LIBRARY BINDING

© Giovanni De Micheli

Stanford University

Outline

C GDM

- Modeling and problem analysis.
- Rule-based systems for library binding.
- Algorithms for library binding:
 - Structural covering/matching.
 - Boolean covering/matching.
- Concurrent optimization and binding.

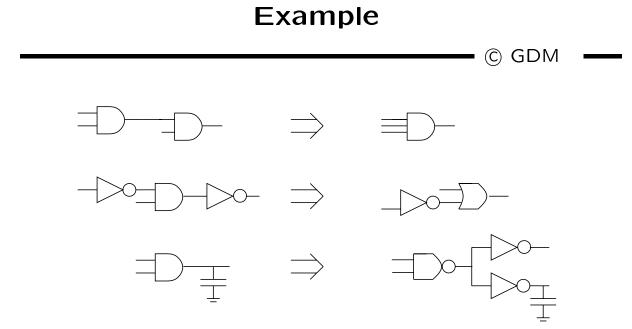
Library binding

- Given an unbound logic network and a set of library cells:
 - Transform into an interconnection of instances of library cells.
 - Optimize area, (under delay constraints.)
 - Optimize *delay*, (under *area* constraints.)
 - Optimize *power*, (under *delay* constraints.)
- Called also *technology mapping*:
 - Method used for re-designing circuits in different technologies.

Library models

C GDM

- Combinational elements:
 - Single-output functions:
 - * e.g. AND, OR, AOI.
 - Compound cells: e.g. adders, encoders.
- Sequential elements:
 - Registers, counters.
- Miscellaneous:
 - Schmitt triggers.


Major approaches

- Rule-based systems:
 - Mimic designer activity.
 - Handle all types of cells.
- Heuristic algorithms:
 - Restricted to single-output combinational cells.
- Most tools use a combination of both.

Rule-based library binding

🗕 🛈 GDM

- Binding by stepwise transformations.
- Data-base:
 - Set of patterns associated with best implementation.
- Rules:
 - Select subnetwork to be mapped.
 - Handle high-fanout problems, buffering, etc.

Strategies

- © GDM

- Search for a sequence of transformations.
- Search space:
 - Breadth (options at each step).
 - Depth (look-ahead).
- *Meta-rules* determine dynamically breadth and depth.

Rule-based library binding

C GDM

• Advantages:

- Applicable to all kinds of libraries.

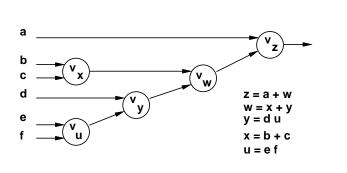
- Disadvantages:
 - Large rule data-base:
 - * Completeness issue.
 - * Formal properties of bound network.
 - Data-base updates.

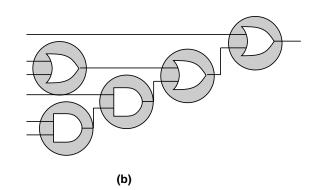
Algorithms for library binding

_____ © GDM ____

- Mainly for single-output combinational cells.
- Fast and efficient:
 - Quality comparable to rule-based systems.
- Library description/update is simple:
 - Each cell modeled by its function or equivalent pattern.

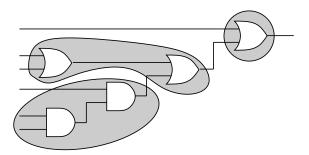
Problem analysis

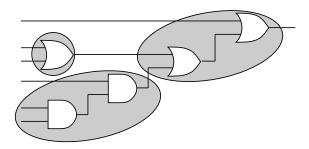

C GDM


- Matching:
 - A cell matches a sub-network
 if their terminal behavior is the same.
 - Input-variable *assignment* problem.
- Covering:
 - A cover of an unbound network
 is a partition into subnetworks
 which can be replaced by library cells.

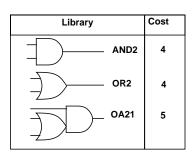
Assumptions

- Network granularity is fine.
 - Decomposition into *base* functions.
 - * 2-input AND, OR, NAND, NOR.
- Trivial binding:
 - Replacement of each vertex by base cell.



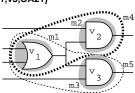


© GDM

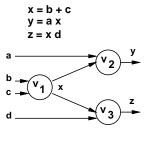

(c)

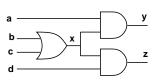
(d)

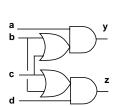
© GDM

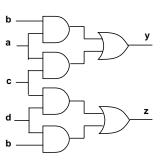

_

-







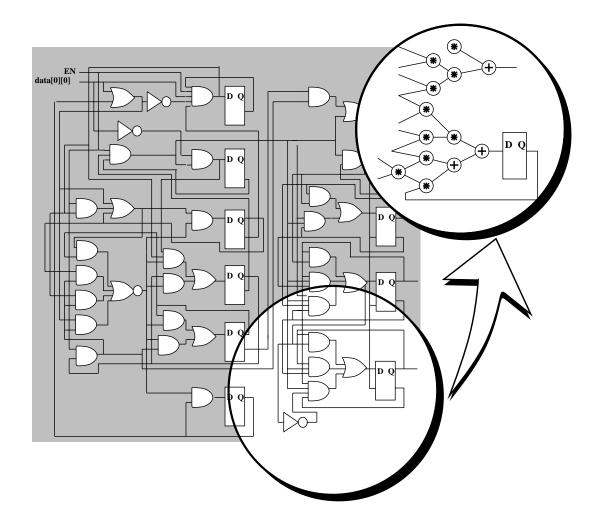


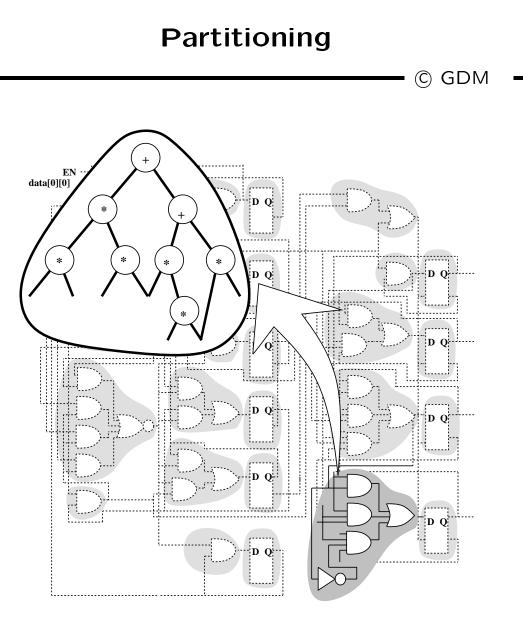
(c)

(b)

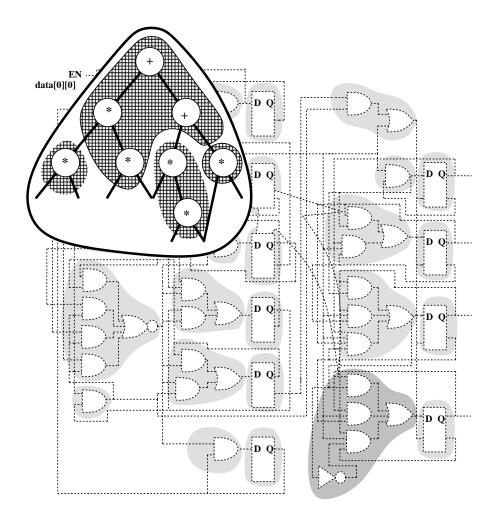
(f)

© GDM

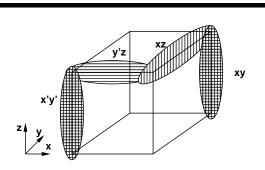

- Vertex covering:
 - Covering v_1 : $(m_1 + m_4 + m_5)$.
 - Covering v_2 : $(m_2 + m_4)$.
 - Covering v_3 : $(m_3 + m_5)$.
- Input compatibility:
 - Match m_2 requires m_1 :
 - * $(m'_2 + m_1)$.
 - Match m_3 requires m_1 :
 - * $(m'_3 + m_1)$.
- Overall *binate* clause:


 $- (m_1 + m_4 + m_5)(m_2 + m_4)(m_3 + m_5)(m'_2 + m_1)(m'_3 + m_1) = 1$

🗕 🔘 GDM


- Decomposition:
 - Cast network and library in standard form.
 - Decompose into *base functions*.
 - Example: NAND2 and INV.
- Partitioning:
 - Break network into cones.
 - Reduce to many multi-input single-output subnetworks.
- Covering:
 - Cover each subnetwork by library cells.

🗕 © GDM



Heuristic algorithms

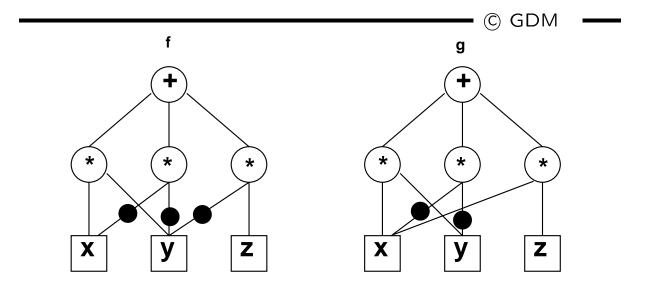
- Structural approach:
 - Model functions by patterns.
 - * Example: trees, dags.
 - Rely on *pattern matching* techniques.
- Boolean approach:
 - Use Boolean models.
 - Solve tautology problem.
 - More powerful.

Example Boolean versus structural matching

© GDM

• f = xy + x'y' + y'z

•
$$g = xy + x'y' + xz$$


• Function equality is a tautology:

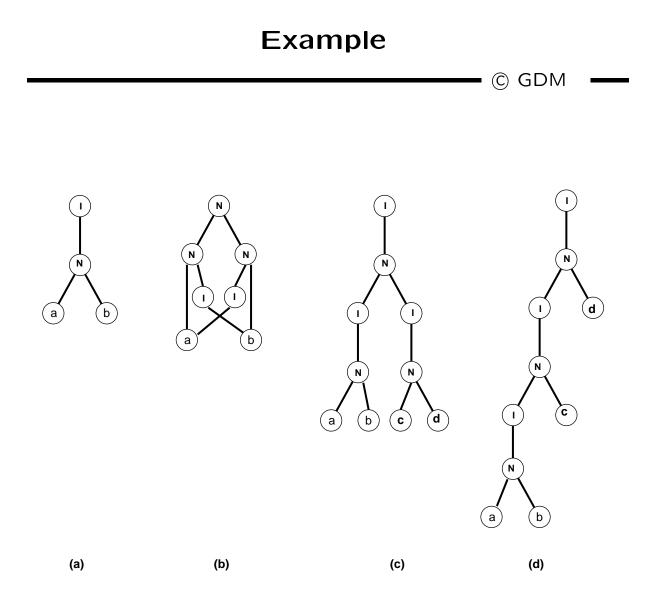
- Boolean match.

• Patterns may be different:

- Structural match may not be found.

Example Boolean versus structural matching

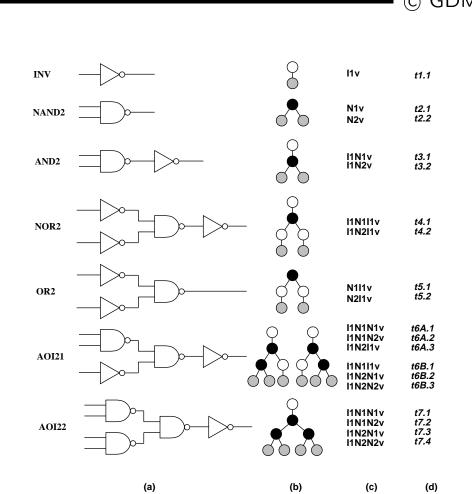
- f = xy + x'y' + y'z
- g = xy + x'y' + xz
- Patterns do not match.


Structural matching and covering

– © GDM

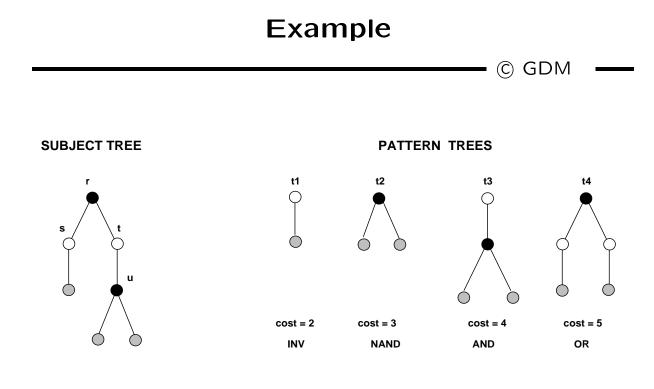
• Expression patterns:

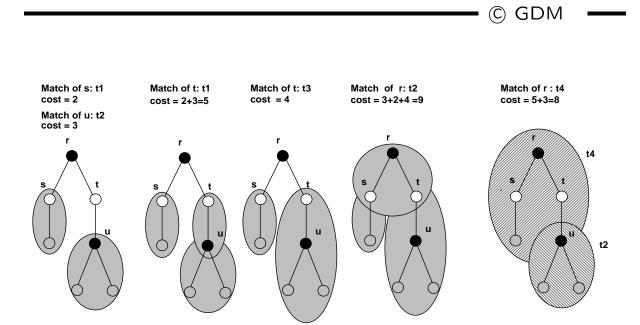
- Represented by dags.


- Identify pattern dags in network:
 - Sub-graph isomorphism.
- Simplification:
 - Use tree patterns.

Tree-based matching

C GDM


- Network:
 - Partitioned and decomposed:
 - * NOR2 (or NAND2) + INV.
 - * Generic base functions.
 - Subject tree.
- Library:
 - Represented by trees.
 - Possibly more than one tree per cell.
- Pattern recognition:
 - Simple binary tree match.
 - Aho-Corasick automaton.



Simple library

Tree covering

- Dynamic programming:
 - Visit subject tree bottom-up.
- At each vertex:
 - Attempt to match:
 - * Locally rooted subtree.
 - * All library cells.
- Optimum solution, for the subtree.

_____ © GDM ____

- Minimum-area cover.
- Area costs:
 - INV:2; NAND2:3; AND2:4; AOI21:6.
- Best choice:
 - AOI21 fed by a NAND2 gate.

- © GDM

Network	Subject graph	Vertex	Match	Gate	Cost
0		x	t2	NAND2(b,c)	3
		У	t1	INV(a)	2
		z	t2	NAND2(x,d)	2* 3 = 6
		W	t2	NAND2(y,z)	3 * 3 + 2 = 11
		0	t1	INV(w)	3 * 3 + 2 * 2 = 13
a x d	v N ¹ 2		t3	AND2(y,z)	2 * 3 + 4 + 2 = 12
			t6B	AOI21(x,d,a)	3 + 6 = 9
b c	v d				

Minimum delay cover

- Dynamic programming approach.
- Cost related to gate delay.
- Delay modeling:
 - Constant gate delay.
 - * Straightforward.
 - Load-dependent delay:
 - * Load fanout unknown.
 - * Binning techniques.

Minimum delay cover constant delays

© GDM

• The cell pattern tree and the rooted subtree are isomorphic.

- The vertex is labeled with the cell delay.

- The cell tree is isomorphic to a subtree with leaves *L*.
 - The vertex is labeled with the cell cost plus the maximum of the labels of L.

© GDM

- Inputs data-ready times are 0 except for $t_d = 6$.
- Constant delays:

- INV:2; NAND2:4; AND2:5; AOI21:10.

• Compute *data-ready* times bottom-up:

 $-t_x = 4, t_y = 2; t_z = 10t_w = 14.$

• Best choice:

- AND2, two NAND2 and an INV gate.

- © GDM

Network	Subject graph	Vertex	Match	Gate	Cost
• ×		х	t2	NAND2(b,c)	4
w y z a x d	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ V \\ N \\ V \\ N \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 $	у	t1	INV(a)	2
		Z	t2	NAND2(x,d)	6 + 4 = 10
		W	t2	NAND2(y,z)	10 + 4 = 14
		0	t1	INV(w)	14 + 2 = 16
			t3	AND2(y,z)	10 + 5 = 15
	$ \begin{array}{c c} & & & & & v \\ 0 & 1 & 2 & 6 \end{array} $		t6B	AOI21(x,d,a)	10 + 6 = 16
b c	v d dv				
	0 0				

Minimum delay cover load-dependent delays

- Model:
 - Assume a finite set of load values.
- Dynamic programming approach:
 - Compute an array of solutions for each possible load.
 - For each input to a matching cell the best match for any load is selected.
- Optimum solution, when all possible loads are considered.

- Inputs data-ready times are 0 except for $t_d = 6$.
- Load-dependent delays:
 - INV:1+I; NAND2:3+I; AND2:4+I; AOI21:9+I.
- Loads:
 - INV:1; NAND2:1; AND2:1; AOI21:1.
- Same solution as before.

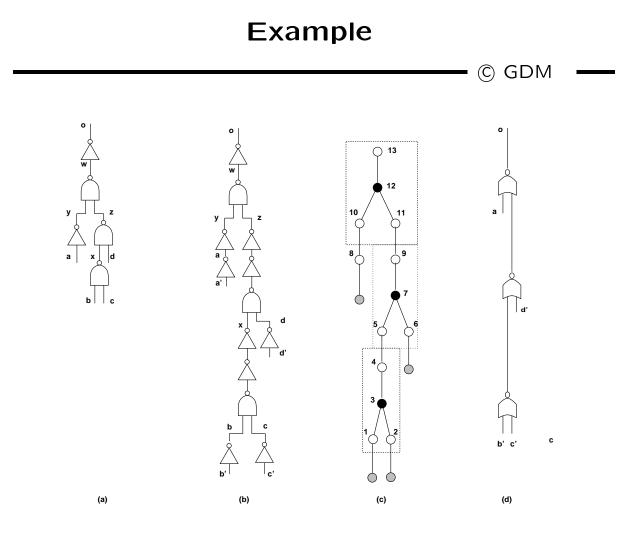
- Inputs data-ready times are 0 except for $t_d = 6$.
- Load-dependent delays:
 - INV:1+I; NAND2:3+I; AND2:4+I; AOI21:9+I; SINV:1+0.5I;.
- Loads:
 - INV:1; NAND2:1; AND2:1; AOI21:1; SINV:2.
- Assume output load is 1:
 - Same solution as before.
- Assume output load is 5:
 - Solution uses SINV cell.

C GDM

-

					Cost		
Network	Subject graph	Vertex	Match	Gate	Load=1	Load=2	Load=5
v v z a x d	$ \begin{array}{c} $	х	t2	NAND2(b,c)	4	5	8
		у	t1	INV(a)	2	3	6
		Z	t2	NAND2(x,d)	10	11	14
		W	t2	NAND2(y,z)	14	15	18
		0	t1	INV(w)			20
			t3	AND2(y,z)			19
			t6B	AOI21(x,d,a)			20
b c	v d dv			SINV(w)			18.5
	0 0						

Library binding and polarity assignment

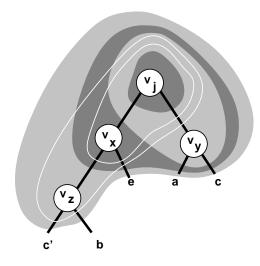

– © GDM

- Search for lower cost solution by not constraining the signal polarities.
- Most circuit allow us to choose the input/output signal polarities.
- Approaches:
 - Structural covering.
 - Boolean covering.

Structural covering and polarity assignment

🗕 🔘 GDM

- Pre-process subject network:
 - Add inverter pairs between NANDs.
 - Provide signals with both polarity.
- Add inverter-pair cell to the library:
 - To eliminate unneeded pairs.
 - Cell corresponds to a connection with zero cost.



Boolean covering

© GDM

- Decompose network into base functions.
- When considering vertex v_i :
 - Construct *clusters* by local elimination.
 - Several functions associated with v_i .
- Limit size and depth of clusters.

© GDM

$$f_{j,1} = xy;$$

$$f_{j,2} = x(a+c);$$

$$f_{j,3} = (e+z)y;$$

$$f_{j,4} = (e+z)(a+c);$$

$$f_{j,5} = (e+c'+d)y;$$

$$f_{j,6} = (e+c'+d)(a+c);$$

____ © GDM ____

- Cluster function $f(\mathbf{x})$: sub-network behavior.
- Pattern function $g(\mathbf{y})$: cell behavior.
- *P*-equivalence:
 - Exists a permutation operator \mathcal{P} , such that $f(\mathbf{x}) = g(\mathcal{P} \mathbf{x})$ is a tautology?
- Approaches:
 - Tautology check over all input permutations.
 - Multi-rooted pattern ROBDD capturing all permutations.

Input/output polarity assignment

© GDM

- Allow for reassignment of input/output polarity.
- \mathcal{NPN} classification of Boolean functions.
- \mathcal{NPN} -equivalence:
 - Exists a permutation matrix \mathcal{P} , and complementation operators $\mathcal{N}_i, \mathcal{N}_o$ such that $f(\mathbf{x}) = \mathcal{N}_o \ g(\mathcal{P} \ \mathcal{N}_i \ \mathbf{x})$ is a tautology?
- Variations:

- \mathcal{N} -equivalence, \mathcal{PN} -equivalence

Boolean matching

_____ © GDM ____

- *Pin assignment* problem.
 - Map cluster variables x to pattern vars y.
 - Characteristic equation: $A(\mathbf{x}, \mathbf{y}) = 1$.
- Pattern function under variable assignment:

$$-g_{\mathcal{A}}(\mathbf{x}) = \mathcal{S}_{\mathbf{y}}\mathcal{A}(\mathbf{x}, \mathbf{y}) g(\mathbf{y})$$

• Tautology problem.

 $-f(\mathbf{x}) \oplus g_{\mathcal{A}}(\mathbf{x})$

 $- \forall_{\mathbf{X}}(f(\mathbf{x}) \oplus \mathcal{S}_{\mathbf{y}} (\mathcal{A}(\mathbf{x}, \mathbf{y}) g(\mathbf{y})))$

_____ © GDM ____

- Assign x_1 to y'_2 and x_2 to y_1 .
- Characteristic equation:

 $-A(x_1, x_2, y_1, y_2) = (x_1 \oplus y_2)(x_2 \oplus y_1)$

• AND pattern function:

 $-g = y_1 y_2$

• Pattern function under assignment:

$$- \mathcal{S}_{y_1,y_2}\mathcal{A}g = \\= \mathcal{S}_{y_1,y_2}(x_1 \oplus y_2)(x_2 \overline{\oplus} y_1)y_1y_2 = x_2x_1'$$

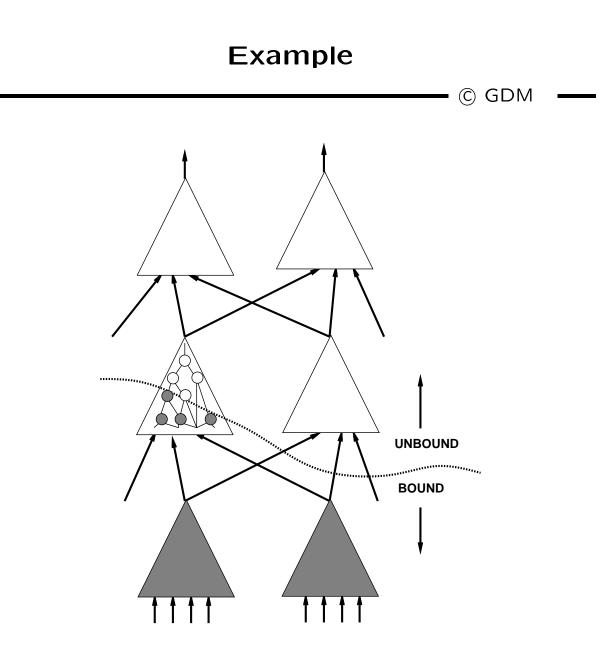
- Capture some properties of Boolean functions.
- If signatures do not match, there is no match.
- Used as filters to reduce computation.
- Signatures:
 - Unateness.
 - Symmetries.
 - Co-factor sizes.
 - Spectra.

Filters based on unateness and symmetries

- Any pin assignment must associate
 - unate (binate) variables in $f(\mathbf{x})$ with unate (binate) variables in $g(\mathbf{y})$.
- Variables or groups of variables
 - that are interchangeable in $f(\mathbf{x})$ must be interchangeable in $g(\mathbf{y})$.

C GDM

• Cluster function: f = abc.

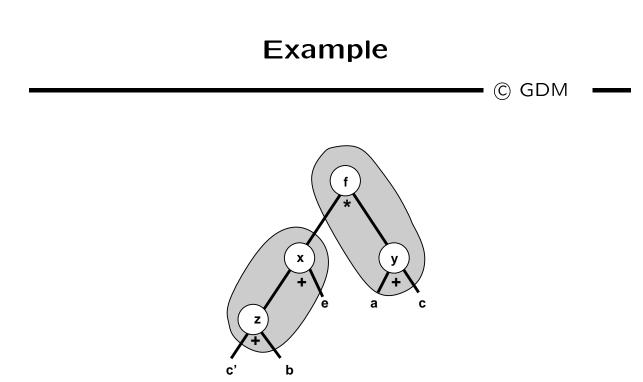

- Symmetries: $\{(a, b, c)\}$ - unate.

• Pattern functions:

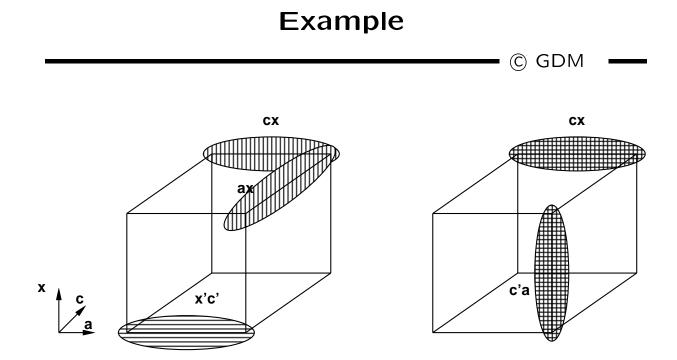
- $g_1 = a + b + c$ * Symmetries: {(a, b, c)} - unate. - $g_2 = ab + c$ * Symmetries: {(a, b)(c)} - unate. - $g_3 = abc' + a'b'c$ * Symmetries: {(a, b, c)} - binate.

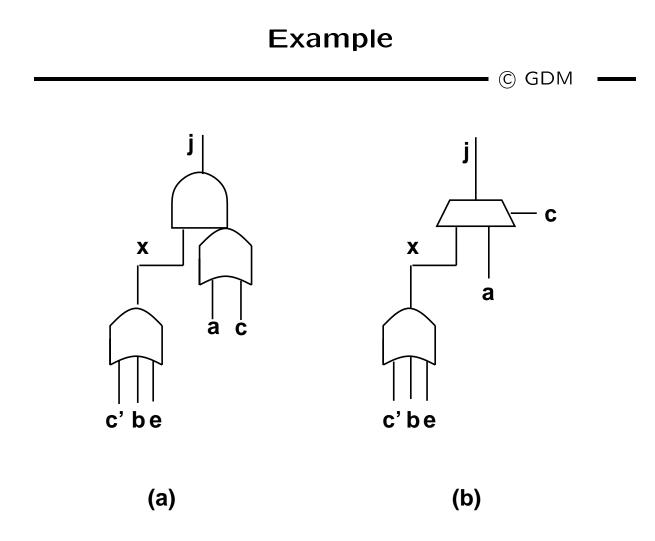
Concurrent optimization and library binding

- Motivation:
 - Logic simplification is usually done prior to binding.
 - Logic simplification/substitution can be combined with binding.
- Mechanism:
 - Binding induces some *don't care* conditions.
 - Exploit *don't cares* as degrees of freedom in matching.



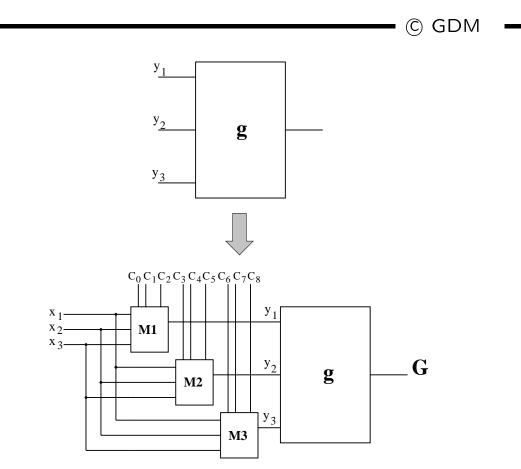
Boolean matching with *don't care* conditions


— © GDM


- Given $f(\mathbf{x}), f_{DC}(\mathbf{x})$ and $g(\mathbf{y})$:
 - g matches f if g is equivalent to \widetilde{f} where $f \cdot f'_{DC} \leq \widetilde{f} \leq f + f_{DC}$
- Matching condition:

 $- \forall_{\mathbf{X}} (f_{DC}(\mathbf{x}) + f(\mathbf{x}) \oplus \mathcal{S}_{\mathbf{y}} (\mathcal{A}(\mathbf{x}, \mathbf{y}) g(\mathbf{y})))$

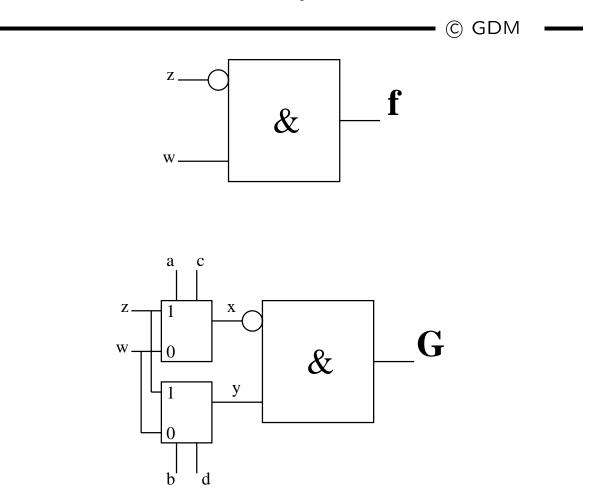
- Assume v_x is bound to OR3(c', b, e).
- Don't care set includes $x \oplus (c' + b + e)$.
- Consider $f_j = x(a+c)$ with CDC = x'c'.
- No simplification. Mapping into AOI gate.
- Matching with DC. Mapping into MUX gate.



Extended matching

© GDM

- Augment pattern function with mux function.
 - Each cell input can be routed to any cluster input (or voltage rail).
 - Input polarity can be changed.
 - Cell and cluster may differ input size.
- Define composite function $G(\mathbf{x}, \mathbf{c})$:
 - Pin assignment is determining **c**.
- Matching formula: $M(\mathbf{c}) = \forall_{\mathbf{X}} [G(\mathbf{x}, \mathbf{c}) \oplus f(\mathbf{x})]$



- $g = y_1 + y_2 y'_3$
- $y_1(\mathbf{c}, \mathbf{x}) = (c_0 c_1 x_1 + c_0 c'_1 x_2 + c'_0 c_1 x_3) \oplus c_2$
- $G = y_1(\mathbf{c}, \mathbf{x}) + y_2(\mathbf{c}, \mathbf{x}) \ y_3(\mathbf{c}, \mathbf{x})'$

Extended matching modeling

© GDM

- Model composite functions by ROBDDs.
 - Assume: n-input cluster and m-input cell.
 - For each cell input:
 - * $\lceil log_2 n \rceil$ variables for pin permutation.
 - * One variable for input polarity.
 - Total size of **c**: $m(\lceil \log_2 n \rceil + 1)$.
- A match exists if there is at least one value of **c** satisfying $M(\mathbf{c}) = \forall_{\mathbf{X}} [G(\mathbf{x}, \mathbf{c}) \oplus f(\mathbf{x})].$

- g = x'y, f = wz'
- $G(a, b, c, d, w, z) = (c \oplus (za + wa'))'(d \oplus (zb + wb'))$
- $f \overline{\oplus} G = (wz') \overline{\oplus} ((c \oplus (za + wa'))'(d \oplus (zb + wb')))$
- M(a, b, c, d) = ab'c'd' + a'bcd

----- © GDM -

- Captures implicitly all possible matches.
- No extra burden when exploiting *don't care* sets.

$$- M(\mathbf{c}) = \forall_{\mathbf{X}} \left[G(\mathbf{x}, \mathbf{c}) \ \overline{\oplus} \ f(\mathbf{x}) + f_{DC}(\mathbf{x}) \right]$$

- Efficient BDD-based representation.
- Extensions to support multiple-output matching

Summary

____ © GDM

- Library binding is very important.
- Rule-based approach:

- General, sometimes inefficient.

- Algorithmic approach:
 - Pattern-based: fast, but limited.
 - Boolean: more general and efficient.