# DATA STRUCTURES FOR LOGIC OPTIMIZATION

# © Giovanni De Micheli

Stanford University

# **Background**

\_\_\_\_\_ © GDM \_\_\_\_

- Function  $f(x_1, x_2, \ldots, x_i, \ldots, x_n)$ .
- Cofactor of f with respect to variable  $x_i$ :

$$- f_{x_i} \equiv f(x_1, x_2, \dots, 1, \dots, x_n).$$

- Cofactor of f with respect to variable  $x_i'$ :  $-f_{x_i'} \equiv f(x_1, x_2, \dots, 0, \dots, x_n).$
- Boole's expansion theorem:

$$- f(x_1, x_2, \dots, x_i, \dots, x_n) = x_i \cdot f_{x_i} + x_i' \cdot f_{x_i'}$$

#### Outline

— © GDM —

- Review of Boolean algebra.
- Representations of logic functions.
- Matrix representations of covers.
- Operations on logic covers.

#### Example

- © GDM -

- Function: f = ab + bc + ac
- Cofactors:

$$-f_a = b + c$$

$$-f_{a'}=bc$$

• Expansion:

$$-f = af_a + a'f_{a'} = a(b+c) + a'bc$$

# **Background**

- © GDM -

- Function  $f(x_1, x_2, \ldots, x_i, \ldots, x_n)$ .
- Positive unate in  $x_i$  when:

$$-f_{x_i} \geq f_{x'_i}$$

• Negative unate in  $x_i$  when:

$$-f_{x_i} \leq f_{x_i'}$$

 A function is positive/negative unate when positive/negative unate in all its variables.

# • Function $f(x_1, x_2, ..., x_i, ..., x_n)$ .

• Boolean difference of f w.r.t. variable  $x_i$ :

Background

$$-\partial f/\partial x_i \equiv f_{x_i} \oplus f_{x'_i}.$$

ullet Consensus of f w. r. to variable  $x_i$ :

$$- \mathcal{C}_{x_i} \equiv f_{x_i} \cdot f_{x'_i}.$$

ullet Smoothing of f w. r. to variable  $x_i$ :

$$- \mathcal{S}_{x_i} \equiv f_{x_i} + f_{x_i'}.$$

# Example

$$f = ab + bc + ac$$

- © GDM -









- The Boolean difference  $\partial f/\partial a = f_a \oplus f_{a'} = b'c + bc'$ .
- The consensus  $C_a = f_a \cdot f_{a'} = bc$ .
- The smoothing  $S_a = f_a + f_{a'} = b + c$ .

# Generalized expansion

- © GDM -

© GDM =

- Given:
  - A Boolean function f.
  - Orthonormal set of functions:  $\phi_i$ , i = 1, 2, ..., k.
- Then:

$$-f = \sum_{i=1}^{k} \phi_i \cdot f_{\phi_i}$$

- Where  $f_{\phi_i}$  is a generalized cofactor.
- The generalized cofactor is not unique, but satisfies:

$$- f \cdot \phi_i \subseteq f_{\phi_i} \subseteq f + \phi_i'$$

- Function f = ab + bc + ac.
- Basis:  $\phi_1 = ab$  and  $\phi_2 = a' + b'$ .
- Bounds:

$$-ab \subseteq f_{\phi_1} \subseteq \mathbf{1}$$

$$-\ a'bc+ab'c\subseteq f_{\phi_2}\subseteq ab+bc+ac.$$

• Cofactors:  $f_{\phi_1} = 1$  and  $f_{\phi_2} = a'bc + ab'c$ .

$$f = \phi_1 f_{\phi_1} + \phi_2 f_{\phi_2}$$
  
=  $ab1 + (a' + b')(a'bc + ab'c)$   
=  $ab + bc + ac$ 

#### Generalized expansion theorem

\_\_\_\_\_ © GDM -

- Given:
  - Two functions f and g.
  - Orthonormal set of functions:  $\phi_i$ , i = 1, 2, ..., k.
  - Boolean operator ⊙.
- Then:

$$-f \odot g = \sum_{i=1}^{k} \phi_{i} \cdot (f_{\phi_{i}} \odot g_{\phi_{i}})$$

• Corollary:

$$- f \odot g = x_i \cdot (f_{x_i} \odot g_{x_i}) + x'_i \cdot (f_{x'_i} \odot g_{x'_i})$$

#### Matrix representations of logic covers

— © GDM —

- Used in logic minimizers.
- Different formats.
- Usually one row per implicant.
- Symbols: 0,1,\*. (and other)

# The positional cube notation

— © GDM —

• Encoding scheme:

| Ø | 00 |
|---|----|
| 0 | 10 |
| 1 | 01 |
| * | 11 |

- Operations:
  - Intersection AND
  - Union OR

#### Example

$$f = a'd' + a'b + ab' + ac'd$$

\_\_\_\_\_ © GDM \_

#### **Cofactor computation**

\_\_\_\_\_ © GDM \_\_\_\_

- Cofactor of  $\alpha$  w.r. to  $\beta$ .
  - Void when  $\alpha$  does not intersect  $\beta$ .

$$-a_1 + b'_1 \quad a_2 + b'_2 \quad \dots \quad a_n + b'_n$$

- Cofactor of a set  $C = \{\gamma_i\}$  w.r. to  $\beta$ :
  - Set of cofactors of  $\gamma_i$  w.r. to  $\beta$ .

# Example

$$f = a'b' + ab$$

— © GDM −

- Cofactor w.r. to 01 11:
  - First row void.
  - Second row 11 01 .
- Cofactor  $f_a = b$

#### Multiple-valued-input functions

\_\_\_\_\_ © GDM -

- Input variables can have many values.
- Representations:
  - Literals: set of valid values.
  - Sum of products of literals.
- Extension of positional cube notation.
- Key fact:
  - Multiple-output binary-valued functions represented as mvi single-output functions.

#### Example

— © GDM −

• 2-input, 3-output function:

$$-f_1 = a'b' + ab$$

$$-f_2=ab$$

$$-f_3 = ab' + a'b$$

• Mvi representation:

| 10 | 10 | 100 |
|----|----|-----|
| 10 | 01 | 001 |
| 01 | 10 | 001 |
| 01 | 01 | 110 |

#### **Tautology**

— © GDM −

- Check if a function is always TRUE.
- Recursive paradigm:
  - Expand about a mv-variable.
  - If all cofactors are TRUE then function is a tautology.
- Unate heuristics:
  - If cofactors are unate functions additional criteria to determine tautology.
  - Faster decision.

#### Operations on logic covers

\_\_\_\_\_ © GDM \_

- Recursive paradigm:
  - Expand about a mv-variable.
  - Apply operation to cofactors.
  - Merge results.
- Unate heuristics:
  - Operations on unate functions are simpler.
  - Select variables so that cofactors become unate functions.

#### **Recursive tautology**

— © GDM —

- TAUTOLOGY: the cover has a row of all 1s. (Tautology cube).
- NO TAUT.: the cover has a column of 0s.
  (A variable that never takes a value).
- TAUTOLOGY:

the cover depends on one variable, and there is no column of 0s in that field.

 When a cover is the union of two subcovers, that depend on disoint subsets of variables, then check tautology in both subcovers.

# Example



$$f = ab + ac + ab'c' + a'$$

- 01 01 11 01 11 01 01 10 10 10 11 11
- Select variable a.
- Cofactor w.r.to a' is 11 11 11 Tautology.
- Cofactor w.r.to a is:

#### Containment

- © GDM -

- Theorem:
  - A cover F contains an implicant  $\alpha$  iff  $F_{\alpha}$  is a tautology.
- Consequence:
  - Containment can be verified by the tautology algorithm.

#### Example

— © GDM →

- Select variable b.
- Cofactor w.r.to b' is:

- No column of 0 Tautology.
- Cofactor w.r.to *b* is: 11 11 11.
- Function is a TAUTOLOGY.

#### **Example**



$$f = ab + ac + a'$$

- Check covering of  $bc C(bc) = 11 \ 01 \ 01$ .
- Take the cofactor:

01 11 11 01 11 11 10 11 11

ullet Tautology - bc is contained by f.

# Complementation

- © GDM -

• Recursive paradigm:

$$-f' = x \cdot f'_x + x' \cdot f'_{x'}$$

- Steps:
  - Select variable.
  - Compute cofactors.
  - Complement cofactors.
- Recur until cofactors can be complemented in a straightforward way.

#### **Unate functions**

— © GDM —

- Theorem:
  - If f be positive unate:  $f' = f'_x + x' \cdot f'_{x'}$ .
  - If f be negative unate:  $f' = x \cdot f'_x + f'_{x'}$ .
- Consequence:
  - Complement computation is simpler.
  - One branch to follow in the recursion.
- Heuristic:
  - Select variables to make the cofactors unate.

#### Termination rules

• © GDM

- The cover *F* is void. Hence its complement is the universal cube.
- The cover *F* has a row of 1s. Hence *F* is a tautology and its complement is void.
- The cover F consists of one implicant. Hence the complement is computed by De Morgan's law.
- All the implicants of F depend on a single variable, and there is not a column of 0s.

The function is a tautology, and its complement is void.

# Example



$$f = ab + ac + a'$$

© GDM

- Select binate variable a'.
- Compute cofactors:
  - $F_{a^\prime}$  is a tautology, hence  $F_{a^\prime}^\prime$  is void.
  - $-F_a$  yields:

11 01 11 11 11 01

# Example (2)

- © GDM -

- Select unate variable b.
- Compute cofactors:
  - $F_{ab}$  is a tautology, hence  $F_{ab}'$  is void.
  - $F_{ab^\prime}=$  11 11 01 and its complement is 11 11 10.
- Re-construct complement:
  - 11 11 10 intersected with  $C(b^\prime)$  = 11 10 11 yields 11 10 10.
  - 11 10 10 intersected with C(a) = 01 11 11 yields 01 10 10.
- Complement:  $F' = 01 \ 10 \ 10$ .

#### **Summary**

**-** © GDM **-**

- Matrix oriented representation:
  - Used in two-level logic minimizer.
  - May be wasteful of space (sparsity).
  - Good heuristics tied to this representation.
- Efficient Boolean manipulation exploits recursion.

### Example (3)

■ © GDM

#### RECURSIVE SEARCH

