Boolean methods

BOOLEAN METHODS

© Giovanni De Micheli

Stanford University

External don't care conditions

© GDM -

- Controllability don't care set $C D C_{i n}$:
- Input patterns never produced by the environment at the network's input.
- Observability don't care set $O D C_{\text {out }}$:
- Input patterns representing conditions when an output is not observed by the environment.
- Relative to each output.
- Vector notation used: ODC $_{\text {out }}$.

Example

\qquad

- Inputs driven by a de-multiplexer.
- $C D C_{i n}=x_{1}^{\prime} x_{2}^{\prime} x_{3}^{\prime} x_{4}^{\prime}+x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{4}$.
- Outputs observed when $\left[\begin{array}{l}x_{1} \\ x_{4}\end{array}\right]=\mathbf{1}$

$$
\mathbf{O D C}_{\text {out }}=\left[\begin{array}{c}
x_{1}^{\prime} \\
x_{1}^{\prime} \\
x_{4}^{\prime} \\
x_{4}^{\prime}
\end{array}\right]
$$

$$
\begin{gathered}
\begin{array}{c}
\text { Example } \\
\text { overall external don't care set } \\
\text { © GDM }- \\
\mathbf{D C}_{e x t}=\mathbf{C D C}_{i n}+\mathbf{O D C}_{\text {out }}=\left[\begin{array}{l}
x_{1}^{\prime}+x_{2}+x_{3}+x_{4} \\
x_{1}^{\prime}+x_{2}+x_{3}+x_{4} \\
x_{4}^{\prime}+x_{2}+x_{3}+x_{1} \\
x_{4}^{\prime}+x_{2}+x_{3}+x_{1}
\end{array}\right]
\end{array} .
\end{gathered}
$$

Internal don't care conditions
(C) GDM

- Induced by the network structure.
- Controllability don't care conditions:
- Patterns never produced at the inputs of a subnetwork.
- Observability don't care conditions:
- Patterns such that the outputs of a subnetwork are not observed.

- CDC of v_{y} includes $a b^{\prime} x+a^{\prime} x^{\prime}$.
- Minimize f_{y} to obtain: $\widetilde{f_{y}}=a x+a^{\prime} c$.

Satisfiability don't care conditions

- Invariant of the network:
$-x=f_{x} \rightarrow x \neq f_{x} \subseteq S D C$.
- $S D C=\sum_{v_{x} \in V^{G}} x \oplus f_{x}$
- Useful to compute controllability don't cares .

CDC computation

(C) GDM -

CONTROLLABILITY $\left(G_{n}(V, E), C D C_{i n}\right)\{$
$C=V^{I}$;
$C D C_{c u t}=C D C_{i n}$;
foreach vertex $v_{x} \in V$ in topological order $\{$ $C=C \cup v_{x} ;$
$C D C_{c u t}=C D C_{c u t}+f_{x} \oplus x ;$
$D=\{v \in C$ s.t. all dir. succ. of v are in $C\}$
foreach vertex $v_{y} \in D$
$C D C_{c u t}=\mathcal{C}_{y}\left(C D C_{c u t}\right) ;$
$C=C-D ;$
\};
$C D C_{o u t}=C D C_{c u t} ;$

Example

- Assume $C D C_{i n}=x_{1}^{\prime} x_{4}^{\prime}$.
- Select vertex v_{a} :
- Contribution to $C D C_{c u t}: a \oplus\left(x_{2} \oplus x_{3}\right)$.
- Drop variables $D=\left\{x_{2}, x_{3}\right\}$ by consensus:
$-C D C_{c u t}=x_{1}^{\prime} x_{4}^{\prime}$.
- Select vertex v_{b} :
- Contribution to $C D C_{c u t}: b \oplus\left(x_{1}+a\right)$.
* $C D C_{c u t}=x_{1}^{\prime} x_{4}^{\prime}+b \oplus\left(x_{1}+a\right)$.
- Drop variable x_{1} by consensus:
* $C D C_{c u t}=b^{\prime} x_{4}^{\prime}+b^{\prime} a$.
- ...
- $C D C_{\text {out }}=e^{\prime}=z_{2}^{\prime}$.

CDC computation by image computation

- Network behavior at cut: f.
- $C D C_{c u t}$ is just the complement of the image of $\left(C D C_{i n}\right)^{\prime}$ with respect to \mathbf{f}.
- $C D C_{c u t}$ is just the complement of the range of \mathbf{f} when $C D C_{i n}=\emptyset$.
- Range can be computed recursively.
- Terminal case: scalar function.
* Range of $y=f(\mathbf{x})$ is $y+y^{\prime}$ (any value) unless f (or f^{\prime}) is a tautology and the range is y (or y^{\prime}).

Example

© GDM

RANGE VECTORS

$0 \quad 0 \quad 1$
$\begin{array}{lll}0 & 1 & 1\end{array}$

- $\operatorname{range}(\mathbf{f})=d \operatorname{range}\left(\left.(b+c)\right|_{d=b c=1}\right)+$ $+d^{\prime}$ range $\left(\left.(b+c)\right|_{d=b c=0}\right)$
- When $d=1$, then $b c=1 \rightarrow b+c=1$ is TAUTOLOGY.
- If I choose 1 as top entry in output vector:
- the bottom entry is also 1 .
$-\left[\begin{array}{l}1 \\ ?\end{array}\right] \rightarrow\left[\begin{array}{l}1 \\ 1\end{array}\right]$
- When $d=0$, then $b c=0 \rightarrow b+c=\{0,1\}$.
- If I choose 0 as top entry in output vector:
- the bottom entry can be 0 or 1 .
- $\operatorname{range}(\mathbf{f})=d e+d^{\prime}\left(e+e^{\prime}\right)=d e+d^{\prime}=d^{\prime}+e$

Perturbation method

- Modify network by adding an extra input δ.
- Extra input can flip polarity of a signal x.
- Replace local function f_{x} by $f_{x} \oplus \delta$.
- Perturbed terminal behavior: $\mathbf{f}^{x}(\delta)$.

Observability don't care conditions

Example

© GDM -

(a)

(b)

(c)

- Conditions under which a change in polarity of a signal x is not perceived at the outputs.
- Complement of the Boolean difference:
$-\partial f / \partial x=\left.\left.f\right|_{x=1} \oplus f\right|_{x=0}$.
- Equivalence of perturbed function: $\mathbf{f}^{x}(0) \bar{\oplus} \mathbf{f}^{x}(1)$

Observability don't care computation

- Problem:
- Outputs are not expressed as function of all variables.
- If network is flattened to obtain \mathbf{f}, it may explode in size.
- Requirement:
- Local rules for ODC computation.
- Network traversal.

Single-output network

 with tree structure- Traverse network tree.
- At root:
- $O D C_{\text {out }}$ is given.
- At internal vertices:
$-O D C_{x}=\left(\partial f_{y} / \partial x\right)^{\prime}+O D C_{y}$

- Assume $O D C_{\text {out }}=O D C_{e}=0$.
- $O D C_{b}=\left(\partial f_{e} / \partial b\right)^{\prime}=\left.\left.(b+c)\right|_{b=1} \bar{\oplus}(b+c)\right|_{b=0}=c$.
- $O D C_{c}=\left(\partial f_{e} / \partial c\right)^{\prime}=b$.
- $O D C_{x_{1}}=O D C_{b}+\left(\partial f_{b} / \partial x_{1}\right)^{\prime}=c+a_{1}$.

General networks

- Fanout reconvergence.
- For each vertex with two (or more) fanout stems:
- The contribution of the ODC along the stems cannot be added tout court.
- Interplay of different paths.

Two-way fanout stem

- Compute ODC sets associated with edges.
- Combine ODCs at vertex.
- Formula derivation:
- Assume two equal perturbations on the edges.
$-\mathbf{O D C}_{x}=\mathbf{f}^{x_{1}, x_{2}}(1,1) \bar{\oplus} \mathbf{f}^{x_{1}, x_{2}}(0,0)$

ODC formula derivation

\qquad

$$
\begin{aligned}
\mathbf{O D C}_{x}= & \mathbf{f}^{x_{1}, x_{2}}(1,1) \bar{\oplus} \mathbf{f}^{x_{1}, x_{2}}(0,0) \\
= & \mathbf{f}^{x_{1}, x_{2}}(1,1) \bar{\oplus} \mathbf{f}_{1}^{x_{1}, x_{2}}(0,0) \\
& \bar{\oplus}\left(\mathbf{f}^{x_{1}, x_{2}}(0,1) \bar{\oplus} \overline{\left.x^{x_{1}, x_{2}}(0,1)\right)}\right. \\
= & \left(\mathbf{f}^{x_{1}, x_{2}}(1,1) \bar{\oplus} \mathbf{f}^{x_{1}, x_{2}}(0,1)\right) \\
= & \bar{\oplus}\left(\mathbf{f}^{x_{1}, x_{2}}(0,1) \bar{\oplus} \overline{\left.\mathbf{f}^{x_{1}, x_{2}}(0,0)\right)}\right. \\
= & \left.\left.\mathbf{O D C}_{x, y}\right|_{\delta_{2}=1} ^{\oplus} \mathbf{O D C}_{x, z}\right|_{\delta_{1}=0} \\
= & \left.\mathbf{O D C}_{x, y}\right|_{x_{2}=x^{\prime}} ^{\oplus} \overline{\left.\mathbf{O D C}_{x, z}\right|_{x_{1}=x}} \\
= & \left.\mathbf{O D C}_{x, y}\right|_{x=x^{\prime}} \bar{\oplus} \mathbf{O D C}_{x, z}
\end{aligned}
$$

- Because $x=x_{1}=x_{2}$.

Multi-way stems

 Theorem- Let $v_{x} \in V$ be any internal or input vertex.
- Let $\left\{x_{i}, i=1,2, \ldots, p\right\}$ be the edge vars corresponding to $\left\{\left(x, y_{i}\right) ; i=1,2, \ldots, p\right\}$.
- Let $\mathbf{O D C}_{x, y_{i}}, i=1,2, \ldots, p$ the edge ODCs.
- $\mathrm{ODC}_{x}=\bar{\oplus}_{i=1}^{p}$ ODC $\left._{x, y_{i}}\right|_{x_{i+1}=\cdots=x_{p}=x^{\prime}}$

Observability don't care algorithm
(C) GDM

```
OBSERVABILITY(G}(G,E),\mp@subsup{ODC}{out}{})
    foreach vertex }\mp@subsup{v}{x}{}\inV\mathrm{ in reverse topological order {
        for (i=1 to p)
            ODC 
        ODC
    }
}
```


Example

$\mathbf{O D C}_{d}=\binom{0}{1} ; \mathbf{O D C}_{e}=\binom{1}{0} ; \mathbf{O D C}_{c}=\binom{b^{\prime}}{b} ; \mathbf{O D C}_{b}=\binom{c^{\prime}}{c}$

$$
\left.\begin{array}{rl}
\mathbf{O D C}_{a, b} & =\binom{c^{\prime}+x_{1}}{c+x_{1}} \\
\mathbf{O D C}_{a, c} & =\left(\begin{array}{c}
a^{\prime} x_{4}^{\prime}+x_{1} \\
a+x_{4}+x_{4} \\
b+x_{4}
\end{array}\right)
\end{array}\right)=\binom{a^{\prime} x_{1}^{\prime}+x_{4}}{a+x_{1}+x_{4}} .
$$

$\mathbf{O D C}_{a}=\mathbf{O D C}_{a, b \mid a=\alpha} \bar{\Phi}^{\oplus} \mathbf{O D C} C_{a, c}=\binom{a x_{4}^{\prime}+x_{1}}{a^{\prime}+x_{4}+x_{1}} \Phi\binom{a^{\prime} x_{1}^{\prime}+x_{4}}{a+x_{1}+x_{4}}=$

$$
=\binom{x_{1} x_{4}}{x_{1}+x_{4}}
$$

Transformations with don't cares

- © GDM -
- Boolean simplification:
- Use standard minimizer (Espresso).
- Minimize the number of literals.
- Boolean substitution:
- Simplify a function by adding an extra input.
- Equivalent to simplification with global don't care conditions.

Example Boolean substitution

© GDM -

- Substitute $q=a+c d$ into $f_{h}=a+b c d+e$ to get $f_{h}=a+b q+e$.
- SDC set: $q \oplus(a+c d)=q^{\prime} a+q^{\prime} c d+q a^{\prime}(c d)^{\prime}$.
- Simplify $f_{h}=a+b c d+e$ with $q^{\prime} a+q^{\prime} c d+$ $q a^{\prime}(c d)^{\prime}$ as don't care.
- Simplification yields $f_{h}=a+b q+e$.
- One literal less by changing the support of f_{h}.

Single-vertex optimization
——_ © GDM

```
SIMPLIFY_SV( Gn(V,E) ){
    repeat {
        vx = selected vertex ;
        Compute the local don't care set DCx}\mathrm{ ;
        Optimize the function fx}\mathrm{ ;
    }until (no more reduction is possible)
}
```


Optimization and perturbations

© GDM

- Replace f_{x} by g_{x}.
- Perturbation $\delta_{x}=f_{x} \oplus g_{x}$.
- Condition for feasible replacement:
- Perturbation bounded by local don't care set
$-\delta_{x} \subseteq \mathbf{D C}_{e x t}+\mathbf{O D C}_{x}$
- If x not a primary input consider also CDC set.

Example

- No external don't care set.
- Replace AND by wire: $g_{x}=a$
- Analysis:
$-\delta=f_{x} \oplus g_{x}=a b \oplus a=a b^{\prime}$.
$-O D C_{x}=y^{\prime}=b^{\prime}+c^{\prime}$.
$-\delta=a b^{\prime} \subseteq D C_{x}=b^{\prime}+c^{\prime} \Rightarrow$ feasible!

Degrees of freedom

(c) GDM -

- Fully represented by don't care conditions:
- External don't cares .
- Internal observability and controllability.
- Don't cares represent an upper bound on the perturbation.
- Approximations:
- Use smaller don't care sets to speed-up the computation.

Multiple-vertex optimization

- Simplify more than one local function at a time.
- Potentially better (more general) approach.
- Analysis:
- Multiple perturbations.
- Condition for feasible replacement:
- Upper and lower bounds on the perturbation.
- Boolean relation model.

- The two perturbations are related.
- Cannot change simultaneously:
$-a b \rightarrow a$.
$-c b \rightarrow c$.

Multiple-vertex optimization
Boolean relation model

© GDM

a

a	b	c	x, y
0	0	0	$\{00,01,10\}$
0	0	1	$\{00,01,10\}$
0	1	0	$\{00,01,10\}$
0	1	1	$\{00,01,10\}$
1	0	0	$\{00,01,10\}$
1	0	1	$\{00,01,10\}$
1	1	0	$\{00,01,10\}$
1	1	1	$\{11\}$

Multiple-vertex optimization

Boolean relation model

© GDM

- Compute Boolean relation:
- Flatten the network. Analyze patterns.
- Derive equivalence relation from ODCs.
- Use relation minimizer.
- Example of minimum function: | a | b | c | x, y |
| :---: | :---: | :---: | :---: |
| | $*$ | $*$ | 10 |
| $*$ | 1 | 1 | 01 |

Multiple-vertex optimization

Boolean relation model

```
——@ GDM -
SIMPLIFY_MVR( G
    repeat {
        U = selected vertex subset;
        foreach vertex }\mp@subsup{v}{x}{}\in
            Compute OCD ;
        Determine the equiv. classes of the Boolean relation
            of the subnetwork induced by }U\mathrm{ ;
        Find an optimal function compatible with the relation
            using a relation minimizer;
    }until (no more reduction is possible);
}
```


Multiple-vertex optimization

compatible don't cares
© GDM

- Determine compatible don't cares :
- CODCs: subset of ODCs.
- Decouple dependencies.
- Reduced degrees of freedom.
- Using compatible ODCs, only upper bounds on the perturbation need to be satisfied.

Example
 two perturbations

- First vertex:
- CODC equal to its ODC set.
$-C O D C_{x_{1}}=O D C_{x_{1}}$.
- The second vertex:
- CODC smaller than its ODC to be safe enough to allow transformations permitted by the first ODC.
$-C O D C_{x_{2}}=\mathcal{C}_{x_{1}}\left(O D C_{x_{2}}\right)+O D C_{x_{2}} O D C_{x_{1}}^{\prime}$
- Order dependence.

Example (2)

- Allowed perturbation:
$-f_{y}=b c \rightarrow g_{y}=c$.
$-\delta_{y}=b c \oplus c=b^{\prime} c \subseteq C O D C_{y}=b^{\prime}+a^{\prime}$.
- Disallowed perturbation:
$-f_{x}=a b \rightarrow g_{x}=a$.
$-\delta_{x}=a b \oplus a=a b^{\prime} \nsubseteq C O D C_{x}=a b c^{\prime}$.
- The converse holds if v_{x} is the first vertex.

Multiple-vertex optimization

compatible don't cares
© GDM -

```
SIMPLIFY_MV( G
    repeat {
```

 \(U=\) selected vertex subset;
 foreach vertex \(v_{x} \in U\)
 Compute $C O C D_{x}$ and the corresponding local don't care subset $\widetilde{D C}{ }_{x}$;
Optimize simultaneously the functions at U;
\}until (no more reduction is possible);
\}

Summary Boolean methods

© GDM

- Boolean methods exploit don't care sets and simplification of logic representations.
- Don't care set computation:
- Controllability and observability.
- Single and multiple transformations.
- Net y stuck-at 0 .
- Input pattern that sets y to true.
- Observe output.
- Output of faulty circuit differs.
- Net y stuck-at 1.
- Same, but set y to false.
- Need controllability and observability.

Test sets

don't care interpretation

- Stuck-at 0 on net y.
$-\left\{\mathbf{t} \mid y(\mathbf{t}) \cdot O D C_{y}^{\prime}(\mathbf{t})=1\right\}$.
- Stuck-at 1 on net y.
$-\left\{\mathbf{t} \mid y^{\prime}(\mathbf{t}) \cdot O D C_{y}^{\prime}(\mathbf{t})=1\right\}$.

Using testing methods for synthesis

(C) GDM

- Redundancy removal.
- Use TPG to search for untestable faults.
- If stuck-at 0 on net y is untestable:
- Set $y=0$.
- Propagate constant.
- If stuck-at 1 on y is untestable:
- Set $y=1$.
- Propagate constant.

Example

(b)

Redundancy removal and perturbation analysis

- Stuck-at 0 on y.
$-y$ set to 0 . Namely $g_{x}=\left.f_{x}\right|_{y=0}$.
- Perturbation:
$* \delta=\left.f_{x} \oplus f_{x}\right|_{y=0}=y \cdot \partial f_{x} / \partial y$.
- Perturbation is feasible \Leftrightarrow fault is untestable.
- No input vector \mathbf{t} can make $y(\mathbf{t}) \cdot O D C_{y}^{\prime}(\mathbf{t})$ true.
- No input vector can make $y(\mathbf{t}) \cdot O D C_{x}^{\prime}(\mathbf{t}) \cdot \partial f_{x} / \partial y$ true.
* because $O D C_{y}=O D C_{x}+\left(\partial f_{x} / \partial y\right)^{\prime}$.

Redundancy removal and perturbation analysis

Synthesis for testability

- Assume untestable stuck-at 0 fault.
- $y \cdot O D C_{x}^{\prime} \cdot \partial f_{x} / \partial y \subseteq S D C$.
- Local don't care set:
$-D C_{x} \supseteq O D C_{x}+y \cdot O D C_{x}^{\prime} \cdot \partial f_{x} / \partial y$.
$-D C_{x} \supseteq O D C_{x}+y \cdot \partial f_{x} / \partial y$.
- Perturbation $\delta=y \cdot \partial f_{x} / \partial y$.
- Included in the local don't care set.

Two-level forms
© GDM -

- Full testability for single stuck-at faults:
- Prime and irredundant cover.
- Full testability for multiple stuck-at faults:
- Prime and irredundant cover when:
* Single-output function.
* No product term sharing.
* Each component is PI.

Example

$$
f=a^{\prime} b^{\prime}+b^{\prime} c+a c+a b
$$

\qquad

Multiple-level networks

Definitions

- A logic network $G_{n}(V, E)$, with local functions in sum of product form.
- Prime and irredundant (PI):
- No literal nor implicant of any local function can be dropped.
- Simultaneously prime and irredundant (SPI):
- No subset of literals and/or implicants can be dropped.

Multiple-level networks

 Theorems- A logic network is PI and only if:
- its AND-OR implementation is fully testable for single stuck-at faults.
- A logic network is SPI if and only if:
- its AND-OR implementation is fully testable for multiple stuck-at faults.

Multiple-level networks Synthesis

- Compute full local don't care sets.
- Make all local functions PI w.r. to don't care sets.
- Pitfall:
- Don't cares change as functions change.
- Solution:
- Iteration (Espresso-MLD).
- If iteration converges, network is fully testable.

Multiple-level networks

 Synthesis- Flatten to two-level form.
- When possible - no size explosion.
- Make SPI by disjoint logic minimization.
- Reconstruct multiple-level network:
- Algebraic transformations preserve multifault testability.
- Synergy between synthesis and testing.
- Testable networks correlate to small-area networks.
- Don't care conditions play a major role.

