i = \max_{a \in R(v_i)} \{t_a + d_a + t_i^a\} \quad \forall i$$

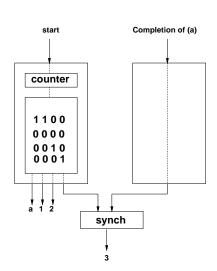
— © GDM —



Vertex	Relevant Anchor Set	Offsets	
v_i	$R(v_i)$	t_0	t_a
a	$\{v_{O}\}$	0	-
v_1	$\{v_{O}\}$	0	-
v_2	$\{v_{O}\}$	2	-
v_3	$\{v_{O},a\}$	3	0

Example of control-unit

- © GDM -



Scheduling under resource constraints

<u> —</u> © GDM —

- Classical scheduling problem.
 - Fix area bound minimize latency.
- The amount of available resources affects the achievable latency.
- Dual problem:
 - Fix latency bound minimize resources.
- Assumption:
 - All delays bounded and known.

Minimum latency resource-constrained scheduling problem

— © GDM —

- Given a set of ops V with integer delays D a partial order on the operations E, and upper bounds $\{a_k; k=1,2,\ldots,n_{res}\}$:
- Find an integer labeling of the operations $\varphi:V\to Z^+$
- such that :

$$-t_i=\varphi(v_i)$$

$$-t_i \ge t_j + d_j \ \forall \ i, j \ s.t. \ (v_j, v_i) \in E$$

-
$$|\{v_i|\mathcal{T}(v_i) = k \text{ and } t_i \leq l < t_i + d_i\}| \leq a_k$$

 $\forall \text{types } k = 1, 2, \dots, n_{res} \text{ and } \forall \text{ steps } l$

— and t_n is minimum.

Scheduling under resource constraints

- Intractable problem.
- Algorithms:
 - Exact:
 - * Integer linear program.
 - * Hu (restrictive assumptions).
 - Approximate:
 - * List scheduling.
 - * Force-directed scheduling.

ILP formulation constraints

— © GDM —

• Operations start only once.

$$-\sum_{l} x_{il} = 1$$
 $i = 1, 2, \dots, n$

• Sequencing relations must be satisfied.

$$-t_i \ge t_j + d_j \qquad \forall (v_j, v_i) \in E$$
$$-\sum_l l \cdot x_{il} - \sum_l l \cdot x_{jl} - d_j \ge 0 \ \forall (v_j, v_i) \in E$$

- Resource bounds must be satisfied.
 - Simple case (unit delay)

$$-\sum_{i:\mathcal{T}(v_i)=k} x_{il} \leq a_k \quad k = 1, 2, \dots, n_{res}; \quad \forall l$$

ILP formulation:

—— © GDM ——

• Binary decision variables:

$$-X = \{x_{il}; i = 1, 2, ..., n; l = 1, 2, ..., \overline{\lambda} + 1\}.$$

- $-x_{il}$, is TRUE only when operation v_i starts in step l of the schedule (i.e. $l=t_i$).
- $-\overline{\lambda}$ is an upper bound on latency.
- Start time of operation v_i :

$$-\sum_{l}l\cdot x_{il}$$

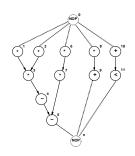
ILP Formulation

— © GDM —

 $min ||\mathbf{t}|| such that$

$$\sum_{j} x_{ij} = 1 \ i = 1, 2, \dots, n$$
 $\sum_{l} l \cdot x_{il} - \sum_{l} l \cdot x_{jl} - d_{j} \geq 0 \ i, j = 1, 2, \dots, n, (v_{j}, v_{i}) \in E$
 $\sum_{i: T(v_{i}) = k} \sum_{m = l - d + 1}^{l} x_{im} \leq a_{k} \ k = 1, 2, \dots, n_{res}; l = 0, 1, \dots, t_{res}$

— © GDM —

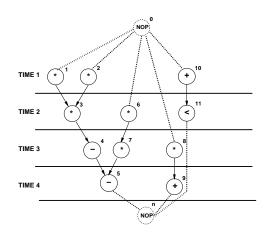


- Resource constraints:
 - 2 ALUs; 2 Multipliers.

$$-a_1=2$$
; $a_2=2$.

- Single-cycle operation.
 - $-d_i=1 \ \forall i.$

Example



Example

- © GDM -

• Operations start only once.

$$-x_{11}=1$$

$$-x_{61}+x_{62}=1$$

- ...

• Sequencing relations must be satisfied.

$$- x_{61} + 2x_{62} - 2x_{72} - 3x_{73} + 1 \le 0$$

$$-2x_{92}+3x_{93}+4x_{94}-5x_{N5}+1\leq 0$$

- ...

• Resource bounds must be satisfied.

$$- x_{11} + x_{21} + x_{61} + x_{81} \le 2$$

$$- x_{32} + x_{62} + x_{72} + x_{82} \le 2$$

_ ...

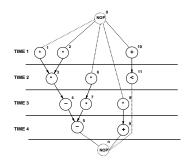
Dual ILP formulation

- Minimize resource usage under latency constraint
- Additional constraint:
 - Latency bound must be satisfied.

$$-\sum_{l} l x_{nl} \leq \overline{\lambda} + 1$$

- Resource usage is unknown in the constraints.
- Resource usage is the objective to minimize.

<u> —</u> © GDM —



- Multiplier area = 5. ALU area = 1.
- Objective function: $5a_1 + a_2$.

ILP Solution

- Use standard ILP packages.
- Transform into LP problem [Gebotys].
- Advantages:
 - Exact method.
 - Others constraints can be incorporated.
- Disadvantages:
 - Works well up to few thousand variables.