LIBRARY BINDING

© Giovanni De Micheli

Stanford University

Outline

© GDM =

Modeling and problem analysis.

Rule-based systems for library binding.

Algorithms for library binding:
— Structural covering/matching.

— Boolean covering/matching.

Concurrent optimization and binding.

Library binding

© GDM =
e Given an unbound logic network
and a set of library cells:

— Transform into an interconnection
of instances of library cells.

— Optimize area, (under delay constraints.)
— Optimize delay, (under area constraints.)

— Optimize power, (under delay constraints.)

e Called also technology mapping:

— Method used for re-designing circuits
in different technologies.

Library models

© GDM e

e Combinational elements:

— Single-output functions:

x €.9g. AND, OR, AOIL

— Compound cells: e.g. adders, encoders.

e Sequential elements:

— Registers, counters.

e Miscellaneous:

— Schmitt triggers.

Major approaches

© GDM =

e Rule-based systems:
— Mimic designer activity.

— Handle all types of cells.

e Heuristic algorithms:

— Restricted to single-output combinational
cells.

e Most tools use a combination of both.

Rule-based library binding

© GDM e

e Binding by stepwise transformations.

e Data-base:
— Set of patterns associated with best
implementation.
e Rules:
— Select subnetwork to be mapped.

— Handle high-fanout problems,
buffering, etc.

Example

© GDM e

- =
oo = _po-

Oz > D

H)

Strategies

© GDM =

e Search for a sequence of transformations.

e Search space:
— Breadth (options at each step).
— Depth (look-ahead).

e Meta-rules determine dynamically breadth
and depth.

Rule-based library binding

© GDM =

e Advantages:

— Applicable to all kinds of libraries.

e Disadvantages:

— Large rule data-base:

* Completeness issue.
*x Formal properties of bound network.

— Data-base updates.

Algorithms for library binding

© GDM =

e Mainly for single-output combinational cells.

e Fast and efficient:
— Quality comparable to rule-based
systems.
e Library description/update is simple:

— Each cell modeled by its function
or equivalent pattern.

Problem analysis

© GDM =—

e Matching:

— A cell matches a sub-network
if their terminal behavior is the same.

— Input-variable assignment problem.

e Covering:

— A cover of an unbound network
IS a partition into subnetworks
which can be replaced by library cells.

Assumptions

© GDM =

e Network granularity is fine.

— Decomposition into base functions.

« 2-input AND,OR, NAND, NOR.

e Trivial binding:

— Replacement of each vertex by base
cell.

Example

© GDM =

© (d)

Example

© GDM = =—

=b+
Library Cost x=b+c

T
f
el

@) (b) ©

ml: {v1,0R2}
m2: {v2,AND2}
m3: {v3,AND2}
m4: {v1,v2,0A21}
mb5: {v1,v3,0A21}

JU

) © 0

Example

© GDM =~ =—

e Vertex covering:
— Covering v1: (m1 4+ ma4 + ms).
— Covering vs: (mo + mg).

— Covering vz: (m3 + ms).

e Input compatibility:
— Match mo requires my:
* (m5H 4+ m1).
— Match ms3 requires mq:

* (mg + m1).
e Overall binate clause:

— (m1+ ma+ ms)(m2 + ma)(mz +ms)(m, + m1)(mi +m1) = 1

Heuristic algorithms

© GDM =

e Decomposition:

— Cast network and library in standard
form.

— Decompose into base functions.

— Example: NAND2 and INV.

e Partitioning:
— Break network into cones.

— Reduce to many multi-input single-output
subnetworks.

e Covering:

— Cover each subnetwork by library cells.

Decomposition

© GDM

Partitioning

© GDM =

EN
data[0][0]

© GDM =

Covering

Heuristic algorithms

© GDM =

e Structural approach:

— Model functions by patterns.

« Example: trees, dags.

— Rely on pattern matching techniques.

e Boolean approach:
— Use Boolean models.
— Solve tautology problem.

— More powerful.

Example
Boolean versus structural matching

© GDM =

f=zy+2y+y=z

g=zy+ 2y + z=2

Function equality is a tautology:

— Boolean match.

Patterns may be different:

— Structural match may not be found.

Example
Boolean versus structural matching

© GDM
f g

()
y Z X y Z

o f=xy+2'y +y'z

X

e g=uxy+ 2y + zz

e Patterns do not match.

Structural matching and covering

© GDM e

e EXpression patterns:

— Represented by dags.

e Identify pattern dags in network:

— Sub-graph isomorphism.

e Simplification:

— Use tree patterns.

Example

© GDM e

A

@) (b) ()

Tree-based matching

© GDM =

e Network:

— Partitioned and decomposed:
* NOR2 (or NAND2) + INV.

* Generic base functions.

— Subject tree.

e Library:
— Represented by trees.

— Possibly more than one tree per cell.

e Pattern recognition:
— Simple binary tree match.

— Aho-Corasick automaton.

Simple library

INV

NAND2

AND2

NOR2

OR2

AOI21

AOI22

?ﬁgw?

S

@

00 GO o0 o OO

(b)

11v

N1lv
N2v

IIN1v
1IN2v

IIN1I1v
IIN2I1v

N1l1lv
N2I1v

IININ1v
IININ2v
1IN2I1v

IIN1I1v
IIN2N1v
IIN2N2v

IININ1v
IININ2v
IIN2N1v
IIN2N2v

(©

© GDM ==

t1.1

2.1
2.2

3.1
3.2

t4.1
t4.2

t5.1
5.2

t6A.1
t6A.2
t6A.3

t6B.1
t6B.2
t6B.3

t7.1
t7.2
t7.3
t7.4

(d)

Tree covering

© GDM =

e Dynamic programming:

— Visit subject tree bottom-up.

e At each vertex:

— Attempt to match:

x Locally rooted subtree.

« All library cells.

e Optimum solution, for the subtree.

Example

© GDM

SUBJECT TREE PATTERN TREES
r t1 t2 t3 t4
s t T
o @)
u
@) @)
cost =2 cost=3 cost=4 cost=5

INV NAND AND OR

© GDM

2

- //

Example

© GDM =

e Minimum-area cover.

e Area costs:

— INV:2; NAND2:3; AND2:4; AOI21:6.

e Best choice:

— AOI21 fed by a NAND2 gate.

Example

© GDM
Network Subject graph | Vertex |Match Gate Cost
X t2 NAND2(b,c) 3
y 1| INV(a) 2
Z t2 NAND2(x,d) 2*3=6
w t2 NAND2(y,z) 3*3+2 =11
0 t1 INV(w) 3*3+2%2= 13
t3 AND2(y,z) 2*3+4+2=12
t68 | AOI21(x,d,a) 3+6= E

Minimum delay cover

© GDM =

e Dynamic programming approach.

e Cost related to gate delay.

e Delay modeling:

— Constant gate delay.

x Straightforward.

— Load-dependent delay:

* Load fanout unknown.

x Binning techniques.

Minimum delay cover
constant delays

© GDM
e [he cell pattern tree and the rooted
subtree are isomorphic.
— The vertex is labeled with the cell delay.
e T he cell tree is isomorphic to a subtree
with leaves L.

— The vertex is labeled with the cell cost
plus the maximum of the labels of L.

Example

© GDM =

Inputs data-ready times are O
except for t; = 6.

Constant delays:

— INV:2: NAND2:4: AND2:5; AOI21:10.

Compute data-ready times bottom-up:

Best choice:

— AND2, two NAND2 and an INV gate.

Example

© GDM =

Network Subject graph | Vertex |Match Gate Cost

X 2 | NanD2(be) | *

y t1 | INV(a) 2

z 2 | NAND2(x,d) | 6+4=10

w 2 NAND2(y,z) 10+4=14

0 | INV(w) 14+2=16
3 AND2(y,z) 10+5=
68 | AOI21(x,d,a)

10+6=16

Minimum delay cover

load-dependent delays
© GDM =

e Model:

— Assume a finite set of load values.

e Dynamic programming approach:

— Compute an array of solutions
for each possible load.

— For each input to a matching cell
the best match for any load is selected.

e Optimum solution,
when all possible loads are considered.

Example

© GDM e

Inputs data-ready times are O
except for t; = 6.

Load-dependent delays:

— INV:141; NAND2:341; AND2:4+41;
AOI21:9-4I.

Loads:

— INV:1; NAND2:1;: AND2:1; AOI21:1.

Same solution as before.

Example

© GDM =

Inputs data-ready times are O

except for t; = 6.

Load-dependent delays:

— INV:141; NAND2:341; AND2:441; AOI21:9+41;
SINV:1+4-0.5l;.

Loads:

— INV:1; NAND2:1; AND2:1; AOI21:1; SINV:2.

Assume output load is 1:

— Same solution as before.

Assume output load is 5:

— Solution uses SINV caell.

Example

© GDM =

Cost
Network Subject graph | Vertex |Match Gate Load=1 | Load=2 |Load=5
X t2 NAND2(b,c) 4 > 8
y t1 INV(a) 2 3 6
z 2 NAND2(x,d) 10 11 14
w t2 NAND2(y,z) | 14 15 18
0 t1 INV(w) 20
3 AND2(y,z) 19
t68 | AOI21(x,d,a) 20
SINV(w) 18.5

Library binding
and polarity assignment

© GDM =

e Search for lower cost solution
by not constraining the signal polarities.

e Most circuit allow us to choose
the input/output signal polarities.
e Approaches:
— Structural covering.

— Boolean covering.

Structural covering
and polarity assignment

© GDM =

e Pre-process subject network:
— Add inverter pairs between NANDS.

— Provide signals with both polarity.

e Add inverter-pair cell to the library:
— To eliminate unneeded pairs.

— Cell corresponds to a connection
with zero cost.

Example

(@)

(c)

(d)

Boolean covering

© GDM =

e Decompose network into base functions.

e \When considering vertex v;:
— Construct clusters by local elimination.

— Several functions associated with wvj;.

e Limit size and depth of clusters.

Example

fi1
fiz2
fi3
fia
fi5
fie

ATR

x(a + ¢);

(e + 2)y;

(e +2)(a+c);
(e + ¢ + d)y;
(e + '+ d)(a+c);

© GDM =

Boolean matching
P-equivalence

© GDM =

Cluster function f(X): sub-network behavior.

Pattern function g(y): cell behavior.

P-equivalence:
— Exists a permutation operator P,

such that f(x) = g(P x) is a tautology?
Approaches:

— Tautology check over all input
permutations.

— Multi-rooted pattern ROBDD
capturing all permutations.

Input/output polarity assignment
© GDM =

e Allow for reassignment of input/output
polarity.

e N'PAN classification of Boolean functions.

e N'PN-equivalence:

— EXxists a permutation matrix P,
and complementation operators N;, Ny

such that f(x) =N, g(P N; X)
IS a tautology?

e Variations:

— N -equivalence, PN -equivalence

Boolean matching

© GDM =

Pin assignment problem.
— Map cluster variables x to pattern vars y.

— Characteristic equation: A(x,y) = 1.

Pattern function under variable assignment:

— gA(X) = Sy A(X,y) g(y)

Tautology problem.
— f(X) ® ga(x)

— Vx(f(X) & Sy (A(X,y¥) g(¥)))

Example

© GDM = =—

Assign z1 to y5 and zo to y3.

Characteristic equation:

— A(x1,22,91,y2) = (21 D y2) (22 ® y1)

AND pattern function:

— 9 = Y1Y2

Pattern function under assignment:

— Sy1ypAg = B
= Sy1,y2(21 © y2) (22BY1)y1y2 = T27

Signatures and filters

© GDM =

Capture some properties of Boolean
functions.

If signatures do not match, there is no
match.

Used as filters to reduce computation.

Signatures:

— Unateness.

— Symmetries.

— Co-factor sizes.

— Spectra.

Filters based on
unateness and symmetries

© GDM e

e Any pin assignment must associate
— unate (binate) variables in f(X)
with unate (binate) variables in g(y).
e Variables or groups of variables

— that are interchangeable in f(x)
must be interchangeable in g(y).

Example

© GDM =

e Cluster function: f = abc.

— Symmetries:{(a,b,c)} — unate.

e Pattern functions:

—gr=a+brtc

x Symmetries:{(a,b,c)} — unate.

—g2=ab+c
x Symmetries:{(a,b)(c)} — unate.
— g3 = abcd’ + a'b'c

x Symmetries:{(a,b,c)} — binate.

Concurrent optimization
and library binding

© GDM =

e Motivation:

— Logic simplification is usually done
prior to binding.

— Logic simplification/substitution
can be combined with binding.
e Mechanism:

— Binding induces some don’t care
conditions.

— Exploit don’t cares as degrees of
freedom in matching.

Example

© GDM =

|

UNBOUND

............
.............
.
..............

Boolean matching with don’t care
conditions

© GDM =

e Given f(x), fpc(X) and g(y):

— ¢ matches f if g is equivalent to f
where f- fpo < f < f+ fpc

e Matching condition:

— Vx(fpc(X) + f(x) & Sy (A(X,y) g(¥)))

Example

© GDM

Assume v, is bound to OR3(d,b,e).

Don't care set includes = @ (¢’ + b+ e).
Consider f; = z(a + ¢) with CDC = z'c.
No simplification. Mapping into AOI gate.

Matching with DC. Mapping into MUX gate.

Example

CX

=N
:
\

X'c’

© GDM =

CX

c'a

Example

© GDM =

@) (b)

Extended matching
© GDM =

e Augment pattern function with mux function.

— Each cell input can be routed to any
cluster input (or voltage rail).

— Input polarity can be changed.

— Cell and cluster may differ input size.

e Define composite function G(x,C):

— Pin assignment is determining C.

e Matching formula: M(c) = Vx [G(X,C) & f(X)]

© GDM =~ =—

Y3

L

CoC1C,C3C4C5CqC7Cq

1
X2 M1

M3

e g=y1+y2 Y5

e y1(C,X) = (coc1w1 + cocjzo + cher1x3) B o

o G =y1(c,x)+ y2(c,x) y3(c,x)’

Extended matching modeling

© GDM =~ =—

e Model composite functions by ROBDDs.

— Assume: n-input cluster and m-input
cell.

— For each cell input:

x [logp n]| variables for pin permutation.
x One variable for input polarity.
— Total size of ¢: m([logon] + 1).

e A match exists if there is at least one value
of ¢ satisfying M(c) = Vx [G(X,C) & f(X)].

Example

© GDM =~ =—

g=1zy, f=wz
G(a’7 b) C, d, w, Z) — (C D (za + wa’))’(d D (Zb + wb/))
fOG = (w2)®((c ® (za + wa'))'(d ® (2b + wb)))

M(a,b,c,d) = ab'c'd + a’bed

Extended matching

© GDM =

Captures implicitly all possible matches.

No extra burden when exploiting don’t care
sets.

— M(c) =Vx[G(Xx,€) & f(X) + fpc(X)]

Efficient BDD-based representation.

Extensions to support multiple-output matchinc

Summary

© GDM =

e Library binding is very important.

e Rule-based approach:

— @General, sometimes inefficient.

e Algorithmic approach:
— Pattern-based: fast, but limited.

— Boolean: more general and efficient.

