MULTIPLE-LEVEL LOGIC OPTIMIZATION

(C)Giovanni De Micheli

Stanford University

Outline

- Representations.
- Taxonomy of optimization methods:
- Goals: area/delay.
- Algorithms: algebraic/Boolean.
- Rule-based methods.
- Examples of transformations.
- Boolean and algebraic models.

Motivation

- Multiple-level networks:
- Semi-custom libraries.
- Gates versus macros (PLAs):
* More flexibility.
* Better performance.
- Applicable to a variety of designs.

Circuit modeling

- Logic network:
- Interconnection of logic functions.
- Hybrid structural/behavioral model.
- Bound (mapped) networks:
- Interconnection of logic gates.
- Structural model.

Example of network

Example of bound network

(a)

(b)

Example

 circuit terminal behavior© GDM —

$$
\mathbf{f}=\left[\begin{array}{l}
a^{\prime} d+b d+c^{\prime} d+a e^{\prime} \\
a^{\prime}+b^{\prime}+c+d \\
a c+a d+b c+b d+e \\
a+b+c
\end{array}\right]
$$

Network optimization

(C) GDM

- Minimize area (power) estimate:
- subject to delay constraints.
- Minimize maximum delay:
- subject to area (power) constraints.
- Minimize power consumption.
- subject to delay constraints.
- Maximize testability.

Estimation

- Area:
- Number of literals.
- Number of functions/gates.
- Delay:
- Number of stages.
- Refined gate delay models.
- Sensitizable paths.

Problem analysis

(C) GDM

- Multiple-level optimization is hard.
- Exact methods:
- Exponential complexity.
- Impractical.
- Approximate methods:
- Heuristic algorithms.
- Rule-based methods.

Strategies for optimization

- Improve circuit step by step.
- Circuit transformations.
- Preserve network behavior.
- Methods differ in:
- Types of transformations.
- Selection and order of transformations.

Example elimination

- Eliminate one function from the network.
- Perform variable substitution.

Example decomposition

decomposition

- Break one function into smaller ones.
- Introduce new vertices in the network.
- Example:
$-v=a^{\prime} d+b d+c^{\prime} d+a e^{\prime}$.
$-\Rightarrow j=a^{\prime}+b+c^{\prime} ; v=j d+a e^{\prime}$

Example extraction

- Find a common sub-expression of two (or more) expressions.
- Extract sub-expression as new function.
- Introduce new vertex in the network.

Example extraction

Example

 simplification
Example

 simplification- Simplify a local function.
- Example:
$-u=q^{\prime} c+q c^{\prime}+q c ;$
$-\Rightarrow u=q+c ;$

Example

 substitution- Simplify a local function by using an additional input that was not previously in its support set.
- Example:
$-t=k a+k b+e$.
$-\Rightarrow t=k q+e$
- Because $q=a+b$.

Example substitution

Example

sequence of transformations

(C) GDM

$$
\begin{aligned}
j & =a^{\prime}+b+c^{\prime} \\
k & =c+d \\
q & =a+b \\
s & =k e+a^{\prime}+b^{\prime} \\
t & =k q+e \\
u & =q+c \\
v & =j d+a e^{\prime}
\end{aligned}
$$

Optimization approaches

- Algorithmic approach:
- Define an algorithm for each transformation type.
- Algorithm is an operator on the network.
- Rule-based approach:
- Rule-data base:
* Set of pattern pairs.
- Pattern replacement driven by rules.

Algorithmic approach

- Each operator has well-defined properties:
- Heuristic methods still used.
- Weak optimality properties.
- Sequence of operators:
- Defined by scripts.
- Based on experience.

Example elimination algorithm

- Set a threshold k (usually 0).
- Examine all expressions.
- Eliminate expressions if the increase in literals does not exceed the threshold.

```
            Example
        elimination algorithm
```

ELIMINATE $\left(G_{n}(V, E), k\right)\{$

```
ELIMINATE \(\left(G_{n}(V, E), k\right)\{\)
    repeat \{
    repeat \{
        \(v_{x}=\) selected vertex with value \(<k\);
        \(v_{x}=\) selected vertex with value \(<k\);
        if ( \(v_{x}=\emptyset\) ) return;
        if ( \(v_{x}=\emptyset\) ) return;
        replace \(x\) by \(f_{x}\) in the network;
        replace \(x\) by \(f_{x}\) in the network;
    \}
    \}
\}
```

\}

```

\section*{Boolean and algebraic methods}
(C) GDM
- Boolean methods:
- Exploit properties of logic functions.
- Use don't care conditions.
- Complex at times.
- Algebraic methods:
- View functions as polynomials.
- Exploit properties of polynomial algebra.
- Simpler, faster but weaker.

\section*{Example}
- Boolean substitution:
\(-h=a+b c d+e ; q=a+c d\)
\(-\Rightarrow h=a+b q+e\)
- Because \(a+b q+e=a+b(a+c d)+e=\) \(=a+b c d+e\).
- Algebraic substitution:
\(-t=k a+k b+e\).
\(-\Rightarrow t=k q+e\)
- Because \(q=a+b\).

\section*{Summary}
- Multilevel logic synthesis is performed by step-wise transformations.
- Algorithms are based on both the Boolean and the algebraic models.
- Rule-based systems.```

