RETIMING

© Giovanni De Micheli

Stanford University

Outline

— © GDM

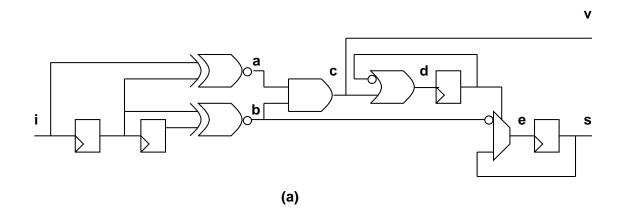
- Structural optimization methods.
- Retiming.
 - Modeling.
 - Retiming for minimum delay.
 - Retiming for minimum area.

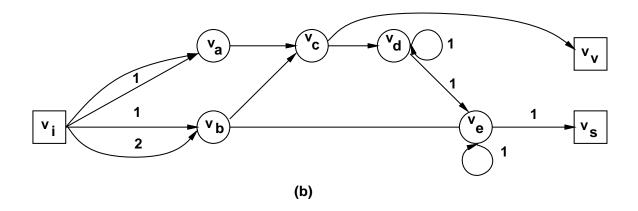
Synchronous Logic Network

——— © GDM ——

- Synchronous logic network:
 - Variables.
 - Boolean equations.
 - Synchronous delay annotation.
- Synchronous network graph:
 - Vertices \leftrightarrow equations \leftrightarrow I/O , gates.
 - Edges \leftrightarrow dependencies \leftrightarrow nets.
 - Weights \leftrightarrow synch. delays \leftrightarrow registers.

Synchronous Logic Network Example





— © GDM

$$a^{(n)} = i^{(n)} \overline{\oplus} i^{(n-1)}$$

$$b^{(n)} = i^{(n-1)} \overline{\oplus} i^{(n-2)}$$

$$c^{(n)} = a^{(n)}b^{(n)}$$

$$d^{(n)} = c^{(n)} + d'^{(n-1)}$$

$$e^{(n)} = d^{(n)}e^{(n-1)} + d'^{(n)}b'^{(n)}$$

$$v^{(n)} = c^{(n)}$$

$$s^{(n)} = e^{(n-1)}$$

$$a = i \oplus i@1$$
 $b = i@1 \oplus i@2$
 $c = a b$
 $d = c + d@1'$
 $e = d e@1 + d' b'$
 $v = c$
 $s = e@1$

Synchronous Logic Circuit Modeling

——— © GDM ——

- State-based model:
 - Transition diagrams or tables.
 - Explicit notion of state.
 - Implicit notion of area and delay.
- Structural model:
 - Synchronous logic network.
 - Implicit notion of state.
 - Explicit notion of area and delay.

Approaches to synchronous logic optimization

C GDM

- Optimize combinational logic only.
- Optimize register position only:
 - Retiming.
- Optimize overall circuit:
 - Peripheral retiming.
 - Synchronous transformations:
 - * Algebraic.
 - * Boolean.

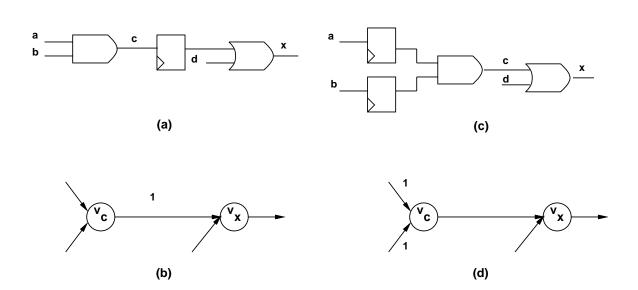
Separate registers from combinational logic

C GDM

- Optimize combinational logic by transformations:
 - Modify equations.
 - Modify graph structure.
- Connect registers back into the network:
 - Good heuristic.
 - Limited by the partitioning strategy.

Retiming

- Move register position.
- Do not modify combinational logic.
- Preserve network structure:
 - Modify weights.
 - Do not modify graph structure.



Retiming

____ © GDM

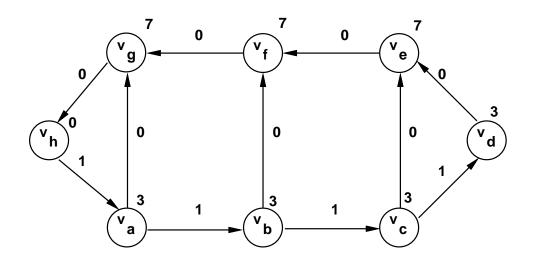
- Global optimization technique [Leiserson].
- Changes register positions:
 - affects area:
 - * changes register count.
 - affects cycle-time:
 - * changes path delays between register pairs.
- Solvable in polynomial time.

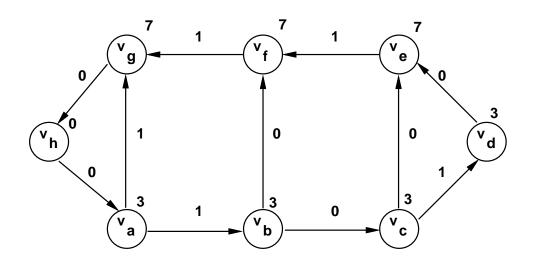
Assumptions

- Vertex delay is constant:
 - No fanout delay dependency.
- Graph topology is invariant:
 - No logic transformations.
- Synchronous implementation:
 - Cycles have positive weights.
 - Edges have non-negative weights.
- Consider topological paths:
 - No false path analysis.

Retiming

- Retiming of a vertex:
 - Integer.
 - Registers moved from output to input.
- Retiming of a network:
 - Vector of vertex retiming.
- A family of equivalent networks are specified by:
 - The original network.
 - A retiming vector.





Definitions and properties

—— © GDM ——

• Definitions:

- $w(v_i, v_j)$ weight of edge (v_i, v_j) .
- $-(v_i,\ldots,v_j)$ path from v_i to v_j .
- $-d(v_i,\ldots,v_j)$ path delay from v_i to v_j .

• Properties:

- Retiming of an edge (v_i, v_j) :

$$* \widetilde{w}_{ij} = w_{ij} + r_j - r_i.$$

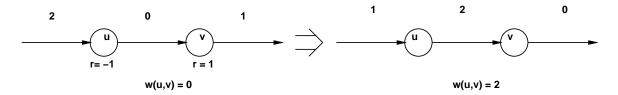
— Retiming of a path (v_i,\ldots,v_j) :

*
$$\widetilde{w}(v_i,\ldots,v_j)=w(v_i,\ldots,v_j)+r_j-r_i.$$

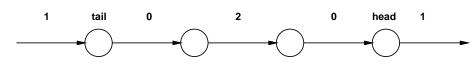
- Cycle weights are invariant.

© GDM

RETIMING of an EDGE

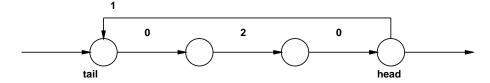


PATH



w(path) = 2

CYCLE



w(cycle) = 3

Legal retiming

— © GDM

- Clock period ϕ .
- Retiming vector such that:
 - No edge weight is negative: $\widetilde{w}_{ij} = w_{ij} + r_j r_i \ge 0 \quad \forall i, j.$
 - Each path (v_i,\ldots,v_j) with $d(v_i,\ldots,v_j)>\phi$ has at least one register: $\widetilde{w}(v_i,\ldots,v_j)=w(v_i,\ldots,v_j)+r_j-r_i\geq 1$ $\forall i,j.$
- Fact:
 - Original graph has no cycles with weight ≤ 0 \Rightarrow new graph has no cycles with weight ≤ 0

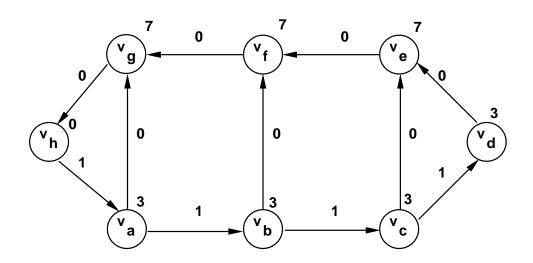
Refined analysis

© GDM

Least register path:

$$- W(v_i, v_j) = \min w(v_i, \dots, v_j).$$

- Over all paths between v_i and v_j .
- Critical delay:
 - $-D(v_i, v_j) = \max d(v_i, \dots, v_j)$
 - Over all the paths from v_i to v_j with weight $W(v_i,v_j)$.
- There exists a vertex pair v_i, v_j whose $D(v_i, v_j)$ bounds the cycle-time.



- Vertices: v_a, v_e .
- Paths: (v_a, v_b, v_c, v_e) and $(v_a, v_b, v_c, v_d, v_e)$.
- $W(v_a, v_e) = 2$ and $D(v_a, v_e) = 16$.

Minimum cycle-time retiming problem

___ © GDM

ullet Find minimum value of the clock period ϕ such that there exist a retiming vector where:

$$-r_i-r_j \leq w_{ij} \quad \forall (v_i,v_j) \in E$$

$$-r_i-r_j \leq W(v_i,v_j)-1 \quad \forall v_i,v_j|D(v_i,v_j)>\phi.$$

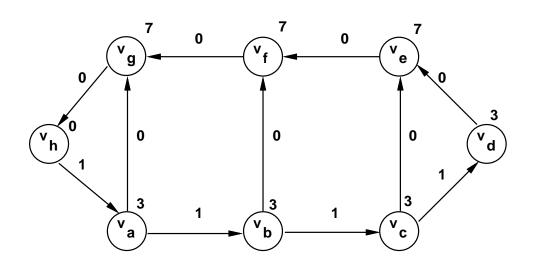
- Solution:
 - Given a value of ϕ :
 - * solve linear constraints.
 - * methods:
 - · Bellman-Ford or derivate.
 - · MILP.
 - · Relaxation.

Minimum cycle-time retiming algorithm

(C) GDM

- ullet Compute all-pair $W(v_i,v_j)$ and $D(v_i,v_j)$.
 - Warshall-Floyd algorithm ($O(V^3)$).
- Sort the elements of **D** in decreasing order.
- ullet Binary search for a ϕ in $D(v_i,v_j)$ such that:
 - There exist a legal retiming.
 - Bellman-Ford algorithm ($O(V^3)$).
- Remarks:
 - Result is a global optimum.
 - Overall complexity is $O(V^3 log V)$.

• © GDM



• Constraints (first type):

- $r_a - r_b \leq$ 1 or equivalently $r_b \geq r_a -$ 1

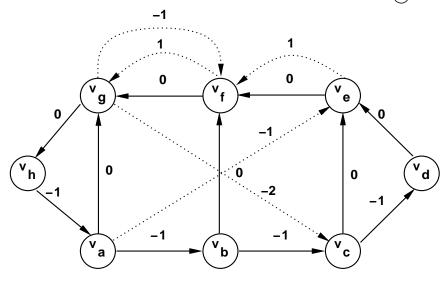
- $r_c - r_b \leq 1$ or equivalently $r_c \geq r_b - 1$

— ...

- Sort elements of **D**:
 - (33, 30, 27, 26, 24, 23, 21, 20, 19, 17, 16, 14, 13, 12, 10, 9, 7, 6, 3).
- Select: $\phi = 19$:
 - PASS.
- Select: $\phi = 13$:
 - PASS.
- Select: $\phi < 13$:
 - FAIL.

$$\phi = 13$$

© GDM



• Constraints (second type):

- $r_a - r_e \leq 2 - 1$ or equivalently $r_e \geq r_a - 1$

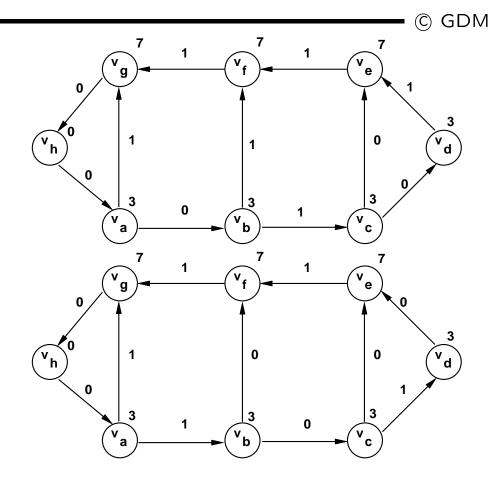
- $r_e - r_f \leq$ 0 - 1 or equivalently $r_f \geq r_e +$ 1

- $r_f - r_g \leq$ 0 - 1 or equivalently $r_g \geq r_f +$ 1

- $r_g - r_f \leq 2 - 1$ or equivalently $r_f \geq r_g - 1$

- $r_g - r_c \leq$ 3-1 or equivalently $r_c \geq r_g -$ 2

$$\phi = 13$$



Solutions:

- $- [12232100]^T$ (LP from v_h).
- $-[11222100]^T$ (Equivalent solution).

Relaxation-based algorithm Rationale

——— © GDM -

- Look for paths with excessive delay.
- Make them shorter by pulling closer the terminal register.
 - Some other paths may become too long.
 - Those paths whose tail has been moved.
- Use an iterative approach.

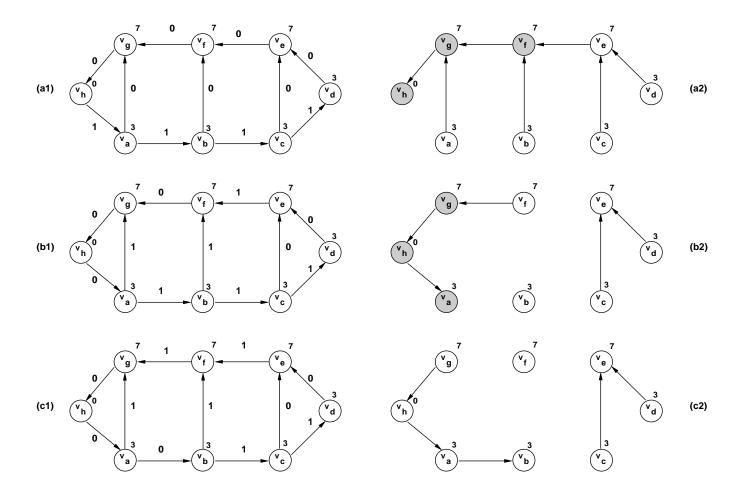
Relaxation-based algorithm

——— © GDM ——

- Define vertex data ready time:
 - Total delay from register boundary.
- Iterative approach:
 - Find vertices with data ready time $> \phi$.
 - Retime these vertices by 1.
- Properties:
 - Finds legal retiming in at most |V| iterations, if one exists.

 $\phi = 13$

© GDM —



© GDM

• Data-ready times:

$$-t_a = 3$$
; $t_b = 3$; $t_c = 3$; $t_d = 3$; $t_e = 10$; $t_f = 17$; $t_g = 24$; $t_h = 24$.

- Retime: $\{t_f, t_g, t_h\}$ by 1.
- Data-ready times:

$$-t_a = 17; t_b = 3; t_c = 3; t_d = 3; t_e = 10; t_f = 7; t_q = 14; t_h = 14.$$

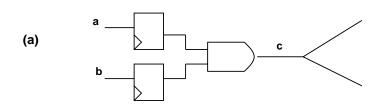
- Retime:
 - $-\{t_a, t_q, t_h\}$ by 1.
- Data-ready times:

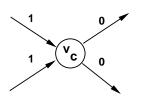
$$-t_a = 10; t_b = 13; t_c = 3; t_d = 3; t_e = 10; t_f = 7; t_g = 7; t_h = 7,$$

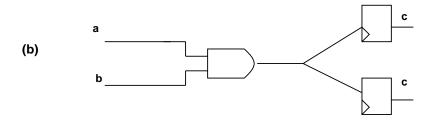
- TIMING FEASIBLE NETWORK!

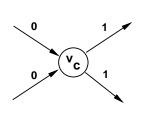
Minimum area retiming problem

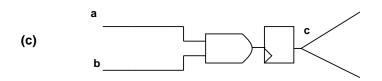
- Find a retiming vector
 that minimizes the number of registers.
- Simple area modeling:
 - Every pos.-weighted edge \rightarrow register.
 - Total register area cost equals total of weights.
- Register sharing model:
 - Every set of positively-weighted edges with common tail \rightarrow shift-register.
 - Register area cost equals maximum of weights on outgoing edges.

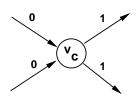












Minimum area retiming simple model

—— © GDM ——

- ullet Register variation at vertex v:
 - $r_v \cdot (indegree(v) outdegree(v)).$
- Total area variation:
 - $-\sum r_v \cdot (indegree(v) outdegree(v)).$
- Area minimization problem:
 - min
 - * $\sum_{v \in V} r_v \cdot (indegree(v) outdegree(v)).$
 - s.t.
 - * $r_i r_j \leq w(v_i, v_j)$ for every (v_i, v_j) .

Minimum area retiming under cycle time constraint ϕ

© GDM

• min

$$-\sum_{v\in V} r_v \cdot (indegree(v) - outdegree(v)).$$

• s.t.

$$-r_i-r_j \leq w(v_i,v_j)$$
 for every (v_i,v_j) .

$$-r_i-r_j\leq W(v_i,v_j)-1 \quad \forall v_i,v_j|D(v_i,v_j)>\phi.$$

Minimum area retiming algorithm

- Linear program.
- Transform into matching problem:
 - Edmonds-Karp algorithm.
 - Polynomial time.
- Remark:
 - Register sharing model
 can be transformed into the simple model.
 - Same solution algorithms.

Summary of retiming

- Sequential optimization technique for:
 - Cycle time or register area.
- Applicable to:
 - Synchronous logic models.
 - Architectural data-path models:
 - * Resources with delays.
- Exact algorithm in polynomial time.
- Problems:
 - Delay modeling.
 - Network granularity.