RETIMING

© Giovanni De Micheli

Stanford University

Outline

© GDM = =—

e Structural optimization methods.

e Retiming.
— Modeling.
— Retiming for minimum delay.

— Retiming for minimum area.

Svynchronous Logic Network

© GDM

e Synchronous logic network:
— Variables.
— Boolean equations.

— Synchronous delay annotation.

e Synchronous network graph:
— Vertices < equations < I/O , gates.
— Edges < dependencies +» nets.

— Weights < synch. delays <« registers.

Svynchronous Logic Network
Example

© GDM e

—) el
e .

(@)

\' Vv
Va c d 1 v,
1 1
1

(b)

Example

© GDM =

; (1)) ;(n—1)
i(n-1) 75 ;(n—2)
() (n)

C(n) + d/(n—l)

— d(n)e(n—l) + d/(n)b/(n)
Y

s(n) — (n—1)
a = 1@ 101
b = Q@1 @ @2
c = ab
d = c+do1’
e = de@l+dV
VvV — C

e@1

Synchronous Logic Circuit Modeling

© GDM

e State-based model:
— Transition diagrams or tables.
— Explicit notion of state.

— Implicit notion of area and delay.

e Structural model:
— Synchronous logic network.
— Implicit notion of state.

— Explicit notion of area and delay.

Approaches to synchronous logic
optimization

© GDM e

e Optimize combinational logic only.

e Optimize register position only:

— Retiming.

e Optimize overall circuit:
— Peripheral retiming.

— Synchronous transformations:

+x Algebraic.

* Boolean.

Separate registers from combinational
logic

© GDM =
e Optimize combinational logic by
transformations:
— Modify equations.

— Modify graph structure.

e Connect registers back into the network:
— Good heuristic.

— Limited by the partitioning strategy.

Retiming

© GDM =

e Move register position.

e Do not modify combinational logic.

e Preserve network structure:
— Modify weights.

— Do not modify graph structure.

Example

)

@)

<

© GDM e

(d)

Retiming

© GDM = =—

e Global optimization technique [Leiserson].

e Changes register positions:

— affects area:

* Changes register count.

— affects cycle-time:

x Changes path delays
between register pairs.

e Solvable in polynomial time.

Assumptions

© GDM e

Vertex delay is constant:

— No fanout delay dependency.

Graph topology is invariant:

— No logic transformations.

Synchronous implementation:
— Cycles have positive weights.

— Edges have non-negative weights.

Consider topological paths:

— No false path analysis.

Retiming
© GDM

e Retiming of a vertex:
— Integer.

— Registers moved from output to input.

e Retiming of a network:
— Vector of vertex retiming.

e A family of equivalent networks are
specified by:
— The original network.

— A retiming vector.

Example

© GDM =

Definitions and properties

© GDM =

e Definitions:
— w(v;,v;) — weight of edge (v;,v;).
— (v, ...,vj) — path from v; to v;.

— d(v;,...,v;)— path delay from v; to v;.

e Properties:
— Retiming of an edge (v;,v;):
* Wi5 = Wi+ T — Ty
— Retiming of a path (v;,...,v;):
* w(vg,...,v5) =w(v;,...,v5) +rj— 71

— Cycle weights are invariant.

Example

© GDM e

RETIMING of an EDGE

0 1 1 2 0
/0 Y .- :> IR) -
r=-1 r=1
w(u,v) =0 w(u,v) =2
PATH
1 tail 0 2 0 head 1
N N N N .
N o N N
w(path) = 2
CYCLE
1
0 2 0 /}\
tail head

w(cycle) =3

Legal retiming
© GDM

e Clock period o.

e Retiming vector such that:

— No edge weight is negative:
QT)ij zwij—l—rj—fri Z 0 Vi,j.

— Each path (v, ... ,’Uj) with d(v,, ... ,Uj) > ¢
has at least one register:
w(vg,...,v5) = w(v,...,v;) +rj—r; > 1
Vi, .

e Fact:

— Original graph has no cycles with weight <O
= new dgraph has no cycles with weight <0

Refined analysis
© GDM s

e L east register path:
— W(v,v5) = minw(v;,...,v;).

— Over all paths between v; and v;.

e Critical delay:
— D(vi,vj) = maxd(vi, “e ,’Uj)
— Over all the paths from v; to v

with weight W(vi, vj).

e There exists a vertex pair v;, v,
whose D(v;,v;) bounds the cycle-time.

© GDM e

0 0
1 1
3
\Y N 1 \" 3 1 \'
a —»@4»®

e Vertices: vg, ve.
e Paths: (vg, vy, ve,ve) and (vg, vy, Ve, Vg, Ve).

o W(Ua,,ve) — 2 and D(Ua,,ve) — 16

Minimum cycle-time retiming problem
© GDM

e Find minimum value of the clock period ¢
such that there exist a retiming vector

where:
—r;—ri <wy Y(v,vj) EE

—ri—1; < W(v;v5) =1 Vo, v]D(v;,v5) > é.

e Solution:

— Given a value of ¢:
* Solve linear constraints.

* methods:
. Bellman-Ford or derivate.

- MILP.

. Relaxation.

Minimum cycle-time retiming algorithm

© GDM

o Compute all-pair W(v;,v;) and D(v;,v;).

— Warshall-Floyd algorithm (O(V3)).

e Sort the elements of D in decreasing order.

e Binary search for a ¢ in D(v;,v;) such that:
— There exist a legal retiming.

— Bellman-Ford algorithm (O(V3)).

e Remarks:
— Result is a global optimum.

— Overall complexity is O(V3logV).

© GDM =

0 0
1 1
3
\Y N 1 \" 3 1 \'
a —»@4»®

e Constraints (first type):
— rq —1p < 1 or equivalently ry > rqg — 1

— re — 1, < 1 Or equivalently re > 7, — 1

Example

© GDM e

Sort elements of D:

— (33,30,27,26,24,23,21,20, 19,
17,16,14,13,12,10,9,7,6, 3).

Select: ¢ = 109:

— PASS.

Select: ¢ = 13:

— PASS.

Select: ¢ < 13:

— FAIL.

Example
¢ =13

© GDM e

0
T I O
— ‘ .’... _2
1 1
v -1 v -1 v
a —»@—@

e Constraints (second type):
— ra—7Te < 2—1 or equivalently re > rq—1
— re—ry < 0—1 or equivalently r¢ > re+1
— rg—rg < 0—1or equivalently rg > ry+1
— Tg—Ty < 2—1 or equivalently T >rg—1

— rg—rc < 3—1 or equivalently r¢ > rg—2

Example
¢ =13

o/ T I T \J
0 3
1 : > ()
0 0
3
V3 0 V3 1 Vv
)
:
7 1 1 7
Vv \Y \Y
g f e
0/ 1 I N\
0 3
1 ; > ()
% 1
3 1
\
a

3
\" 3 0 \V
— ()~

e Solutions:
— —[12232100]7" (LP from wvp,).

— —[11222100]7" (Equivalent solution).

Relaxation-based algorithm
Rationale

© GDM e

e Look for paths with excessive delay.

e Make them shorter by pulling closer the
terminal register.

— Some other paths may become too long.

— Those paths whose tail has been moved.

e Use an iterative approach.

Relaxation-based algorithm

© GDM

e Define vertex data ready time:

— Total delay from register boundary.

e [terative approach:
— Find vertices with data ready time > ¢.

— Retime these vertices by 1.

e Properties:

— Finds legal retiming in at most |V|
iterations, if one exists.

13

Example
¢

(b2)

(c2)

Example

© GDM

e Data-ready times:
— t,=3,t, =3;t. =3t = 3;t. = 10;
ty = 17,t, = 24,1, = 24.
e Retime: {tf,t,,tn} by 1.

e Data-ready times:
— teo=17;t, = 3;t. = 3;t;, = 3;t. = 10;
ty =7ty = 14;t;, = 14.

e Retime:

— {ta,ty, tr} by 1.

e Data-ready times:

— t,=10;t, = 13;t., = 3;t; = 3;t. = 10;
tf=7;tg:7;th=7,

— TIMING FEASIBLE NETWORK !

Minimum area retiming problem

© GDM =

e Find a retiming vector
that minimizes the number of registers.
e Simple area modeling:
— Every pos.-weighted edge — register.
— Total register area cost equals
total of weights.
e Register sharing model:

— Every set of positively-weighted edges
with common tail — shift-register.

— Register area cost equals
maximum of weights on outgoing edges.

Example

(@)

(b)

(©)

Minimum area retiming
simple model

© GDM e

e Register variation at vertex wv:

— ry - (@'ndeg'ree(v) — outdegree(’v)).

e [otal area variation:

— Y 7y - (indegree(v) — outdegree(v)).

e Area minimization problem:
— min
* Y 1y (indegree(v) — outdegree(v)).
veEV
— S.t.

* r; — 1 < w(v,v;) for every (v;,v;).

Minimum area retiming
under cycle time constraint ¢

© GDM e

e Min

— Y ry - (indegree(v) — outdegree(v)).
veV

o S.T.
— r; —r; <w(v;,v;) for every (v;,v;).

—r;—1r; < W(v;,vj) =1 Vo, v|D(v;,v5) > ¢.

Minimum area retiming algorithm

© GDM

e Linear program.

e Transform into matching problem:
— Edmonds-Karp algorithm.

— Polynomial time.

e Remark:

— Register sharing model
can be transformed into the simple model.

— Same solution algorithms.

Summary of retiming

© GDM =

e Sequential optimization technique for:

— Cycle time or register area.

e Applicable to:
— Synchronous logic models.

— Architectural data-path models:

x Resources with delays.

e Exact algorithm in polynomial time.

e Problems:
— Delay modeling.

— Network granularity.

