LOGIC SYNTHESIS AND TWO-LEVEL LOGIC OPTIMIZATION

© Giovanni De Micheli

Stanford University

Outline

- Overview of logic synthesis.
- Combinational-logic design:
 - Background.
 - Two-level forms.
- Exact minimization.
- Covering algorithms.
- Boolean relations.

Logic synthesis and optimization

© GDM —

- Determine microscopic structure of the circuit.
- Explore (area-delay)trade-off:
 - Combinational circuits:
 - * I/O delay.
 - Sequential circuits:
 - * cycle-time.
- Explore *(power-delay)*trade-off:
- Enhance circuit *testability*.

Circuit implementation issues

_____ © GDM ____

- Implementation styles:
 - Two-level (e.g. PLA macro cells).
 - Multi-level (e.g. cell-based, array-based).
- Operation:
 - Combinational.
 - Sequential:
 - * Synchronous
 - * Asynchronous.

_____ © GDM ____

- Circuit capture:
 - Tabular specifications of functions or finite-state machines (FSMs).
 - Schematic capture.
 - Hardware Description Languages (HDLs).
- Synthesis and optimization:
 - Map circuit representation to abstract model.
 - Transformations on abstract model.
 - Library binding.

Abstract models

C GDM

- Models based on graphs.
- Useful for:
 - Machine-level processing.
 - Reasoning about properties.
- Derived from language models by compilation.

Structural views

- Netlists:
 - Modules, nets, incidence.
 - Ports.
 - Hierarchy.
- Incidence (sparse) matrix of a graph.

Example

Logic funcions

- Black-box model of a combinational module.
- Defined on Boolean Algebra.
- *Support variables* correspond to module inputs.
- Logic functions may have multiple outputs and be *incompletely specified*.

Logic networks

- Mixed structural/behavioral views.
- Useful for multiple-level logic (combinational and sequential).
- Interconnection of modules:
 - Logic gates.
 - Logic functions.

- Model behavior of sequential circuits.
- Graph:
 - Vertices = states.
 - Edges = transitions.

C GDM

- Optimization of logic function representation.
 - Minimization of two-level forms.
 - Optimization of Binary Decision Diagrams (BDDs).
- Synthesis of combinational multiple-level logic networks.
 - Optimization or area, delay, power, testability.
- Optmization of FSM models.
 - State minimization, encoding.
- Synthesis of sequential multiple-level logic networks.
 - Optimization or area, delay, power, testability.
- Library binding.
 - Optimal selection of library cells.

Combinational logic design background

_____ © GDM ____

- Boolean algebra:
 - Quintuple $(B, +, \cdot, 0, 1)$
 - Binary Boolean algebra $B = \{0, 1\}$
- Boolean function:
 - Single output: $f: B^n \to B$.
 - Multiple output: $f: B^n \to B^m$.
 - Incompletely specified:
 - * don't care symbol *.
 - * $f: B^n \rightarrow \{0, 1, *\}^m$.

The don't care conditions

- We don't care about the value of the function.
- Related to the environment:
 - Input patterns that never occur.
 - Input patterns such that some output is never observed.
- Very important for synthesis and optimization.

Definitions

- Scalar function:
 - ON set: subset of the domain such that f is true.
 - OFF set: subset of the domain such that f is false.
 - DC set: subset of the domain such that f is a *don't care*.
- Multiple-output function:
 - Defined for each component.

Cubical representation

— © GDM

- Boolean variables.
- Boolean *literal*: variable and complement.
- Product or cube: product of literals.
- *Implicant*: product implying a value of a function (usually TRUE).
 - Hypercube in the Boolean space.
- *Minterm*: product of all input variables implying a value of a function (usually TRUE).

- Vertex in the Boolean space.

Tabular representations

_____ © GDM ____

• Truth table:

- List of all minterms of a function.

- Implicant table or cover:
 - List of implicants of a function sufficient to define function.
- Remark:
 - Implicant tables are smaller in size.

Example of truth table

 $x = ab + a'c; \quad y = ab + bc + ac$

abc	ху
000	00
001	10
010	00
011	11
100	00
101	01
110	11
111	11

Example of implicant table

$$x = ab + a'c; \quad y = ab + bc + ac$$

© GDM

abc	ху
001	10
*11	11
101	01
11*	11

•
$$f_1 = a'b'c' + a'b'c + ab'c + abc + abc'$$

•
$$f_2 = a'b'c + ab'c$$

Two-level logic optimization motivation

- Reduce size of the representation.
- Direct implementation:
 - PLAs reduce size and delay.
- Other implementation styles (e.g. multi-level):
 - Reduce amount of information.
 - Simplify local functions and connections.

Programmable logic arrays

_____ © GDM ____

- Macro-cells with rectangular structure.
- Implement any multi-output function.
- Layout easily generated by module generators.
- Fairly popular in the seventies/eighties (NMOS).
- Still used for control-unit implementation.

•
$$f_1 = a'b' + b'c + ab$$
 $f_2 = b'c$

Two-level optimization

- © GDM

- Assumptions:
 - Primary goal is to reduce the number of implicants.
 - All implicants have the same cost.
 - Secondary goal is to reduce the number of literals.
- Rationale:
 - Implicants correspond to PLA rows.
 - Literals correspond to transistors.

- Minimum cover:
 - Cover of the function with minimum number of implicants.
 - Global optimum.
- Minimal cover or irredundant cover:
 - Cover of the function that is not a proper superset of another cover.
 - No implicant can be dropped.
 - Local optimum.
- Minimal cover w.r.t. 1-implicant containment.
 - No implicant is contained by another one.
 - Weak local optimum.

- $f_1 = a'b'c' + a'b'c + ab'c + abc + abc'$
- $f_2 = a'b'c + ab'c$

Definitions

- *Prime* implicant:
 - Implicant not contained by any other implicant.
- Prime cover:
 - Cover of prime implicants.
- *Essential* prime implicant:
 - There exist some minterm covered only by that prime implicant.

Logic minimization

- Exact methods:
 - Compute minimum cover.
 - Often impossible for large functions.
 - Based on Quine McCluskey method.
- *Heuristic* methods:
 - Compute minimal covers (possibly minimum).
 - Large variety of methods and programs:
 - * MINI, PRESTO, ESPRESSO.

Exact logic minimization

- *Quine's theorem:*
 - There is a minimum cover that is prime.
- Consequence:
 - Search for minimum cover can be restricted to prime implicants.
- Quine McCluskey method:
 - Compute prime implicants.
 - Determine minimum cover.

Prime implicant table

_____ © GDM ____

- Rows: minterms.
- Columns: prime implicants.
- Exponential size:
 - -2^n minterms.
 - Up to $3^n/n$ prime implicants.
- Remark:
 - Some functions have much fewer primes.
 - Minterms can be grouped together.

Example

_____ © GDM __

- Function: f = a'b'c' + a'b'c + abc + abc'
- Primes:

$$egin{array}{c|c} lpha & 00* & 1 \ eta & *01 & 1 \ \gamma & 1*1 & 1 \ \delta & 11* & 1 \end{array}$$

• Implicant table:

	α	β	γ	δ
000	1	0	0	0
001	1	1	0	0
101	0	1	1	0
111	0	0	1	1
110	0	0	0	1

Minimum cover early methods

C GDM

- Reduce table:
 - Iteratively identify essentials, save them in the cover, remove covered minterms.
- Petrick's method.
 - Write covering clauses in *pos* form.
 - Multiply out *pos* form into *sop* form.
 - Select cube of minimum size.
 - Remark:
 - * Multiplying out clauses is exponential.

Example Petrick's method

C GDM

• *pos* clauses:

 $- (\alpha)(\alpha + \beta)(\beta + \gamma)(\gamma + \delta)(\delta) = 1$

• *sop* form:

 $-\alpha\beta\delta + \alpha\gamma\delta = 1$

- Solutions:
 - $\{\alpha, \beta, \delta\}$
 - $\{\alpha, \gamma, \delta\}$

Matrix representation

_____ © GDM ____

- View table as Boolean matrix: **A**.
- Selection Boolean vector for primes: x.
- Determine **x** such that:
 - $-A \times \geq 1.$
 - Select enough columns to cover all rows.
- Minimize cardinality of **x**:
 - Example: $\mathbf{x} = [1101]^T$

- Set covering problem:
 - A set S. (Minterm set).
 - A collection C of subsets. (Implicant set).
 - Select fewest elements of C to cover S.
- Intractable.
- Exact method:
 - Branch and bound algorithm.
- Heuristic methods.

Example edge-cover of a hypergraph

C GDM

Branch and bound algorithm

C GDM

• Tree search of the solution space:

- Potentially exponential search.

- Use bounding function:
 - If the lower bound on the solution cost that can be derived from a set of future choices exceeds the cost of the best solution seen so far:
 - Kill the search.
- Good pruning may reduce run-time.

Branch and bound algorithm

- © GDM

```
BRANCH_AND_BOUND {
         Current\_best = anything;
         Current\_cost = \infty;
         S = s_0;
         while (S \neq \emptyset) do {
                 Select an element in s \in S;
                 Remove s from S;
                 Make a branching decision based on s
                     yielding sequences \{s_i, i = 1, 2, \dots, m\};
                 for (i = 1 \text{ to } m) {
                        Compute the lower bound b_i of s_i;
                        if (b_i \geq Current\_cost)
                                Kill s_i:
                        else {
                                if (s_i \text{ is a complete solution })
                                        Current\_best = s_i;
                                        Current\_cost = cost of s_i;
                                }
                                else
                                        Add s_i to set S;
                        }
                }
         }
}
```


Branch and bound algorithm for covering Reduction strategies

© GDM —

- Partitioning:
 - If **A** is block diagonal:
 - * Solve covering problem for corresponding blocks.
- Essentials (EPI):
 - Column incident to
 one (or more) row with single 1:
 - * Select column.
 - * Remove covered row(s) from table.

Branch and bound algorithm for covering Reduction strategies

© GDM -----

• Column (implicant) dominance:

- If
$$a_{ki} \geq a_{kj} \; \forall k$$
:

- * remove column j.
- Row (minterm) dominance:

— If
$$a_{ik} \geq a_{jk} \,\, orall k$$
 :

* Remove row i.

Example

© GDM

2

a a 2 1 5 5 е c 3 3 d d 4 4 (a) (b)

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Example reduction

© GDM

- Fourth column is essential.
- Fifth column is dominated.
- Fifth row is dominant.

•
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Branch and bound covering algorithm

_____ © GDM ____

```
EXACT\_COVER(\mathbf{A}, \mathbf{x}, \mathbf{b}) {
       Reduce matrix \mathbf{A} and update corresponding \mathbf{x};
       if (Current\_estimate \ge |\mathbf{b}|) return(b);
       if ( A has no rows ) return (x);
       Select a branching column c;
       x_c = 1;
       \mathbf{A} = \mathbf{A} after deleting c and rows incident to it;
       \tilde{\mathbf{x}} = EXACT\_COVER(\tilde{\mathbf{A}}, \mathbf{x}, \mathbf{b});
       if (|\widetilde{\mathbf{x}}| < |\mathbf{b}|)
            \mathbf{b} = \tilde{\mathbf{x}}:
       x_c = 0;
       \mathbf{A} = \mathbf{A} after deleting c;
       \tilde{\mathbf{x}} = EXACT\_COVER(\mathbf{A}, \mathbf{x}, \mathbf{b});
       if (|\widetilde{\mathbf{x}}| < |\mathbf{b}|)
             \mathbf{b} = \widetilde{\mathbf{x}}:
       return (b);
}
```

Bounding function

C GDM

- Estimate lower bound on the covers derived from the current **x**.
- The sum of the ones in **x**, plus bound on cover for local **A**:
 - Independent set of rows:
 - * No 1 in same column.
 - Build graph denoting pairwise independence.
 - Find clique number.
 - Approximation (lower) is acceptable.

– © GDM

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

- Row 4 independent from 1,2,3.
- Clique number is 2.

• Bound is 2.

Example

$$\bullet \mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

- There are no independent rows.
- Clique number is 1 (one vertex).
- Bound is 1 + 1 (already selected essential).

Example

© GDM

$$\bullet \mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

• Choose first column:

- Recur with $\widetilde{\mathbf{A}} = [11]$.

* Delete one dominated column.

* Take other column (essential).

- New cost is 3.

- Exclude first column:
 - Find another solution with cost 3 (discarded).

ESPRESSO-EXACT

- Exact minimizer [Rudell].
- Exact branch and bound covering.
- Compact implicant table:
 - Group together minterms
 covered by the same implicants.
- Very efficient. Solves most problems.

lpha	0**0	1
eta	*0*0	1
γ	01**	1
δ	10**	1
ϵ	1*01	1
ζ	*101	1

Example Prime implicant table (after removing essentials)

- © GDM

	α	β	ϵ	ζ
0000,0010	1	1	0	0
1101	0	0	1	1

Recent developments

_____ © GDM ____

- Many minimization problems can be solved exactly today.
- Usually bottleneck is table size.
- Implicit representation of prime implicants:
 - Methods based on BDDs [COUDERT]:
 - * To represent sets.
 - * To do dominance simplification.
 - Methods based on signature cubes [MCGEER]
 - * Represent set of primes.

Summary Exact two-level minimization of logic functions

- Based on derivatives of Quine-McCluskey method.
- Many minimization problems can be now solved exactly.
- Usual problems are memory size and time.

Boolean relations

- Generalization of Boolean functions.
- More than one output pattern may correspond to an input pattern.
- Some *degrees of freedom* in finding an implementation:
 - More general than *don't care* conditions.
- Problem:
 - Given a Boolean relation,
 find minimum cover of a compatible function.

Example

- © GDM

- Compare:
 - -a+b > 4? -a+b < 3?

Example

a_1	a_0	b_1	b_0	×
0	0	0	0	{ 000, 001, 010 }
0	0	0	1	$\{000, 001, 010\}$
0	0	1	0	$\{000, 001, 010\}$
0	1	0	0	$\{000, 001, 010\}$
1	0	0	0	$\{000, 001, 010\}$
0	1	0	1	$\{000, 001, 010\}$
0	0	1	1	{ 011, 100 }
0	1	1	0	$\{011, 100\}$
1	0	0	1	${011, 100}$
1	0	1	0	$\{011, 100\}$
1	1	0	0	$\{011, 100\}$
0	1	1	1	${011, 100}$
1	1	0	1	${011, 100}$
1	0	1	1	{ 101, 110, 111 }
1	1	1	0	$\{101, 110, 111\}$
1	1	1	1	$\{ 101, 110, 111 \}$

Example (2) Minimum implementation

_____ © GDM

a_1	a_0	b_1	b_0	X
0	*	1	*	010
1	*	0	*	010
1	*	1	*	100
*	*	*	1	001
*	1	*	*	001

- Remark:
 - Circuit is no longer an adder.

Minimization of Boolean relations

 Since there are many possible output values there are many logic functions implementing the relation.

- Compatible functions.

- Find a function with minimum cardinality.
- Do not enumerate all possible functions:
 - May be too many.
- Represent the primes of all possible functions:
 - Compatible primes (c primes).

Minimization of Boolean relation

_____ © GDM ____

- Exact:
 - Find a set of compatible primes.
 - Solve a *binate* covering problem.
 - * Consistency relations.
- Heuristic:
 - Iterative improvement [GYOCRO].

© GDM

• Boolean relation:

0	0	0	{ 00 }
0	0	1	{ 00 }
0	1	0	{ 00 }
0	1	1	$\{ 10 \}$
1	0	0	{ 00 }
1	0	1	$\{ 01 \}$
1	1	0	$\{ 00, 11 \}$
1	1	1	{ 00,11 }

• Compatible primes:

C GDM

• Input 011 - output 10.

- Covering clause $(\alpha + \epsilon)$.

- Input 111 output 00 or 11.
 - No implicant 00 correct.
 - Either η or $\epsilon \cup \zeta$ output 11 correct.
 - Only ϵ or ζ is selected output 10 or 01 WRONG.
 - Covering clause $\eta + \epsilon \zeta + \epsilon' \zeta'$ binate.
- Overall covering clause:

 $(\alpha + \epsilon) \cdot (\beta + \zeta) \cdot (\epsilon + \zeta' + \eta) \cdot (\epsilon' + \zeta + \eta)$

© GDM

- Covering problem with *binate clause*.
- Implications:
 - The selection of a prime may exclude other primes.
- No guarantee of finding a feasible solution:

- Inconsistent clauses.

- Minimum-cost satisfiability problem.
 - Much harder to solve than unate cover.
 - Branch and bound algorithm.
 - BDD-based methods.

Summary Boolean relations

- Generalization of Boolean functions.
 - Many possible output patterns.
- Useful for modeling:
 - Cascaded blocks.
 - Portions of multiple-level networks.
- More degree of freedom in implementation.
- Harder problem to solve.