MULTIPLE-LEVEL LOGIC OPTIMIZATION

© Giovanni De Micheli

Stanford University

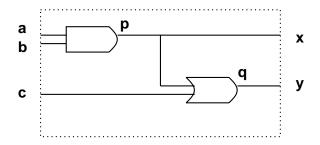
Outline

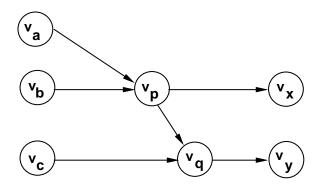
——— © GDM

- Representations.
- Taxonomy of optimization methods:
 - Goals: area/delay.
 - Algorithms: algebraic/Boolean.
 - Rule-based methods.
- Examples of transformations.
- Boolean and algebraic models.

Motivation

- Multiple-level networks:
 - Semi-custom libraries.
 - Gates versus macros (PLAs):
 - * More flexibility.
 - * Better performance.
- Applicable to a variety of designs.


Circuit modeling


____ © GDM

- Logic network:
 - Interconnection of logic functions.
 - Hybrid structural/behavioral model.
- Bound (mapped) networks:
 - Interconnection of logic gates.
 - Structural model.

Example of bound network

Example of network

____ © GDM

$$p = ce + de$$

$$q = a + b$$

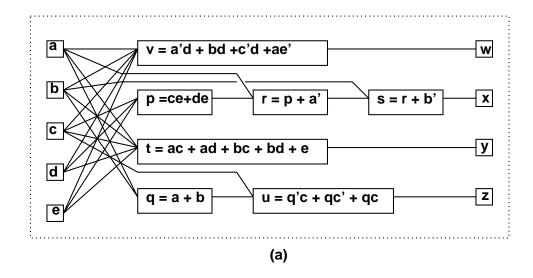
$$r = p + a'$$

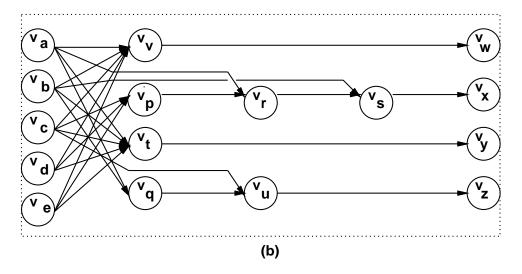
$$s = r + b'$$

$$t = ac + ad + bc + bd + e$$

$$u = q'c + qc' + qc$$

$$v = a'd + bd + c'd + ae'$$


$$w = v$$


$$x = s$$

$$y = t$$

$$z = u$$

Example of network

Example circuit terminal behavior

— © GDM

$$\mathbf{f} = \begin{bmatrix} a'd + bd + c'd + ae' \\ a' + b' + c + d \\ ac + ad + bc + bd + e \\ a + b + c \end{bmatrix}$$

Network optimization

—— © GDM —

- Minimize area (power) estimate:
 - subject to delay constraints.
- Minimize maximum delay:
 - subject to area (power) constraints.
- Minimize power consumption.
 - subject to delay constraints.
- Maximize testability.

Estimation

- Area:
 - Number of literals.
 - Number of functions/gates.
- Delay:
 - Number of stages.
 - Refined gate delay models.
 - Sensitizable paths.

Problem analysis

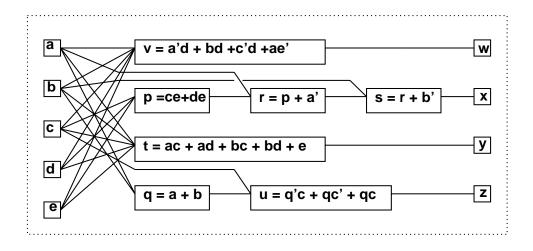
- Multiple-level optimization is hard.
- Exact methods:
 - Exponential complexity.
 - Impractical.
- Approximate methods:
 - Heuristic algorithms.
 - Rule-based methods.

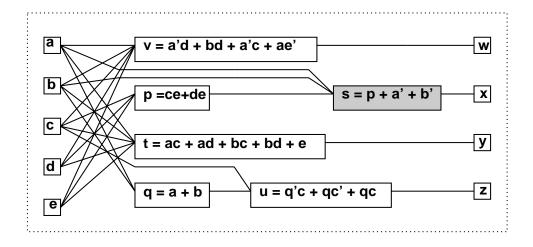
Strategies for optimization

C GDM

- Improve circuit step by step.
 - Circuit transformations.
- Preserve network behavior.
- Methods differ in:
 - Types of transformations.
 - Selection and order of transformations.

Example elimination


—— © GDM

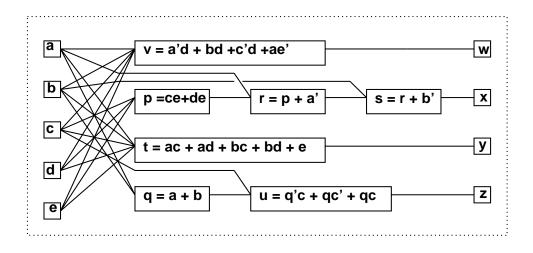

- Eliminate one function from the network.
- Perform variable substitution.
- Example:

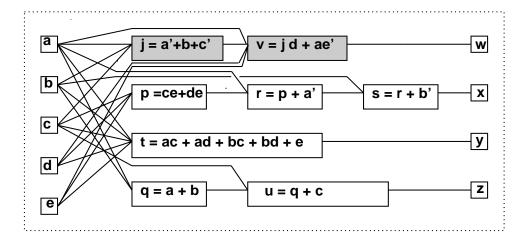
$$-s = r + b'; \quad r = p + a'$$

$$- \Rightarrow s = p + a' + b'.$$

Example elimination

Example decomposition


— © GDM


- Break one function into smaller ones.
- Introduce new vertices in the network.
- Example:

$$-v = a'd + bd + c'd + ae'.$$

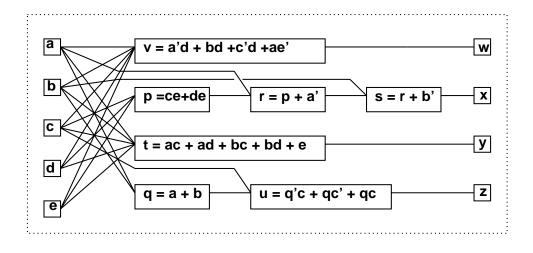
$$-\Rightarrow j=a'+b+c'; v=jd+ae'$$

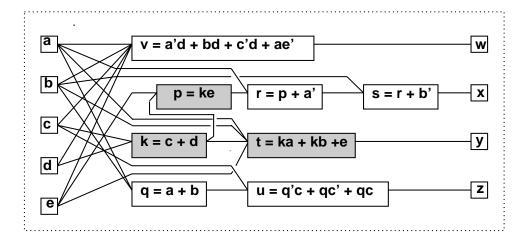
Example decomposition

Example extraction

—— © GDM

- Find a common sub-expression of two (or more) expressions.
- Extract sub-expression as new function.
- Introduce new vertex in the network.
- Example:

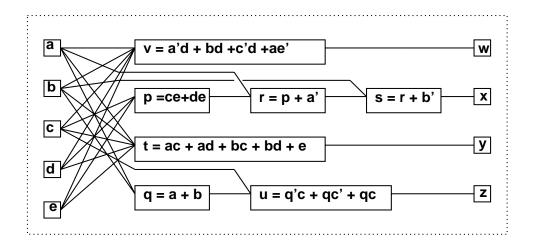

$$- p = ce + de;$$
 $t = ac + ad + bc + bd + e;$


$$- p = (c+d)e; \quad t = (c+d)(a+b) + e;$$

$$-\Rightarrow k=c+d; \quad p=ke; \quad t=ka+kb+e;$$

Example extraction

 \bigcirc GDM


Example simplification

- Simplify a local function.
- Example:

$$-u = q'c + qc' + qc;$$

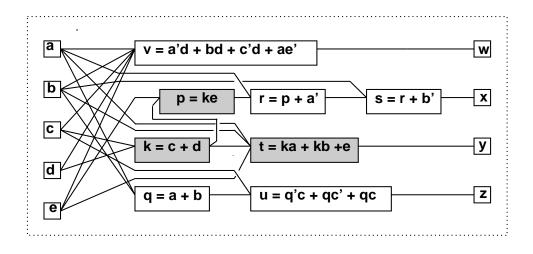
$$- \Rightarrow u = q + c;$$

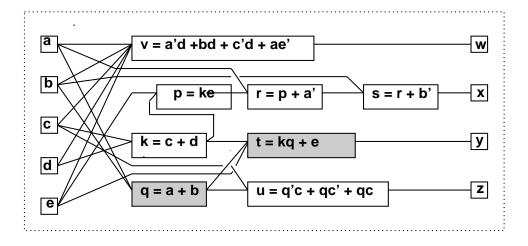
Example simplification

Example substitution

—— © GDM

- Simplify a local function
 by using an additional input
 that was not previously in its support set.
- Example:

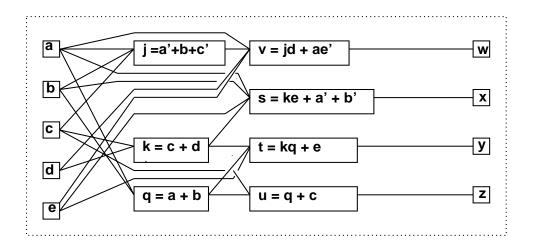

$$-t = ka + kb + e.$$


$$- \Rightarrow t = kq + e$$

- Because q = a + b.

Example substitution

 \bigcirc GDM



Example sequence of transformations

• © GDM

$$j = a' + b + c'$$
 $k = c + d$
 $q = a + b$
 $s = ke + a' + b'$
 $t = kq + e$
 $u = q + c$
 $v = jd + ae'$

Optimization approaches

_____ © GDM

- Algorithmic approach:
 - Define an algorithm for each transformation type.
 - Algorithm is an operator on the network.
- Rule-based approach:
 - Rule-data base:
 - * Set of pattern pairs.
 - Pattern replacement driven by rules.

Algorithmic approach

- Each operator has well-defined properties:
 - Heuristic methods still used.
 - Weak optimality properties.
- Sequence of operators:
 - Defined by scripts.
 - Based on experience.

Example elimination algorithm

- Set a threshold k (usually 0).
- Examine all expressions.
- Eliminate expressions if the increase in literals does not exceed the threshold.

Example elimination algorithm

— © GDM —

Example MIS/SIS rugged script

- © GDM

- sweep; eliminate -1
- simplify -m nocomp
- eliminate -1
- sweep; eliminate 5
- simplify -m nocomp
- resub -a
- fx
- resub -a; sweep
- eliminate -1; sweep
- full-simplify -m nocomp

Boolean and algebraic methods

© GDM —

- Boolean methods:
 - Exploit properties of logic functions.
 - Use don't care conditions.
 - Complex at times.
- Algebraic methods:
 - View functions as polynomials.
 - Exploit properties of polynomial algebra.
 - Simpler, faster but weaker.

Example

© GDM

• Boolean substitution:

$$-h = a + bcd + e; q = a + cd$$

$$- \Rightarrow h = a + bq + e$$

- Because
$$a + bq + e = a + b(a + cd) + e =$$

= $a + bcd + e$.

• Algebraic substitution:

$$-t = ka + kb + e.$$

$$- \Rightarrow t = kq + e$$

- Because q = a + b.

Summary

- Multilevel logic synthesis is performed by step-wise transformations.
- Algorithms are based on both the Boolean and the algebraic models.
- Rule-based systems.