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Outline

c GDM

� Overview of logic synthesis.

� Combinational-logic design:

{ Background.

{ Two-level forms.

� Exact minimization.

� Covering algorithms.

� Boolean relations.



Logic synthesis and optimization

c GDM

� Determine microscopic structure of the circuit.

� Explore (area-delay)trade-o�:

{ Combinational circuits:

� I/O delay.

{ Sequential circuits:

� cycle-time.

� Explore (power-delay)trade-o�:

� Enhance circuit testability.



Circuit implementation issues

c GDM

� Implementation styles:

{ Two-level (e.g. PLA macro cells).

{ Multi-level (e.g. cell-based, array-based).

� Operation:

{ Combinational.

{ Sequential:

� Synchronous

� Asynchronous.



Design ow in logic synthesis

c GDM

� Circuit capture:

{ Tabular speci�cations of functions or

�nite-state machines (FSMs).

{ Schematic capture.

{ Hardware Description Languages (HDLs).

� Synthesis and optimization:

{ Map circuit representation to abstract

model.

{ Transformations on abstract model.

{ Library binding.



Abstract models

c GDM

� Models based on graphs.

� Useful for:

{ Machine-level processing.

{ Reasoning about properties.

� Derived from language models by

compilation.



Structural views

c GDM

� Netlists:

{ Modules, nets, incidence.

{ Ports.

{ Hierarchy.

� Incidence (sparse) matrix of a graph.



Example

c GDM
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Logic funcions

c GDM

� Black-box model of a combinational module.

� De�ned on Boolean Algebra.

� Support variables correspond to module

inputs.

� Logic functions may have multiple outputs

and be incompletely speci�ed.



Logic networks

c GDM

� Mixed structural/behavioral views.

� Useful for multiple-level logic

(combinational and sequential).

� Interconnection of modules:

{ Logic gates.

{ Logic functions.



Example

c GDM
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State diagrams

c GDM
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� Model behavior of sequential circuits.

� Graph:

{ Vertices = states.

{ Edges = transitions.



Major logic synthesis problems

c GDM

� Optimization of logic function representation.

{ Minimization of two-level forms.

{ Optimization of Binary Decision Diagrams (BDDs).

� Synthesis of combinational multiple-level
logic networks.

{ Optimization or area, delay, power, testability.

� Optmization of FSM models.

{ State minimization, encoding.

� Synthesis of sequential multiple-level logic
networks.

{ Optimization or area, delay, power, testability.

� Library binding.

{ Optimal selection of library cells.



Combinational logic design

background

c GDM

� Boolean algebra:

{ Quintuple (B;+; �;0;1)

{ Binary Boolean algebra B = f0;1g

� Boolean function:

{ Single output: f : Bn ! B.

{ Multiple output: f : Bn ! Bm.

{ Incompletely speci�ed:

� don't care symbol *.

� f : Bn ! f0;1; �gm.



The don't care conditions

c GDM

� We don't care about the value of the function.

� Related to the environment:

{ Input patterns that never occur.

{ Input patterns such that some output

is never observed.

� Very important for synthesis and optimization.



De�nitions

c GDM

� Scalar function:

{ ON � set: subset of the domain

such that f is true.

{ OFF � set: subset of the domain

such that f is false.

{ DC � set: subset of the domain

such that f is a don't care .

� Multiple-output function:

{ De�ned for each component.



Cubical representation

c GDM
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De�nitions

c GDM

� Boolean variables.

� Boolean literal: variable and complement.

� Product or cube: product of literals.

� Implicant: product implying a value of a

function (usually TRUE).

{ Hypercube in the Boolean space.

� Minterm: product of all input variables

implying a value of a function (usually TRUE).

{ Vertex in the Boolean space.



Tabular representations

c GDM

� Truth table:

{ List of all minterms of a function.

� Implicant table or cover:

{ List of implicants of a function

suÆcient to de�ne function.

� Remark:

{ Implicant tables are smaller in size.



Example of truth table

x = ab+ a0c; y = ab+ bc+ ac

c GDM

abc xy

000 00

001 10

010 00

011 11

100 00

101 01

110 11

111 11



Example of implicant table

x = ab+ a0c; y = ab+ bc+ ac

c GDM

abc xy

001 10

*11 11

101 01

11* 11



Cubical representation of minterms and

implicants

c GDM
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� f1 = a0b0c0+ a0b0c+ ab0c+ abc+ abc0

� f2 = a0b0c+ ab0c



Two-level logic optimization

motivation

c GDM

� Reduce size of the representation.

� Direct implementation:

{ PLAs { reduce size and delay.

� Other implementation styles

(e.g. multi-level):

{ Reduce amount of information.

{ Simplify local functions and connections.



Programmable logic arrays

c GDM

� Macro-cells with rectangular structure.

� Implement any multi-output function.

� Layout easily generated by module generators.

� Fairly popular in the seventies/eighties (NMOS).

� Still used for control-unit implementation.



Programmable logic array

c GDM
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Two-level optimization

c GDM

� Assumptions:

{ Primary goal is to reduce the number

of implicants.

{ All implicants have the same cost.

{ Secondary goal is to reduce the number

of literals.

� Rationale:

{ Implicants correspond to PLA rows.

{ Literals correspond to transistors.



De�nitions

c GDM

� Minimum cover:

{ Cover of the function with minimum

number of implicants.

{ Global optimum.

� Minimal cover or irredundant cover:

{ Cover of the function that is not a proper

superset of another cover.

{ No implicant can be dropped.

{ Local optimum.

� Minimal cover w.r.t. 1-implicant containment.

{ No implicant is contained by another one.

{ Weak local optimum.



Example

c GDM
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� f1 = a0b0c0+ a0b0c+ ab0c+ abc+ abc0

� f2 = a0b0c+ ab0c



De�nitions

c GDM

� Prime implicant:

{ Implicant not contained by any other

implicant.

� Prime cover:

{ Cover of prime implicants.

� Essential prime implicant:

{ There exist some minterm covered only

by that prime implicant.



Logic minimization

c GDM

� Exact methods:

{ Compute minimum cover.

{ Often impossible for large functions.

{ Based on Quine McCluskey method.

� Heuristic methods:

{ Compute minimal covers

(possibly minimum).

{ Large variety of methods and programs:

� MINI, PRESTO, ESPRESSO.



Exact logic minimization

c GDM

� Quine's theorem:

{ There is a minimum cover that is prime.

� Consequence:

{ Search for minimum cover can be

restricted to prime implicants.

� Quine McCluskey method:

{ Compute prime implicants.

{ Determine minimum cover.



Prime implicant table

c GDM

� Rows: minterms.

� Columns: prime implicants.

� Exponential size:

{ 2n minterms.

{ Up to 3n=n prime implicants.

� Remark:

{ Some functions have much fewer primes.

{ Minterms can be grouped together.



Example

c GDM

� Function: f = a0b0c0+a0b0c+ab0c+abc+abc0

� Primes:

� 00* 1
� *01 1
 1*1 1
Æ 11* 1

� Implicant table:

� �  Æ
000 1 0 0 0
001 1 1 0 0
101 0 1 1 0
111 0 0 1 1
110 0 0 0 1



Example

c GDM
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Minimum cover

early methods

c GDM

� Reduce table:

{ Iteratively identify essentials,

save them in the cover,

remove covered minterms.

� Petrick's method.

{ Write covering clauses in pos form.

{ Multiply out pos form into sop form.

{ Select cube of minimum size.

{ Remark:

� Multiplying out clauses is exponential.



Example

Petrick's method

c GDM

� pos clauses:

{ (�)(�+ �)(�+ )( + Æ)(Æ) = 1

� sop form:

{ ��Æ+ �Æ = 1

� Solutions:

{ f�; �; Æg

{ f�; ; Æg



Matrix representation

c GDM

� View table as Boolean matrix: A.

� Selection Boolean vector for primes: x.

� Determine x such that:

{ A x � 1.

{ Select enough columns to cover all rows.

� Minimize cardinality of x:

{ Example: x= [1101]T



Example

c GDM
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Covering problem

c GDM

� Set covering problem:

{ A set S. (Minterm set).

{ A collection C of subsets. (Implicant set).

{ Select fewest elements of C to cover S.

� Intractable.

� Exact method:

{ Branch and bound algorithm.

� Heuristic methods.



Example

edge-cover of a hypergraph

c GDM
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Branch and bound algorithm

c GDM

� Tree search of the solution space:

{ Potentially exponential search.

� Use bounding function:

{ If the lower bound on the solution cost

that can be derived from a set of future

choices exceeds the cost of the best

solution seen so far:

{ Kill the search.

� Good pruning may reduce run-time.



Branch and bound algorithm

c GDM

BRANCH AND BOUND f
Current best = anything;
Current cost=1;
S = s0;
while (S 6= ;) do f

Select an element in s 2 S;
Remove s from S ;
Make a branching decision based on s

yielding sequences fsi; i = 1;2; : : : ;mg;
for ( i= 1 to m) f

Compute the lower bound bi of si;
if (bi � Current cost)

Kill si;
else f

if (si is a complete solution ) f
Current best= si;
Current cost= cost of si ;

g
else

Add si to set S;
g

g
g

g



Example

c GDM
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Branch and bound algorithm for covering

Reduction strategies

c GDM

� Partitioning:

{ If A is block diagonal:

� Solve covering problem for corresponding

blocks.

� Essentials (EPI):

{ Column incident to

one (or more) row with single 1:

� Select column.

� Remove covered row(s) from table.



Branch and bound algorithm for covering

Reduction strategies

c GDM

� Column (implicant) dominance:

{ If aki � akj 8k:

� remove column j.

� Row (minterm) dominance:

{ If aik � ajk 8k :

� Remove row i.



Example

c GDM
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A =

2
6666664

1 0 1 0 0
1 1 0 0 1
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Example

reduction

c GDM

� Fourth column is essential.

� Fifth column is dominated.

� Fifth row is dominant.

� A =

2
64

1 0 1
1 1 0

0 1 1

3
75



Branch and bound covering algorithm

c GDM

EXACT COV ER(A;x;b) f

Reduce matrix A and update corresponding x;

if (Current estimate � jbj) return(b);

if ( A has no rows ) return (x);

Select a branching column c;

xc = 1 ;
fA = A after deleting c and rows incident to it;

ex= EXACT COV ER(fA;x;b);
if ( jexj < jbj)

b = ex ;

xc = 0 ;
fA = A after deleting c ;
ex= EXACT COV ER(fA;x;b);
if ( jexj < jbj)

b = ex ;

return (b);

g



Bounding function

c GDM

� Estimate lower bound on the covers

derived from the current x.

� The sum of the ones in x, plus

bound on cover for local A:

{ Independent set of rows:

� No 1 in same column.

{ Build graph denoting pairwise independence.

{ Find clique number.

{ Approximation (lower) is acceptable.



Example

c GDM

A =

2
6666664

1 0 1 0 0
1 1 0 0 1
0 1 1 0 1
0 0 0 1 0
0 1 1 1 0

3
7777775

� Row 4 independent from 1,2,3.

� Clique number is 2.

� Bound is 2.
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Example

c GDM

� A =

2
64

1 0 1
1 1 0
0 1 1

3
75

� There are no independent rows.

� Clique number is 1 (one vertex).

� Bound is 1 + 1 (already selected essential).



Example

c GDM

� A =

2
64

1 0 1
1 1 0
0 1 1

3
75

� Choose �rst column:

{ Recur with fA= [11].

� Delete one dominated column.

� Take other column (essential).

{ New cost is 3.

� Exclude �rst column:

{ Find another solution with cost 3

(discarded).



ESPRESSO-EXACT

c GDM

� Exact minimizer [Rudell].

� Exact branch and bound covering.

� Compact implicant table:

{ Group together minterms

covered by the same implicants.

� Very eÆcient. Solves most problems.



Example
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 01** 1
Æ 10** 1
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Example

Prime implicant table

(after removing essentials)

c GDM

� � � �
0000,0010 1 1 0 0
1101 0 0 1 1



Recent developments

c GDM

� Many minimization problems can be solved

exactly today.

� Usually bottleneck is table size.

� Implicit representation of prime implicants:

{ Methods based on BDDs [COUDERT]:

� To represent sets.

� To do dominance simpli�cation.

{ Methods based on signature cubes [MCGEER]

� Represent set of primes.



Summary

Exact two-level minimization of logic

functions

c GDM

� Based on derivatives of Quine-McCluskey

method.

� Many minimization problems can be now

solved exactly.

� Usual problems are memory size and time.



Boolean relations

c GDM

� Generalization of Boolean functions.

� More than one output pattern may

correspond to an input pattern.

� Some degrees of freedom in �nding an

implementation:

{ More general than don't care conditions.

� Problem:

{ Given a Boolean relation,

�nd minimum cover of a compatible

function.



Example

c GDM
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� Compare:

{ a+ b > 4 ?

{ a+ b < 3 ?



Example

c GDM

a1 a0 b1 b0 x

0 0 0 0 f 000, 001, 010 g
0 0 0 1 f 000, 001, 010 g
0 0 1 0 f 000, 001, 010 g
0 1 0 0 f 000, 001, 010 g
1 0 0 0 f 000, 001, 010 g
0 1 0 1 f 000, 001, 010 g
0 0 1 1 f 011, 100 g
0 1 1 0 f 011, 100 g
1 0 0 1 f 011, 100 g
1 0 1 0 f 011, 100 g
1 1 0 0 f 011, 100 g
0 1 1 1 f 011, 100 g
1 1 0 1 f 011, 100 g
1 0 1 1 f 101, 110, 111 g
1 1 1 0 f 101, 110, 111 g
1 1 1 1 f 101, 110, 111 g



Example (2)

Minimum implementation

c GDM

a1 a0 b1 b0 x

0 * 1 * 010
1 * 0 * 010
1 * 1 * 100
� * * 1 001
� 1 * * 001

� Remark:

{ Circuit is no longer an adder.



Minimization of Boolean relations
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� Since there are many possible output values

there are many logic functions

implementing the relation.

{ Compatible functions.

� Find a function with minimum cardinality.

� Do not enumerate all possible functions:

{ May be too many.

� Represent the primes of all possible functions:

{ Compatible primes (c� primes).



Minimization of Boolean relation

c GDM

� Exact:

{ Find a set of compatible primes.

{ Solve a binate covering problem.

� Consistency relations.

� Heuristic:

{ Iterative improvement [GYOCRO].



Example

c GDM

� Boolean relation:

0 0 0 f 00 g
0 0 1 f 00 g
0 1 0 f 00 g
0 1 1 f 10 g
1 0 0 f 00 g
1 0 1 f 01 g
1 1 0 f 00,11 g
1 1 1 f 00,11 g

� Compatible primes:

� 0 1 1 10
� 1 0 1 01
 1 1 0 11
Æ 1 1 1 11
� * 1 1 10
� 1 * 1 01
� 1 1 * 11



Example

c GDM

� Input 011 { output 10.

{ Covering clause (�+ �).

� Input 111 { output 00 or 11.

{ No implicant { 00 { correct.

{ Either � or �[ � { output 11 { correct.

{ Only � or � is selected { output 10 or

01 { WRONG.

{ Covering clause �+ �� + �0�0 { binate.

� Overall covering clause:

(�+ �) � (�+ �) � (�+ �0+ �) � (�0+ � + �)



Binate covering

c GDM

� Covering problem with binate clause.

� Implications:

{ The selection of a prime

may exclude other primes.

� No guarantee of �nding a feasible solution:

{ Inconsistent clauses.

� Minimum-cost satis�ability problem.

{ Much harder to solve than unate cover.

{ Branch and bound algorithm.

{ BDD-based methods.



Summary

Boolean relations

c GDM

� Generalization of Boolean functions.

{ Many possible output patterns.

� Useful for modeling:

{ Cascaded blocks.

{ Portions of multiple-level networks.

� More degree of freedom in implementation.

� Harder problem to solve.


