

Network optimization

_____ © GDM ____

- Minimize area (power) estimate:
 - subject to delay constraints.
- Minimize maximum delay:
 - subject to area (power) constraints.
- Minimize power consumption.
 - subject to delay constraints.
- Maximize testability.

Estimation

_____ © GDM ____

- Area:
 - Number of literals.
 - Number of functions/gates.
- Delay:
 - Number of stages.
 - Refined gate delay models.
 - Sensitizable paths.

Problem analysis

— © GDM —

- Multiple-level optimization is hard.
- Exact methods:
 - Exponential complexity.
 - Impractical.
- Approximate methods:
 - Heuristic algorithms.
 - Rule-based methods.

Strategies for optimization

_____ © GDM ___

- Improve circuit step by step.
 - Circuit transformations.
- Preserve network behavior.
- Methods differ in:
 - Types of transformations.
 - Selection and order of transformations.

Example extraction

— © GDM —

- Find a common sub-expression of two (or more) expressions.
- Extract sub-expression as new function.
- Introduce new vertex in the network.
- Example:
 - $p = ce + de; \quad t = ac + ad + bc + bd + e;$
 - $-p = (c+d)e; \quad t = (c+d)(a+b) + e;$
 - $\Rightarrow k = c + d; \quad p = ke; \quad t = ka + kb + e;$

Example substitution

- Simplify a local function by using an additional input that was not previously in its support set.
- Example:
 - -t = ka + kb + e.
 - $\Rightarrow t = kq + e$
 - Because q = a + b.

Example substitution 🗕 © GDM a, v = a'd + bd + c'd + ae' w b p = ke r = p + a' s = r + b' X C k = c + d t = ka + kb + eУ d

u = q'c + qc' + qc

Z

q = a + b

Example sequence of transformations

____ © GDM __

— © GDM —

k = c + dq = a + b

j

= ke + a' + b'

= a' + b + c'

- t = kq + e
- u = q + c
- v = jd + ae'

- Algorithm is an *operator* on the network.
- Rule-based approach:
 - Rule-data base:
 - * Set of pattern pairs.
 - Pattern replacement driven by rules.

Algorithmic approach

_____ © GDM ____

- Each operator has well-defined properties:
 - Heuristic methods still used.
 - Weak optimality properties.
- Sequence of operators:
 - Defined by *scripts*.
 - Based on experience.

Example elimination algorithm

- Set a threshold k (usually 0).
- Examine all expressions.
- Eliminate expressions if the increase in literals does not exceed the threshold.

Example elimination algorithm

 $ELIMINATE(\ G_n(V,E)$, $k) \{$

repeat {

 v_x = selected vertex with value < k; if $(v_x = \emptyset)$ return; replace x by f_x in the network;

_____ © GDM ____

}

Example MIS/SIS rugged script

_____ © GDM -

- sweep; eliminate -1
- simplify -m nocomp
- eliminate -1
- sweep; eliminate 5
- simplify -m nocomp
- resub -a
- fx
- resub -a; sweep
- eliminate -1; sweep
- full-simplify -m nocomp

Boolean and algebraic methods

Summary

— © GDM —

- Multilevel logic synthesis is performed by step-wise transformations.
- Algorithms are based on both the Boolean and the algebraic models.
- Rule-based systems.