DATA STRUCTURES FOR LOGIC OPTIMIZATION

(C) Giovanni De Micheli

Stanford University

Outline

- Review of Boolean algebra.
- Representations of logic functions.
- Matrix representations of covers.
- Operations on logic covers.

Background

(C) GDM \quad

- Function $f\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)$.
- Cofactor of f with respect to variable x_{i} :
$-f_{x_{i}} \equiv f\left(x_{1}, x_{2}, \ldots, 1, \ldots, x_{n}\right)$.
- Cofactor of f with respect to variable x_{i}^{\prime} :
$-f_{x_{i}^{\prime}} \equiv f\left(x_{1}, x_{2}, \ldots, 0, \ldots, x_{n}\right)$.
- Boole's expansion theorem:
$-f\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)=x_{i} \cdot f_{x_{i}}+x_{i}^{\prime} \cdot f_{x_{i}^{\prime}}$

Example

- Function: $f=a b+b c+a c$
- Cofactors:
$-f_{a}=b+c$
$-f_{a^{\prime}}=b c$
- Expansion:

$$
-f=a f_{a}+a^{\prime} f_{a^{\prime}}=a(b+c)+a^{\prime} b c
$$

Background

- Function $f\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)$.
- Positive unate in x_{i} when:
$-f_{x_{i}} \geq f_{x_{i}^{\prime}}$
- Negative unate in x_{i} when:
$-f_{x_{i}} \leq f_{x_{i}^{\prime}}$
- A function is positive/negative unate when positive/negative unate in all its variables.

Background

- Function $f\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)$.
- Boolean difference of f w.r.t. variable x_{i} :
$-\partial f / \partial x_{i} \equiv f_{x_{i}} \oplus f_{x_{i}^{\prime}}$.
- Consensus of f w. r. to variable x_{i} :
$-\mathcal{C}_{x_{i}} \equiv f_{x_{i}} \cdot f_{x_{i}^{\prime}}$.
- Smoothing of f w. r. to variable x_{i} :
$-\mathcal{S}_{x_{i}} \equiv f_{x_{i}}+f_{x_{i}^{\prime}}$.

Example

$f=a b+b c+a c$

(a)

(b)

(c)

(d)

- The Boolean difference $\partial f / \partial a=f_{a} \oplus f_{a^{\prime}}=b^{\prime} c+b c^{\prime}$.
- The consensus $\mathcal{C}_{a}=f_{a} \cdot f_{a^{\prime}}=b c$.
- The smoothing $\mathcal{S}_{a}=f_{a}+f_{a^{\prime}}=b+c$.

Generalized expansion

- Given:
- A Boolean function f.
- Orthonormal set of functions: $\phi_{i}, \quad i=1,2, \ldots, k$.
- Then:
$-f=\sum_{i}^{k} \phi_{i} \cdot f_{\phi_{i}}$
- Where $f_{\phi_{i}}$ is a generalized cofactor.
- The generalized cofactor is not unique, but satisfies:
$-f \cdot \phi_{i} \subseteq f_{\phi_{i}} \subseteq f+\phi_{i}^{\prime}$

Example

- Function $f=a b+b c+a c$.
- Basis: $\phi_{1}=a b$ and $\phi_{2}=a^{\prime}+b^{\prime}$.
- Bounds:
$-a b \subseteq f_{\phi_{1}} \subseteq 1$
$-a^{\prime} b c+a b^{\prime} c \subseteq f_{\phi_{2}} \subseteq a b+b c+a c$.
- Cofactors: $f_{\phi_{1}}=1$ and $f_{\phi_{2}}=a^{\prime} b c+a b^{\prime} c$.

$$
\begin{aligned}
f & =\phi_{1} f_{\phi_{1}}+\phi_{2} f_{\phi_{2}} \\
& =a b 1+\left(a^{\prime}+b^{\prime}\right)\left(a^{\prime} b c+a b^{\prime} c\right) \\
& =a b+b c+a c
\end{aligned}
$$

Generalized expansion theorem
(C) GDM -

- Given:
- Two functions f and g.
- Orthonormal set of functions:
$\phi_{i}, \quad i=1,2, \ldots, k$.
- Boolean operator \odot.
- Then:
$-f \odot g=\sum_{i}^{k} \phi_{i} \cdot\left(f_{\phi_{i}} \odot g_{\phi_{i}}\right)$
- Corollary:
$-f \odot g=x_{i} \cdot\left(f_{x_{i}} \odot g_{x_{i}}\right)+x_{i}^{\prime} \cdot\left(f_{x_{i}^{\prime}} \odot g_{x_{i}^{\prime}}\right)$

Matrix representations of logic covers

The positional cube notation

- Encoding scheme:

\emptyset	00
0	10
1	01
$*$	11

- Operations:
- Intersection - AND
- Union - OR

Cofactor computation

- Cofactor of α w.r. to β.
- Void when α does not intersect β.
(C) GDM -

10	11	11	10
10	01	11	11
01	10	11	11
01	11	10	01

Example

$f=a^{\prime} d^{\prime}+a^{\prime} b+a b^{\prime}+a c^{\prime} d$
© GDM -
$-a_{1}+b_{1}^{\prime} \quad a_{2}+b_{2}^{\prime} \quad \ldots \quad a_{n}+b_{n}^{\prime}$

- Cofactor of a set $C=\left\{\gamma_{i}\right\}$ w.r. to β :
- Set of cofactors of γ_{i} w.r. to β.

Multiple-valued-input functions

Example

$f=a^{\prime} b^{\prime}+a b$
© GDM -

1010

0101

- Cofactor w.r. to 01 11:
- First row - void.
- Second row-11 01 .
- Cofactor $f_{a}=b$
- Input variables can have many values.
- Representations:
- Literals: set of valid values.
- Sum of products of literals.
- Extension of positional cube notation.
- Key fact:
- Multiple-output binary-valued functions represented as mvi single-output functions.

Example

- 2-input, 3-output function:
$-f_{1}=a^{\prime} b^{\prime}+a b$
$-f_{2}=a b$
$-f_{3}=a b^{\prime}+a^{\prime} b$
- Mvi representation:

10	10	100
10	01	001
01	10	001
01	01	110

Operations on logic covers

- Recursive paradigm:
- Expand about a mv-variable.
- Apply operation to cofactors.
- Merge results.
- Unate heuristics:
- Operations on unate functions are simpler.
- Select variables so that cofactors become unate functions.

Tautology

- Check if a function is always TRUE.
- Recursive paradigm:
- Expand about a mv-variable.
- If all cofactors are TRUE then function is a tautology.
- Unate heuristics:
- If cofactors are unate functions additional criteria to determine tautology.
- Faster decision.

Recursive tautology

- TAUTOLOGY: the cover has a row of all 1 s . (Tautology cube).
- NO TAUT.: the cover has a column of Os. (A variable that never takes a value).
- TAUTOLOGY:
the cover depends on one variable, and there is no column of 0 s in that field.
- When a cover is the union of two subcovers, that depend on disoint subsets of variables, then check tautology in both subcovers.

Example

$f=a b+a c+a b^{\prime} c^{\prime}+a^{\prime}$

© GDM -
$01 \quad 0111$
$01 \quad 11 \quad 01$
011010
$10 \quad 11 \quad 11$

- Select variable a.
- Cofactor w.r.to a^{\prime} is 111111 - Tautology.
- Cofactor w.r.to a is:

11	01	11
11	11	01
11	10	10

Example

11	01	11
11	11	01
11	10	10

- Select variable b.
- Cofactor w.r.to b^{\prime} is:

$$
\begin{array}{ll|l}
11 & 11 & 01 \\
11 & 11 & 10
\end{array}
$$

- No column of 0 - Tautology.
- Cofactor w.r.to b is: 111111.
- Function is a TAUTOLOGY.

Example

$$
f=a b+a c+a^{\prime}
$$

- Check covering of $b c-C(b c)=110101$.
- Take the cofactor:

$$
\begin{array}{lll}
01 & 11 & 11 \\
01 & 11 & 11 \\
10 & 11 & 11
\end{array}
$$

- Tautology -bc is contained by f.

Complementation

Termination rules

- The cover F is void.

Hence its complement is the universal cube.

- The cover F has a row of 1 s .

Hence F is a tautology and its complement is void.

- Steps:
- Select variable.
- Compute cofactors.
- Complement cofactors.
- Recur until cofactors can be complemented in a straightforward way.
- The cover F consists of one implicant. Hence the complement is computed by De Morgan's law.
- All the implicants of F depend on a single variable, and there is not a column of 0 s.
The function is a tautology, and its complement is void.

Unate functions

- Theorem:
- If f be positive unate: $f^{\prime}=f_{x}^{\prime}+x^{\prime} \cdot f_{x^{\prime}}^{\prime}$.
- If f be negative unate: $f^{\prime}=x \cdot f_{x}^{\prime}+f_{x^{\prime}}^{\prime}$.
- Consequence:
- Complement computation is simpler.
- One branch to follow in the recursion.
- Heuristic:
- Select variables to make the cofactors unate.

Example

$$
f=a b+a c+a^{\prime}
$$

- Select binate variable a^{\prime}.
- Compute cofactors:
- $F_{a^{\prime}}$ is a tautology, hence $F_{a^{\prime}}^{\prime}$ is void.
- F_{a} yields:
$\begin{array}{lll}11 & 01 & 11\end{array}$
$11 \quad 1101$

Example (2)

- Select unate variable b.
- Compute cofactors:
- $F_{a b}$ is a tautology, hence $F_{a b}^{\prime}$ is void.
$-F_{a b^{\prime}}=111101$ and its complement is 111110.
- Re-construct complement:
- 111110 intersected with $C\left(b^{\prime}\right)=111011$ yields 111010 .
- 111010 intersected with $C(a)=011111$ yields 011010 .
- Complement: $F^{\prime}=011010$.
Example (3)
© GDM ——

RECURSIVE SEARCH

